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Abstract: Mobile and wearable devices have enabled numerous applications, including activity
tracking, wellness monitoring, and human–computer interaction, that measure and improve our
daily lives. Many of these applications are made possible by leveraging the rich collection of low-
power sensors found in many mobile and wearable devices to perform human activity recognition
(HAR). Recently, deep learning has greatly pushed the boundaries of HAR on mobile and wearable
devices. This paper systematically categorizes and summarizes existing work that introduces deep
learning methods for wearables-based HAR and provides a comprehensive analysis of the current
advancements, developing trends, and major challenges. We also present cutting-edge frontiers and
future directions for deep learning-based HAR.

Keywords: review; human activity recognition; deep learning; wearable sensors; ubiquitous com-
puting; pervasive computing

1. Introduction

Since the first Linux-based smartwatch was presented in 2000 at the IEEE International
Solid-State Circuits Conference (ISSCC) by Steve Mann, who was later hailed as the “father
of wearable computing”, the 21st century has witnessed a rapid growth of wearables. For
example, as of January 2020, 21% of adults in the United States, most of whom are not
opposed to sharing data with medical researchers, own a smartwatch [1].

In addition to being fashion accessories, wearables provide unprecedented opportu-
nities for monitoring human physiological signals and facilitating natural and seamless
interaction between humans and machines. Wearables integrate low-power sensors that
allow them to sense movement and other physiological signals such as heart rate, tem-
perature, blood pressure, and electrodermal activity. The rapid proliferation of wearable
technologies and advancements in sensing analytics have spurred the growth of human ac-
tivity recognition (HAR). As a general understanding of the HAR shown in Figure 1, HAR
has drastically improved the quality of service in a broad range of applications spanning
healthcare, entertainment, gaming, industry, and lifestyle, among others. Market analysts
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from Meticulous Research® [2] forecast that the global wearable devices market will grow
at a compound annual growth rate of 11.3% from 2019, reaching $62.82 billion by 2025,
with companies like Fitbit®, Garmin®, and Huawei Technologies® investing more capital
into the area.

In the past decade, deep learning (DL) has revolutionized traditional machine learning
(ML) and brought about improved performance in many fields, including image recog-
nition, object detection, speech recognition, and natural language processing. DL has
improved the performance and robustness of HAR, speeding its adoption and application
to a wide range of wearable sensor-based applications. There are two key reasons why
DL is effective for many applications. First, DL methods are able to directly learn robust
features from raw data for specific applications, whereas features generally need to be
manually extracted or engineered in traditional ML approaches, which usually requires
expert domain knowledge and a large amount of human effort. Deep neural networks can
efficiently learn representative features from raw signals with little domain knowledge.
Second, deep neural networks have been shown to be universal function approximators,
capable of approximating almost any function given a large enough network and sufficient
observations [3–5]. Due to this expressive power, DL has seen a substantial growth in
HAR-based applications.

Despite promising results in DL, there are still many challenges and problems to
overcome, leaving room for more research opportunities. We present a review on deep
learning in HAR with wearable sensors and elaborate on ongoing challenges, obstacles,
and future directions in this field.

(a) (b) (c)

Figure 1. Wearable devices and their application. (a) Distribution of wearable applications [6].
(b) Typical wearable devices. (c) Distribution of wearable devices placed on common body areas [6].

Specifically, we focus on the recognition of physical activities, including locomotion,
activities of daily living (ADL), exercise, and factory work. While DL has shown a lot
of promise in other applications, such as ambient scene analysis, emotion recognition,
or subject identification, we focus on HAR. Throughout this work, we present brief and
high-level summaries of major DL methods that have significantly impacted wearable
HAR. For more details about specific algorithms or basic DL, we refer the reader to original
papers, textbooks, and tutorials [7,8]. Our contributions are summarized as followings.

(i) Firstly, we give an overview of the background of the human activity recognition
research field, including the traditional and novel applications where the research
community is focusing, the sensors that are utilized in these applications, as well as
widely-used publicly available datasets.

(ii) Then, after briefly introducing the popular mainstream deep learning algorithms,
we give a review of the relevant papers over the years using deep learning in
human activity recognition using wearables. We categorize the papers in our scope
according to the algorithm (autoencoder, CNN, RNN, etc.). In addition, we compare
different DL algorithms in terms of the accuracy of the public dataset, pros and cons,
deployment, and high-level model selection criteria.
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(iii) We provide a comprehensive systematic review on the current issues, challenges, and
opportunities in the HAR domain and the latest advancements towards solutions.
At last, honorably and humbly, we make our best to shed light on the possible future
directions with the hope to benefit students and young researchers in this field.

2. Methodology
2.1. Research Question

In this work, we propose several major research questions, including Q1 : What the
real-world applications of HAR, mainstream sensors, and major public datasets are in this
field, Q2 : What deep learning approaches are employed in the field of HAR and what
pros and cons each of them have, and Q3 : What challenges we are facing in this field and
what opportunities and potential solutions we may have. In this work, we review the
state-of-the-art work in this field and present our answers to these questions.

This article is organized as follows: We compare this work with related existing
review work in this field in Section 3. Section 4.1 introduces common applications for
HAR. Section 4.2 summarizes the types of sensors commonly used in HAR. Section 4.3
summarizes major datasets that are commonly used to build HAR applications. Section 5
introduces the major works in DL that contribute to HAR. Section 6 discusses major
challenges, trends, and opportunities for future work. We provide concluding remarks in
Section 7.

2.2. Research Scope

In order to provide a comprehensive overview of the whole HAR field, we conducted
a systematic review for human activity recognition. To ensure that our work satisfies the
requirements of a high-quality systemic review, we conducted the 27-item PRISMA review
process [9] and ensured that our work satisfied each requirement. We searched in Google
Scholar with meta-keywords (We began compiling papers for this review in November 2020.
As we were preparing this review, we compiled a second round of papers in November
2021 to incorporate the latest works published in 2021). (A) “Human activity recognition”,
“motion recognition”, “locomotion recognition”, “hand gesture recognition”, “wearable”,
(B) “deep learning”, “autoencoder” (alternatively “auto-encoder”), “deep belief network”,
“convolutional neural network” (alternatively “convolution neural network”), “recurrent
neural network”, “LSTM”, “recurrent neural network”, “generative adversarial network”
(alternatively “GAN”), “reinforcement learning”, “attention”, “deep semi-supervised learn-
ing”, and “graph neural network”. We used an AND rule to get combinations of the above
meta-keywords (A) and (B). For each combination, we obtained top 200 search results
ranked by relevance. We didn’t consider any patent or citation-only search result (no
content available online).

There are several exclusion criteria to build the database of the paper we reviewed.
First of all, we omitted image or video-based HAR works, such as [10], since there is a
huge body of work in the computer vision community and the method is significantly
different from sensor-based HAR. Secondly, we removed the papers using environmental
sensors or systems assisted by environmental sensors such as WiFi- and RFID-based HAR.
Thirdly, we removed the papers with minor algorithmic advancements based on prior
works. We aim to present the technical progress and algorithmic achievements in HAR, so
we avoid presenting works that do not stress the novelty of methods. In the end, as the
field of wearable-based HAR is becoming excessively popular and numerous papers are
coming out, it is not a surprise to find that many papers share rather similar approaches,
and it is almost impossible and less meaningful to cover all of them. Figure 2 shows the
consort diagram that outlines step-by-step how we filtered out papers to arrive at the
final 176 papers we included in this review. We obtained 8400 papers in the first step by
searching keywords mentioned above on Google Scholar. Next, we removed papers that
did not align with the topics in this review (i.e., works that do not utilize deep learning
in wearable systems), leaving us with 870 papers. In this step, we removed 2194 papers
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that utilized vision, 2031 papers that did not use deep learning, and 2173 papers that did
not perform human activity recognition. Then, we removed 52 review papers, 109 papers
that did not propose novel systems or algorithms, and five papers that were not in English,
leaving us with 704 papers. Finally, we selected the top 25% most relevant papers to review,
leaving us with 176 papers that we reviewed for this work. We used the relevancy score
provided through Google Scholar to select the papers to include in this systemic review.
Therefore, we select, categorize, and summarize representative works to present in this
review paper. We adhere to the goal of our work throughout the whole paper, that is, to
give an overall introduction to new researchers entering this field and present cutting-edge
research challenges and opportunities.

Paper topic filtering (n=7268)

Google Scholar using keywords1

(n=8400)

Paper novelty filtering (n=870)

Paper language filtering (n=709)

Paper relevance selection (n=704)

- Not using wearable non-visual

sensors (n=2194)

- Not using deep learning

(n=2031)

- Not activity recognition

(n=2173)

- Remove review/survey papers

(n=52)

- No technical contribution

(n=109)

- Not in English (n=5)

- Remove duplicates (n=1132)

Papers included (n=176)

- Of top 25% relevance

Figure 2. Consort diagram outlining how we selected the final papers we included in this work.

However, we admit that the review process conducted in this work has some limita-
tions. Due to the overwhelming amount of papers in this field in recent years, it is almost
impossible to include all the published papers in the field of deep learning-based wearable
human activity recognition in a single review paper. The selection of the representative
works to present in this paper is unavoidably subject to the risk of bias. Besides, we may
miss the very first paper initiating or adopting a certain method. At last, due to the na-
ture of human-related research and machine learning research, many possibilities could
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cause heterogeneity among study results, including the heterogeneity in devices, hetero-
geneity from the demography of participants, and even heterogeneity from the algorithm
implementation details.

2.3. Taxonomy of Human Activity Recognition

In order to obtain a straightforward understanding of the hierarchies under the tree of
HAR, we illustrate the taxonomy of HAR as shown in Figure 3. We categorized existing
HAR works into four dimensions: Sensor, application, DL approach, and challenge. There
are basically two kinds of sensors: Physical sensors and physiological sensors. Physical
sensors include Inertial Measurement Unit (IMU), piezoelectric sensor, GPS, wearable
camera, etc. Some exemplary physiological sensors are electromyography (EMG) and
photoplethysmography (PPG), just to name a few. In terms of the applications of HAR
systems, we categorized them into healthcare, fitness& lifestyle, and Human Computer
Interaction (HCI). Regarding the DL algorithm, we introduce six approaches, including
autoencoder (AE), Deep Belief Network (DBN), Convolutional Neural Network, Recurrent
Neural Network (including Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRUs)), Generative Adversarial Network (GAN), and Deep Reinforcement Learning
(DRL). In the end, we discuss the challenges our research community is facing and the
state-of-the-art works are coping with, also shown in Figure 3.

 Deep Learning-based Human
Activity Recognition with

Wearales

ApplicationSensor DL Approach Challenge

Physical Healthcare Autoencoder (AE)

Deep Belief
Network (DBN)

Convolutional
Neural Network

(CNN)

Recurrent Neural
Network (RNN)

Generative
Adversarial

Network (GAN)

Deep
Reinforcement
Learning (DRL)

Hybrid Models

Fitness & Lifestyle

HCI

Entertainment

Medical

Data Acquisition

Label Acquisition

Pets&Animal

Gaming

 Industrial

IMU

Piezoeletric

Ultraviolet

GPS

Microphone

Camera

Physiological

ECG

PPG

EMG

MMG

Modeling

Model Deployment

EMG

Figure 3. Taxonomy of Deep Learning-based Human Activity Recognition with Wearables.
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3. Related Work

There are some existing review papers in the literature for deep learning approaches
for sensor-based human activity recognition [11–14]. Nweke et al. accentuated the advance-
ments in deep learning models by proposing a taxonomy of generative, discriminative,
and hybrid methods along with further explorations for the advantages and limitations
up to year 2018 [12]. Similarly, Wang et al. conducted a thorough analysis on different
sensor-based modalities, deep learning models, and their respective applications up to the
year 2017 [11]. However, in recent years, due to huge advancements in the availability and
computational power of computing resources and cutting-edge deep learning techniques,
the applied deep learning area has been revolutionized and reached all-time-high perfor-
mance in the field of sensor-based human activity recognition. Therefore, we aim to present
the most recent advances and most exciting achievements in the community in a timely
manner to our readers.

In another work, Chen et al. provided the community a comprehensive review
which has done an in-depth analysis of the challenges/opportunities for deep learning
in sensor-based HAR and proposed a new taxonomy for the challenges ahead of the
activity recognition systems [13]. In contrast, we view our work as more of a gentle
introduction of this field to students and novices in the way that our literature review
provides the community with a detailed analysis on most recent state-of-the-art deep
learning architectures (i.e., CNN, RNN, GAN, Deep Reinforcement Learning, and hybrid
models) and their respective pros and cons on HAR benchmark datasets. At the same time,
we distill our knowledge and experience from our past works in this field and present
the challenges and opportunities from a different viewpoint. Another recent work was
presented by Ramanujam et al. , in which they categorized the deep learning architectures
in CNN, LSTM, and hybrid methods and conducted an in-depth analysis on the benchmark
datasets [14]. Compared with their work, our paper pays more attention to the most recent
cutting-edge deep learning methods applied on HAR on-body sensory data, such as GAN
and DRL. We also provide both new learners and experienced researchers with a profound
resource in terms of model comparison, model selection and model deployment. In a
nutshell, our review has thoroughly analysed most up-to-date deep learning architectures
applied on various wearable sensors, elaborated on their respective applications, and
compared performances on public datasets. What’s more, we attempt to cover the most
recent advances in resolving the challenges and difficulties and shed light on possible
research opportunities.

4. Human Activity Recognition Overview
4.1. Applications

In this section, we illustrate the major areas and applications of wearable devices
in HAR. Figure 1a, taken from the wearable technology database [6], breaks down the
distribution of application types of 582 commercial wearables registered since 2015 [6]. The
database suggests that wearables are increasing in popularity and will impact people’s lives
in several ways, particularly in applications ranging from fitness and lifestyle to medical
and human-computer interaction.

4.1.1. Wearables in Fitness and Lifestyle

Physical activity involves activities such as sitting, walking, laying down, going
up or downstairs, jogging, and running [15]. Regular physical activity is increasingly
being linked to a reduction in risk for many chronic diseases, such as obesity, diabetes,
and cardiovascular disease, and has been shown to improve mental health [16]. The
data recorded by wearable devices during these activities include plenty of information,
such as duration and intensity of activity, which further reveals an individual’s daily
habits and health conditions [17]. For example, dedicated products such as Fitbit [18] can
estimate and record energy expenditure on smart devices, which can further serve as an
important step in tracking personal activity and preventing chronic diseases [19]. Moreover,
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there has been evidence of the association between modes of transport (motor vehicle,
walking, cycling, and public transport) and obesity-related outcomes [20]. Being aware of
daily locomotion and transportation patterns can provide physicians with the necessary
information to better understand patients’ conditions and also encourage users to engage
in more exercise to promote behavior change [21]. Therefore, the use of wearables in fitness
and lifestyle has the potential to significantly advance one of the most prolific aspects of
HAR applications [22–30].

Energy (or calorie) expenditure (EE) estimation has grown to be an important reason
why people care to track their personal activity. Self-reflection and self-regulation of one’s
own behavior and the habit has been important factor in designing interventions that
prevent chronic diseases such as obesity, diabetes, and cardiovascular diseases.

4.1.2. Wearables in Healthcare and Rehabilitation

HAR has greatly impacted the ability to diagnose and capture pertinent information in
healthcare and rehabilitation domains. By tracking, storing, and sharing patient data with
medical institutions, wearables have become instrumental for physicians in patient health
assessment and monitoring. Specifically, several works have introduced systems and meth-
ods for monitoring and assessing Parkinson disease (PD) symptoms [31–36]. Pulmonary
disease, such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and COVID-19,
is one of leading causes of morbidity and mortality. Some recent works use wearables to
detect cough activity, a major symptom of pulmonary diseases [37–40]. Other works have
introduced methods for monitoring stroke in infants using wearable accelerometers [41]
and methods for assessing depressive symptoms utilizing wrist-worn sensors [42]. In
addition, detecting muscular activities and hand motions using electromyography (EMG)
sensors has been widely applied to enable improved prostheses control for people with
missing or damaged limbs [43–46].

4.1.3. Wearables in Human Computer Interaction (HCI)

Modern wearable technology in HCI has provided us with flexible and convenient
methods to control and communicate with electronics, computers, and robots. For example,
a wrist-worn wearable outfitted with an inertial measurement unit (IMU) can easily detect
the wrist shaking [47–49] to control smart devices to skip a song by shaking the hand,
instead of bringing up the screen, locating, and pushing a button. Furthermore, wearable
devices have played an essential role in many HCI applications in entertainment systems
and immersive technology. One example field is augmented reality (AR) and virtual reality
(VR), which has changed the way we interact and view the world. Thanks to accurate
activity, gesture, and motion detection from wearables, these applications could induce
feelings of cold or hot weather by providing an immersive experience by varying the virtual
environment and could enable more realistic interaction between the human and virtual
objects [43,44].

4.2. Wearable Sensors

Wearable sensors are the foundation of HAR systems. As shown in Figure 1b, there
are a large number of off-the-shelf smart devices or prototypes under development today,
including smartphones, smartwatches, smart glasses, smart rings [50], smart gloves [51],
smart armbands [52], smart necklaces [53–55], smart shoes [56], and E-tattoos [57]. These
wearable devices cover the human body from head to toe with a general distribution of
devices shown in Figure 1c, as reported by [6]. The advance of micro-electro-mechanical
system (MEMS) technology (microscopic devices, comprising a central unit such as a
microprocessor and multiple components that interact with the surroundings such as
microsensors) has allowed wearables to be miniaturized and lightweight to reduce the
burden on adherence to the use of wearables and Internet of Things (IoT) technologies. In
this section, we introduce and discuss some of the most prevalent MEMS sensors commonly
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used in wearables for HAR. The summary of wearable sensors is represented as a part of
Figure 3.

4.2.1. Inertial Measurement Unit (IMU)

Inertial measurement unit (IMU) is an integrated sensor package comprising of ac-
celerometer, gyroscope, and sometimes magnetometer. Specifically, an accelerometer
detects linear motion and gravitational forces by measuring the acceleration in 3 axes (x, y,
and z), while a gyroscope measures rotation rate (roll, yaw, and pitch). The magnetometer
is used to detect and measure the earth’s magnetic fields. Since a magnetometer is often
used to obtain the posture and orientation in accordance with the geomagnetic field, which
is typically outside the scope of HAR, the magnetometer is not always included in data
analysis for HAR. By contrast, accelerometers and gyroscopes are commonly used in many
HAR applications. We refer to an IMU package comprising a 3-axis accelerometer and a
3-axis gyroscope as a 6-axis IMU. This component is often referred to as a 9-axis IMU if a
3-axis magnetometer is also integrated. Owing to mass manufacturing and the widespread
use of smartphones and wearable devices in our daily lives, IMU data are becoming more
ubiquitous and more readily available to collect. In many HAR applications, researchers
carefully choose the sampling rate of the IMU sensors depending on the activity of interest,
often choosing to sample between 10 and several hundred Hz. In [58], Chung et al. tested a
range of sampling rates and gave the best one in his application. Besides, it’s been shown
that higher sampling rates allow the system to capture signals with higher precision and
frequencies, leading to more accurate models at the cost of higher energy and resource
consumption. For example, the projects presented in [59,60] utilize sampling rates above
the typical rate. These works sample at 4 kHz to sense the vibrations generated from the
interaction between a hand and a physical object.

4.2.2. Electrocardiography (ECG) and Photoplethysmography (PPG)

Electrocardiography (ECG) and photoplethysmography (PPG) are the most commonly
used sensing modalities for heart rate monitoring. ECG, also called EKG, detects the
heart’s electrical activity through electrodes attached to the body. The standard 12-lead
ECG attaches ten non-intrusive electrodes to form 12 leads on the limbs and chest. ECG is
primarily employed to detect and diagnose cardiovascular disease and abnormal cardiac
rhythms. PPG relies on using a low-intensity infrared (IR) light sensor to measure blood
flow caused by the expansion and contraction of heart chambers and blood vessels. Changes
in blood flow are detected by the PPG sensor as changes in the intensity of light; filters
are then applied to the signal to obtain an estimate of heart rate. Since ECG directly
measures the electrical signals that control heart activity, it typically provides more accurate
measurements for heart rate and often serves as a baseline for evaluating PPG sensors.

4.2.3. Electromyography (EMG)

Electromyography (EMG) measures the electrical activity produced by muscle move-
ment and contractions. EMG was first introduced in clinical tests to assess and diagnose the
functionality of muscles and motor neurons. There are two types of EMG sensors: Surface
EMG (sEMG) and intramuscular EMG (iEMG). sEMG uses an array of electrodes placed on
the skin to measure the electrical signals generated by muscles through the surface of the
skin [61]. There are a number of wearable applications that detect and assess daily activities
using sEMG [44,62]. In [63], researchers developed a neural network that distinguishes ten
different hand motions using sEMG to advance the effectiveness of prosthetic hands. iEMG
places electrodes directly into the muscle beneath the skin. Because of its invasive nature,
non-invasive wearable HAR systems do not typically include iEMG.

4.2.4. Mechanomyography (MMG)

Mechanomyography (MMG) uses a microphone or accelerometer to measure low-
frequency muscle contractions and vibrations, as opposed to EMG, which uses electrodes.
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For example, 4-channel MMG signals from the thigh can be used to detect knee motion
patterns [64]. Detecting these knee motions is helpful for the development of power-assisted
wearables for powered lower limb prostheses. The authors create a convolutional neural
network and support vector machine (CNN-SVM) architecture comprising a seven-layer
CNN to learn dominant features for specific knee movements. The authors then replace
the fully connected layers with an SVM classifier trained with the extracted feature vectors
to improve knee motion pattern recognition. Moreover, Meagher et al. [65] proposed
developing an MMG device as a wearable sensor to detect mechanical muscle activity for
rehabilitation after stroke.

Other wearable sensors used in HAR include (but are not limited to) piezoelectric
sensor [66,67] for converting changes in pressure, acceleration, temperature, strain, or force
to electrical charge, barometric pressure sensor [68] for atmospheric pressure, tempera-
ture measurement [69], electroencephalography (EEG) for measuring brain activity [70],
respiration sensors for breathing monitoring [71], ultraviolet (UV) sensors [72] for sun
exposure assessment, GPS for location sensing, microphones for audio recording [39,73,74],
and wearable cameras for image or video recording [55]. It is also important to note that
the wearable camera market has drastically grown with cameras such as GoPro becoming
mainstream [75–78] over the last few years. However, due to privacy concerns posed by
participants related to video recording, utilizing wearable cameras for longitudinal activity
recognition is not as prevalent as other sensors. Additionally, HAR with image/video
processing has been extensively studied in the computer vision community [79,80], and
the methodologies commonly used differ significantly from techniques used for IMUs,
EEG, PPG, etc. For these reasons, despite their significance in applications of deep learning
methods, this work does not cover image and video sensing for HAR.

4.3. Major Datasets

We list the major datasets employed to train and evaluate various ML and DL tech-
niques in Table 1, ranked based on the number of citations they received per year according
to Google Scholar. As described in the earlier sections, most datasets are collected via IMU,
GPS, or ECG. While most datasets are used to recognize physical activity or daily activi-
ties [81–99], there are also a few datasets dedicated to hand gestures [100,101], breathing
patterns [102], and car assembly line activities [103], as well as those that monitor gait for
patients with PD [104].

Table 1. Major Public Datasets for Wearable-based HAR.

Dataset Application Sensor # Classes Spl. Rate Citations/yr

WISDM [81] Locomotion 3D Acc. 6 20 Hz 217
ActRecTut [100] Hand gestures 9D IMU 12 32 Hz 153
UCR(UEA)-TSC [105,106] 9 datasets (e.g., uWave [107]) Vary Vary Vary 107
UCI-HAR [82] Locomotion Smartphone 9D IMU 6 50 Hz 78
Ubicomp 08 [83] Home activities Proximity sensors 8 N/A 69
SHO [84] Locomotion Smartphone 9D IMU 7 50 Hz 52
UTD-MHAD1/2 [85] Locomotion & activities 3D Acc. & 3D Gyro. 27 50 Hz 39
HHAR [86] Locomotion 3D Acc. 6 50–200 Hz 37
Daily & Sports Activities [87] Locomotion 9D IMU 19 25 Hz 37
MHEALTH [88,89] Locomotion & gesture 9D IMU & ECG 12 50 Hz 33
Opportunity [90] Locomotion & gesture 9D IMU 16 50 Hz 32
PAMAP2 [91] Locomotion & activities 9D IMU & HR monitor 18 100 Hz 32
Daphnet [104] Freezing of gait 3D Acc. 2 64 Hz 30
SHL [108] Locomotion & transportation 9D IMU 8 100 Hz 23
SARD [92] Locomotion 9D IMU & GPS 6 50 Hz 22
Skoda Checkpoint [103] Assembly-line activities 3D Acc. 11 98 Hz 21
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Table 1. Cont.

Dataset Application Sensor # Classes Spl. Rate Citations/yr

UniMiB SHAR [93] Locomotion & gesture 9D IMU 12 N/A 20
USC-HAD [94] Locomotion 3D ACC. & 3D Gyro. 12 100 Hz 20
ExtraSensory [95] Locomotion & activities 9D IMU & GPS 10 25–40 Hz 13
HASC [96] Locomotion Smartphone 9D IMU 6 100 Hz 11
Actitracker [97] Locomotion 9D IMU & GPS 5 N/A 6
FIC [101] Feeding gestures 3D Acc. 6 20 Hz 5
WHARF [98] Locomotion Smartphone 9D IMU 16 50 Hz 4

Most of the datasets listed above are publicly available. The University of California
Riverside-Time Series Classification (UCR-TSC) archive is a collection of datasets collected
from various sensing modalities [109]. The UCR-TSC archive was first released and in-
cluded 16 datasets, growing to 85 datasets by 2015 and 128 by October 2018. Recently,
researchers from the University of East Anglia have collaborated with UCR to generate a
new collection of datasets, which includes nine categories of HAR: BasicMotions , Cricket,
Epilepsy, ERing, Handwriting, Libras, NATOPS, RacketSports, and UWaveGestureLi-
brary [106]. One of the most commonly used datasets is the OPPORTUNITY dataset [90].
This dataset contains data collected from 12 subjects using 15 wireless and wired networked
sensor systems, with 72 sensors and ten modalities attached to the body or the environment.
Existing HAR papers mainly focus on data from on-body sensors, including 7 IMUs and
12 additional 3D accelerometers for classifying 18 kinds of activities. Researchers have
proposed various algorithms to extract features from sensor signals and to perform ac-
tivity classification using machine-learned models like K Nearest Neighbor (KNN) and
SVM [22,110–118]. Another widely-used dataset is PAMAP2 [91], which is collected from 9
subjects performing 18 different activities, ranging from jumping to house cleaning, with
3 IMUs (100-Hz sampling rate) and a heart rate monitor (9 Hz) attached to each subject.
Other datasets such as Skoda [103] and WISDM [81] are also commonly used to train and
evaluate HAR algorithms. In Figure 4, we present the placement of inertial sensors in 9
common datasets.
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Figure 4. Placement of inertial sensors in different datasets: WISDOM; ActRecTut; UCI-HAR; SHO;
PAMAP2; and Opportunity.

5. Deep Learning Approaches

In recent years, DL approaches have outperformed traditional ML approaches in a
wide range of HAR tasks. There are three key factors behind deep learning’s success:
Increasingly available data, hardware acceleration, and algorithmic advancements. The
growth of datasets publicly shared through the web has allowed developers and researchers
to quickly develop robust and complex models. The development of GPUs and FPGAs have
drastically shortened the training time of complex and large models. Finally, improvements
in optimization and training techniques have also improved training speed. In this section,
we will describe and summarize HAR works from six types of deep learning approaches.
We also present an overview of deep learning approaches in Figure 3.
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5.1. Autoencoder

The autoencoder, originally called “autoassociative learning module”, was first pro-
posed in the 1980s as an unsupervised pre-training method for artificial neural networks
(ANN) [119]. Autoencoders have been widely adopted as an unsupervised method for
learning features. As such, the outputs of autoencoders are often used as inputs to other
networks and algorithms to improve performance [120–124]. An autoencoder is generally
composed of an encoder module and a decoder module. The encoding module encodes
the input signals into a latent space, while the decoder module transforms signals from the
latent space back into the original domain. As shown in Figure 5, the encoder and decoder
module is usually several dense layers (i.e., fully connected layers) of the form

fθ(x) : z = σ(Wex + be)
gθ′(z) : x′ = σ(Wdz + bd)

where θ = {We, be}, θ′ = {Wd, bd} are the learnable parameters of the encoder and decoder.
σ is the non-linear activation function, such as Sigmoid, tanh, or rectified linear unit (ReLU).
We and Wd refer to the weights of the layer, while be and bd are the bias vectors. By
minimizing a loss function applied on x and x′, autoencoders aim at generating the final
output by imitating the input. Autoencoders are efficient tools for finding optimal codes, z,
and performing dimensionality reduction. An autoencoder’s strength in dimensionality
reduction has been applied to HAR in wearables [34,121,125–131] and functions as a
powerful tool for denoising and information retrieval.
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waste during learning a context classifier. Similarly, the data collected in-the-wild often have imperfect
and imbalanced classes as some of the labels occur only a few times. It can also be attributed to
the difference between participants’ routines or their privacy concerns as some classes are entirely
missing from their dataset. Hence, learning from imbalanced classes in a principled way becomes
crucial to correctly identify true positives. In summary, the ExtraSensory Dataset highlights several
challenges for context recognition in real-life conditions, including complex behavioral activities,
unrestrained personal device usage, and natural environments with habitual routines.

4. Methodology

4.1. Autoencoder

An autoencoder is an unsupervised representation learning technique in which a deep neural
network is trained to reconstruct its own input x such that the difference between x and the network’s
output x′ is minimized. Briefly, it performs two transformations−encoding fθ(x) : Rn → Rd and
decoding gθ(z) : Rd → Rn through deterministic mapping functions, namely, encoder and decoder.
An encoder transforms input vector x to a latent code z, where, a decoder maps the latent representation
z to produce an approximation of x. For a single layer neural network these functions can be written as:

fθ(x) : z = σ(Wex + be), (1)

gθ′(z) : x′ = σ(Wdz + bd), (2)

parameterized by θ = {We, be} and θ′ = {Wd, bd}, where σ is a non-linear activation function
(e.g., rectified linear unit), W represents a weight coefficient matrix and b is a bias vector. The model
weights are sometimes tied for regularization such that Wd = WT

e . Figure 2 provides graphical
illustration of an autoencoder.
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Figure 2. Illustration of an autoencoder network.

Learning an autoencoder is an effective approach to perform dimensionality reduction and can
be thought of as a strict generalization of PCA. Specifically, a 1-layer encoder with linear activation
and mean squared error (MSE) loss (see Equation (3)) should be able to learn PCA transformation [38].
Nonetheless, deep models with several hidden layers and non-linear activation functions can learn
better high-level and disentangled features from the original input data.

LMSE(X, X′) = ‖X− X′‖2. (3)

The classical autoencoder can be extended in several ways (see for a review [11]). For handling
missing input data, a compelling strategy is to train an autoencoder with artificially corrupted input x̃,
which acts as an implicit regularization. Usually, the considered corruption includes isotropic Gaussian

Figure 5. Illustration of an autoencoder network [132].

As such, autoencoders are most commonly used for feature extraction and dimension-
ality reduction [120,122–126,133–141]. Autoencoders are generally used individually or in
a stacked architecture with multiple autoencoders. Mean squared error or mean squared
error plus KL divergence loss functions are typically used to train autoencoders. Li et al.
presents an autoencoder architecture where a sparse autoencoder and a denoising autoen-
coder are used to explore useful feature representations from accelerometer and gyroscope
sensor data, and then they perform classification using support vector machines [125].
Experiments are performed on a public HAR dataset [82] from the UCI repository, and
the classification accuracy is compared with that of Fast Fourier Transform (FFT) in the
frequency domain and Principal Component Analysis (PCA). The result reveals that the
stacked autoencoder has the highest accuracy of 92.16% and provides a 7% advantage
over traditional methods with hand-crafted features. Jun and Choi [142] studied the clas-
sification of newborn and infant activities into four classes: Sleeping, moving in agony,
moving in normal condition, and movement by an external force. Using the data from an
accelerometer attached to the body and a three-layer autoencoder combined with k-means
clustering, they achieve 96% weighted accuracy in an unsupervised way. Additionally,
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autoencoders have been explored for feature extraction in domain transfer learning [143],
detecting unseen data [144], and recognizing null classes [145]. For example, Prabono
et al. [146] propose a two-phase autoencoder-based approach of domain adaptation for
human activity recognition. In addition, Garcia et al. [147] proposed an effective multi-
class algorithm that consists of an ensemble of autoencoders where each autoencoder is
associated with a separate class. This modular structure of classifiers makes models more
flexible when adding new classes, which only calls for adding new autoencoders instead of
re-training the model.

Furthermore, autoencoders are commonly used to sanitize and denoise raw sensor
data [127,130,148], a known problem with wearable signals that impacts our ability to
learn patterns in the data. Mohammed and Tashev in [127] investigated the use of sensors
integrated into common pieces of clothing for HAR. However, they found that sensors
attached to loose clothing are prone to contain large amounts of motion artifacts, leading to
low mean signal-to-noise ratios (SNR). To remove motion artifacts, the authors propose
a deconvolutional sequence-to-sequence autoencoder (DSTSAE). The weights for this
network are trained with a weighted form of a standard VAE loss function. Experiments
show that the DSTSAE outperforms traditional Kalman Filters and improves the SNR from
−12 dB to +18.2 dB, with the F1-score of recognizing gestures improved by 14.4% and
locomotion activities by 55.3%. Gao et al. explores the use of stacking autoencoders to
denoise raw sensor data to improve HAR using the UCI dataset [82,130]. Then, LightGBM
(LBG) is used to classify activities using the denoised signals.

Autoencoders are also commonly used to detect abnormal muscle movements, such
as Parkinson’s Disease and Autism Spectrum Disorder (ASD). Rad et al. in [34] utilizes an
autoencoder to denoise and extract optimized features of different movements and use a
one-class SVM to detect movement anomalies. To reduce the overfitting of the autoencoder,
the authors inject artificial noise to simulate different types of perturbations into the training
data. Sigcha et al. in [149] uses a denoising autoencoder to detect freezing of gait (FOG)
in Parkinson’s disease patients. The autoencoder is only trained using data labelled as a
normal movement. During the testing phase, samples with significant statistical differences
from training data are classified as abnormal FOG events.

As autoencoders map data into a nonlinear and low-dimensional latent space, they
are well-suited for applications requiring privacy preservation. Malekzadeh et al. de-
veloped a novel replacement autoencoder that removes prominent features of sensitive
activities, such as drinking, smoking, or using the restroom [121]. Specifically, the replace-
ment autoencoder is trained to produce a non-sensitive output from a sensitive input
via stochastic replacement while keeping characteristics of other less sensitive activities
unchanged. Extensive experiments are performed on Opportunity [90], Skoda [103], and
Hand-Gesture [100] datasets. The result shows that the proposed replacement autoencoder
can retain the recognition accuracy of non-sensitive tasks using state-of-the-art techniques
while simultaneously reducing detection capability for sensitive tasks.

Mohammad et al. introduces a framework called Guardian-Estimator-Neutralizer
(GEN) that attempts to recognize activities while preserving gender privacy [128]. The
rationale behind GEN is to transform the data into a set of features containing only non-
sensitive features. The Guardian, which is constructed by a deep denoising autoencoder,
transforms the data into representation in an inference-specific space. The Estimator
comprises a multitask convolutional neural network that guides the Guardian by estimating
sensitive and non-sensitive information in the transformed data. Due to privacy concerns, it
attempts to recognize an activity without disclosing a participant’s gender. The Neutralizer
is an optimizer that helps the Guardian converge to a near-optimal transformation function.
Both the publicly available MobiAct [150] and a new dataset, MotionSense, are used to
evaluate the proposed framework’s efficacy. Experimental results demonstrate that the
proposed framework can maintain the usefulness of the transformed data for activity
recognition while reducing the gender classification accuracy to 50% (random guessing)
from more than 90% when using raw sensor data. Similarly, the same authors have
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proposed another anonymizing autoencoder in [129] for classifying different activities
while reducing user identification accuracy. Unlike most works, where the output to
the encoder is used as features for classification, this work utilizes both the encoder and
decoder outputs. Experiments performed on a self-collected dataset from the accelerometer
and gyroscope showcased excellent activity recognition performance (above 92%) while
keeping user identification accuracy below 7%.

5.2. Deep Belief Network (DBN)

A DBN, as illustrated in Figure 6, is formed by stacking multiple simple unsupervised
networks, where the hidden layer of the preceding network serves as the visible layer for
the next. The representation of each sub-network is generally the restricted Boltzmann
machine (RBM), an undirected generative energy-based model with a “visible” input layer,
a hidden layer, and intra-layer connections in between. The DBN typically has connections
between the layers but not between units within each layer. This structure leads to a fast
and layer-wise unsupervised training procedure, where contrastive divergence (a training
technique to approximate the relationship between a network’s weights and its error) is
applied to every pair of layers in the DBN architecture sequentially, starting from the
“lowest” pair.

Figure 6. The greedy layer-wise training of DBNs. The first level is trained on triaxial acceleration
data. Then, more RBMs are repeatedly stacked to form a deep activity recognition model [151].

The observation that DBNs can be trained greedily led to one of the first effective deep
learning algorithms [152]. There are many attractive implementations and uses of DBNs in
real-life applications such as drug discovery [153], natural language understanding [154],
fault diagnosis [155], etc. There are also many attempts to perform HAR with DBNs. In
early exploratory work back in 2011 [156], a five-layer DBN is trained with the input
acceleration data collected from mobile phones. The accuracy improvement ranges from
1% to 32% when compared to traditional ML methods with manually extracted features.

In later works, DBN is applied to publicly available datasets [151,157–159]. In [157],
two five-layer DBNs with different structures are applied to the Opportunity dataset [90],
USC-HAD dataset [94], and DSA dataset [87], and the results demonstrate improved
accuracy for HAR over traditional ML methods for all the three datasets. Specifically, the
accuracy for the Opportunity, USC-HAD, and DSA datasets are 82.3% (1.6% improvement
over traditional methods), 99.2% (13.9% improvement), and 99.1% (15.9% improvement),
respectively. In addition, Alsheikh et al. [151] tested the activity recognition performance
of DBNs using different parameter settings. Instead of using the raw acceleration data
similar to [156], they used spectrogram signals of the triaxial accelerometer data to train
the deep activity recognition models. They found that deep models with more layers
outperform the shallow models, and the topology of layers having more neurons than the
input layer is shown to be more advantageous, which indicates overcompete representation
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is essential for learning deep models. The accuracy of the tuned DBN was 98.23%, 91.5%,
and 89.38% on the WISDM [81], Daphnet [104], and Skoda [103] benchmark datasets,
respectively. In [158], a RBM is used to improve upon other methods of sensor fusion, as
neural networks can identify non-intuitive predictive features largely from cross-sensor
correlations and thus offer a more accurate estimation. The recognition accuracy with
this architecture on the Skoda dataset reached 81%, which is around 6% higher than the
traditional classification method with the best performance (Random Forest).

In addition to taking advantage of public datasets, there are also researchers employing
DBNs on human activity or health-related recognition with self-collected datasets [31,160].
In [31], DBNs are employed in Parkinson’s disease diagnosis to explore if they can cope
with the unreliable labelling that results from naturalistic recording environments. The
data was collected with two tri-axial accelerometers, with one worn on each wrist of the
participant. The DBNs built are two-layer RBMs, with the first layer as a Guassian-binary
RBM (containing gaussian visible units) and the second layer as binary-binary (containing
only binary units) (please refer to [161] for details). In [160], an unsupervised five-layer
DBM-DNN is applied for the automatic detection of eating episodes via commercial blue-
tooth headsets collecting raw audio signals, and demonstrate classification improvement
even in the presence of ambient noise. The accuracy of the proposed DBM-DNN approach
is 94%, which is significantly better than SVM with a 75.6% accuracy.

5.3. Convolutional Neural Network (CNN)

A CNN comprises convolutional layers that make use of the convolution operation,
pooling layers, fully connected layers, and an output layer (usually Softmax layer). The
convolution operation with a shared kernel enables the learning process of space invariant
features. Because each filter in a convolutional layer has a defined receptive field, CNN
is good at capturing local dependency, compared with a fully-connected neural network.
Though each kernel in a layer covers a limited size of input neurons, by stacking multiple
layers, the neurons of higher layers will cover a larger more global receptive field. The
pyramid structure of CNN contributes to its capability of gathering low-level local features
into high-level semantic meanings. This allows CNN to learn excellent features as shown
in [162], which compares the features extracted from CNN to hand-crafted time and
frequency domain features (Fast Fourier Transform and Discrete Cosine Transform).

CNN incorporates a pooling layer that follows each convolutional layer in most cases.
A pooling layer compresses the representation it is learning and strengthens the model
against noise by dropping a portion of the output to a convolutional layer. Generally, a few
fully connected layers follow after a stack of convolutional and pooling layers that reduce
feature dimensionality before being fed into the output layer. A softmax classifier is usually
selected as the final output layer. However, as an exception, some studies explored the use
of traditional classifiers as the output layer in a CNN [64,118].

Most CNNs use univariate or multivariate sensor data as input. Besides raw or filtered
sensor data, the magnitude of 3-axis acceleration is often used as input, as shown in [26].
Researchers have tried encoding time-series data into 2D images as input into the CNN.
In [163], the Short-time Fourier transform (STFT) for time-series sensor data is calculated,
and its power spectrum is used as the input to a CNN. Since time series data is generally
one-dimensional, most CNNs adopt 1D-CNN kernels. Works that use frequency-domain
inputs (e.g., spectrogram), which have an additional frequency dimension, will generally
use 2D-CNN kernels [164]. The choice of 1D-CNN kernel size normally falls in the range
of 1 × 3 to 1 × 5 (with exceptions in [22,63,64] where kernels of size 1 × 8, 2 × 101, and
1 × 20 are adopted).

To discover the relationship between the number of layers, the kernel size, and the
complexity level of the tasks, we picked and summarized several typical studies in Table 2.
A majority of the CNNs consist of five to nine layers [23,63,64,113,114,165–168], usually
including two to three convolutional layers, two to three max-pooling layers, followed
by one to two fully connected layers before feeding the feature representation into the
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output layer (softmax layer in most cases). Dong et al. [169] demonstrated performance
improvements by leveraging both handcrafted time and frequency domain features along
with features generated from a CNN, called HAR-Net, to classify six locomotion activities
using accelerometer and gyroscope signals from a smartphone. Ravi et al. [170] used
a shallow three-layer CNN network including a convolutional layer, a fully connected
layer, and a softmax layer to perform on-device activity recognition on a resource-limited
platform and shown its effectiveness and efficiency on public datasets. Zeng et al. [22]
and Lee et al. [26] also used a small number of layers (four layers). The choice of the loss
function is an important decision in training CNNs. In classification tasks, cross-entropy is
most commonly used, while in regression tasks, mean squared error is most commonly
used. Most CNN models process input data by extracting and learning channel-wise
features separately while Huang et al. [167] first propose a shallow CNN that considers
cross-channel communication. The channels in the same layer interact with each other to
obtain discriminative features of sensor data.

Table 2. Summary of typical studies that use layer-by-layer CNN structure in HAR and their
configurations. We aim to present the relationship of CNN kernels, layers, and targeted problems
(application and sensors). Key: C—convolutional layer; P—max-pooling layer; FC—fully connected
layer; S—softmax; S1—accelerometer; S2—gyroscope; S3—magnetometer; S4—EMG; S5—ECG

Study Architecture Kernel Conv. Application # Classes Sensors Dataset

[26] C-P-FC-S 1 × 3, 1 × 4,
1 × 5 locomotion activities 3 S1 Self

[171] C-P-C-P-S 4 × 4 locomotion activities 6, 12 S1 UCI, mHealth

[22] C-P-FC-FC-S 1 × 20 daily activities,
locomotion activities - -

Skoda,
Opportunity,
Actitracker

[172] C-P-C-P-FC-S 5 × 5 locomotion activities 6 S1 WISDM

[173] C-P-C-P-C-FC 1× 5, 1× 9 locomotion activities 12 S5 mHealth

[174] C-P-C-P-FC-FC-S - daily activities,
locomotion activities 12 S1, S2, S3

ECG mHealth

[175] C-P-C-P-C-P-S 12 × 2
daily activities including
brush teeth, comb hair,

get up from bed, etc
12 S1, S2, S3 WHARF

[23] C-P-C-P-C-P-S 12 × 2 locomotion activities 8 S1 Self

[113] C-P-C-P-U-FC-S,
U: unification layer 1 × 3, 1 × 5 daily activities,

hand gesture
18 (Opp)
12 (hand)

S1, S2
(1 for each)

Opportunity
Hand Gesture

[63] C-C-P-C-C-P-FC 1 × 8 hand motion classification 10 S4 Rami EMG
Dataset

[114]

C-C-P-C-C-
P-FC-FC-S

(one branch
for each sensor)

1 × 5

daily activities,
locomotion activities,

industrial ordering
picking recognition task

18 (Opp)
12 (PAMAP2) S1, S2, S3

Opportunity,
PAMAP2,

Order Picking

[163] C-P-C-P-C-P-
FC-FC-FC-S

1 × 4, 1 × 10,
1 × 15 locomotion activities 6 S1, S2, S3 Self

The number of sensors used in a HAR study can vary from a single one to as many as
23 [90]. In [23], a single accelerometer is used to collect data from three locations on the
body: Cloth pocket, trouser pocket and waist. The authors collect data on 100 subjects,
including eight activities such as falling, running, jumping, walking, walking quickly,
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step walking, walking upstairs, and walking downstairs. Moreover, HAR applications
can involve multiple sensors of different types. To account for all these different types of
sensors and activities, Grzeszick et al. [176] proposed a multi-branch CNN architecture.
A multi-branch design adopts a parallel structure that trains separate kernels for each
IMU sensor and concatenates the output of branches at a late stage, after which one or
more fully connected layers are applied on the flattened feature representation before
feeding into the final output layer. For instance, a CNN-IMU architecture contains m
parallel branches, one per IMU. Each branch contains seven layers, then the outputs of each
branch are concatenated and fed into a fully connected and a softmax output layer. Gao
et al. [177] has introduced a novel dual attention module including channel and temporal
attention to improving the representation learning ability of a CNN model. Their method
has outperformed regular CNN considerably on a number of public datasets such as
PAMAP2 [91], WISDM [81], UNIMIB SHAR [93], and Opportunity [90].

Another advantage of DL is that the features learned in one domain can be easily
generalized or transferred to other domains. The same human activities performed by dif-
ferent individuals can have drastically different sensor readings. To address this challenge,
Matsui et al. [163] adapted their activity recognition to each individual by adding a few
hidden layers and customizing the weights using a small amount of individual data. They
were able to show a 3% improvement in recognition performance.

5.4. Recurrent Neural Network (RNN)

Initially, the idea of using temporal information was proposed in 1991 [178] to recog-
nize a finger alphabet consisting of 42 symbols and in 1995 [179] to classify 66 different
hand shapes with about 98% accuracy. Since then, the recurrent neural network (RNN)
with time series as input has been widely applied to classify human activities or estimate
hand gestures [180–187].

Unlike feed-forward neural networks, an RNN processes the input data in a recurrent
behavior. Equivalent to a directed graph, RNN exhibits dynamic behaviors and possesses
the capability of modelling temporal and sequential relationships due to a hidden layer
with recurrent connections. A typical structure for an RNN is shown in Figure 7 with
the current input, xt, and previous hidden state, ht−1. The network generates the current
hidden state, ht, and output, yt, is as follows:

ht = F (Whht−1 + Uhxt + bh)
yt = F

(
Wyht + by

) (1)

where Wh, Uh, and Wy are the weights for the hidden-to-hidden recurrent connection,
input-to-hidden connection, and hidden-to-output connection, respectively. bh and by
are bias terms for the hidden and output states, respectively. Furthermore, each node is
associated with an element-wise non-linearity function as an activation functionF such as
the sigmoid, hyperbolic tangent (tanh), or rectified linear unit (ReLU).

In addition, many researchers have undertaken extensive work to improve the perfor-
mance of RNN models in the context of human activity recognition and have proposed
various models based on RNNs, including Independently RNN (IndRNN) [188], Contin-
uous Time RNN (CTRNN) [189], Personalized RNN (PerRNN) [190], Colliding Bodies
Optimization RNN (CBO-RNN) [191]. Unlike previous models with one-dimension time-
series input, Lv et al. [192] builds a CNN + RNN model with stacked multisensor data in
each channel for fusion before feeding into the CNN layer. Ketykó et al. [193] uses an RNN
to address the domain adaptation problem caused by intra-session, sensor placement, and
intra-subject variances.

HAR improves with longer context information and longer temporal intervals. How-
ever, this may result in vanishing or exploding gradient problems while backpropagating
gradients [194]. In an effort to address these challenges, long short-term memory (LSTM)-
based RNNs [195], and Gated Recurrent Units (GRUs) [196] are introduced to model
temporal sequences and their broad dependencies. The GRU introduces a reset and update
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gate to control the flow of inputs to a cell [197–201]. The LSTM has been shown capable
of memorizing and modelling the long-term dependency in data. Therefore, LSTMs have
taken a dominant role in time-series and textual data analysis. It has made substantial
contributions to human activity recognition, speech recognition, handwriting recognition,
natural language processing, video analysis, etc. As illustrated in Figure 7 [202], a LSTM
cell is composed of: (1) input gate, it, for controlling flow of new information; (2) forget
gate, ft, setting whether to forget content according to internal state; (3) output gate, ot,
controlling output information flow; (4) input modulation gate, gt, as main input; (5) inter-
nal state, ct, dictates cell internal recurrence; (6) hidden state, ht, contains information from
samples encountered within the context window previously. The relationship between
these variables are listed as Equation (2) [202].

it = σ(bi + Uixt + Wiht−1)

ft = σ
(

b f + U f xt + W f xt−1

)
ot = σ(bo + Uoxt + Woht−1)
gt = σ

(
bg + Ugxt + Wght−1

)
ct = ftct−1 + gtit
ht = tanh(ct)ot

(2)

Figure 7. Schematic diagram of an RNN node and LSTM cell [202]. Left: RNN node where ht−1 is
the previous hidden state, xt is the current input sample data, ht is the current hidden state, yt is the
current output, andF is the activation function. Right: LSTM cell with internal recurrence ct and
outer recurrence ht.

As shown in Figure 8, the input time series data is segmented into windows and fed
into the LSTM model. For each time step, the model computes class prediction scores,
which are then merged via late-fusion and used to calculate class membership probabilities
through the softmax layer. Previous studies have shown that LSTMs have high performance
in wearable HAR [199,202,203]. Researchers in [204] rigorously examine the impact of hy-
perparameters in LSTM with the fANOVA framework across three representative datasets,
containing movement data captured by wearable sensors. The authors assessed thousands
of settings with random hyperparameters and provided guidelines for practitioners seeking
to apply deep learning to their own problem scenarios [204]. Bidirectional LSTMs, having
both past and future recurrent connections, were used in [205,206] to classify activities.
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Figure 8. The structure of LSTM and bi-directional LSTM model [204]. (a). LSTM network hidden
layers containing LSTM cells and a final softmax layer at the top. (b) bi-directional LSTM network
with two parallel tracks in both future (green) and past (red) directions.

Researchers have also explored other architectures involving LSTMs to improve bench-
marks on HAR datasets. Residual networks possess the advantage that they are much
easier to train as the addition operator enables gradients to pass through more directly.
Residual connections do not impede gradients and could help to refine the output of
layers. For example, [200] proposes a harmonic loss function and [207] combines LSTM
with batch normalization to achieve 92% accuracy with raw accelerometer and gyroscope
data. Ref. [208] proposes a hybrid CNN and LSTM model (DeepConvLSTM) for activity
recognition using multimodal wearable sensor data. DeepConvLSTM performed signifi-
cantly better in distinguishing closely-related activities, such as “Open/Close Door” and
“Open/Close Drawer”. Moreover, Multitask LSTM is developed in [209] to first extract
features with shared weight, and then classify activities and estimate intensity in separate
branches. Qin et al. proposed a deep-learning algorithm that combines CNN and LSTM
networks [210]. They achieved 98.1% accuracy on the SHL transportation mode classifi-
cation dataset with CNN-extracted and hand-crafted features as input. Similarly, other
researchers [211–219] have also developed the CNN-LSTM model in various application
scenarios by taking advantage of the feature extraction ability of CNN and the time-series
data reasoning ability of LSTM. Interestingly, utilizing CNN and LSTM combined model,
researchers in [219] attempt to eliminate sampling rate variability, missing data, and mis-
aligned data timestamps with data augmentation when using multiple on-body sensors.
Researchers in [220] explored the placement effect of motion sensors and discovered that
the chest position is ideal for physical activity identification.

Raw IMU and EMG time series data are commonly used as inputs to RNNs [193,221–225].
A number of major datasets used to train and evaluate RNN models have been created, in-
cluding the Sussex-Huawei Locomotion-Transportation (SHL) [188,198], PAMAP2 [192,226]
and Opporunity [203]. In addition to raw time series data [199], Besides raw time series
data, custom features are also commonly used as inputs to RNNs. Ref. [197] showed
that training an RNN with raw data and with simple custom features yielded similar
performance for gesture recognition (96.89% vs 93.38%).

However, long time series may have many sources of noise and irrelevant information.
The concept of attention mechanism was proposed in the domain of neural machine trans-
lation to address the problem of RNNs being unable to remember long-term relationships.
The attention module mimics human visual attention to building direct mappings between
the words/phrases that represent the same meaning in two languages. It eliminates the
interference from unrelated parts of the input when predicting the output. This is similar
to what we as humans perform when we translate a sentence or see a picture for the first
time; we tend to focus on the most prominent and central parts of the picture. An RNN
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encoder attention module is centred around a vector of importance weights. The weight
vector is computed with a trainable feedforward network and is combined with RNN
outputs at all the time steps through the dot product. The feedforward network takes all
the RNN immediate outputs as input to learn the weights for each time step. [201] utilizes
attention in combination with a 1D CNN Gated Recurrent Units (GRUs), achieving HAR
performances of 96.5% ± 1.0%, 93.1% ± 2.2%, and 89.3% ± 1.3% on Heterogeneous [86],
Skoda [103], and PAMAP2 [91] datasets, respectively. [226] applies temporal attention
and sensor attention into LSTM to improve the overall activity recognition accuracy by
adaptively focusing on important time windows and sensor modalities.

In recent years, block-based modularized DL networks have been gaining traction. Some
examples are GoogLeNet with an Inception module and Resnet with residual blocks. The HAR
community is also actively exploring the application of block-based networks. In [227], the
authors have used GoogLeNet’s Inception module combined with a GRU layer to build a HAR
model. The proposed model was showed performance improvements on three public datasets
(Opportunity, PAMAP2 and Smartphones datasets). Qian et al. [228] developed the model with
SMMAR in a statistical module to learn all orders of moments statistics as features, LSTM in a
spatial module to learn correlations among sensors placements, and LSTM + CNN in a temporal
module to learn temporal sequence dependencies along the time scale.

5.5. Deep Reinforcement Learning (DRL)

AE, DBN, CNN, and RNN fall within the realm of supervised or unsupervised learning.
Reinforcement learning is another paradigm where an agent attempts to learn optimal
policies for making decisions in an environment. At each time step, the agent takes an
action and then receives a reward from the environment. The state of the environment
accordingly changes with the action made by the agent. The goal of the agent is to learn the
(near) optimal policy (or probability of action, state pairs) through the interaction with the
environment in order to maximize a cumulative long-term reward. The two entities—agent
and environment—and the three key elements—action, state and reward—collectively
form the paradigm of RL. The structure of RL is shown in Figure 9.

Figure 9. A typical structure of a reinforcement learning network [229].

In the domain of HAR, [230] uses DRL to predict arm movements with 98.33% accuracy.
Ref. [231] developed a reinforcement learning model for imitating the walking pattern of a
lower-limb amputee on a musculoskeletal model. The system showed 98.02% locomotion
mode recognition accuracy. Having a high locomotion recognition accuracy is critical
because it helps lower-limb amputees prevent secondary impairments during rehabilitation.
In [232], Bhat et al. propose a HAR online learning framework that takes advantage
of reinforcement learning utilizing a policy gradient algorithm for faster convergence
achieving 97.7% in recognizing six activities.

5.6. Generative Adversarial Network (GAN)

Originally proposed to generate credible fake images that resemble the images in the
training set, GAN is a type of deep generative model, which is able to create new samples
after learning from real data [233]. It comprises two networks, the generator (G) and the
discriminator (D), competing against each other in a zero-sum game framework as shown



Sensors 2022, 22, 1476 20 of 43

in Figure 10. During the training phase, the generator takes as input a random vector z
and transforms z ∈ Rn to plausible synthetic samples x̂ to challenge the discriminator to
differentiate between original samples x and fake samples x̂. In this process, the generator
strives to make the output probability D(G(z)) approach one, in contrast with the discrim-
inator, which tries to make the function’s output probability as close to zero as possible.
The two adversarial rivals are optimized by finding the Nash equilibrium of the game in a
zero-sum game setting, which means the adversarial rivals’ gains would be maintained
regardless of what strategies are selected. However, it is not theoretically guaranteed that
GAN zero-sum games reach Nash Equilibria [234].

Figure 10. The structure of generative adversarial network.

GAN model has shown remarkable performance in generating synthetic data with
high quality and rich details [235,236]. In the field of HAR, GAN has been applied as
a semi-supervised learning approach to deal with unlabeled or partially labelled data
for improving performance by learning representations from the unlabeled data, which
later will be utilized by the network to generalize to the unseen data distribution [237].
Afterwards, GAN has shown the ability to generate balanced and realistic synthetic sensor
data. Wang et al. [238] utilized GANs with a customized network to generate synthetic data
from the public HAR dataset HASC2010corpus [239]. Similarly, Alharbi et al. [240] assessed
synthetic data with CNN or LSTM models as a generator. In two public datasets, Sussex-
Huawei Locomotion (SHL) and Smoking Activity Dataset (SAD), the discriminator was
built with CNN layers, and the results demonstrated synthetic data with high quality and
diversity with two public datasets. Moreover, by oversampling and adding synthetic sensor
data into the training, researchers augmented and alleviated the originally imbalanced
training set to achieve better performance. In [241,242], they generated verisimilar data
of different activities, and Shi et al. [243] used the Boulic kinematic model, which aims to
capture the three-dimensional positioning trend to synthesize personified walking data.
Due to the ability to generate new data, GAN has been widely applied in transfer learning
in HAR to help with the dramatic performance drop when the pre-trained model are tested
against unseen data from new users. In transfer learning techniques, the learned knowledge
from the source domain (subject) is transferred to the target domain to decrease the lack of
performance of the models within the target domain. Moreover, [244] is an attempt that
utilized GAN to perform cross-subject transfer learning for HAR since collecting data for
each new user was infeasible. With the same idea, cross-subject transfer learning based
on GAN outperformed those without GAN on Opportunity benchmark dataset in [244]
and outperformed unsupervised learning on UCI and USC-HAD dataset [245]. Even more,
transfer learning under conditions of cross-body, cross-user, and cross-sensor has been
demonstrated superior performance in [246].

However, much more effort is needed in generating verisimilar data to alleviate the
burden and cost of collecting sufficient user data. Additionally, it is typically challenging to
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obtain well-trained GAN models owing to the wide variability in amplitude, frequency,
and period of the signals obtained from different types of activities.

5.7. Hybrid Models

As an advancement of machine learning models, researchers take advantage of differ-
ent methods and propose hybrid models. The combination of CNN and LSTM endows the
model capability of extracting local features as well as long-term dependencies in sequential
data, especially for HAR time series data. For example, Challa et al. [247] proposed a hybrid
of CNN and bidirectional long short-term memory (BiLSTM). The accuracy on UCI-HAR,
WISDM [81], and PAMAP2 [91] datasets achieved 96.37%, 96.05%, and 94.29%, respectively.
Dua et al. [248] proposed a model with CNN combined with GRU and obtained an accuracy
of 96.20%, 97.21%, and 95.27% on UCI-HAR, WISDM [81], and PAMAP2 [91] datasets,
respectively. In order to have a straightforward view of the functionality of hybrid models,
we list several papers with CNN only, LSTM only, CNN + GRU, and CNN + LSTM in
Tables 3 and 4. In addition, Zhang et al. [249] proposed to combine reinforcement learn-
ing and LSTM model to improve the adaptability of different kinds of sensors, including
EEG (EID dataset), RFID (RSSI dataset) [250], and wearable IMU (PAMAP2 dataset) [91].
Ref. [251] employed CNN for feature extraction and a reinforced selective attention model
to automatically choose the most characteristic information from multiple channels.

Table 3. Comparison of models on UCI-HAR dataset.

Model F1-Score (%) Accuracy (%)

CNN [252] 92.93 92.71
Res-LSTM [253] 91.50 91.60
Stacked-LSTM [254] – 93.13
CNN-LSTM [215] – 92.13
Bidir-LSTM [255] – 92.67
Residual-BiLSTM [253] 93.5 93.6
LSTM-CNN [211] – 95.78
CNN-GRU [248] – 96.20
CNN-GRU [247] 94.54 94.58
CNN-LSTM [247] 94.76 94.80
CNN-BiLSTM [247] 96.31 96.37

Table 4. Comparison of models on PAMAP2 dataset.

Model F1-Score (%) Accuracy (%)

CNN[252] 91.16 91.00
BiLSTM [255] 89.40 89.52
LSTM-F [204] 92.90 –
COND-CNN [256] – 94.01
CNN-GRU [248] – 95.27
CNN-GRU [247] 93.16 93.20
CNN-LSTM [247] 92.77 92.81
CNN-BiLSTM [247] 94.27 94.29

5.8. Summary and Selection of Suitable Methods

Since the last decade, DL methods have gradually dominated a number of artificial
intelligence areas, including sensor-based human activity recognition, due to its automatic
feature extraction capability, strong expressive power, and the high performance rendered.
When a sufficient amount of data are available, we are becoming prone to turn to DL
methods. With all these types of available DL approaches discussed above, we need
to get a full understanding of the pros and cons of these approaches in order to select



Sensors 2022, 22, 1476 22 of 43

the appropriate approach wisely. To this end, we briefly analyze the characteristics of
each approach and attempt to give readers high-level guidance on how to choose the DL
approach according to the needs and requirements.

The most salient characteristic of auto-encoder is that it does not require any anno-
tation. Therefore, it is widely adopted in the paradigm of unsupervised learning. Due
to its exceptional capability in dimension reduction and noise suppression, it is often
leveraged to extract low-dimensional feature representation from raw input. However,
auto-encoders may not necessarily learn the correct and relevant characteristics of the
problem at hand. There is also generally little insight that can be gained for sensor-based
auto-encoders, making it difficult to know which parameters to adjust during training.
Deep belief networks are a generative model generally used for solving unsupervised tasks
by learning low-dimensional features. Today, DBNs have been less often chosen compared
with other DL approaches and are rarely used due to the tedious training process and
increased training difficulty with DBN when the network goes deeper [7].

CNN architecture is powerful to extract hierarchical features owing to its layer-by-
layer hierarchical structure. When compared with other approaches like RNN and GAN,
CNN is relatively easy to implement. Besides, as one of the most studied DL approaches
in image processing and computer vision, there is a large range of CNN variants existing
that we can choose from to transfer to sensor-based HAR applications. When sensor data
are represented as two-dimensional input, we can directly start with pre-trained models
on a large image dataset (e.g., ImageNet) to fasten the convergence process and achieve
better performance. Therefore, adapting the CNN approach enjoys a higher degree of
flexibility in the available network architecture (e.g., GoogLeNet, MobileNet, ResNet, etc)
than other DL approaches. However, CNN architecture has the requirement of fixed-
sized input, in contrast to RNN, which accepts flexible input size. In addition, compared
with unsupervised learning methods such as auto-encoder and DBN, a large number of
annotated data are required, which usually demands expensive labelling resources and
human effort to prepare the dataset. The biggest advantage of RNN and LSTMs is that
they can model time series data (nearly all sensor data) and temporal relationships very
well. Additionally, RNN and LSTMs can accept flexible input data size. The factors that
prevent RNN and LSTMs from becoming the de facto method in DL-based HAR is that
they are difficult to train in multiple aspects. They require a long training time and are
very susceptible to diminishing/exploding gradients. It is also difficult to train them to
efficiently model long time series.

GAN, as a generative model, can be used as a data augmentation method. Because
it has a strong expressive capability to learn and imitate the latent data distribution of
the targeted data, it outperforms traditional data augmentation methods [36]. Owing
to its inherent data augmentation ability, GAN has the advantage of alleviating data
demands at the beginning. However, GAN is often considered as hard to train because it
alternatively trains a generator and a discriminator. Many variants of GAN and special
training techniques have been proposed to tackle the converging issue [257–259].

Reinforcement learning is a relatively new area that is being explored for select areas in
HAR, such as modelling muscle and arm movements [230,231]. Reinforcement learning is a
type of unsupervised learning because it does not require explicit labels. Additionally, due
to its online nature, reinforcement learning agents can be trained online while deployed in a
real system. However, reinforcement learning agents are often difficult and time-consuming
to train. Additionally, in the realm of DL-based HAR, the reward of the agent has to be
given by a human, as in the case of [230,232]. In other words, even though people do not
have to give explicit labels, humans are still required to provide something akin to a label
(the reward) to train the agent.

When starting to choose a DL approach, we have a list of factors to consider, including
the complexity of the target problem, dataset size, the availability and size of annotation,
data quality, available computing resource, as well as the requirement of training time.
Firstly, we have to evaluate and examine the problem complexity to decide upon promising
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venues of machine learning methods. For example, if the problem is simple enough to
resolve with the provided sensor modality, it’s very likely that manual feature engineering
and traditional machine learning method can provide satisfying results thus no DL method
is needed. Secondly, before we choose the routine of DL, we would like to make sure the
dataset size is sufficient to support a DL method. The lack of a sufficiently large corpus of
labelled high-quality data is a major reason why DL methods cannot produce an expected
result. Normally, when training a DL model with a limited dataset size, the model will
be prone to overfitting, and the generalizability will be sacrificed, thus using a very deep
network may not be a good choice. One option is to go for a shallow neural network or a
traditional ML approach. Another option is to utilize specific algorithms to make the most
out of the data. To be specific, data augmentation methods such as GAN can be readily
implemented. Thirdly, another determining factor is the availability and size of annotation.
When there is a large corpus of unlabeled sensor data at hand, a semi-supervised learning
scheme is a promising direction one could consider, which will be discussed later in this
work. Besides the availability of sensor data, the data quality also influences the network
design. If the sensor is vulnerable to environmental noise, inducing a small SNR, some type
of denoising structure (e.g., denoising auto-encoder) and increasing depth of the model can
be considered to increase the noise-resiliency of the DL model. At last, a full evaluation of
available computing resources and expected model training time cannot be more important
for developers and researchers to choose a suitable DL approach.

6. Challenges and Opportunities

Though HAR has seen rapid growth, there are still a number of challenges that,
if addressed, could further improve the status quo, leading to increased adoption of
novel HAR techniques in existing and future wearables. In this section, we discuss these
challenges and opportunities in HAR. Note that the issues discussed here are applicable to
general HAR, not only DL-based HAR. We look to discuss and analyze the following four
questions under our research question Q3 (challenges and opportunities), which overlap
with the four major constituents of machine learning.

• Q3.1 : What are the challenges in data acquisition? How do we resolve them?
• Q3.2 : What are the challenges in label acquisition? What are the current methods?
• Q3.3 : What are the challenges in modeling? What are potential solutions?
• Q3.4 : What are the challenges in model deployment? What are potential opportunities?

6.1. Challenges in Data Acquisition

Data is the cornerstone of artificial intelligence. Models only perform as well as the
quality of the training data. To build generalizable models, careful attention should be
paid to data collection, ensuring the participants are representative of the population of
interest. Moreover, determining a sufficient training dataset size is important in HAR.
Currently, there is no well-defined method for determining the sample size of training data.
However, showing the convergence of the error rate as a function of training data size is
one approach shown by Yang et al. [260]. Acquiring a massive amount of high-quality
data at a low cost is critical in every domain. In HAR, collecting raw data is labor-intensive
considering a large number of different wearables. Therefore, proposing and developing
innovative approaches to augmenting data with high quality is imperative for the growth
of HAR research.

6.1.1. The Need for More Data

Data collection requires a considerable amount of effort in HAR. Particularly when
researchers propose their original hardware, it is inevitable to collect data on users. Data
augmentation is commonly used to generate synthetic training data when there is a data
shortage. Synthetic noise is applied to real data to obtain new training samples. In general,
using the dataset augmented with synthetic training samples yields higher classifica-
tion accuracy when compared to using the original dataset [36,56,261,262]. Giorgi et al.
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augmented their dataset by varying each signal sample with translation drawn from a
small uniform distribution and showed improvements in accuracy using this augmented
dataset [56]. Ismail Fawaz et al. [262] utilized Dynamic Time Warping to augment data and
tested on UCR archive [105]. Deep learning methods are also used to augment the datasets
to improve performance [238,263,264]. Alzantot et al. [264] and Wang et al. [238] employed
GAN to synthesize sensor data using existing sensor data. Ramponi et al. [263] designed
a conditional GAN-based framework to generate new irregularly-sampled time series to
augment unbalanced data sets. Several works extracted 3D motion information from videos
and transferred the knowledge to synthesize virtual on-body IMU sensor data [265,266]. In
this way, they realized cross-modal IMU sensor data generation using traditional computer
vision and graphics methods. Opportunity: We have listed some of the most recent works
focusing on cross-modal sensor data synthesis. However, few researchers (if any) used a
deep generative model to build a video-sensor multi-modal system. If we take a broader
view, many works are using cross-modal deep generative models (such as GAN) in data
synthesis, such as from video to audio [267], from text to image and vice versa [268,269].
Therefore, taking advantage of the cutting-edge deep generative models may contribute
to addressing the wearable sensor data scarcity issue [270]. Another avenue of research
is to utilize transfer learning, borrowing well-trained models from domains with high
performing classifiers (i.e., images), and adapting them using a few samples of sensor data.

6.1.2. Data Quality and Missing Data

The quality of models is highly dependent on the quality of the training data. Many
real-world collection scenarios introduce different sources of noise that degrade data quality,
such as electromagnetic interference or uncertainty in task scheduling for devices that
perform sampling [271]. In addition to improving hardware systems, multiple algorithms
have been proposed to clean or impute poor-quality data. Data imputation is one of the
most common methods to replace poor quality data or fill in missing data when sampling
rates fluctuate greatly. For example, Cao et al. introduced a bi-directional recurrent neural
network to impute time series data on the UCI localization dataset [272]. Luo et al. utilized
a GAN to infer missing time series data [273]. Saeed et al. proposed an adversarial
autoencoder (AAE) framework to perform data imputation [132]. Opportunity: To address
this challenge, more research into automated methods for evaluating and quantifying
the quality is needed to identify better, remove, and/or correct for poor quality data.
Additionally, it has been experimentally shown that deep neural networks have the ability
to learn well even if trained with noisy data, given that the networks are large enough and
the dataset is large enough [274]. This motivates the need for HAR researchers to focus on
other areas of importance, such as how to deploy larger models in real systems efficiently
(Section 6.4) and generate more data (Section 6.1.1), which could potentially aid in solving
this problem.

6.1.3. Privacy Protection

The privacy issue has become a concern among users [13]. In general, the more in-
ference potential a sensor has, the less willing a person is to agree to its data collection.
Multiple works have proposed privacy preservation methods while classifying human
activities, including the replacement auto-encoder, the guardian, estimator, and neutralizer
(GEN) architecture [128], and the anonymizing autoencoder [129]. For example, replace-
ment auto-encoders learn to replace features of time-series data that correspond to sensitive
inferences with values that correspond to non-sensitive inferences. Ultimately, these works
obfuscate features that can identify the individual while preserving features common to
each activity or movement. Federated learning is a trending approach to resolve privacy
issues in learning problems [275–278]. It can enable the collaborative learning of a global
model without the need to expose users’ raw data. Xiao et al. [279] realized a federated
averaging method combined with a perceptive extraction network to improve the perfor-
mance of the federated learning system. Tu et al. [280] designed a dynamic layer sharing
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scheme, which assisted the merging of local models to speed up the model convergence
and achieved dynamic aggregation of models. Bettini et al. [281] presented a personalized
semi-supervised federated learning method that built a global activity model and leveraged
transfer learning for user personalization. Besides, Gudur and Perepu [282] implemented
on-device federated learning using model distillation update and so-called weighted α-
updates strategies to resolve model heterogeneities on a resource-limited embedded system
(Raspberry Pi), which proved its effectiveness and efficiency. Opportunity: Blockchain is a
new hot topic around the world. Blockchain, as a peer-to-peer network without the need for
centralized authority, has been explored to facilitate the privacy-preserving data collection
and sharing [283–286]. The combination of federated learning and blockchain is also a
potential solution towards privacy protection [287] and is currently still in its very early
stage. More collaboration between ubiquitous computing community and networking
community should be encouraged to prosper in-depth research in novel directions.

6.2. Challenges in Label Acquisition

Labelled data is crucial for deep supervised learning. Image and audio data is generally
easy to label by visual or aural confirmation. However, labelling human activities by
looking at time series from HAR sensors is difficult or even impossible. Therefore, label
acquisition for HAR sensors generally requires additional sensing sources to provide video
or audio data to determine the ground truth, making label acquisition for HAR more labor-
intensive. Moreover, accurate time synchronization between wearables and video/audio
devices is challenging because different devices are equipped with independent (and
often drifting) clocks. Several attempts have been made to address this issue, such as
SyncWISE [288,289]. Two areas that require more research by the DL-HAR community are
shortage in labelled data and difficulty in obtaining data from real-world scenarios.

6.2.1. Shortage of Labeled Data

As annotating large quantities of data is expensive, there have been great efforts to
develop various methods to reduce the need for annotation, including data augmentation,
semi-supervised learning, weakly supervised learning, and active learning to overcome this
challenge. Semi-supervised learning utilizes both labelled data and unlabeled data to learn
more generalizable feature representations. Zeng et al. presented two semi-supervised
CNN methods that utilize unlabeled data during training: The convolutional encoder-
decoder and the convolutional ladder network [290] and showed an 18% higher F1-score
using the convolutional ladder network on the ActiTracker dataset. Dmitrijs demonstrated
on the SHL dataset, with a CNN and AAE architecture, that semi-supervised learning on
unlabeled data could achieve high accuracy [134]. Chen et al. proposed an encoder-decoder-
based method that reduces distribution discrepancies between labelled and unlabeled data
that arise due to differences in biology and behavior from different people while preserving
the inherent similarities of different people performing the same task [291].

Active learning is a special type of semi-supervised learning that selectively chooses
unlabeled data based on an objective function that selects data with low prediction con-
fidence for a human annotator to label. Recently, researchers have tried to combine DL
approaches with active learning to benefit from establishing labels on the fly while lever-
aging the extraordinary classification capability of DL. Gudur et al. utilized active learn-
ing by combining a CNN with Bayesian techniques to represent model uncertainties
(B-CNN) [292]. Bettini et al. combined active learning and federated learning to proactively
annotate the unlabeled sensor data and build personalized models in order to cope with
data scarcity problem [281]. Opportunity: Though active learning has demonstrated that
fewer labels are needed to build an effective deep neural network model, a real-world study
with time-cost analysis would better demonstrate the benefits of active learning. More-
over, given the many existing labelled datasets, another area of opportunity is developing
methods that leverage characteristics of labelled datasets to generate labels for unlabeled
datasets such as transfer learning or pseudo-label method [293].
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6.2.2. Issues of In-the-Field Dataset

Traditionally, HAR research has been conducted primarily in lab. Recently, HAR
research has been moving towards in-field experiments. Unlike in-lab settings, where the
ground truth can be captured by surveillance cameras, in-field experiments may have
subjects moving around in daily life, where static camera deployment is not sufficient any
more. Alharbi et al. used wearable cameras placed at the wrist, chest, and shoulder to
record subject’s activities as they moved around outside of a lab setting [294] and studied
the feasibility of wearable cameras. Opportunity: More research in leveraging human-in-
the-loop to provide in-field labelling is required to generate more robust datasets for in situ
activities. Besides, one possible solution is to utilize existing in-the-field human activity
video datasets and cross-modal deep generative models. If high-fidelity synthetic wearable
sensor data can be generated from the available real-world video datasets (such as Stanford-
ECM dataset [295]) or online video corpus, it may help alleviate the in-the-field data scarcity
issue. Additionally, there are opportunities for semi-supervised learning methods that
leverage the sparse labels provided by humans-in-the-loop to generate high-quality labels
for the rest of the dataset.

6.3. Challenges in Modeling

In this section, we discuss the challenges and opportunities in the modelling process
in several aspects, including data segmentation, semantically complex activity recognition,
model generalizability, as well as model robustness.

6.3.1. Data Segmentation

As discussed in [296], many methods segment time series using traditional static
sliding window methods. A static time window may either be too large, capturing more
than necessary to detect certain activities, or too small and not capturing enough series to
detect long movements. Recently, researchers have been looking to segment time series
data more optimally. Zhang et al. used reinforcement learning to find more optimal activity
segments to boost HAR performance [249]. Qian et al. [297] proposed weakly-supervised
sensor-based activity segmentation and recognition method. Opportunity: More exper-
imentation and research into dynamic activity segments or methods that leverage both
short term and long term features (i.e., wavelets) are needed to create robust models at
all timescales. While neural networks such as RNNs and LSTMs can model time series
data with flexible time scales and automatically learn relevant features, their inherent
issues such as exploding/vanishing gradients and training difficulty, make widespread
adoption difficult. As such, more research into other methods that account for these issues
is necessary.

6.3.2. Semantically Complex Activity Recognition

Current HAR methods achieve high performance for simple activities such as running.
However, complex activities such as eating, which can involve a variety of movements,
remain difficult. To tackle this challenge, Kyritsis et al. break down complex gestures into a
series of simpler (atomic) gestures that, when combined, form the complex gesture [298].
Liu et al. propose a hierarchical architecture that constructs high-level human activities
from low-level activities [299]. Peng et al. proposes AROMA, a complex human activity
recognition method that leverages deep multi-task learning to learn simple activities that
make up more complex movements [300]. Opportunity: Though hierarchical methods have
been introduced for various complex tasks, there are still opportunities for improvements.
Additionally, novel black-box approaches to complex task recognition, where individual
steps in complex actions are automatically learned and accounted for rather than specifically
identified or labelled by designers, have yet to be fully explored. Such a paradigm is
perfectly suitable for deep learning because neural networks function on a similar principle.
Besides, graph neural network can also be explored to model the hierarchical structure of
simple-to-complex human activities [301].
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6.3.3. Model Generalizability

A model has high generalizability when it performs well on data that it has never
seen before. Overfitting occurs when it performs well on training data but poorly on
new data. Recently, many efforts have been put into improving the generalizability of
models in HAR [86,302,303]. Most research on generalizability in HAR has been focused
on creating models that can generalize to a larger population, which often requires a large
amount of data and high model complexity. In scenarios where high model complexity
and data are not bottlenecks, DL-based HAR generally outperforms and generalize better
than other types of methods. In scenarios where data or model complexity is limited, DL-
based methods must utilize available data more efficiently or adapt to the specific scenario
online. For instance, Siirtola and Röning propose an online incremental learning approach
that continuously adapts the model with the user’s individual data as it comes in [304].
Qian et al. [305] introduce Generalizable Independent Latent Excitation (GILE), which
greatly enhances the cross-person generalization capability of the model. Opportunity:
An avenue of generalizability that has yet to be fully explored are new training methods
that can adapt and learn predictors across multiple environments, such as invariant risk
minimization [306] or federated learning methods [307]. Incorporating these areas into
DL-based HAR could not only improve the generalizability of HAR models but accomplish
this in a model-agnostic way.

6.3.4. Model Robustness

A key issue that the community is paying increasing attention to is model robustness
and reliability [308,309]. One common way to improve robustness is to leverage the benefits
of multiple types of sensors together to create multi-sensory systems [249,310–314]. Huynh-
The et al. [311] has proposed an architecture called DeepFusionHAR to incorporate the
handcrafted features and deep learning extracted features from multiple sensors to detect
daily life and sports activities. Hanif et al. [312] proposed a multi-sensory approach for
basic and complex human activity recognition that uses built-in sensors from smartphones
and smartwatches to classify 20 complex actions and five basic actions. Pires et al. [313]
demonstrated a mobile application on a multi-sensor mobile platform for daily living
activity classification using a combination of accelerometer, gyroscope, magnetometer,
microphone, and GPS. Multi-sensory networks in some cases are integrated with attention
modules to learn the most representative and discriminative sensor modality to distinguish
human activities [249]. Opportunity: While there are works that utilize multiple sensors
to improve robustness, they require users to wear or have access to all of the sensors they
utilize. An exciting new direction is to create generalized frameworks that can adaptively
utilize data from whatever sensors happen to be available, such as a smart home intelligence
system [315]. For this direction, deep learning methods seem more suitable than classical
machine learning methods because neural networks can be more easily tuned and adapted
to different domains (i.e., different sensors) than rigid classical models, just by tuning
weights or by mixing and matching different layers or embeddings. Creating such systems
would not only greatly improve the practicality of HAR-based systems but would also
contribute significantly to general artificial intelligence.

6.4. Challenges in Model Deployment

There are several works focusing on deploying deep-learning-based HAR on mobile
platforms. Lane et al. [316] proposes a SOC-based architecture for optimizing deep neural
network inference, while Lane et al. [317] and Cao et al. [318] utilize the smartphone’s
digital signal processor (DSP) and mobile GPU to improve inference time and reduce power
consumption. Yao et al. [319] propose a lightweight CNN and RNN-based system that
accounts for noisy sensor readings from smartphones and automatically learns local and
global features between sensor windows to improve performance.

The second class of works focus on reducing the complexity of neural networks so that
they can run on resource-limited mobile platforms. Bhattacharya and Lane [320] reduces the
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amount of computation required at each layer by encoding layers into a lower-dimensional
space. Edel and Köppe [321] reduces computation by utilizing binary weights rather than
fixed-point or floating weights.

Emerging trends in deploying neural networks include offloading computation onto
application-specific integrated circuits (ASIC) or lower power consumption microcon-
trollers. Bhat et al. [322], Wang et al. [323] developed custom integrated circuits and hard-
ware accelerators that perform the entire HAR pipeline with significantly lower power
consumption than mobile or GPU-based platforms. The downside to ASICs is that they
cannot be reconfigured for other types of tasks. Islam and Nirjon [324] present an architec-
ture for embedded systems that dynamically schedules DNN inference tasks to improve
inference time and accuracy.

Opportunity: Though there are works that explore the deployment of DNNs practical
systems, more research is needed for society to fully benefit from the advances in DNNs
for HAR. Many of the works discussed leverage a single platform (i.e., either a smartphone
or ASIC), but there are still many opportunities for improving the practical use of HAR
by exploring intelligent ways to partition computation across the cloud, mobile platforms,
and other edge devices. DNN-based HAR systems can largely benefit by incorporating
methodologies proposed by works such as [325–332], that carefully partition computation
and data across multiple devices and the cloud.

Lane et al. performed a small-scale exploration into the performance of DNNs for
HAR applications on mobile platforms in various configurations, including utilizing the
phone’s CPU and DSP and offloading computation onto remote devices [333]. This work
demonstrates that mobile devices running DNN inference can scale gracefully across
different compute resources available to the mobile platform and also supports the need
for more research into optimal strategies for partitioning DNN inference across mobile and
edge systems to improve latency, reduce power consumption, and increase the complexity
of the DNNs serviceable to wearable platforms.

7. Conclusions

Human activity recognition in wearables has provided us with many conveniences
and avenues to monitor and improve our life quality. AI and ML have played a vital role in
enabling HAR in wearables. In recent years, DL has pushed the boundary of wearables-
based HAR, bringing activity recognition performance to an all-time high. In this paper, we
provided our answers to the three research questions we proposed in Section 2. We firstly
gave an overall picture of the real-life applications, mainstream sensors, and popular public
datasets of HAR. Then we gave a review of the advances of the deep learning approaches
used in the field of wearable HAR and provided guidelines and insights about how to
choose an appropriate DL approach after comparing the advantages and disadvantages of
them. At last, we discussed the current road blockers in three aspects—data-wise, label-
wise, and model-wise—for each of which we provide potential opportunities. We further
identify the open challenges and finally provide suggestions for future avenues of research
in this field. By categorizing and summarizing existing works that apply DL approaches to
wearable sensor-based HAR, we aim to provide new engineers and researchers entering this
field an overall picture of the existing research work and remaining challenges. We would
also like to benefit experienced researchers by analyzing and discussing the developing
trends, major barriers, cutting-edge frontiers, and potential future directions.

Author Contributions: Conceptualization, S.Z. (Shibo Zhang). and S.Z. (Shen Zhang); methodol-
ogy, Y.L., S.Z. (Shibo Zhang)., F.S. and S.Z. (Shen Zhang); writing—original draft preparation, S.Z.
(Shibo Zhang)., Y.L., S.Z. (Shen Zhang), F.S., S.X. and Y.D.; writing—review and editing, S.Z. (Shibo
Zhang)., Y.L., S.X., F.S. and N.A.; visualization, S.Z. (Shen Zhang), Y.D., Y.L. and S.Z. (Shibo Zhang).;
supervision, N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 1476 29 of 43

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks to Haik Kalamtarian and Krystina Neuman for their valuable
feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vogels, E.A. About One-in-five Americans Use a Smart Watch or Fitness Tracker. Available online: https://www.pewresearch.

org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/ (accessed on 10 February 2022).
2. Research, M. Wearable Devices Market by Product Type (Smartwatch, Earwear, Eyewear, and others), End-Use Industry

(Consumer Electronics, Healthcare, Enterprise and Industrial, Media and Entertainment), Connectivity Medium, and Region—
Global Forecast to 2025. Available online: https://www.meticulousresearch.com/product/wearable-devices-market-5050
(accessed on 10 February 2022).

3. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
4. Schäfer, A.M.; Zimmermann, H.G. Recurrent Neural Networks Are Universal Approximators. In Artificial Neural Networks—

ICANN 2006; Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 632–640.
5. Zhou, D.X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 2020, 48, 787–794. [CrossRef]
6. Wearable Technology Database. Available online: https://data.world/crowdflower/wearable-technology-database (accessed on

10 February 2022).
7. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. 2016. Available online: http://www.deeplearningbook.org (accessed on

10 February 2022).
8. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction. 2018. Available online: http://www.incompleteideas.net/

book/the-book-2nd.html (accessed on 10 February 2022).
9. Transparent Reporting of Systematic Reviews and Meta-Analyses. Available online: http://www.prisma-statement.org/

(accessed on 10 February 2022).
10. Kiran, S.; Khan, M.A.; Javed, M.Y.; Alhaisoni, M.; Tariq, U.; Nam, Y.; Damasevicius, R.; Sharif, M. Multi-Layered Deep Learning

Features Fusion for Human Action Recognition. Comput. Mater. Contin. 2021, 69, 4061–4075. [CrossRef]
11. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.

2019, 119, 3–11. [CrossRef]
12. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]
13. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-based Human Activity Recognition: Overview,

Challenges, and Opportunities. ACM Comput. Surv. 2021, 54, 1–40. [CrossRef]
14. Ramanujam, E.; Perumal, T.; Padmavathi, S. Human activity recognition with smartphone and wearable sensors using deep

learning techniques: A review. IEEE Sens. J. 2021, 21, 13029–13040. [CrossRef]
15. Morales, J.; Akopian, D. Physical activity recognition by smartphones, a survey. Biocybern. Biomed. Eng. 2017, 37, 388–400.

[CrossRef]
16. Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2011, 2, 1143–1211.
17. Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W. Correlates of physical activity: Why are some people

physically active and others not? Lancet 2012, 380, 258–271. [CrossRef]
18. Diaz, K.M.; Krupka, D.J.; Chang, M.J.; Peacock, J.; Ma, Y.; Goldsmith, J.; Schwartz, J.E.; Davidson, K.W. Fitbit®: An accurate and

reliable device for wireless physical activity tracking. Int. J. Cardiol. 2015, 185, 138–140. [CrossRef] [PubMed]
19. Zhu, J.; Pande, A.; Mohapatra, P.; Han, J.J. Using Deep Learning for Energy Expenditure Estimation with wearable sensors. In

Proceedings of the 2015 17th International Conference on E-health Networking, Application Services (HealthCom), Boston, MA,
USA, 14–17 October 2015; pp. 501–506. [CrossRef]

20. Brown, V.; Moodie, M.; Herrera, A.M.; Veerman, J.; Carter, R. Active transport and obesity prevention–a transportation sector
obesity impact scoping review and assessment for Melbourne, Australia. Prev. Med. 2017, 96, 49–66. [CrossRef] [PubMed]

21. Bisson, A.; Lachman, M.E. Behavior Change with Fitness Technology in Sedentary Adults: A Review of the Evidence for
Increasing Physical Activity. Front. Public Health 2017, 4, 289. [CrossRef]

22. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks for human activity
recognition using mobile sensors. In Proceedings of the 6th International Conference on Mobile Computing, Applications and
Services, Austin, TX, USA, 6–7 November 2014; pp. 197–205. [CrossRef]

23. Chen, Y.; Xue, Y. A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer. In Proceedings of
the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 1488–1492.
[CrossRef]

https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.meticulousresearch.com/product/wearable-devices-market-5050
http://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/j.acha.2019.06.004
https://data.world/crowdflower/wearable-technology-database
http://www.deeplearningbook.org
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.prisma-statement.org/
http://dx.doi.org/10.32604/cmc.2021.017800
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1016/j.eswa.2018.03.056
http://dx.doi.org/10.1145/3440756
http://dx.doi.org/10.1109/JSEN.2021.3069927
http://dx.doi.org/10.1016/j.bbe.2017.04.004
http://dx.doi.org/10.1016/S0140-6736(12)60735-1
http://dx.doi.org/10.1016/j.ijcard.2015.03.038
http://www.ncbi.nlm.nih.gov/pubmed/25795203
http://dx.doi.org/10.1109/HealthCom.2015.7454554
http://dx.doi.org/10.1016/j.ypmed.2016.12.020
http://www.ncbi.nlm.nih.gov/pubmed/28011134
http://dx.doi.org/10.3389/fpubh.2016.00289
http://dx.doi.org/10.4108/icst.mobicase.2014.257786
http://dx.doi.org/10.1109/ SMC.2015.263


Sensors 2022, 22, 1476 30 of 43

24. Jiang, W.; Yin, Z. Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural Networks. In Proceedings
of the 23rd ACM International Conference on Multimedia (MM), Brisbane, Australia, 26–30 October 2015; ACM: New York, NY,
USA, 2015; pp. 1307–1310. [CrossRef]

25. Ronao, C.A.; Cho, S.B. Human Activity Recognition with Smartphone Sensors Using Deep Learning Neural Networks. Expert
Syst. Appl. 2016, 59, 235–244. [CrossRef]

26. Lee, S.M.; Yoon, S.M.; Cho, H. Human activity recognition from accelerometer data using Convolutional Neural Network. In
Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Korea, 13–16
February 2017; pp. 131–134. [CrossRef]

27. Wang, L.; Gjoreski, H.; Ciliberto, M.; Mekki, S.; Valentin, S.; Roggen, D. Benchmarking the SHL Recognition Challenge with
Classical and Deep-Learning Pipelines. In Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp), Singapore, 8–12 October 2018; ACM:
New York, NY, USA, 2018; pp. 1626–1635. [CrossRef]

28. Li, S.; Li, C.; Li, W.; Hou, Y.; Cook, C. Smartphone-sensors Based Activity Recognition Using IndRNN. In Proceedings of the 2018
ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers, (UbiComp), Singapore, 8–12 October 2018; ACM: New York, NY, USA, 2018; pp. 1541–1547. [CrossRef]

29. Jeyakumar, J.V.; Lee, E.S.; Xia, Z.; Sandha, S.S.; Tausik, N.; Srivastava, M. Deep Convolutional Bidirectional LSTM Based
Transportation Mode Recognition. In Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp), Singapore, 8–12 October 2018; ACM:
New York, NY, USA, 2018; pp. 1606–1615. [CrossRef]

30. Wang, K.; He, J.; Zhang, L. Attention-based Convolutional Neural Network for Weakly Labeled Human Activities Recognition
with Wearable Sensors. IEEE Sens. J. 2019, 19, 7598–7604. [CrossRef]

31. Hammerla, N.Y.; Fisher, J.M.; Andras, P.; Rochester, L.; Walker, R.; Plotz, T. PD Disease State Assessment in Naturalistic
Environments Using Deep Learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI),
Hyatt Regency, Austin, TX, USA, 25–30 January 2015; pp. 1742–1748.

32. Eskofier, B.M.; Lee, S.I.; Daneault, J.; Golabchi, F.N.; Ferreira-Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.; Klucken,
J.; Kautz, T.; et al. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson’s
disease assessment. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Lake Buena Vista (Orlando), FL, USA, 16–20 August 2016; pp. 655–658. [CrossRef]

33. Zhang, A.; Cebulla, A.; Panev, S.; Hodgins, J.; De la Torre, F. Weakly-supervised learning for Parkinson’s Disease tremor detection.
In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 143–147. [CrossRef]

34. Mohammadian Rad, N.; Van Laarhoven, T.; Furlanello, C.; Marchiori, E. Novelty Detection Using Deep Normative Modeling for
IMU-Based Abnormal Movement Monitoring in Parkinson’s Disease and Autism Spectrum Disorders. Sensors 2018, 18, 3533.
[CrossRef]

35. Kim, H.B.; Lee, W.W.; Kim, A.; Lee, H.J.; Park, H.Y.; Jeon, H.S.; Kim, S.K.; Jeon, B.; Park, K.S. Wrist sensor-based tremor severity
quantification in Parkinson’s disease using convolutional neural network. Comput. Biol. Med. 2018, 95, 140–146. [CrossRef]

36. Um, T.T.; Pfister, F.M.J.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data Augmentation of Wearable Sensor
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307. Konečnỳ, J.; McMahan, B.; Ramage, D. Federated optimization: Distributed optimization beyond the datacenter. arXiv 2015,
arXiv:1511.03575.

308. Qiu, S.; Zhao, H.; Jiang, N.; Wang, Z.; Liu, L.; An, Y.; Zhao, H.; Miao, X.; Liu, R.; Fortino, G. Multi-sensor information fusion based
on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information
Fusion 2022, 80, 241–265. [CrossRef]

309. Ahad, M.A.R.; Antar, A.D.; Ahmed, M. Sensor-based human activity recognition: Challenges ahead. In IoT Sensor-Based Activity
Recognition; Springer: Berlin/Heidelberg, Germany, 2021; pp. 175–189.

310. Abedin, A.; Ehsanpour, M.; Shi, Q.; Rezatofighi, H.; Ranasinghe, D.C. Attend and Discriminate: Beyond the State-of-the-Art
for Human Activity Recognition Using Wearable Sensors. Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–22.
[CrossRef]

311. Huynh-The, T.; Hua, C.H.; Tu, N.A.; Kim, D.S. Physical Activity Recognition with Statistical-Deep Fusion Model Using Multiple
Sensory Data for Smart Health. IEEE Internet Things J. 2021, 8, 1533–1543. [CrossRef]

312. Hanif, M.; Akram, T.; Shahzad, A.; Khan, M.; Tariq, U.; Choi, J.; Nam, Y.; Zulfiqar, Z. Smart Devices Based Multisensory Approach
for Complex Human Activity Recognition. Comput. Mater. Contin. 2022, 70, 3221–3234. [CrossRef]

313. Pires, I.M.; Pombo, N.; Garcia, N.M.; Flórez-Revuelta, F. Multi-Sensor Mobile Platform for the Recognition of Activities of Daily
Living and Their Environments Based on Artificial Neural Networks. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, (IJCAI-18). International Joint Conferences on Artificial Intelligence Organization,
Stockholm, Sweden, 13–19 July 2018; pp. 5850–5852. [CrossRef]

314. Sena, J.; Barreto, J.; Caetano, C.; Cramer, G.; Schwartz, W.R. Human activity recognition based on smartphone and wearable
sensors using multiscale DCNN ensemble. Neurocomputing 2021, 444, 226–243. [CrossRef]

315. Xia, S.; Chandrasekaran, R.; Liu, Y.; Yang, C.; Rosing, T.S.; Jiang, X. A Drone-Based System for Intelligent and Autonomous
Homes. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys’21), Coimbra, Portugal,
15–17 November 2021; pp. 349–350. [CrossRef]

316. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices. In Proceedings of the 2016 15th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016; pp. 1–12. [CrossRef]

317. Lane, N.D.; Georgiev, P.; Qendro, L. DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments
Using Deep Learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp’15), Osaka, Japan, 7–11 September 2015; pp. 283–294. [CrossRef]

318. Cao, Q.; Balasubramanian, N.; Balasubramanian, A. MobiRNN: Efficient Recurrent Neural Network Execution on Mobile GPU.
In Proceedings of the 1st International Workshop on Deep Learning for Mobile Systems and Applications (EMDL’17), Niagara
Falls, NY, USA, 23 June 2017; pp. 1–6. [CrossRef]

319. Yao, S.; Hu, S.; Zhao, Y.; Zhang, A.; Abdelzaher, T. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile
Sensing Data Processing. In Proceedings of the 26th International Conference on World Wide Web; International World Wide
Web Conferences Steering Committee: Republic and Canton of Geneva, Switzerland (WWW’17), Perth, Australia, 3–7 April 2017;
pp. 351–360. [CrossRef]

320. Bhattacharya, S.; Lane, N.D. Sparsification and Separation of Deep Learning Layers for Constrained Resource Inference on
Wearables. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, (SenSys’16), Stanford,
CA, USA, 14–16 November 2016; pp. 176–189. [CrossRef]

321. Edel, M.; Köppe, E. Binarized-BLSTM-RNN based Human Activity Recognition. In Proceedings of the 2016 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–7. [CrossRef]

322. Bhat, G.; Tuncel, Y.; An, S.; Lee, H.G.; Ogras, U.Y. An Ultra-Low Energy Human Activity Recognition Accelerator for Wearable
Health Applications. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–22. [CrossRef]

323. Wang, L.; Thiemjarus, S.; Lo, B.; Yang, G.Z. Toward a mixed-signal reconfigurable ASIC for real-time activity recognition. In
Proceedings of the 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, Hong Kong,
China, 1–3 June 2008; pp. 227–230. [CrossRef]

324. Islam, B.; Nirjon, S. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–29. [CrossRef]

325. Xia, S.; Nie, J.; Jiang, X. CSafe: An Intelligent Audio Wearable Platform for Improving Construction Worker Safety in Urban
Environments. In Proceedings of the 20th International Conference on Information Processing in Sensor Networks (Co-Located
with CPS-IoT Week 2021), (IPSN’21), Nashville, TN, USA, 18–21 May 2021; pp. 207–221. [CrossRef]

326. Xia, S.; de Godoy Peixoto, D.; Islam, B.; Islam, M.T.; Nirjon, S.; Kinget, P.R.; Jiang, X. Improving Pedestrian Safety in Cities Using
Intelligent Wearable Systems. IEEE Internet Things J. 2019, 6, 7497–7514. [CrossRef]

327. de Godoy, D.; Islam, B.; Xia, S.; Islam, M.T.; Chandrasekaran, R.; Chen, Y.C.; Nirjon, S.; Kinget, P.R.; Jiang, X. PAWS: A
Wearable Acoustic System for Pedestrian Safety. In Proceedings of the 2018 IEEE/ACM Third International Conference on
Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; pp. 237–248. [CrossRef]

328. Nie, J.; Hu, Y.; Wang, Y.; Xia, S.; Jiang, X. SPIDERS: Low-Cost Wireless Glasses for Continuous In-Situ Bio-Signal Acquisition and
Emotion Recognition. In Proceedings of the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and
Implementation (IoTDI), Sydney, NSW, Australia, 21–24 April 2020; pp. 27–39. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2021.11.006
http://dx.doi.org/10.1145/3448083
http://dx.doi.org/10.1109/JIOT.2020.3013272
http://dx.doi.org/10.32604/cmc.2022.019815
http://dx.doi.org/10.24963/ijcai.2018/859
http://dx.doi.org/10.1016/j.neucom.2020.04.151
http://dx.doi.org/10.1145/3485730.3492881
http://dx.doi.org/10.1109/IPSN.2016.7460664
http://dx.doi.org/10.1145/2750858.2804262
http://dx.doi.org/10.1145/3089801.3089804
http://dx.doi.org/10.1145/3038912.3052577
http://dx.doi.org/10.1145/2994551.2994564
http://dx.doi.org/10.1109/IPIN.2016.7743581
http://dx.doi.org/10.1145/3358175
http://dx.doi.org/10.1109/ISSMDBS.2008.4575060
http://dx.doi.org/10.1145/3411808
http://dx.doi.org/10.1145/3412382.3458267
http://dx.doi.org/10.1109/JIOT.2019.2903519
http://dx.doi.org/10.1109/IoTDI.2018.00031
http://dx.doi.org/10.1109/IoTDI49375.2020.00011


Sensors 2022, 22, 1476 43 of 43

329. Nie, J.; Liu, Y.; Hu, Y.; Wang, Y.; Xia, S.; Preindl, M.; Jiang, X. SPIDERS+: A light-weight, wireless, and low-cost glasses-based
wearable platform for emotion sensing and bio-signal acquisition. Pervasive Mob. Comput. 2021, 75, 101424. [CrossRef]

330. Hu, Y.; Nie, J.; Wang, Y.; Xia, S.; Jiang, X. Demo Abstract: Wireless Glasses for Non-contact Facial Expression Monitoring. In
Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney,
NSW, Australia, 21–24 April 2020; pp. 367–368. [CrossRef]

331. Chandrasekaran, R.; de Godoy, D.; Xia, S.; Islam, M.T.; Islam, B.; Nirjon, S.; Kinget, P.; Jiang, X. SEUS: A Wearable Multi-Channel
Acoustic Headset Platform to Improve Pedestrian Safety: Demo Abstract; Association for Computing Machinery: New York, NY, USA,
2016; pp. 330–331. [CrossRef]

332. Xia, S.; de Godoy, D.; Islam, B.; Islam, M.T.; Nirjon, S.; Kinget, P.R.; Jiang, X. A Smartphone-Based System for Improving
Pedestrian Safety. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018;
pp. 1–2. [CrossRef]

333. Lane, N.D.; Georgiev, P. Can Deep Learning Revolutionize Mobile Sensing? In Proceedings of the 16th International Workshop
on Mobile Computing Systems and Applications (HotMobile’15), Santa Fe, NM, USA, 12–13 February 2015; Association for
Computing Machinery: New York, NY, USA, 2015; pp. 117–122. [CrossRef]

http://dx.doi.org/10.1016/j.pmcj.2021.101424
http://dx.doi.org/10.1109/IPSN48710.2020.000-1
http://dx.doi.org/10.1145/2994551.2996547
http://dx.doi.org/10.1109/VNC.2018.8628320
http://dx.doi.org/10.1145/2699343.2699349

	Introduction
	Methodology
	Research Question
	Research Scope
	Taxonomy of Human Activity Recognition

	Related Work
	Human Activity Recognition Overview
	Applications
	Wearables in Fitness and Lifestyle
	Wearables in Healthcare and Rehabilitation
	Wearables in Human Computer Interaction (HCI)

	Wearable Sensors
	Inertial Measurement Unit (IMU)
	Electrocardiography (ECG) and Photoplethysmography (PPG)
	Electromyography (EMG)
	Mechanomyography (MMG)

	Major Datasets

	Deep Learning Approaches
	Autoencoder
	Deep Belief Network (DBN)
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Deep Reinforcement Learning (DRL)
	Generative Adversarial Network (GAN)
	Hybrid Models
	Summary and Selection of Suitable Methods 

	Challenges and Opportunities
	Challenges in Data Acquisition
	The Need for More Data
	Data Quality and Missing Data
	Privacy Protection

	Challenges in Label Acquisition
	Shortage of Labeled Data
	Issues of In-the-Field Dataset

	Challenges in Modeling
	Data Segmentation
	Semantically Complex Activity Recognition
	Model Generalizability
	Model Robustness

	Challenges in Model Deployment

	Conclusions
	References

