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Abstract: Machine Learning (ML) methods have become state of the art in radar signal processing,
particularly for classification tasks (e.g., of different human activities). Radar classification can be
tedious to implement, though, due to the limited size and diversity of the source dataset, i.e., the data
measured once for initial training of the Machine Learning algorithms. In this work, we introduce
the algorithm Radar Activity Classification with Perceptual Image Transformation (RACPIT), which
increases the accuracy of human activity classification while lowering the dependency on limited
source data. In doing so, we focus on the augmentation of the dataset by synthetic data. We use a
human radar reflection model based on the captured motion of the test subjects performing activities
in the source dataset, which we recorded with a video camera. As the synthetic data generated by this
model still deviates too much from the original radar data, we implement an image transformation
network to bring real data close to their synthetic counterpart. We leverage these artificially generated
data to train a Convolutional Neural Network for activity classification. We found that by using our
approach, the classification accuracy could be increased by up to 20%, without the need of collecting
more real data.

Keywords: radar; machine learning; deep learning; human activity classification; image transforma-
tion; domain shift

1. Introduction
1.1. Motivation

The fast advances in Machine Learning (ML) research help to solve more and more
important problems. Lately, sophisticated ML methods found their way into radar signal
processing and analysis [1–3]. However, generating high-quality datasets that adequately
represent reality to its full extent is still highly demanding. Methods like domain adaptation,
transfer learning and Generative Adversarial Networks (GANs) assist the improvement of
classification or regression tasks from incomplete datasets [4]. In this paper, we focus on
human activity classification with radar due to the research interest that it has currently
awakened [5–8], for which we count on the help of millimeter-wave radar sensors operating
at 60 GHz. Problems with datasets in this context can originate from several reasons:

1. Incomplete dataset, meaning that a limited number of subjects executed the activities.
2. Insufficient measurement time, meaning that just a short time frame of the activity for

each person is captured for the dataset.
3. Different radar sensor settings or parameters, e.g., bandwidth, measurement time,

repetition time, etc.
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4. Inconsistent measurement times, meaning the same person performing a specific
activity task executes the activity differently at different times, e.g., after a coffee break
or at a different distance to the sensor, etc.

From these given problem examples, 1 and 2 can only be solved adequately by gather-
ing more data of different people for a longer time frame. Problems 3 and 4 are promising
cases to be investigated though, as they lend themselves to be solved by ML methods. Our
following evaluation showed that the same data being measured with equal radar sensors
but different settings (example 3) did not lead to a large decline in classification accuracy [9].
Thus, in this paper, we focus on problem 4.

In the dataset originating from our measurement campaign (outlined in [9]), the data
also showed a statistical discrepancy for different measurement time intervals (different
subjects, disparate activity execution, etc.). Our idea to tackle this issue is to investigate
whether we can utilize synthetic data to enhance our dataset. The proposed method uses a
radar reflection model of the recorded subject that is based on a human motion model (also
referred to as kinematic model) extracted from stereo video camera data. This was possible
through the simultaneous recording of the activities with radar sensors and such cameras.
Thus, this motion model provides the information to generate radar data from moving
humans outlined by Chen [10]. Using this common model, we obtain synthetic radar data
to augment our dataset. Furthermore, this approach offers the chance to augment the real
radar data with synthetic data originating from human motion data created somewhere
else and/or in future measurements. This makes the radar model universally applicable.

In this paper, we introduce an approach that we name Radar Activity Classification
with Perceptual Image Transformation (RACPIT), proceeding in the following way:

• We first show that data from a source time and a target time interval in our dataset
differ significantly.

• As a baseline, we train a Convolutional Neural Network (CNN) with only real data
from one source time interval and test the trained CNN with data from a target time
interval.

• We demonstrate the approach of perceptual loss with Image Transformation Net-
works [11] to show that we can increase classification accuracy by only using synthetic
radar data from the target time (generated by taking the human motion data from the
target time and using it as input for the human radar reflection model from Chen [10]).

• We propose improvements of this method for future research.

1.2. Related Work

Among ML algorithms, deep learning has gained popularity over the years as a
technique to classify human activities using radar features [5,6,9,12–14]. High-quality
public radar data is still hardly available, however, despite the great efforts that exist in
this regard [15]. Yeo et al. [16] and Zhang et al. [17] have gathered remarkable datasets
for tangible interaction and road object detection, respectively; in both cases, they have
opted for Frequency-Modulated Continuous-Wave (FMCW) radar to retrieve information
about the targets’ range, velocity, or angle. In the area of human activity classification,
Sevgi Z. Gurbuz et al. [14] have collected a comprehensive dataset that has been acquired
with FMCW and Ultra-wideband (UWB) radar sensors for different frequency bands.
Nevertheless, it remains unclear whether their FMCW data allows range detection.

Due to this limitation in data availability, some authors resort to simulated data to
train their deep-learning algorithms [7,8]. The core of the problem is then shifted to the
choice of a suitable model to simulate human motion; this can be either analytically tailored
to specific movements [18] or rely on MOtion CAPture (MOCAP) data [19].

Regarding the different methods to bridge the discrepancies between real and simu-
lated radar data, visual domain adaptation techniques constitute a sensible choice [7,8].
In this work, however, we focus on ML-aided image-to-image translation. Among the
different approaches of image-to-image translation in the Computer Vision (CV) commu-
nity, GANs remains one of the most popular ones [20,21]. Originally conceived for style
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transfer, perceptual-loss approaches have emerged in recent years as an alternative strategy
to tackle image-to-image translation, especially in scenarios such as that of super-resolution
images [11]. Here the image translation focuses on the upsampling of a low-quality picture
into a bigger, high-definition version of it.

2. Radar Sensor and Dataset

We use the dataset from [9], which consists of the following five human activities:

(a) Standing in front of the sensor.
(b) Waving with the hand at the sensor.
(c) Walking back and forth to the sensor.
(d) Boxing while standing still.
(e) Boxing while walking towards the sensor.

In other words, the considered activities belong to a set A with |A| = 5. For each
activity, data were acquired simultaneously with four FMCW radar sensors in a series of
non-contiguous recordings. The duration of a single recording ranges from 30 s to 2 min
and the recorded data per activity adds up to roughly 10 min, with an overall number
of recordings per sensor ofM = 69. In this recording environment that can be seen in
Figure 1, two male adults took turns to perform the activities individually.

Sensors
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e
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Sensor boardE-PlaneH
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Figure 1. Experimental setup. (a) Overview of the measuring room. (b) Detail of the BGT60TR13C
60 GHz radar system.

All sensors are based on Infineon’s BGT60TR13C chipset, a 60 GHz FMCW radar
system (c.f. Figure 1b). Each sensor was previously configured individually with one of the
four different settings (I–IV) listed in Table 1.

Table 1. FMCW settings.

Configuration Name I II III IV

Chirps per frame nc 64 64 64 128
Samples per chirp ns 256 256 256 256
Chirp to chirp time [µs] 250 250 250 250
Bandwidth [GHz] 2 4 4 4
Frame period [ms] 50 32 50 50
Range resolution [cm] 7.5 3.8 3.8 3.8
Max. range [m] 9.6 4.8 4.8 4.8
Max. speed [m/s] 5.0 5.0 5.0 5.0
Speed resolution [m/s] 0.15 0.15 0.15 0.08

Since each activity was recorded for around 10 min, we collected up to 50 min of data
per configuration. These 50 min translate to around 60,000 or 93,000 frames depending
whether the configuration’s frame period is 50 ms or 32 ms, respectively. We express the
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relation between the total number of frames per configuration, L, with the number of
recordings per configuration,M, through the following expression:

L = l1 + l2 + · · ·+ lM , (1)

where li for i ∈ {1, . . . ,M} equals the number of frames for the i-th recording.
Preliminary data exploration has shown statistical and qualitative differences between

recordings that lead to poor generalization across them. In order to explore this phe-
nomenon, we split our recordings into a source domain S of length LS frames and a target
domain T of length LT frames. We do so by assigning the first m recordings to S and the
lastM−m recordings to T . The splitting point m is chosen so that:

LS = l1 + · · ·+ lm ' LT = lm+1 + · · ·+ lM ' L/2 . (2)

The FMCW sensors emit a train of nc linear frequency-modulated electromagnetic
pulses (so-called chirps), as outlined in Figure 2. The reflected and returned signal is then
mixed down with the emitted one to an Intermediate Frequency (IF) and sampled with ns
samples per chirp. In that way, we obtain the raw data, which we further rearrange in an
nc × ns matrix called frame. On a frame, we refer to the horizontal direction ranging from 1
to ns as the fast time in contrast to the vertical direction from 1 to nc, which we refer to as
slow time. Frames are acquired periodically at a fixed frame rate and pre-processed with the
following steps, which revolve around the Fast Fourier Transform (FFT) algorithm:

1. Moving Target Indication (MTI): In order to filter out the clutter from static objects, we
calculate the mean across the slow time to obtain an ns-long vector that we subtract
from every column of the frame [22].

2. Range FFT: We perform an FFT across the fast time for every chirp, obtaining thus nc
range profiles [22]. Prior to that, we apply a Hanning window [23] and zero-padding,
so that the range profiles have a length of 128 regardless of the value of ns.

3. Doppler FFT: We also perform an FFT across the slow time, turning the range profiles
into a Range-Doppler Map (RDM) that conveys information on the returned power
across range and Doppler, i.e., distance and velocity (c.f. Figure 3c). Here we use a
Chebyshev window with 60 dB sidelobe attenuation [23] and the same zero-padding
strategy as for the range FFT. As a result, the dimensions of the RDMs are 128× 128
for all configurations.

4. Spectrogram extraction: Similar to [12], we stack the pre-processed frames into an
RDM sequence and we sum this over the Doppler and range axes to get range and
Doppler spectrograms, respectively (c.f. Figure 4). Here the magnitude of both
spectrograms is converted to decibels.

5. Slicing and normalization: As the last step, we slice each long recording into 64-frame
long spectrograms with an overlap such that the last 56 frames of one spectrogram
coincide with the first 56 frames of the next sliced spectrogram. Furthermore, we shift
the decibel values of each sliced spectrogram so that the maximum value equals 0 dB
and we subsequently clip out all values below −40 dB.

As a result of this preprocessing and the domain split described in Equation (2),
datasets comprise between 3000 and 6000 data points, depending on the configuration. A
single data point corresponds to a tuple containing one range spectrogram and one Doppler
spectrogram; the spectrogram size in either case is M× N for M = 64 and N = 128.

Chirp to chirp time

Frame Period

Frame 1 Frame 2

time

Fr
eq

ue
nc

y

1 nc2 1 2 ns
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nd

w
id

th

Figure 2. FMCW modulation and sampling pattern.
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Figure 3. Radar data synthesis (a) CV-generated skeleton keypoints. (b) Synthetic radar data. (c) Real
radar data. (d) Color bar.
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Figure 4. Exemplary range and Doppler spectrograms showing human activities (a–e) for configu-
ration II. (a) Standing. (b) Waving. (c) Walking. (d) Boxing. (e) Boxing and walking. (f) Color bar
showing amplitude levels in dB.

Data Synthesis

For the measuring campaign, we have also recorded video data from four different
cameras. Moreover, we have extracted the pose of the subject from the video data using
Detectron2, a CV library provided by Meta Platforms Inc. (formerly Facebook Inc.) [24].
The extracted pose is given by a skeleton composed of 17 different keypoints, each of them
labeled with x, y, and z coordinates.

We use these skeleton keypoints (c.f. Figure 3a) to create synthetic radar data using
the analytical FMCW radar model from Chen [10], which in turn is based on a human
model proposed by Boulic et al. [25]. As depicted in Figure 5, This human model represents
subjects with K = 14 ellipsoids, each of which spans over two keypoints and represents a
human limb or body part (head, torso, forearm, etc.). For each ellipsoid k we calculate its
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distance dk,t to the radar sensor and its corresponding Radar Cross Section (RCS) Ak,t at
any given point in time t, which we use to obtain the returned and mixed-down signal for
a single chirp as

s(t) =
K

∑
k=1

√
Ak,t

Lk,t
sin (2π fk,tt + φk,t), (3)

with a frequency fk,t = 2dk,tB/Tcc, an initial phase φk,t = 4π fcdk,t/c and a free-space path
loss Lk,t = (4πdk,t fc/c)2 for given bandwidth B, chirp time Tc and lower frequency fc. To
determine Ak,t we use the same model as in [10].

Radar

t0 = 0.0 s
t1 = 2.72 s

t2 = 5.25 s

dk2 ,t1

k1
(head)
k2
(torso)

dk1 ,t2

Figure 5. Human posture with respect to the radar at different times, as modeled by Boulic et al. [25].

We apply this procedure throughout all FMCW chirps, thus producing a synthetic IF
signal that ideally corresponds to the sampled signal from the radar sensor. We then process
the synthetic signal in the same way as the real one to extract its RDMs (c.f. Figure 3b),
range, and Doppler spectrograms respectively.

3. Method

As explained in Section 2, our pre-processed real data x comprises a tuple of range
and Doppler spectrograms, xR and xD, i.e.,:

x =
(

xR, xD
)

, xR, xD ∈ RM×N . (4)

The same holds for our synthetic data y, so that y =
(
yR, yD)with identical dimensions.

In order to leverage both range and Doppler data for classification, we make use of the multi-
branch CNN from [9], whose implementation details are presented in Figure 6. This CNN
passes xR and xD through the convolutional branches and feeds the result of both branches
into its fully connected layers. We write φR : RM×N 7→ RP and φD : RM×N 7→ RP

to indicate the transformations from spectrogram to features that the range and Doppler
convolutional branches respectively apply; the resulting range and Doppler feature vectors
have a length of P = 2304. Likewise, we use f : R2P 7→ A to denote the transformation
from range and Doppler features to the predicted activity ã through the fully connected
layers. In summary, the relationship between xR, xD and ã is given by

ã = f
(

φR
(

xR
)

, φD
(

xD
))

, ã ∈ A . (5)

The architecture of our proposed Radar Activity Classification with Perceptual Image
Transformation (RACPIT) is completed by appending a pair of Image Transformation
Networks (ITNs) to the input of the CNN, as depicted in Figure 7. The ITNs transform
real data x into synthetic-like data ŷ =

(
ŷR, ŷD), where ŷR = ψR(xR), ŷD = ψD(xD) and

the functions ψR : RM×N 7→ RM×N and ψD : RM×N 7→ RM×N represent the image
transformations that the range and Doppler data undergo, respectively. For the ITNs we
use residual convolutional autoencoders ([26], Chapter 14) with the same architecture
details as [11].
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conv1: 32x7x7 , Pad=same
conv2: 64x5x5 , Pad=same
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Max pool: 3x3, stride=2x2

Doppler features, φD(xD)
fc4, fc5: output=16, L2=0.01, Dropout=0.1
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fc6: output=8, L2=0.01, Dropout=0.1
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Figure 6. CNN architecture details.
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Real Range
Spectrogram

Real Doppler
Spectrogram

Transformed
data Synthetic

data

xR

xD

ψR

ψD

ŷR
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Figure 7. Architecture of RACPIT.

Here, we first train the CNN using labeled synthetic data y from source and target
recordings. This is required since we apply perceptual loss for the training of ψR and
ψD [11]. Perceptual loss uses the pre-trained CNN to compare the high-level perceptual and
semantic features of the transformed data ŷ to the synthetic data y, which here serves as the
ground truth. Once the CNN is trained, we freeze all of its layers and use the convolutional
branches φR and φD to train the ITNs ψR and ψD with the following objective function:

`
φ
f eat =

1
2P

(∥∥∥φR
(

ŷR
)
− φR

(
yR
)∥∥∥2

2
+
∥∥∥φD

(
ŷD
)
− φD

(
yD
)∥∥∥2

2

)
. (6)

In that sense, instead of enforcing pixelwise resemblance, the ITNs try to generate
similar feature representations extracted by the perceptual network, e.g., the CNN [11].

Implementation and Training

RACPIT has been written on PyTorch [27] from Daniel Yang’s implementation of
perceptual loss. The code is publicly available at https://github.com/fraunhoferhhi/

https://github.com/fraunhoferhhi/racpit
https://github.com/fraunhoferhhi/racpit


Sensors 2022, 22, 1519 8 of 12

racpit (accessed on 14 February 2022). We have trained the full pipeline (CNN and ITNs)
independently for every configuration in Table 1 and we have repeated each training
experiment 5 times. The ITNs have been trained for 500 epochs; other than that we have
retained most of the hyperparameter values in [11], including a batch size of 4 and Adam
optimization with a learning rate of 1× 10−4. As their recommendation, we have kept
the total variation regularization with a strength of 1× 10−7. Prior to that, we have pre-
trained the CNN for 100 epochs with a batch size of 32, using early stopping and the same
optimization method and learning rate.

Besides the training of RACPIT, we have also trained just the CNN with real data as a
baseline. Likewise, these baseline experiments were repeated 5 times for every different
configuration in Table 1. In total, we have performed 40 training experiments, which we
have run as parallel tasks on an NVIDIA Tesla V100 SXM2 GPU with CUDA 11 and 4 GB
allocated per task. The training duration of RACPIT on this hardware adds up to about
10 h per experiment on average.

4. Results

Once trained, the ITNs have a clearly visible denoising effect (Figure 8b,e) on their
real inputs (Figure 8a,d). This is to be expected, since its target is the synthetic data that we
create according to the noiseless model in Equation (3) (Figure 8c,f).

We test the full pipeline on our target domain T . In order to assess the resulting
accuracy in a quantitative way, we compare it to a baseline consisting of the CNN in
Figure 6 trained only using real source data and tested only on the real target data. Figure 9
shows that RACPIT improves the accuracy for all configurations by 10% to 20%.
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Figure 8. Comparison of range (a–c) and Doppler (d–f) spectrograms for real (a,d), transformed
(b,e) and synthetic (c,f) data. The spectrograms display an instance of the activity item (e) in
Section 2 Boxing and walking.

https://github.com/fraunhoferhhi/racpit
https://github.com/fraunhoferhhi/racpit
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Figure 9. Experiment results. Each bar represents the median value out of five experiments, with the
error bars indicating the minimum and maximum observed value. Besides the accuracy for the
baseline and RACPIT, we also present the obtained accuracy when we directly feed synthetic data to
the baseline.

Despite this improvement, the accuracy does not reach the 90% figures of previous
works [9,12,13]. A reason for this can indeed be found in the denoising behavior of the ITNs,
which not only filter out background noise but also some micro-Doppler features, as it can
be seen in Figure 8. In any case, the results suggest that real to synthetic transformation
is an interesting strategy to explore with room for improvement. Besides the accuracy,
we have also computed the average F1 score [28] and average balanced accuracy [29] per
configuration in Tables 2 and 3, respectively. These metrics indeed confirm the performance
increment of RACPIT respect to the baseline.

Table 2. F1 score of the baseline and RACPIT for all different configurations.

Configuration I II III IV

Baseline 0.49 0.41 0.37 0.47
RACPIT 0.65 0.55 0.56 0.55

Table 3. Balanced accuracy of the baseline and RACPIT for all different configurations.

Configuration I II III IV

Baseline 0.53 0.44 0.40 0.48
RACPIT 0.67 0.57 0.57 0.58

Figure 9 also includes the results when synthetic data are fed to our baseline, which
we had trained with real data. The poor accuracy, which goes as low as 20%, provides a
quantitative confirmation of the dissimilarities between real and synthetic data and justifies
the use of ITNs to bridge those.

5. Conclusions

In this paper, we have focused on improvements of deep learning methods for human
activity classification on radar images. We have presented our own architecture, Radar
Activity Classification with Perceptual Image Transformation (RACPIT), to mitigate the
dependency of classification accuracy (and thus increase generalization) of Convolutional
Neural Networks (CNNs) on the dataset recorded for the training process. RACPIT tackles
this using Image Transformation Networks (ITNs) in combination with synthetic radar data,
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which have been generated from a radar model using human motion data. Five different
activities performed by two different test subjects have been recorded in an office-like
lab. The measurements have been acquired by four Frequency-Modulated Continuous-
Wave (FMCW) radar sensors located at the same position, operating at around 60 GHz
with different configuration settings like bandwidth, chirp time, etc. For each sensor, about
50 min of radar and video footage recordings have been taken.

We have observed that the test subjects performed the activities quite differently across
recordings, considering that these were interleaved with short pauses. Hence, the data
deviated largely depending on the recording time. Accordingly, the resulting radar data
and the pre-processed radar images diverge also largely from each other. The recordings
were thus split into a source and a target dataset with different recording times. A large
decrease in classification accuracy was observed for the CNN that had been trained with
the source dataset upon testing it with the target dataset.

We have tried to solve this with RACPIT in the following manner. First, we have
moved on from real to synthetic data for the training of our CNN to also incorporate
the target recordings into it. Since we use a lightweight radar model for data synthesis,
synthetic data present a large domain shift with respect to real data, which has been
confirmed in our experiments. This has inspired us to include a next step where we have
investigated the impact of ITNs on the real-synthetic domain shift. As such, we have used
real and synthetic data from the source domain to train two ITNs that take real data on the
input and transform them so that they resemble synthetic data. By including these synthetic
data from the target domain in the training, we have found an increase in classification
accuracy by up to 20%. Still, the classification accuracy performance remains about 15%
lower than if the CNN had been trained using both source and target datasets with real
radar data.

In future research, a further in-depth investigation could show if more advanced
radar models can further increase classification accuracy. For this, Shooting and Bouncing
Rays (SBR) or even full 3D solver techniques could be used to generate more sophisticated
radar data from human motion models. These kinematic models could be improved by
using methods like dense pose algorithms [30] to generate a fine mesh of the moving
human body. Finally, RACPIT should be tested and verified further by using other datasets
and activities, thus human motion models that were generated purely from camera data
taken in another environment, e.g., another lab with different test subjects.

Supplementary Materials: The supporting information can be downloaded at: https://github.com/
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CV Computer Vision
GAN Generative Adversarial Network
IF Intermediate Frequency
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FFT Fast Fourier Transform
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