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Abstract: Frequency diverse array (FDA)-multiple-input multiple-output (MIMO) radars can gener-
ate a range-angle two-dimensional transmit steering vector (SV), which is capable of suppressing
mainbeam deceptive jamming in the transmit–receive frequency domain by utilizing additional
degrees of freedom (DOFs) in the range dimension. However, when there are target SV mismatch,
covariance matrix estimation error and target contamination, the jamming suppression performance
degrades severely. In this paper, a robust adaptive beamforming algorithm for anti-jammer applica-
tion based on covariance matrix reconstruction is proposed in FDA-MIMO radar. In this method,
the residual noise is further determined by using the spatial power spectrum estimation approach,
which results in improved estimation accuracy of the signal covariance matrix and the desired target
SV. The jamming SV is obtained from vectors in the intersection of two subspaces (namely, the signal-
jamming subspace derived from the sample covariance matrix (SCM) and the jamming subspace
generated from the jamming covariance matrix) by an alternating projection algorithm. Furthermore,
the jamming power is obtained by exploiting the orthogonality between the different SVs. With
the obtained parameters of target and jamming, the optimal adaptive beamformer weight vector is
calculated. Simulation results demonstrate that the proposed algorithm can cope with the mainbeam
deceptive jamming suppression under various model mismatches and has excellent performance
over a wide range of signal-to-noise ratios (SNRs).

Keywords: frequency diverse array (FDA); deceptive jamming suppression; robust beamforming;
steering vector mismatch; covariance matrix reconstruction

1. Introduction

With the invention of electronic countermeasures technologies, active deceptive jam-
ming has caused significant repercussions such as impaired information collecting capa-
bilities and resource occupancy in radar systems [1,2]. Jammers equipped with digital
radio frequency memory (DRFM) can form active deceptive jamming that is coherent
with real target echo by intercepting, sampling, parameter (time delay, Doppler frequency)
modulation, and forwarding radar signals, causing the radar system to misidentify false
targets as real targets, resulting in the loss of real target and air situation anomalies [3]. In
general, there are two types of mainbeam deceptive jamming. The first is jamming that
locates inside the main lobe, typical applications such as pods and decoys, which protect
the target by forwarding intercepted radar signals that form a coherent scattering source
with the signals dispersed directly by the target. The second category with identical angle
of the target, mainly generated by self-defense jammers carried by the target itself [4]. Since
the characteristics of such mainbeam deceptive jamming and target signal in frequency,
temporal, spatial and polarization domains are essentially the same, conventional radar
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with corresponding algorithms become invalid in anti-jamming, calling for novel scheme
of radar and signal processing algorithms.

The frequency diversity array (FDA)-multiple-input multiple-output (MIMO) radar
introduces a frequency step amount far smaller than the reference carrier frequency between
the transmitting array elements, and uses MIMO technology to separate the transmit
waveform at the receiver, resulting in a range-angle-dependent transmit steering vector
(SV) [5]. Range-dependent mainbeam deceptive jamming cancellation can be achieved by
using the increased range dimension controllable degrees of freedom (DOFs). Recently, the
countermeasures of mainbeam deceptive jamming based on the novel FDA-MIMO radar
system have attracted tremendous attention [6–13].

As stated in [6], two-dimensional adaptive beamforming is adopted in FDA-MIMO
radar to suppress mainbeam deceptive jamming. However, the model in [6] ignores the
stored modulation time of the jamming signal in the jammer and assumes that all false
targets generated by the same jammer have the same transmit SVs, which is only a specific
situation in practice. In [7], deceptive jamming can be effectively mitigated with high
probability by combining a cone-domain detector and a dual-pulse detection strategy in
FDA-MIMO radar. A non-uniform sample detection approach is proposed to enhance
the jamming suppression effectiveness under non-perfect orthogonal waveform situations
in [8]. Sample selection employing subspace projection and signal power detection can
enhance the capacity of jamming covariance matrix estimation and achieve effective jam-
ming mitigation [9]. In [10], a “low-rank + low-rank + sparse” decomposition technique
is utilized to extract the low-rank order desired signal and restrain deceptive jamming.
Optimizing the frequency step between each array element using the simulated annealing
algorithm [11] can also accomplish adaptive anti-mainbeam deceptive jamming. In [12], a
preset-nulling broadening beamformer is proposed to address the jamming suppression
problem when spatial frequency mismatch exists. For non-uniformly spaced FDA radars, a
cognitive adaptive anti-jamming method based on phase center is suggested [13].

However, the adaptive approaches employed to combat mainbeam deceptive jamming
in [6,8,9,11,12] are extremely susceptible to signal SV mismatches induced by observed
direction error [14], array geometry error [15], channel gain and phase uncertainty [16],
and incoherent local scattering [17]. Furthermore, when the training sample is contam-
inated by the desired signal, the aforementioned jamming suppression techniques will
suffer performance degradation, resulting in the “self-cancellation” of the desired signal.
Therefore, robust adaptive beamforming (RAB) in FDA-MIMO radar are required to cope
with various model mismatches and strengthen mainbeam deceptive jamming suppression
capability.

Various RAB strategies have been presented to enhance the robustness against the
model mismatch. These RAB approaches can be roughly classified into four categories:
diagonal loading (DL) [18–21], eigenspace projection [22–24], uncertainty set constraints,
and interference-plus-noise covariance matrix (IPNCM) reconstruction. DL belongs to
one of the most classical RAB techniques, which is implemented by regularizing the
Capon minimum variance problem. However, the drawback of this method is that it
is difficult to determine the appropriate diagonal loading level for different application
scenarios. Although parameter-free solutions for automatically evaluating the loading level
have been proposed in [20,21], they perform poorly when the SV mismatch is severe and
the input signal-to-noise ratio (SNR) grows. Uncertainty set constraint techniques, such
as worst-case performance-optimized (WCPO) beamformer [25–27], doubly constrained
robust Capon beamformer [28], probabilistically constrained beamformer [29], and linear
programming beamformer [30], estimate the desired signal SV by setting a spherical or
elliptical uncertainty set associated with the desired signal SV. However, these constrained
beamformers often employ the sample covariance matrix (SCM) rather than the real IPNCM,
so the jamming rejection performance deteriorates when the desired signal exists with
high SNR.
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To eliminate the redundant desired signal component in the SCM, RAB based on
IPNCM reconstruction has been proposed recently. Gu et al. [31] designed a RAB algorithm
based on IPNCM reconstruction and desired signal SV estimation, in which the IPNCM is
reconstructed by integrating the Capon spectrum over an angular domain that separates
the desired target, whereas the desired signal SV is estimated by solving a quadratic
constrained quadratic programming (QCQP) problem. This algorithm has remarkable
performance in the occasion of small samples and large look observation error, with
the drawback that integration leads to heavy computation and difficulty in coping with
array geometry error. In [32], the robust Capon beamformer is suggested to estimate the
jamming SV eventually reconstructing the IPNCM, it can address the array geometry error
to some extent. The method in [33] reconstructs the IPNCM using the annulus uncertainty
set associated with the jamming SV, which adequately resolves all remaining mismatch
phenomena except channel gain and phase error, but the integral interval is difficult to
determine. While [34] can effectively cope with large look direction errors, but achieving
optimal performance necessitates that the incidence directions of the desired target and
jamming be sufficiently separated, and the SNR is not close to the interference-to-noise
ratio (INR). To reduce the computational complexity of the IPNCM, a RAB method based
on spatial power spectrum sampling and matrix tapered technique is devised in [35],
but more array elements are required to ensure excellent performance. Zhang et al. [36]
creatively proposed an improved factor for assessing the effectiveness of reconstruction and
determining whether to reconstruct the IPNCM. A blocking matrix containing the presumed
desired signal SV and a small power adjustment factor is applied to remove the desired
signal from the SCM in [37] for further improving the beamformer robustness. Despite the
low algorithm complexity, satisfying the intended signal blocking characteristic under high
SNR is difficult. In [38], it is firstly verified that accurate estimation of jamming power has
minimal performance improvement for reconstruction-based beamformers, and a RAB with
simplified jamming power estimation is provided. In [39], the signal subspace projection
is established to calculate the target and jamming power, and a RAB is devised based on
these power estimates. As the accuracy of the Capon spatial spectrum in [31] deteriorates
dramatically when coherent signals exist, a low complexity RAB based on the maximum
entropy power spectrum is introduced in [40], but it ignores the jamming SV distortion
when dealing with arbitrary mismatches. In [41], a novel desired signal SV optimization
approach is proposed by designing a desired signal power estimator with uncertainty set
constraints, which is more robust to look observation error and array geometry error. The
above-mentioned RAB involves three strategies in reconstructing the IPNCM. The first is
to remove the desired signal from the SCM [37,41]. The second approach is to reconstruct
the IPNCM by integrating the Capon power spectrum over an angular domain containing
the jamming [31,33,36]. The third method constructs the IPNCM by estimating the entire
jamming SVs and power, as well as the noise term [32,38–40]. Obviously, the third method
outperforms the former two in terms of reconstruction accuracy. The proposed RAB in this
paper based on FDA-MIMO radar falls in the third category.

In this paper, the feasibility of FDA-MIMO radar against mainbeam deceptive jam-
ming is investigated. To improve the anti-jamming performance in the presence of desired
signal SV mismatches and IPNCM estimation error, a RAB method that eliminates resid-
ual noise to estimate the desired signal SV and reconstructs the IPNCM using subspace
projection is proposed to suppress the jamming. Assuming that the prior knowledge of
regions where the desired target and jamming locates is known. Firstly, the modified Capon
spatial spectrum with residual noise removed is integrated over the desired target region
to reconstruct the signal covariance matrix. To accurately estimate the desired signal SV,
the reconstructed matrix is eigen-decomposed and the principal eigenvalues are utilized.
Secondly, the signal-jamming subspace is determined by eigen-decomposing the SCM,
then integrating the modified Capon spatial spectrum over the jamming domain to recon-
struct the jamming covariance matrix, which is eigen-decomposed to yield the jamming
subspace. With the alternating projection algorithm, the jamming SV can be precisely
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approximated from the vectors in the intersection of these two subspaces. Furthermore,
orthogonality between the different SVs can be used to deduce jamming power. Based on
the aforementioned accurate estimation, the reconstruction performance of IPNCM can be
enhanced. Finally, the optimal weight vector of the proposed RAB algorithm is determined.
Simulation results demonstrate that the proposed beamformer can effectively cope with
various model mismatches when suppressing the mainbeam deceptive jamming, and its
performance in robustness and output is superior to many existing reconstruction-based
beamformers.

The rest of this paper is organized as follows. In Section 2, the signal model of
deceptive jamming in FDA-MIMO radar is established. A robust beamforming jamming
suppression approach based on FDA-MIMO radar is proposed in Section 3. Simulation
results and performance analyses are provided in Section 4. Conclusions are summarized
in Section 5.

2. FDA-MIMO Radar Signal Model
2.1. Desired Signal Model

Without loss of generality, we consider a colocated FDA-MIMO radar consisting of M
transmit elements and N receive elements, both of which are uniform linear arrays. With
the first element as a reference, the linear frequency increment ∆ f is applied in the transmit
array. Thus, the transmit frequency corresponding to the m-th element is

fm = f0 + (m− 1)∆ f , m = 1, 2, . . . , M (1)

where f0 is the reference carrier frequency. The transmitted signal of the m-th element is
expressed as

xm(t) = rect
(

t
Tp

)
ψm(t)ej2π fmt (2)

where rect
(

t
Tp

)
=

{
1 0 ≤ t ≤ Tp
0 else

denotes the pulse modulation function, Tp represents

the pulse duration and ψm(t) is the baseband envelope. Consider a point target at (rs, θs)
in the far-field under the narrowband assumption, the backscattered signal from this target
received by the n-th element can be approximately written as

ys,n(t− τs) ≈
M

∑
m=1

ρs0 · rect
(

t− τs

Tp

)
· ψm(t− τs) · ej2π f0(t−τmn) · ej2π(m−1)∆ f (t−τmn) (3)

where ρs0 denotes the complex-valued target coefficient, which includes antenna transmit-
ting and receiving, electromagnetic wave propagation, backscattering, etc. τs = 2rs/c is
the reference time, τmn = [2rs − (n− 1)dR sin(θs)− (m− 1)dT sin(θs)]/c represents time
delay between the m-th transmit and the n-th receive element. dR and dT are the receive
and transmit element spacings, respectively. c is the speed of light. After analog mixing
of the reference carrier frequency for the m-th transmitted signal received from the n-th
channel, digital mixing related to the frequency step and matched filtering, the following
signal processing results can be derived

ymn(t− τs) = ρs · e−j2π(m−1)∆ f τs · ej2π
(m−1)dT sin(θs)

λ · ej2π
(n−1)dR sin(θs)

λ (4)

where ρs = exp{−j2π f0τs} · sin c(t − τs) is the echo complex-valued coefficient after
taking the pulse compression processing gain into account. λ = c/ f0 denotes the carrier
wavelength. Therefore, in vector form, the received target signal is

YS = [y11(t− τs), y12(t− τs), · · · , yMN(t− τs)]
T = ρsaT(rs, θs)⊗ aR(θs) (5)
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where [·]T presents transpose operation, ⊗ denotes Kronecker product. YS ∈ CMN×1.
aT(rs, θs) ∈ CM×1 and aR(θs) ∈ CN×1 are the transmit and receive SVs of the desired
signal, respectively, which have the following general form

aT(rs, θs) = aT,r(rs)� aT,θ(θs)

=
[
1, e−j2π∆ f 2rs

c , · · · , e−j2π(M−1)∆ f 2rs
c

]T

�
[

1, ej2π
dT
λ sin(θs), · · · , ej2π(M−1) dT

λ sin(θs)

]T
(6)

aR(θs) =

[
1, ej2π

dR
λ sin(θs), · · · , ej2π(N−1) dR

λ sin(θs)

]T
(7)

where � denotes the Hadamard product. aT,r(rs) ∈ CM×1 is the transmit range SV and
aT,θ(θs) ∈ CM×1 is the transmit angle SV. From (6) and (7) that the transmit and receive
spatial frequencies of the desired target in FDA-MIMO are as follows

fT,s = fT,s,r + fT,s,θ = −∆ f
2rs

c
+

dT
λ

sin(θs) (8)

fR,s = fR,s,θ =
dR
λ

sin(θs) (9)

2.2. Jamming Signal Model

Considering that J false target generators (FTGs) in the far-field where the j-th FTG is
located at (rj, θj). The intercepted radar signal is delayed and forwarded by the FTGs, which
form K deceptive jamming with pseudo-random distribution in the fast-time dimension.
Figure 1 depicts a simplified diagram of this procedure.

Figure 1. Schematic diagram of generating pseudo-randomly distributed range deceptive jamming.

For the k-th jamming target generated by the j-th FTG, jamming signal corresponding
to the m-th transmit and the n-th receive elements after matching filter can be written as

Jk,mn(t− τjk) ≈ ρjk · e−j2π(m−1)∆ f τjk · ej2π(m−1) dT
λ sin(θj) · ej2π(n−1) dR

λ sin(θj) (10)

where ρjk = exp{−j2π f0(2rj/c + ∆τjk)} · sin c[t− (2rj/c + ∆τjk)] is the complex-valued
scattering coefficient of the k-th jamming. τjk = 2rj/c + ∆τjk donates the reference delay of
the k-th jamming. ∆τjk represents the modulation time required for the j-th FTG to generate
the k-th jamming. τjk can be considered as the time delay corresponding to the jamming
target with equivalent range rjk, namely τjk = 2rjk/c. The k-th jamming generated by the
j-th FTG is arranged in vector form as

YJK =
[

Jk,11(t− τjk), Jk,12(t− τjk), · · · , Jk,MN(t− τjk)
]T

= ρjkaT(rjk, θj)⊗ aR(θj) (11)

where YJK ∈ CMN×1. aT

(
rjk, θj

)
∈ CM×1 and aR(θj) ∈ CN×1 denote the transmit and

receive SVs of jamming, respectively, which are the same in form as (6) and (7), but different



Sensors 2022, 22, 1479 6 of 27

in range and angle. Similarly, the transmit and receive spatial frequencies corresponding to
the k-th jamming forwarded by the j-th jammer are as follows:

fT,j,k = fT,jk,r + fT,jk,θ = −∆ f
2rjk

c
+

dT
λ

sin(θj) (12)

fR,j,k = fR,jk,θ =
dR
λ

sin(θj) (13)

2.3. Receiving Signal Model

Considering the desired signal, deceptive jamming as well as Gaussian noise, the total
received FDA-MIMO radar snapshots take the form

Y(t) = YS(t) + YJK(t) + N(t)

= ρs(t)aT(rs, θs)⊗ aR(θs) +
J

∑
j=1

K

∑
k=1

ρjk(t)aT(rjk, θj)⊗ aR(θj) + N(t)
(14)

where ρs(t) = ρs · δ(t− τs) represents the range bin of the desired target corresponding to
time delay τs. ρjk(t) = ρjk · δ(t− τjk) denotes that the k-th deceptive jamming generated by
the j-th FTG dwelling at the range bin corresponding to time delay τjk.

Comparing (8), (9), (12) and (13), the following conclusions can be drawn:

1. If the desired target and jamming spatial angle differ, i.e., θs 6= θj, then they can be
distinguished directly in FDA-MIMO radar by employing the receive spatial frequency
dimension.

2. If the angle between the desired target and jamming is nearly the same, that is θs ≈ θj,
they cannot be divided by using the receive spatial frequency. Nevertheless, the
principal range of the desired target is rs, whereas jamming is generated by the FTG
via time delay modulation and has an equivalent range of rjk. As a result, they
differ in range dimension. It is considered to discern between the desired target and
jamming in the transmit–receive frequency domain. Figure 2 illustrates the power
spectrum distribution diagram of the desired target and jamming in the transmit-
receive frequency domain of the FDA-MIMO radar.

Figure 2. Schematic diagram of the power spectrum distribution of the desired target and jamming.
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3. Robust Decepticve Jamming Suppression
3.1. Background

After the desired target and deceptive jamming generated by delay forwarding are
separated in the transmit–receive frequency domain of the FDA-MIMO radar due to the
range disparity, we can utilize two-dimensional RAB techniques to eliminate the range
mismatch jamming. Generally, the optimal weight vector w is determined by maximizing
the output signal-to-interference-plus-noise ratio (SINR), which is depicted below

SINR =
σ2

s

∣∣∣wHã(r̃s, θ̃s)
∣∣∣2

wHRj+nw
(15)

where σ2
s denotes the desired signal power. ã(r̃s, θ̃s) = ãT(r̃s, θ̃s)⊗ ãR(θ̃s) is the presumed

desired SV of the desired target with r̃s and θ̃s standing for the presumed range and angle.
Rj+n represents the theoretical IPNCM, which is expressed as

Rj+n = E
{(

YJ(t) + N(t)
)(

YJ(t) + N(t)
)H
}

= Rj + σ2
nIMN

(16)

where Rj is the real jamming covariance matrix, σ2
n represents the Gaussian white noise

power, and IMN ∈ CMN×MN denotes the identity matrix. Maximizing the output SINR can
be equivalent to the following optimization problem

min
w

wHRj+nw

s.t. wHã(r̃s, θ̃s) = 1
(17)

Which yield the minimum variance distortionless response (MVDR) beamformer

wopt =
R−1

j+nã(r̃s, θ̃s)

ãH(r̃s, θ̃s)R−1
j+nã(r̃s, θ̃s)

(18)

MVDR is widely employed by FDA-MIMO radar owing to its fast convergence speed
and simple implementation. In practical scenarios, the accurate desired target SV and
IPNCM are unavailable attributed to the presence of imprecise target parameter estimation,
fewer snapshots, array geometry error, array channel inconsistency, and incoherent local
scattering. The anti-jamming effectiveness of the MVDR beamformer in these instances
deteriorates considerably. Following that, the IPNCM error and the desired target range-
angle SV error are introduced individually.

The SV error will occur when inaccurate target range-angle information is applied to
estimate the desired target SV. Therefore, in the presence of range and angle mismatch, the
precise desired target SV can be stated as

a(rs, θs) = ã(r̃s, θ̃s)+δ (19)

where δ denotes the desired target SV error. When training samples are contaminated
with the desired target, the IPNCM error appears. Generally, the SCM R̂ obtained from L
training samples is utilized to approximate the IPNCM Rj+n.

R̂ ∆
=

1
L

L

∑
l=1

Y(l)YH(l) (20)
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where Y(l) is the training samples received by the array in the test region. When some
training samples contain the desired signal, the SCM can be further written as

R̂ = R̃j+n+R̂error (21)

where R̂error is the covariance matrix estimation error due to contaminated training samples
and R̃j+n is the estimated IPNCM. Obviously, R̃j+n is the ideal estimate of the theoretical
Rj+n, whereas R̂error is considered as the undesired term. Therefore, it is vital to concentrate
on robust adaptive beamforming methods, which are insensitive to model mismatches to
suppress jamming.

3.2. Proposed Method

In this section, we proposed a deceptive jamming-resistant adaptive beamforming
approach based on FDA-MIMO radar, which eliminates the adverse impacts of range-angle
mismatch and IPNCM error. This method will correct the desired target SV and reconstruct
the IPNCM, including three steps, i.e., (1) Integrating the Capon spatial spectrum with
residual noise removed over the target range-angle domain to estimate the desired target SV.
(2) Estimating all jamming SVs utilizing the alternating projection algorithm. (3) Calculating
the jamming power by exploiting the orthogonality between the different SVs and finally
reconstructing the IPNCM.

Step 1: Residual noise analysis and desired signal SV estimation

Assume that the target region ΘS in the whole range-angle domain, where the possible
spatial range and angle of target locates, is known in prior, as depicted in Figure 3. The
presumed target position inside the target domain is inconsistent with the actual target
position, that is, there is a mismatch between the presumed target spatial range and angle
and the actual target range and angle. Define the interval of possible target spatial range r
and angle θ as ΘSr and ΘSθ respectively, which can be determined using range measurement
methods and DOA estimation techniques, then ΘS can be denoted as ΘS= [ΘSr, ΘSθ ].

Figure 3. Illustration of Desired target domain in range-angle whole domain.

Many existing approaches for estimating the desired target SV based on covariance
matrix reconstruction are implemented by integrating the Capon spatial spectrum over the
region ΘS. The reason for utilizing Capon spatial spectrum is that it has excellent resolution
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properties, lacks side lobes and can accurately reflect the actual jamming distribution. The
Capon power spectrum in FDA-MIMO radar takes the following form:

P̂(r, θ) =
1

aH(r, θ)R̂
−1

a(r, θ)
(22)

where aH(r, θ) = aT(r, θ)⊗ aR(r, θ) denotes the SV in region ΘS. The desired target covari-
ance matrix based on (22) is

R̂S =
∫∫
ΘS

P̂(r, θ)a(r, θ)aH(r, θ)drdθ

=
∫∫
ΘS

a(r, θ)aH(r, θ)

aH(r, θ)R̂−1a(r, θ)
drdθ

(23)

However, the existing target SV estimation strategies based on (23) seldom consider
the influence of the residual noise in the Capon spatial spectrum estimators, which can
lead to an inaccurate reconstructed covariance matrix. The existence of residual noise can
be verified as follows. Assuming that the received signal only comprises complex Gaussian
white noise, the covariance matrix satisfies R = σ2

nIMN and the output after utilizing the
Capon spatial spectrum is

PResidual(r, θ) =
1

aH(r, θ)(σ2
nIMN)

−1a(r, θ)

=
σ2

n
MN

(24)

(24) demonstrates that the residual noise power is 1/(MN) of the actual noise power.
Further, supposing a desired target (or jamming) at spatial coordinate (rd, θd), the covari-
ance matrix constructed from the echo data is Rd+n = σd

2a(rd, θd)aH(rd, θd)+σ2
nIMN , where

σd
2 represents the desired target (or jamming) power. Correspondingly, (24) is modified to

P(rd, θd) =
1

a(rd, θd)
H(Rd+n)

−1a(rd, θd)

= σd
2 +

σ2
n

MN

(25)

(25) illustrates that the power estimation at the desired target spatial position contains
signal and residual noise. Figure 4 exhibitions the power amplitude in whole range-angle
space according to (22), where the receiving and transmitting elements of FDA-MIMO
radar are M = N = 10, the power of one desired target at (2◦, 30 km) and three jamming
at (2◦, 40 km), (2◦, 50 km) and (−40◦, 60 km) are set as 1w, respectively, and complex
Gaussian white noise with variance σ2

n = 1 is employed. It is observed that the power
fluctuates around 0.01w in the range-angle domain away from the spectral peak, confirming
(24). Furthermore, the power at four spectral peaks is roughly 1.01 w, which exceeds their
actual value of 1 w and is consistent with (25).

Although the power of residual noise σ2
n/MN is relatively small in comparision to

the desired signal, the integration operation is utilized when reconstructing the signal
covariance matrix, which obtains much redundant information related to residual noise,
resulting in an inaccurate reconstruction matrix, especially in low SNR scenarios. Therefore,
the residual noise power magnitude is evaluated first. The desired target domain ΘS,
which is a priori knowledge, has been defined before. Similarly, the union of multiple
range-angle regions where jamming may be dispersed is signified the jamming domain ΘJ ,
i.e., ΘJ = ΘJ−1 ∪ΘJ−2 ∪ · · · ∪ΘJ−K, K denotes the total number of jamming. Subsequently,
the complement region of the target and jamming domains is assigned as the noise domain
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ΘN . As a result, the entire range-angle domain Θ can be constituted of Θ = ΘS ∪ΘJ ∪ΘN .
We consider sampling ΘN uniformly and then adopting the Capon spectrum estimator to
estimate the residual noise power σ̂2

n as follows:

σ̂2
n =

1
Q

Q

∑
q=1

1

aH(rq, θq)R̂
−1a(rq, θq)

, (rq, θq) ∈ ΘN (26)

where Q denotes the number of samples and (rq, θq) is the discrete sample value within
ΘN . Unlike (23), we eliminate residual noise from the Capon spatial spectrum in this paper,
and P̂(θp)− σ̂2

n indicates a more accurate signal power distribution inside ΘS, which can
be employed to more accurately reconstruct the desired target covariance matrix as follows

R̂S =
∫∫
ΘS

[
P̂(r, θ)− σ̂2

n

]
a(r, θ)aH(r, θ)drdθ (27)

Figure 4. Power spectrum distribution of desired signal and jamming.

As shown in Figure 3, in order to efficiently compute (27), the whole range-angle
plane is discretized into P = PrPs grid points, where Pr is the range dimension sampling
number and Pθ is the angle dimension sampling number. Each grid point represents a
range-angle SV a(rp, θp), p = 1, 2, · · · , P. Thus, the set of range-angle SVs located in ΘS
can be denoted as

{
a(r1, θ1), a(r2, θ2), · · · , a(rP0 , θP0)

}
, where P0 = Pr0Pθ0 is the number of

range-angle SVs in ΘS, and Pr0 and Pθ0 represent the sampling number of range dimension
and angle dimensional, respectively. After substituting the integral with the discrete point
summation, (27) is approximated as

R̂S =
P0

∑
p=1

[
P̂(rp, θp)− σ̂2

n

]
a(rp, θp)aH(rp, θp) (28)
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Consider the eigendecomposition of R̂S as follows

R̂S =
MN

∑
i=1

γieieH
i (29)

where γi, i = 1, 2, · · · , MN expresses the eigenvalues of R̂S in descending order, i.e.,
γ1 ≥ γ2 ≥ · · · ≥ γMN , and ei is the eigenvector corresponding to the eigenvalue γi.
In fact, the principal eigenvector e1 of R̂S covers the most information components of the
desired signal, which can be deemed to the estimated desired signal SV

âS =
√

MNe1 (30)

Step 2: Jamming SV estimation

For the estimation of jamming SV, two jamming-related subspaces are considered.
First, the SCM is eigen-decomposed as follows:

R̂ =
MN

∑
i=1

ηiuiuH
i = USJΣSJUH

SJ + UNΣNUH
N (31)

where ηi are the eigenvalues of the matrix R̂, which are in descending order, i.e., η1 ≥
η2 ≥ · · · ≥ ηK > ηK+1 = · · · = ηMN = σ2

n . The first K eigenvalues are related to
the desired signal and jamming, and the corresponding eigenvectors are u1, u2, · · · , uK,
which constitute the signal and jamming subspace USJ . ΣSJ = diag(η1, η2, · · · , ηK) is a
diagonal matrix composed of K larger eigenvalues. The latter MN − K eigenvalues are
completely dependent on noise, which are equal to σ2

n . The eigenvectors corresponding to
ηK+1, ηK+2, · · · , ηMN constitute noise subspace UN , ΣN = diag(ηK+1, ηK+2, · · · , ηMN) is a
diagonal matrix composed of MN − K smaller eigenvalues. Obviously, the jamming SV
depends on the signal plus jamming subspace USJ , so it is considered as the first jamming-
related subspace. More specifically, the k-th jamming SV lies in the subspace spanned by
the column vectors of USJ as follows:

TU =
{

âk : âk ∈ USJαSJ
}

(32)

where αSJ is the linear correlation coefficient vector. For the second jamming-related
subspace, similar to the idea of reconstructing the desired target covariance matrix in the
previous subsection. We discrete the k-th jamming domain ΘJ−k into Pk = PrkPθk grid
points, where Prk and Pθk represent the sampling numbers of range dimension and angle
dimension in ΘJ−k, respectively. The k-th jamming covariance matrix can be obtained by
sampling and summing the Capon power spectrum with the residual noise removed in the
range-angle domain where the k-th jamming is situated

R̂J−k =
Pk

∑
p=1

[
P̂(rp, θp)− σ̂2

n

]
a(rp, θp)aH(rp, θp) (33)

It should be noted that the number of discretized grid points Pk in ΘJ−k is usually
equal to the number of discretized grid points P0 in ΘS, s.t., Prk = Pr0, Pθk = Pθ0. The
jamming covariance matrix is eigen-decomposed as follows:

R̂J−k =
MN

∑
i=1

µivivH
i = VJ−kΥ J−kVH

J−k + VNΥ NVH
N (34)

where µi, i = 1, 2, · · · , MN are eigenvalues of R̂J−k in descending order and vi is the
eigenvector corresponding to the eigenvalue µi. Υ J−k = diag(µ1, µ2, · · · , µD) is a diagonal
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matrix composed of D larger eigenvalues, and VJ−k = [v1, v2, · · · , vD] is the k-th jamming
subspace composed of D main eigenvectors. VN = [vD+1, vD+2, · · · , vMN ] denotes noise
subspace, which consists of the eigenvectors corresponding to the remaining MN − D
smaller eigenvalues. Υ N = diag(µD+1, µD+2, · · · , µMN) is also a diagonal matrix. It should
be noted that D can be determined by the following constraint relation:

D
∑

i=1
|µi|2

MN
∑

i=1
|µi|2

≥ λ (35)

where λ is a predetermined constraint factor belonging to interval (0, 1). VJ−k is the second
subspace associated with jamming. That is to say, the k-th jamming SV is also positioned in
the space spanned by the columns of VJ−k as

TV−k =
{

âk : âk ∈ VJ−kαJ−k
}

(36)

where αJ−k is the correlation coefficient vector. As aforementioned, the k-th jamming SV

can be regarded as inside the intersection T ∆
= TU ∩ TV−k of two subspaces. Then, we

can adopt the alternating projection algorithm proposed in [42] to handle the subspace
intersection. The principle is to construct an iterative relationship for SV utilizing the
projection matrix. Consider the jamming model, ak+1 = TUTV−kak can be established,
where TU = USJUH

SJ and TV−k = VJ−kVH
J−k represent projection matrices on subspaces USJ

and VJ−k, respectively. In addition, the presumed jamming SV âk(r̂k, θ̂k) can be considered
as the initial value of {ak}, where (r̂k, θ̂k) is the presumed incident location. When k→ ∞,
ak+1 converges to the actual jamming SV. In other words, when k → ∞, ak+1 must be
composed of the principal eigenvector following eigendecomposition of TUTV−k, which
contains the most information of ak+1, and the maximum eigenvalue of TUTV−k should
be equal to 1. The constraint condition is tenable, and the following derivation process is
given [43]:

eigmax(TUTV−k) ≤ eigmax(TU)max
v

vHTV−kv

= max
v

vH v=1

vHTV−kv

vHv

= eigmax(TV−k) = 1

(37)

where eigmax(·) is the maximum eigenvalue of a matrix, then the accurate estimation value
of the k-th jamming SV is expressed as

âk =
√

MNPr(TUTV−k) (38)

where Pr(·) denotes the principal eigenvector of a matrix. Two strategies are involved
to improve the estimation accuracy of jamming SV. The first is the application of vector
space projection, which enhances the robustness of the jamming SV error suppression. The
second is to eliminate the residual noise and reconstruct the jamming covariance matrix,
which also guarantees higher estimation accuracy of the jamming SV to a certain extent.

Step 3: Jamming power estimation and IPNCM reconstruction
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The data covariance matrix of received signal Y(t) can be written in the following
form:

R , E
{

Y(t)YH(t)
}
= ARSJA + RN

=
K

∑
k=0

σ2
k a(rk, θk)a

H(rk, θk) + σ2
nIMN

(39)

where a(rk, θk) = aT(rk, θk)⊗ aR(θk) is the SV of the k-th signal (desired target or jamming),
A denotes the array manifold, and RSJ and RN are the signal plus jamming covariance
matrix and the noise covariance matrix, respectively. The remaining part after removing
the noise term from R is expressed as

REN = R−RN = R− σ2
nIMN

=
K

∑
k=0

σ2
k a(rk, θk)a

H(rk, θk)
(40)

Pre-multiplying the above equation by aH(rl , θl) of the l-th signal and then post-
multiplying by a(rl , θl) gives the following result:

aH(rl , θl)RENa(rl , θl) = aH(rl , θl)

{
K

∑
k=0

σ2
k a(rk, θk)a

H(rk, θk)

}
a(rl , θl) (41)

The following analysis is performed on (41). If the desired signals or jamming
are incident on the array at different ranges and angles, the SVs corresponding to any
two signals are approximately orthogonal or completely orthogonal. That is, when
k 6= l, aH(rl , θl)a(rk, θk) � aH(rl , θl)a(rl , θl) or aH(rl , θl)a(rk, θk) = 0 exist. Furthermore,
aH(rl , θl)a(rk, θk) = MN is fulfilled when k = l. The following experiment can demonstrate
orthogonal characteristics between different SVs.

H =

∣∣aH(rl , θl)a(rk, θk)
∣∣

MN
(42)

Assume that the number of transmit and receive elements in FDA-MIMO radar
matches M = N = 10, a signal impinges on the array from (rl , θl) = (30 km, 2◦).
Figure 5 depicts the experimental results achieved using (42). It is observed that when
(rk, θk) = (rl , θl) is satisfied, H reaches the maximum value 1, as ‖a(rl , θl)‖2 =

√
MN. How-

ever, when (rk, θk) deviates from (rl , θl), H diminishes a tiny scale, which indicates that the
two signal SVs are approximately or completely orthogonal.
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Figure 5. Values of H when (rk, θk) deviates from (rl , θl).

Based on the orthogonality between SVs, (rk, θk) in (41) is traversed in the whole
range-angle domain, and the orthogonal terms are neglected, resulting in

aH(rk, θk)RENa(rk, θk) = σ2
k aH(rk, θk)a(rk, θk)a

H(rk, θk)a(rk, θk) (43)

REN is calculated by covariance matrix R̂ and noise power σ̂2
n , and the jamming SV

obtained in the previous paper is substituted into (43), then the power estimation of the
k-th jamming is written as

σ̂2
k =

âH(rk, θk)(R̂− σ̂2
nIMN)â(rk, θk)∣∣âH(rk, θk)â(rk, θk)

∣∣2 (44)

Finally, IPNCM can be reconstructed as follows

R̂j+n =
K

∑
k=1

σ̂2
k â(rk, θk)â

H(rk, θk) + σ̂2
nIMN (45)

where K is the number of deceptive jamming. The proposed weight vector is shown below:

ŵproposed =
R̂−1

j+nâS

âH
S R̂−1

j+nâS

(46)

The procedures of the proposed robust jamming suppression are summarized in
Algorithm 1:
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Algorithm 1: Proposed RAB Algorithm.

1: Calculate the SCM R̂ via (20) and estimate the residual noise power σ̂2
n using (26).

2: Reconstruct signal covariance matrix R̂S using (28) and desired signal SV âS (30) is
obtained by eigen-decomposing R̂S.

3: Eigen-decompose R̂ to obtain the subspace USJ (31). Calculate the jamming
covariance matrix matrix R̂J−k using (33), and eigendecompose R̂J−k to get the
subspace VJ−k (34).

4: Substitute USJ and VJ−k into (38) to estimate the k-th jamming SV âk.

5: Calculate jamming power via (44), and R̂j+n is reconstructed by (45).

6: Obtain the proposed RAB weight vector ŵproposed (46).

7: Distinguish the deceptive jamming in transmit-receive spatial frequency domain by
range mismatch.

8: Supress mainbeam deceptive jamming utilizing proposed RAB.

In the proposed algorithm, the computational complexity mainly concentrated on the
target SV estimation, the jamming SVs estimation and the IPNCM inversion:

1. The complexity of the target SV estimation can be divided into two componets. The
first is to constructe target covariance matrix at the cost of O((MN)2P0). The second
is to decompose the target covariance matrix costing O((MN)3). Therefore, the
complexity of solving the target SV estimation is O(max((MN)2P0, (MN)3)).

2. The complexity of the jamming SVs estimation includes three parts. First, it has a
complexity of O((MN)3) to eigendecomposition of the SCM R̂ to obtain USJ . Second,
it has complexity of O(max((MN)2Pk, (MN)3)) through reconstructing the k-th jam-
ming covariance matrix R̂J−k and eigen-decomposing to obtain VJ−k as same as step
(1). Third, the complexity of eigen-decomposing TUTV−k to calculate the k-th jam-
ming SV âk is O((MN)3). Suppose that the discrete sampling points of each jamming
domain are equal to P0, i.e., Pk = P0, the complexity of estimating all K jamming SVs
is O(K · (max((MN)2P0, (MN)3))).

3. The complexity of computing ŵproposed is O((MN)3) owing to matrix inversion of
R̂j+n. Therefore, the overall complexity of the proposed method is roughly O(K ·
(max((MN)2P0, (MN)3))).

4. Simulation Results

In this section, the performance of the proposed algorithm against deceptive jamming
in FDA-MIMO radar (parameters are listed in Table 1) is verified by experiments. Assume
that both jamming 1 and jamming 2 are incident on the array from the mainbeam, and
jamming 3 is incident on the array from the side lobe. Table 2 exhibits their actual spatial
ranges and angles. In the trials, a maximum unambiguous range is set to contain 250 range
gates. Therefore, the desired target is placed at the 200-th range gate, and the three jamming
are positioned at the 17-th, 84-th and 150-th range gates, respectively. Furthermore, Table 2
also displays the estimated range and angle between the target and the jamming. The
additive noise is modeled as a complex Gaussian zero-mean spatially and temporally
white process that has identical variances in each sensor. For the proposed method, the
desired target domain and three jamming domains are set as ΘS= [(28 km, 36 km), (0◦, 8◦)],
Θ1= [(38 km, 46 km), (0◦, 8◦)], Θ2= [(48 km, 56 km), (0◦, 8◦)] and Θ3= [(58 km, 66 km),
(−42◦,−34◦)], respectively. All these four range-angle sectors are uniformly sampled to be
discrete sectors with the same range interval ∆r = 0.2 km and angle interval ∆θ = 0.2◦.
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Table 1. FDA-MIMO radar parameters.

Parameter Value Parameter Value

M 10 N 10
Element spacing 0.15 m Carrier frequency 1 GHz

Frequency increment 5 kHz PRF 4 kHz
Bandwidth 1 MHz Number of pulses 200

Table 2. Desired target and deceptive jamming parameters.

Parameter Desired Target Jamming 1 Jamming 2 Jamming 3

SNR/INR 15 dB 30 dB 30 dB 30 dB
Real range 30 km 40 km 50 km 60 km
Real angle 2◦ 2◦ 2◦ −40◦

Presumed range 32 km 42 km 52 km 62 km
Presumed angle 4◦ 4◦ 4◦ −38◦

The proposed method is compared to the shrinkage beamformer [21], the eigenspace-
based beamformer [24], the IPNCM linear reconstruction-based beamformer (IPNCM-
linear) [31], the IPNCM reconstruction beamformer using spatial power spectrum sampling
(IPNCM-SPSS) [35], the beamformer in [36], the IPNCM reconstruction beamformer based
on signal power estimation (IPNCM-SPE) [39], and the IPNCM reconstruction beamformer
using maximum entropy power spectrum (IPNCM-MEPS) [40]. The energy percentage
in the Eigenspace beamformer is ρ = 0.9. For the INCM-SPSS beamformer, the reference
range and angle are set as (r0, θ0) = (30 km, 2◦) and the null broadening parameter is
∆ = sin−1(2/(MN)). The uncertainty level ε = 0.5 is set for the beamformer in [36]. The
constraint factor in our proposed method satisfies λ = 0.95. The Matlab CVX toolbox [44]
is applied to solve all optimization problems in the compared methods. When the input
SNR is changed, the number of snapshots is fixed to K = 50. When we vary the number of
snapshots, the input SNR is fixed at 30 dB. In total, 100 Monte-Carlo trials are carried out in
each scenario.

4.1. Transmit-Receive Beampattern Comparison

Figure 6 compares the aforementioned beamforming algorithms in the transmit-receive
spatial frequency domain where SNR is 15 dB. The pink hexagonal stars in these diagrams
indicate the actual positions of the desired target and jamming. As can be seen, three
jamming in all tested algorithms is located at deep notches, indicating that these methods
have superior jamming rejection. This is because in Shrinkage and Eigenspace beamformers,
the loading factor can be adjusted appropriately according to the characteristics of the
received data, always ensuring stronger anti-jamming performance even if the sample data
comprise the desired signal, whereas for the IPNCM-linear beamformer, IPNCM-SPSS
beamformer, the beamformer in [36], IPNCM-SPE beamformer, IPNCM-MEPS beamformer,
and our proposed approach, since they all integrate the Capon spatial spectrum in the
range-angle domain that does not contain the desired signal to reconstruct the IPNCM.
Therefore, the reconstructed matrix has eliminated the influence of the desired signal and
is closer to the theoretical IPNCM, resulting in improved jamming rejection performance.
However, as shown in Figure 6a,b,e, the mainbeam of the Shrinkage beamformer, the
Eigenspace beamformer, and the beamformer in [36] are not ideal because they require
more sample snapshots to guarantee a better main lobe. Moreover, except for the IPNCM-
SPE beamformer and proposed beamformer, all tested methods have a mismatch between
the mainbeam and the real target SV, which implies that these methods cannot accurately
estimate the target SV when the desired signal exists in the training sample, especially
under high SNR. Nevertheless, the IPNCM-SPE beamformer and proposed beamformer,
as illustrated in Figure 6f,h, outperform the remaining methods in terms of low sidelobe



Sensors 2022, 22, 1479 17 of 27

and accurately estimating the desired target SV, revealing that they are able to effectively
reduce the influence of training sample contamination and desired target SV mismatch.

4.2. Beam Pattern Comparison

Figure 7 depicts the beam patterns of the proposed algorithm and the tested beam-
formers in the transmit spatial frequency dimension when the receive spatial frequency is
fixed as the mainbeam (the real desired target angle in Table 2 is the mainbeam direction,
and the receive spatial frequency can be calculated from Equation (9)). The transmit spatial
frequencies of the three can be calculated as 0.0174, −0.3159, and 0.3508, respectively, by
Equations (8) and (12), so the black dashed line in Figure 7 corresponds to the desired
target transmit spatial frequency position, and the red dashed line represents the mainbeam
jamming transmit spatial frequency position. As can be observed in Figure 7, the proposed
method is capable of producing a precise mainbeam at the transmit spatial frequency where
the desired target is located, resulting in maximum target gain with low side lobes.The
performance of the IPNCM-MEPS beamformer is closest to the proposed method, while
the mainbeam created by the remaining tested beamformers diverge substantially from the
desired target transmit spatial frequency, resulting in target gain attenuation. Furthermore,
all tested beamformers can yield notches at the mainbeam jamming, resulting in improved
jamming suppression.

This is because the proposed approach and IPNCM-based beamformers depend on
the integration of the specific jamming domain to obtain a more accurate IPNCM. The
enhanced covariance matrix, rather than the sample covariance matrix, is utilized by the
Shrinkage beamformer and Eigenspace beamformer to approximate the theoretical IPNCM.
Hence, all of these techniques can augment the robustness to model mismatches.
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Figure 6. Transmit–receive beamformer of various approaches (SNR = 15 dB): (a) Shrinkage.
(b) Eigenspace. (c) IPNCM-linear. (d) IPNCM-SPSS. (e) Method in [36]. (f) IPNCM-SPE. (g) IPNCM-
MEPS. (h) Proposed method.
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Figure 7. Beam patterns of the tested beamformers in the transmit spatial frequency.

4.3. Beamformer Output Results

Figure 8a depicts the filtering output results of the range-Doppler dimension under
FDA-MIMO radar. The jamming is effectively inhibited as a consequence of the range
dimensional information mismatch, while the desired target situated at the 200-th range
gate is retained and achieves the maximum output power. Figure 8b compares the output
power profiles of the conventional MIMO radar and FDA-MIMO radar at θ = 0◦. It
can be observed that the transmit SV of a conventional MIMO radar only contains the
angle dimension parameter and ignores the DOF in range dimension, hence only the
side lobe jamming 3 under angle mismatch can be eliminated, while the range deceptive
jamming 1 and jamming 2 in the mainbeam cannot be suppressed. In contrast, FDA-MIMO
radar transmit SV incorporates both range and angle information. The proposed RAB
approach, which exploits the controlled DOF of the range dimension, can efficiently reject
any jamming, including the main lobe direction.
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Figure 8. Output results of range-angle two dimensional RAB: (a) Range-Doppler filtering output
results. (b) Output comparison of different radar frameworks.
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4.4. Output SINR Performance
4.4.1. Effect of Residual Noise on Output SINR

Figure 9 illustrates the deviation of the output SINR from the optimal SINR with
respect to input SNR for both the proposed RAB with and without residual noise rejection.
It is clear that the deviation of the proposed approach considering the effect of residual noise
is smaller under low SNR, indicating that it is closer to the optimal SINR. Nevertheless,
the performance of the algorithm with and without residual noise rejection is essentially
the same when the input SNR is higher, which is attributed to the fact that the residual
noise is considerably lower than the desired signal power at high SNR, when the influence
of both with and without residual noise on the signal covariance matrix reconstruction is
negligible, the two algorithms perform equivalently.
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Figure 9. Deviation from optimal SINR versus input SNR.

4.4.2. Mismatch Due to Signal Look Direction and Range Error

In this example, the effect of random look direction and range error on beamformer
output SINR is demonstrated. The random DOA errors of both the desired signal and the
jamming are uniformly distributed in [−3◦, 3◦], whereas their random range errors are
set to be uniformly distributed in [−3 km, 3 km]. This indicates that the actual desired
target DOA is uniformly distributed in [1◦, 7◦] and the range is uniformly distributed in
[29 km, 35 km]. The three jamming DOAs, however, are uniformly distributed in [1◦, 7◦],
[1◦, 7◦] and [−41◦,−35◦], where their ranges are specified to obey uniform distribution of
[39 km, 45 km], [49 km, 55 km], and [59 km, 65 km]. Note that the angle and range of the
desired target, as well as the jamming, vary in each independent trial while maintaining
constant among the training samples. Figure 10a plots the output SINR versus input SNR
of several tested beamformers. It can be seen that both our proposed method and the
IPNCM-SPE beamformer are close to the optimal solution at SNR > 10 dB. Moreover, they
have superior performance over the remaining beamformers when −10 dB < SNR < 50 dB.
The proposed method and these beamformers based on interference plus noise covariance
matrix reconstruction generally outperform the Shrinkage and Eigenspace beamformers
at high SNR due to the fact that the interference covariance matrix of the two techniques
still contains the desired signal, which can severely attenuate the useful signal output
power at high SNR, leading to a decrease in SINR. The curve of output SINR chinging with
the number of input snapshots is exhibited in Figure 10b. It is evident that the proposed
beamformer basically attain the optimal value and converge substantially faster than the
other approaches under low and high snapshot numbers.
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Figure 10. Output SINR in the case of look direction and range error versus (a) input SNR,
JNR = 30 dB, K = 50. (b) the number of snapshots, SNR = 30 dB, JNR = 30 dB.

4.4.3. Mismatch Due to Array Geometry Error

This example is executed in the scenario of SV mismatch owing to array geometry
error, where the displacement of each sensor is adjusted far from its theoretical position
to obey a uniform distribution within the interval [−0.05, 0.05] measured in wavelength.
Figure 11a illustrates the variation of the output SINR with respect to input SNR. The
output SINR of the proposed beamformer, IPNCM-SPE beamformer and IPNCM-SPSS
beamformer, is relatively close to and somewhat superior than that of IPNCM-linear
beamformer, beamformer in [36] and IPNCM-MEPS beamformer when SNR > −10 dB.
Over a wide range of input SNRs, the Shrinkage beamformer and Eigenspace beamformer
exhibit significantly lower output SINRs than these IPNCM-based beamformers. Figure 11b
exemplifies the output SINR versus the number of snapshots. We can observe that the
snapshot number has no perceptible influence on the IPNCM-based beamformer under the
array geometry error condition, and the proposed beamformer typically outperforms the
remaining beamformers, whereas the Shrinkage beamformer and Eigenspace beamformer
have the worst convergence.
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Figure 11. Output SINR in the case of array geometry error versus (a) input SNR, JNR = 30 dB, K = 50.
(b) the number of snapshots, SNR = 30 dB, JNR = 30 dB.
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4.4.4. Mismatch Due to Channel Gain and Phase Error

This example is conducted in the scenario where channel random gain and phase
error affect output SINR. Assume that the gain and phase error of each sensor are drawn
from random generators N(1, 0.12) and N(0, (2◦)2), respectively. The output SINR versus
input SNR of tested beamformers is evaluated in Figure 12a. Clearly, the curves of the
proposed beamformer, IPNCM-SPE beamformer, IPNCM-SPSS beamformer and IPNCM-
linear beamformer are adjacent and preferable than the method in [36]. It can be deduced
that the beamformer in [36] has a significant drawback in coping with channel gain and
phase error when SNR < 20 dB. Figure 12b demonstrates the output SINR of the tested
algorithm versus the number of snapshots. It is straightforward to see that the proposed
method, IPNCM-SPE beamformer and IPNCM-SPSS beamformer have the most remarkable
properties. Nevertheless, the output SINR of all beamformers is far below the optimal value.
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Figure 12. Output SINR in the case of gain and phase error versus (a) input SNR, JNR = 30 dB, K = 50.
(b) the number of snapshots, SNR = 30 dB, JNR = 30 dB.

4.4.5. Mismatch Due to Incoherent Local Scattering

In this example, the effect of incoherent local scattering on output SINR is considered.
Assume that the desired signal has a time-varying spatial signature that differ from snapshot
to snapshot, and its steering vector is modeled as

a(k) = s0(k)a(rs, θs) +
4

∑
p=1

sp(k)a(rp, θp) (47)

where a(rs, θs) indicates the direct path of the real desired signal location (rs, θs), whereas
a(rp, θp), p = 1, 2, 3, 4 stands for the SV of the incoherent scattering paths. sp(k)(p =
0, 1, 2, 3, 4) are i.i.d. random variable obeying a zero-mean complex Gaussian distribution
drawn from the random generator N(0, 12). The range rp(p = 1, 2, 3, 4) and the angle
θp(p = 1, 2, 3, 4) are independently drawn in each trial from the Gaussian random gen-
erators N(2 km, (2 km)2) and N(2◦, (2◦)2), respectively. Note that rp and θp vary from
trial to trial while remaining fixed over snapshots. However, sp(k) holds changing both
trial-to-trial and snapshot-to-snapshot. (47) corresponds to the case of incoherent local
scattering [45], where the signal covariance matrix is no longer a rank-one matrix and (16)
should be written in a more general form as follows:

SINR =
wHRsw

wHRj+nw
(48)
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The optimal beamformer weight vector w after maximizing (48) can be obtained from
the principal eigenvector of R−1

j+nRs [46]. Figure 13a,b depict the output SINR of the tested
beamformers versus the input SNR and versus the number of snapshots, respectively. It
can be deduced that the proposed beamformer provides a more satisfactory performance
in a large SNR interval as well as in the case of small samples, and its output SINR is higher
than that of the remaining beamformers, which reveals that the proposed method has
extremely robustness for the incoherent local scattering problem of the signal. Furthermore,
the IPNCM-linear beamformer, IPNCM-SPSS beamformer and IPNCM-MEPS beamformer
perform comparably and significantly worse than the other IPNCM-based beamformers,
owing to the fact that they reconstruct the IPNCM in such a way that the integration interval
of the interference is the entire remaining range that does not comprise the desired target
domain, which increases redundant information resulting in a performance degradation.
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Figure 13. Output SINR in the case of incoherent local scattering versus (a) input SNR, JNR = 30 dB,
K = 50. (b) the number of snapshots, SNR = 30 dB, JNR = 30 dB.

4.4.6. Mismatch Due to Coherent Local Scattering

In this example, the effect of the desired target SV mismatch due to coherent local
scattering on the output SINR is explored. Assume that the real desired target SV is
comprised of five coherent signal paths as

a(k) = a(rs, θs) +
4

∑
p=1

ejφp a(rp, θp) (49)

where a(rs, θs) represents the direct path of the real desired signal location (rs, θs), whereas
a(rp, θp), p = 1, 2, 3, 4 corresponds to the SV of the coherent scattering paths. The range
rp(p = 1, 2, 3, 4) and the angle θp(p = 1, 2, 3, 4) are independently and uniformly drawn
from the interval [24 km, 36 km] and [−4◦, 8◦] in each trial, respectively. ejφp is indepen-
dently uniformly distributed in the interval [0, 2π] in each trial. Note that rp, θp and ejφp

vary from trial to trial while remaining fixed over snapshots. Figure 14a exhibits the output
SINR versus input SNR. It can be clearly seen that the proposed algorithm has the optimal
output SINR compared to the rest of the tested algorithms when the SNR is in the interval,
which indicates that the proposed method can effectively cope with the model mismatch
under coherent local scattering. The output SINR versus the number of snapshots is plotted
in Figure 14b. It is clear that the SINR obtained by the proposed method is closer to the
best SINR at different numbers of snapshots and has the fastest convergence rate.
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Figure 14. Output SINR in the case of coherent local scattering versus (a) input SNR, JNR = 30 dB,
K = 50. (b) the number of snapshots, SNR = 30 dB, JNR = 30 dB.

4.4.7. Mismatch Due to SV Random Error

In this example, the effect of SV random error on output SINR is investigated. Assume
the real desired target and jamming SVs are composed of the corresponding presumed SVs
superimposed with a random error vector, modeled as follows

al = ã + el , l = 0, 1, 2, · · · L (50)

where el indicates the random error vector, which can be written as

el =
χl√
MN

[
ejϕl

0 , ejϕl
1 , · · · , ejϕl

MN−1

]T
(51)

where χl represents the Euclidean norm of el and is uniformly distributed in the interval
[0,6]. ϕl

i , i = 0, 1, · · · , MN − 1 signifies the phase of the random vector error, which obeys a
uniform distribution in the interval [0, 2π]. The SV random error model established in (50)
can be interpreted as a result of numerous error factors including look direction error, array
calibration error and so on. The relationship between the output SINR and input SNR of the
tested beamformers is described in Figure 15a. When−10 dB < SNR < 50 dB, the proposed
method has the highest output SINR among the IPNCM-based beamformers, and also
outperforms the Shrinkage beamformer and Eigenspace beamformer if SNR > 20 dB. This
is because at high SINR, the desired signal in the training sample has a significant influence
on the sample covariance matrix, whereas the propose method and other the IPNCM-
based beamformers construct the IPNCM by integrating the region where the jamming
domain is situated, which removes the effect of the desired signal to a degree, resulting
in excellent performance under high SNR conditions. When SNR < 20 dB, the Shrinkage
beamformer and Eigenspace beamformer outperform the IPNCM-based beamformers
because the former two employ the enhanced covariance matrix instead of the sample
covariance matrix, which guarantees the robustness against SV random error. However,
these IPNCM-based beamformers presume that the antenna array has no calibration errors
(for example, the channel gain and phase error, and array geometric error). As previously
stated, the SV random error contains numerous error factors, including the array calibration
error, which causes the IPNCM-based beamformers cannot handle the SV random error
adequately under low SNR. These analyses are also consistent with the simulation results
for array geometry error, gain and phase error illustrated in Figures 11 and 12.
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Figure 15. Output SINR in the case of SV random error versus (a) input SNR, JNR = 30 dB, K = 50.
(b) the number of snapshots, SNR = 30 dB, JNR = 30 dB.

Figure 15b depicts the output SINR versus the number of snapshots of the tested
beamformers. As can be demonstrated, the proposed method has a faster convergence rate
and a higher output SINR than other beamformers.

5. Conclusions

In this paper, a novel RAB algorithm based on the desired target SV estimation and
IPNCM reconstruction is introduced to improve the performance of FDA-MIMO radars in
suppressing mainbeam deceptive jamming. In this approach, we utilize a modified Capon
power spectrum with residual noise eliminated to estimate the desired target SV, and a
new method is devised to construct jamming covariance matrix based on jamming SV and
power estimation. In terms of preventing mainbeam deceptive jamming and coping with
scenarios when the SV is mismatched and the desired signal contaminates the training
samples, the proposed beamformer is more effective than several existing RAB technologies.
Moreover, it simply requires a priori knowledge of the range-angle domain in which the
desired target and jamming may exist. Simulation results have demonstrated that the
proposed RAB approache outperforms some existing RAB methods in instances of look
direction and range error, channel gain and phase error, array geometry error, incoherent
local scattering, coherent local scattering and SV random error.
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