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Abstract: In this paper, we proposed a Regular Tetrahedral Array (RTA) to cope with various types 
of sensors expected in Ultra-Wideband (UWB) localization requiring all-directional detection capa-
bility and high accuracy, such as indoor Internet-of-Things (IoT) devices at diverse locations, UAVs 
performing aerial navigation, collision avoidance and takeoff/landing guidance. The RTA is de-
ployed with four synchronized Ultra-Wideband (UWB) transceivers on its vertexes and configured 
with arbitrary aperture. An all-directional DOA estimation algorithm using combined TDoA and 
wrapped PDoA was conducted. The 3D array RTA was decomposed into four planar subarrays 
solved as phased Uniform Circular Array (UCA) respectively. A new cost function based on geo-
metric identical and variable neighborhood search strategy using TDoA information was proposed 
for ambiguity resolution. The results of simulation and numerical experiments demonstrated excel-
lent performance of the proposed RTA and corresponding algorithm. 
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1. Introduction 
All-directional detection for a single Ultra-wideband (UWB) source in an isotropic 

way become increasingly important. It is required in many UWB applications such as sin-
gle anchor UWB localization system [1], UAVs collision avoidance [2–4], takeoff/ landing 
guidance [5,6], Internet-of-Things (IoT) devices, and vehicular-to-everything (V2X) com-
munication [7]. Current antenna arrays applied in UWB localization, such as Uniform Cir-
cular Array (UCA), Uniform Linear Array (ULA) [8,9], have restrictions on their detection 
angle range in both azimuth and elevation. 

Tiemann et al. [8] tested a UWB location system based on three synchronized UWB 
transceivers mounted on the helmet for supporting first responders through 3D location 
of fellows and victims in a low visibility environment. This antenna array consists of 2 
ULAs perpendicular to each other, for measuring the Angle of Arrival (AoA) in the x-axis 
and y-axis respectively, using PDoA [10] of antennas. Similarly, Zhao et al. [9], tested a 
low-power, scalable and cm-accurate UWB location system, based on eight synchronized 
UWB transceivers mounted on a single PCB, four antennas in horizontal and other four 
antennas in vertical. The common imperfections of these two works are angle range limi-
tation and fixed antenna spacing less than half-wavelength. The tight antenna spacing is 
designed for special frequencies that limit the flexibility of the antenna array. Further-
more, working at the centimeter band, mutual coupling between antennas disturbs re-
ceived signals and degrades the DoA finding performance severely [11]. 

Citation: Luo, J.; Zhang, J.; Yang, H.; 

Guan, Y. All-Directional DOA  

Estimation for Ultra-Wideband  

Regular Tetrahedral Array Using 

Wrapped PDoA. Sensors 2022, 22, 

1532. https://doi.org/10.3390/ 

s22041532 

Academic Editor: Christian Vollaire 

Received: 11 January 2022 

Accepted: 10 February 2022 

Published: 16 February 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Sensors 2022, 22, 1532 2 of 14 
 

 

UCA is extensively utilized in the context of 2D direction finding due to its attractive 
advantages, including omnidirectional azimuth coverage, almost unchanged directional 
pattern, and about 90° elevation angle coverage [12–14]. The drawback of UCA is the sign 
ambiguity of elevation. To expand the range of signal detection overall azimuth and ele-
vation angles, an array in spherical shape can be used for uniform and stable beamforming 
in all directions. By adding one more transceiver to the UCA, a Regular Tetrahedral Array 
(RTA) can be an available candidate. The Cramer-Rao Bound for direction finding of a 
tetrahedral array of isotropic sensors was studied in [15]. Using TDoA, Acres et al. [4] 
conducted a method of determining relative bearing and elevation for RTA. Based on eu-
clidean distance and tetrahedron, Phalak et al. [16] presented a decentralized relative lo-
calization for Multi-Robot systems. However, neither TDoA nor distance measurement 
provides much lower localization accuracy than PDoA. 

Expanding antenna spacing to larger than half-wavelength can not only reduce an-
tenna coupling but also augment array aperture and improve AoA estimation accuracy 
[17]. However, the actual PDoA of signals cannot be obtained directly due to the phase 
wrapping problem [18,19], which can be solved by auxiliary measurements [20,21]. Ge et 
al. [1] develop a 3D single-anchor localization system based on UWB signals using an ar-
bitrary geometry array. They also conducted an unwrapping PDoA method based on 
Fisher information matrix demanding a lot of computing power, even GPU in parallel 
computing. Xin et al. [18] reported an ambiguity resolution algorithm for passive 2-D 
source localization with a UCA. Their unwrapping PDoA is based on the estimation of 
the detected curve parameters using randomized Hough transform. The randomized 
Hough transform is usually used for curve detection in image processing, which also need 
extensive computing resource. 

In this paper, we proposed a regular tetrahedral array (RTA), which deployed four 
synchronized Ultra-Wideband (UWB) transceivers on its vertexes and configured aper-
ture larger than half-wavelength. Each UWB transceiver can identify the first path and 
provide an estimate of TDoA and PDoA at the same time. The RTA can be solved by de-
composing this 3D array into four planar subarrays treated as phased UCA inde-
pendently. Benefiting from the spatial complementarity of these four subarrays, a RTA 
not only get the capability of detecting signal source in all direction but also get redun-
dancy when antenna failure or shield [22]. To cope with wrapped PDoA caused by larger 
antenna spacing, we proposed an ambiguity resolution algorithm based on geometric 
identical, which consists of two parts: one is a new cost function based on identical source 
direction vectors (SDV) that estimated by four subarrays and another is ambiguity integer 
search strategy. To improve the robustness of the algorithm, we designed a voting mech-
anism for filtering noised information to get accurate SDV results. The proposed ambigu-
ity resolution algorithm improve estimation accuracy and reduce computing resource 
consumption. Meanwhile, the ambiguity resolution algorithm allows more flexibility for 
the selection of an array radius and has further applications for unambiguous direction 
finding in a very wide frequency band. 

The remainder of this paper is organized as follows: Section 2 is a coarse SDV esti-
mation only using TDoA information. This coarse estimate is utilized to solve the sign 
ambiguity of elevation when using phased UCA. Section 3 conducted SDV using wrapped 
PDoA and TDoA. In this section, we decomposed the RTA into four UCA subarrays. Uti-
lizing the identical of SDV estimated by each subarray, the ambiguity resolution algorithm 
was conducted. The performance of the proposed algorithm was evaluated in Section 4. 
A conclusion was made at the end of this paper in Section 5. 

2. Coarse Estimate for RTA Using TDOA 

Taken antenna A as a reference, note TDoA measurements ( ), , T
BA CA DAτ τ τt = , and 

PDoA measurements ( ), , T
BA CA DAφ φ φf= . 
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Figure 1 illustrates the geometrical shape of a RTA. r is the radial distance from the 
center of the triangular base to the antenna B, C, and D. h is the vertical height of the 
antenna A above the center of the triangular base. The coordinate system Oxyz  is located 
at the centroid of the triangle BCDΔ , which is right-handed with z positive upwards and 
x positive toward antenna B. In a RTA 2h r= . 

 
Figure 1. The geometrical shape of a regular tetrahedral array (RTA). 

Assuming there is a single signal source in the far field, S is the wavefront plane of 
the signal. When wavefront plane S passes through antenna A, S can be described as 

1 2 3 0x y z h+ + − =( )v v v , the unit normal vector of the plane S is 

31 2
2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 3

T

TDoA

 
 
 + + + + + + 

, , vv v

v v v v v v v v v
n= v = , meanwhile, TDoAv  is a 

source direction vector (SDV). In this paper, we present the direction of arrival using unit 
vector SDV for easier calculation and no gimbal lock.  

The distance between antenna B, C, D, and plane S are: 

1 3

2 2 2
1 2 3

2 2 4
3 3

BA BA

r r
d cτ

−
= =

+ +

v v

v v v , 

(1)

1 2 3

2 2 2
1 2 3

2 6 4
3 3 3

CA CA

r r r
d cτ

− − −
= =

+ +

v v v

v v v , 

(2)

1 2 3

2 2 2
1 2 3

2 6 4
3 3 3

DA DA

r r r
d cτ

− + −
= =

+ +

v v v

v v v , 

(3)

where, c  is the propagation speed of the electromagnetic wave in the air. Rearrange 
Equations (1)–(3), we get equation: 

TDoA =A bv , (4)

where, 
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2 2 3 0 4 3

2 3 6 3 4 3

2 3 6 3 4 3

r r

r r r

r r r

 −
 

= − − − 
 
− −  

/ /
/ / /
/ / /

A , 
BA

CA

DA

c
c
c

τ
τ
τ

 
 =  
  

b . 

A  is invertible matrix, the solution of SDV can be obtained as follows: 

1
TDoA

−=v A b  (5)

Since TDoA measurements are always polluted by clock drift, unbalanced antenna 
delay, and ADC sampling error, therefore, TDoAv  suffer from noise and errors. We use it 
as a coarse estimate to solve the sign ambiguity of elevation when using phased UCA in 
Section 3 and standby results in the event of PDoA estimation failure. 

3. Combined TDoA and Wrapped PDoA for RTA  
UWB transceiver can measure carrier phase more precisely than time-of-flight, the 

typical error value is less than 3°, which corresponds to 0.06 cm at 3.9936 cf GHz= . PDoA 
measurements error is about 1600 times smaller than TDoA measurements error [1]. For 
higher accuracy, we need to solve RTA using PDoA. 

3.1. Wrapped PDoA for RTA 
3.1.1. Spatial Subarray Decompose of RTA 

A RTA consists of four regular triangular subarrays, which can be treated as phased 
UCAs for solving 2D-AoA problems independently. Figure 2 depicts the decomposition 
of a tetrahedral and the spatial relationship between UCA subarrays and RTA. 

 
Figure 2. Tetrahedral decomposition and spatial relationship. 

In Figure 2, , , ,BCD ABD ADC ACBO O O OΔ Δ Δ Δ  are centroid of triangle , , ,BCD ABD ADC ACBΔ Δ Δ Δ
respectively, or 1, 2, 3, 4Δ Δ Δ Δ for short. [ ]; , ,OC = O x y z  is the coordinate system in global 
and located at the original point O . 1 2 3[ ; , , ]CΔ

Δ=O O e e e  is the right-handed coordinate 
system located at the centroid of a triangle, 3e  is perpendicular to the triangle surface and 

1e is towards the antenna numbered as 1 in the subarray. The transform matrix from CΔO  
to OC  is [ ]1 2 3, ,O

OΔ
=R e e e . In each triangle, we can estimate an SDV. Theoretically, four 

estimated SDVs are all identical , 1 , 2 , 3 , 4PDoA PDoA PDoA PDoAΔ Δ Δ Δ= = =v v v v , although these four 
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subarrays are in different spatial positions. Moreover, these four subarrays share the same 
PDoA measurements and TDoA measurements, which give us a chance to unwrap PDoA 
ambiguity numerically. 

3.1.2. Solve Phased UCA Utilizing Fourier Analysis 
DoA estimation of a phased UCA is well developed in both theory and technique. To avoid eigenvalue calculation, the algorithm here we used to solve the DOA estimation prob-lem in the UCA subarray is based on the Fourier analysis of the phase around the circular aperture[13,14,23]. 
Consider a UCA with N identical elements illuminated by a single far-field source. 

Consider a circular aperture located at ( ), / 2,r π ϕ , in the spherical coordinate system of 

( ), ,r θ ϕ , as shown in Figure 3. ( )φ ϕ  is the continuous curve of actual phase difference 

( ),1iφ . The period of ( )φ ϕ  is 2π . The purple elliptic ,SE φ  is the projection of the aper-

ture circle OΔ  on the plane S. ( ) / 2φ ϕ λ π  is the distance between a point of aperture cir-
cle OΔ  and its projection point in elliptic ,SE φ . The intersection line of elliptic ,SE φ  and 
plane S is in blue. The normal vector of ,SE φ  is ,S PDoA Δ=n v . 

 
Figure 3. The visualization of actual phase difference ( ),1iφ . 

The phase of the electromagnetic field of an incident wave from ( ),θ ϕ  can be writ-
ten as 

( ) ( ) 0
2= sin cosi irπϕ θ ϕ ϕ
λ

Φ − + Φ
 

(6)

where the azimuth angle [0,2 )ϕ π∈  is measured counter-clockwise from the 1e -axis and 
the elevation angle [0, )θ π∈  is measured down from the 3e -axis and is the wavelength
λ . Antennas were located counter-clockwise around the circular, and numbered 1 to M

. Antenna azimuth position are 
( )1

, 1,2, ,i

i
i M

M
ϕ

π −
==  , where i  is antenna number in 

the subarray, M  is the total antenna number in the subarray, particularly, in a regular 
triangle subarray 3M = . 0Φ  is a constant and represents the initial phase of the incident 
wave, which can be removed by the phase difference. 

Take antenna 1 as a reference, the actual phase difference between antenna i  and 1 
can be described as the following equation: 
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( ) ( ) ( )
( ) ( )

1,1

1 14         sin sin sin

ii

i ir
M M

φ ϕ ϕ

π ππ θ ϕ
λ

= Φ − Φ

− −   
= −   

   

, (7)

When / 2r λ>  the phase range may exceed 2π , which leads to an ambiguity in de-
termining the direction of the incident wave plane S. Therefore, the actual phase difference 

( ),1iφ  consists of two parts, namely, measured phase difference ( )0 ,1iφ  and ambiguity 
part ,12 iNπ , 

( ) ( )0 ,1,1 ,1 2 ii i Nφ φ π= + ,
 

(8)

where ( )0 ( ],1 ,iφ π π∈ − . ,1iN ∈  is ambiguity integers that we need solve. The first order Fourier series coefficient of ( ),1iφ  is 

( ) ( )
1

2 121 ,1 exp
M

i

i
i j

M M
ππ φ

=

− 
Ψ =  

 
 , (9)

According to dependence relationship, the elevation θ  and azimuth ϕ  are as fol-
lows: 

1
2sin 1

2 r
λθ
π

−  = Ψ 
 

, (10)

( )arg 1ϕ = Ψ , (11)

where, 1Ψ  denotes modulus of a complex number 1Ψ . ( )arg 1Ψ  is the angle of the 
complex number 1Ψ . 

Then we get the SDV in coordinate CΔO : 

[ ]cos sin , sin sin , cos TO
PDoA signϕ θ ϕ θ θΔ

Δ=v , (12)

where ( )3
T

TDoAsign sign eΔ = v  is the sign of elevation estimated in a triangle subarray, 
which is dependent on the angle between coarse estimation TDoAv  and 3e . 

Using coordinate transform equation: 

OO O
PDoA O PDoA

Δ

Δ
=v R v , (13)

Now we get a direction vector in a coordinate OC  estimated by a triangle subarray, 
without loss of generality, one can calculate SDV in any subarray easily. 

3.2. Ambiguity Resolution Algorithm 
It is well known that high AOA estimation accuracy can be obtained for large aper-

tures. However, when / 2r λ> , the phase range may exceed 2π , which leads to an am-
biguity in determining the direction of the incident wave. We continue to adopt the par-
ticular geometric properties of the RTA for ambiguity resolution. 
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3.2.1. Geometric Identical Cost Function 
We proposed a brand new cost function for ambiguity resolution based on the geo-

metric identical of subarrays’ SDVs. As Figure 2 shows, SDVs estimated by four different 
subarrays are identical. Without loss of generality, any two adjacent subarrays, say, 2Δ  
and 3Δ , they have common antennas A and D, and common reference antenna A. 

, 2
O

PDoA Δv  and , 3
O

PDoA Δv  are SDVs estimated in subarrays 2Δ  and 3Δ , respectively, using 
Equations (7)–(13). The cost function is written as: 

( )23 , 2 , 31
TO O

PDoA PDoAM Δ Δ= − v v , (14)

where the footnote of 23M  23 means subarray 2Δ  versus subarray 3Δ . 23M  is a scalar 
value, [ ]23 0, 2M ∈  describing error between , 2

O
PDoA Δv  and , 3

O
PDoA Δv . Distinguishing from 

current cost function based on Fourier inverse transform [14] or mapping tetrahedral vol-
ume [18], which estimating ambiguity integers firstly and then calculating DoA subse-
quently, unavoidable large rounding errors, our cost function is based on examining SDVs 
directly. From Equation (9), we know 23M  is a scalar filed with 6 independent variables. 
Given PDoA measurements ( ) ( ) ( )0 0 0, , , , ,B A C A D Aφ φ φ  as a priori knowledge. 23M  can 
be reduced as discrete three dimensions, that is ( )23 , ,BA CA DAM N N N . 

The ambiguity resolution problem transforms into an optimization problem on dis-
crete feasible set { }, ,BA CA DAN N N N= . The constraint of the aforementioned optimization 
problem can be extracted from Equations (9) and (10). The first order Fourier series coef-
ficient 1Ψ  is a complex function of { }, ,BA CA DAN N N N= , depending on geometric con-
straints [ )0 sin 1,    0,θ θ π≤ < ∈  we get, 

( )
221 ,BA CA
rN N π

λ
Ψ < , (15)

( )
221 ,DA CA
rN N π

λ
Ψ < , (16)

Given subarray radius 0.12r m=  and carrier frequency 3.9936 cf GHz= , the corre-
sponding feasible set is illustrated in Figure 4. The red point is target ambiguity integers 
and other points are feasible set with color indicating cost value. The points that disobeyed 
Equations (15) and (16) are hidden. 

 
Figure 4. The Feasible Set of the proposed cost function in 3D. The red point is target ambiguity 
integers and other points (circle with color in image) are feasible set with color indicating cost 
value. 
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In order to further study the geometric characteristic of cost function intuitively, the 
cost value is depicted in a meshed surface projected on ,CA DAN N  plane in Figure 5. Ac-
cording to geometric symmetry in the RTA, the geometric characteristic of cost value pro-
jected on ,BA DAN N  plane is similar to it on ,CA DAN N  plane. Therefore, only one map is de-
picted here. 

(a) (b) 

Figure 5. Visualization of cost value projected on ,CA DAN N  plane. (a) Meshed surface of cost value 
M, (b) Meshed surface of ( )10log M . The red point is cost value of target ambiguity integers. 

As shown in Figure 5a, the cost function is non-convex because it is discrete and mul-
tiple local extreme points [24]. Therefore, ambiguity resolution problem cannot be solved 
by the gradient descent method. To make the cost value of the target point and other local 
extreme points more obvious, Figure 5a was redrew by ( )10log M  in Figure 5b. The cost 
value at target points is in approximate 710−  orders. While, the cost value of other local 
extreme points are in 210−  orders. An error tolerance threshold 0ε >  can distinguish the 
target point from other local extreme points. 

3.2.2. Ambiguity Integer Search Strategy 
Because the cost function is non-convex and cannot search ambiguity integers by the 

gradient descent method, a good initial value and search strategy are key factors for search 
success and rapid goal. Assuming the noise of TDoA and PDoA measurements are 
AWGN with zero means. ( )0,τ τσn    and ( )0,φ φσn   , and the noises of each re-
ceiver are independent. TDoA information is ideal auxiliary measurements to solve the 
phase wrapping problem because rounding operation is an estimate of ambiguity inte-
gers. According to the probability distribution ( )0,τ τσn   , the probability of catching 
the goal is higher when the search area is closer to the initial value, Therefore, for the 
discrete search area, a small and tight neighborhood of initial value is more favorable than 
a full-range search area for a rapid goal. 

Initial Value 
Essentially, the bond between time difference and phase difference is the distance 

between antenna i and the wavefront plane S, that is 

( ),1 ,1
2i c iλτ φ
π

= − , (17)

where ,1iτ  is the time difference between antenna i and 1. ( ),1iφ  is the actual phase dif-
ference between antenna i and 1. Substitute Equation (8) in Equation (17), and rearrange, 
we get 
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( ),1 0
,1

,1
2

i
i

c i
N

τ φ
λ π

= − − , (18)

Due to ( )0 ( ],1 ,iφ π π∈ − , an estimate of ambiguity integer initial values are as follows: 

,1
,1

1ˆ ( )
2

i
i

c
N ceil

τ
λ

= − − , (19)

where, ( )ceil x  denotes the least integer greater than or equal to x . A set of reasonable 
initial values of ambiguity integers can be guessed from the TDoA measurements. 

( )ˆ / 1/ 2BA BAN ceil d λ= − − , ( )ˆ / 1/ 2CA CAN ceil d λ= − − , ( )ˆ / 1/ 2DA DAN ceil d λ= − − , 

( )( )ˆ / 1 / 2DB DA BAN ceil d d λ= − − − , ( )( )ˆ / 1 / 2CB CA BAN ceil d d λ= − − − . 

Variable Neighborhood Search 
Figure 6 illustrates the variable neighborhood search strategy in an arbitrary subar-

ray. According to geometric symmetry in the RTA, only one map is illustrated here. The 

curve ( )φ ϕ  in red is the actual phase difference curve. Black points at 2
3
π  and 4

3
π  are 

phase differences consist of ambiguity integer initial values estimated by TDoA measure-
ments. The curve ( )TDoAφ ϕ  in the black is the phase difference curve estimated by TDoA. 
Green points are 1-neighborhood search points, which are 1 step or 2π  away from initial 
values. The curve ( )Searchφ ϕ  in green is 1-neighborhood upper and lower search bound-
ary. The green arrows indicate the expanding direction of search points, the expanding 
step is 2π . 

 
Figure 6. Variable neighborhood search. 

We proposed a variable neighborhood search strategy, which starts the search from 
ambiguity integer initial values estimated from TDoA measurements. We denoted the in-
itial value sets as { }ˆ ˆ ˆ ˆ, ,s BA CA DAN N N N= . ˆ

DBN , ˆ
CBN can be described by linear combination 

of ˆ
sN , that reduce time complexity from ( )5O N  to ( )3O N . 
The variable neighborhood search strategy as follows: 
Firstly, try the initial value ˆ

sN , If not catch the goal, move on 1- neighborhood tra-
versal search, which expanding search area to: 
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{ }
ˆ 1

ˆ ˆ ˆ ˆ ˆ ˆ    1, 1 , 1, 1 , 1, 1
s s

BA BA CA CA DA DA

N N

N N N N N N

= ±

     = − + − + − +     
 (20)

If does not catch the goal either, move on 2-neighborhood traversal search, which 
expanding search area to: 

{ }
ˆ 2

ˆ ˆ ˆ ˆ ˆ ˆ    2, 2 , 2, 2 , 2, 2
s s

BA BA CA CA DA DA

N N

N N N N N N

= ±

     = − + − + − +     
 (21)

If does not catch the goal either, move on and on, until catch the goal or reach the 
maxN . In the worst case that search in maxN , the computational complexity of our proposed 

algorithm is 
( )( )( )maxO 4 1 2 1 MM N− +

, 3M =  

3.2.3. Spatial Subarray Vote Mechanism 
From four subarrays in a RTA, four SDV estimations are accumulated in a matrix 

, 1 , 2 , 3 , 4PDoA PDoA PDoA PDoA PDoAΔ Δ Δ Δ =  v v v vV . A cost function in matrix form can be written 
as 

( )4 4
T

PDoA PDoA×= −M I V V , (22)

Specifically, 

12 13 14

12 23 24

13 23 34

14 24 34

0
0

0
0

M M M
M M M
M M M
M M M

 
 
 =  
 
  

M  (23)

The component ijM  is the cost function of each adjacent subarrays. We designed a 
mechanism for deciding whether the result SDVs are acceptable. This mechanism is called 
spatial subarray voting. Take an array as a ballot box [ ]12 13 14 23 24 34, , , , ,vote V V V V V V=V . Vote 
counting using an error tolerance 0ε > . 

( )

1,    
   ,

0,      others
   1, 2,3   2,3, 4

ij
ij

M
V

i j i j

ε≤
= 


≠ = =
 (24)

Typically, ε  is machine precision of a computer or a relaxation precision consider-
ing. 

When all possible sN  are searched over, we will know the total votes and get out a 
DoA estimation. On the other hand, if there are no votes at all, a bigger radius neighbor-
hood search area is expanded for next around search, until getting enough votes or ap-
proaching the maximum search boundary. 

The final decision depends on the total count of votes, ijD V= . Theoretically, all 
four SDVs should be identical, in other words 6D= . Affecting by lower accuracy of 
TDoA measurements, when elevation sign inverse or target missing in some subarrays 
occurrence, we need relax final decision condition to 3D ≥ . If there are enough votes, the 
result is estimated by corresponding subarrays. 
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( )
( )

, ,
,

1 ,   
2

   1, 2,3   2,3, 4

PDoA ij PDoA i PDoA j
i j
V

D
i j i j

Δ Δ= +

≠ = =

v v v

 (25)

While in the situation of no vote at all, the final result should be the SDV estimated 
by TDoA, namely TDoAv . 

4. Simulation Results To demonstrate the effectiveness and performance of the proposed algorithm, simula-
tion and numerical experiments were conducted. 

Assuming the noise of TDoA and PDoA measurements are AWGN with zero means, 
( )0,τ τσn    and ( )0,φ φσn   , and the noises of each receiver are independent. τσ  

is TDoA measurement error, φσ  is PDoA measurement error. For examining the accu-
racy of proposed method, a series experiments were conducted. A set of rand SDVs cov-
ering all spherical surface were used as reference. And a set of RTA with different ratio 

/r λ  estimated DoA of the reference SDV in different SNR conditions. 
When ( )SDV 0.7001, 0.7001, 0.1400 T= , Figure 7 shows the accuracy comparison of 

coarse estimation using TDoA and proposed method. 

  
(a) (b) 

Figure 7. (a) RMS Errors of Azimuth angle ϕ  and (b) RMS Errors of Elevation angle θ  by TDoA 
only, proposed method and cramer-rao lower bound(CRLB) in different ratio /r λ . 

In different SNR conditions, the error tolerance ε  was set to 610−  when SNR = 40 
dB and set to 410−  when SNR = 20 dB. The RMS error of angles using both TDoA and the 
proposed wrapped PDoA reduce when SNR increases. 

Given subarray radius 0.12r m=  and carrier frequency 3.9936 cf GHz= , the wave-
length is 0.075120mλ = . When SNR = 20 dB, RMS error of ϕ  is about 3.165° using TDoA 
and 0.0942° using proposed method, while, RMS error of θ  is about 1.607° using TDoA 
and 0.1981° using proposed method. When SNR = 40 dB, RMS error of ϕ  is about 0.3087° 
using TDoA and 0.017° using proposed method, while, RMS error of θ  is about 0.1888° 
using TDoA and 0.0379° using proposed method. The accuracy of our proposed algorithm 
is approaching closely to CRLB with different /r λ  ratio. 

When configured with different ratio /r λ , the corresponding angle RMS errors 
drop-down according larger ratio /r λ . 

For testing the performance of proposed search strategy, we measured search steps 
of three different search strategies in the same condition. Given 

( )SDV 0.7001, 0.7001, 0.1400 T= , subarray radius 0.12r m=  and carrier frequency 

3.9936 cf GHz= . The size of the corresponding feasible set is ( )3
max2 1 729N + = , where 

Az
im

ut
h 

R
M

SE
 (°

)

20 25 30 35 40
SNR (dB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

El
ev

at
io

n 
R

M
SE

 (°
)

TDoA,r/ =1.6
TDoA,r/ =4.8
TDoA,r/ =6.7
Proposed,r/ =1.6
Proposed,r/ =4.8
Proposed,r/ =6.7
CRLB,r/ =1.6
CRLB,r/ =4.8
CRLB,r/ =6.7



Sensors 2022, 22, 1532 12 of 14 
 

 

( )max 3 / 1 / 2 4N ceil r λ= + = . The results were drew in Figure 8. Comparing different 

search strategies, the proposed method, which adopted TDoA initial values and variable 
neighborhood search, demonstrated excellent performance. 

 
Figure 8. Search Steps of different search strategies. 

Illustrated in Figure 8, the x-axis is /cτσ λ , which describes coarse estimation devi-
ation from the reference. The y-axis is search steps starting from the initial value to catch-
ing the goal. The curve with red color is search steps adopting TDoA initial value and 

fixed search area [ ]34,4− . The curve in purple is search steps adopting zeros initial value 

and fixed search area [ ]34,4− . The curve in blue is search steps adopting TDoA initial 
value and variable neighborhood search, which proposed in this paper. Zeros initial value 
and the fixed search area is a conventional strategy that is used in current ambiguity res-
olution widely, which no need of any prior knowledge. No matter what the ratio value is, 
the search steps is about 190 and almost keep the same. We use it as a baseline strategy 
for evaluating others. When starting with TDoA initial value, only one-step is needed 
when the ratio /cτσ λ  is low, but search steps rising quickly and maintaining at 140–180 
closing to baseline strategy. It is obvious that the proposed method has advantages, that 
only one step to catch the goal when / 0.15cτσ λ ≤  and about 20 steps when 
0.2 / 1cτσ λ≤ < . When / 1cτσ λ ≥ , search steps raise high about 120 and approach to base-
line strategy. 

To find how the time difference SNR and the phase difference SNR affecting search 
success or not together of different ratio /r λ , another series experiments were conducted, 
in the same condition of RMS error examining. The error tolerance ε  was set as 410−  to 
adapt to low SNR conditions. Figure 9 shows numerical experiments results of the bound-
ary of searching success for the different ratio /r λ . 
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Figure 9. The boundary of searching success of different ratio /r λ . 

The region of the upper and right sides of that boundary is the searching success 
region, which means if phase difference SNR and time difference SNR are both higher 
than require conditions the proposed method would catch the goal successfully after cer-
tain search steps. While, on the other hand, the lower and left corner of this map means 
unsuccessful search. From Figure 9, we know that the larger ratio /r λ , the more depend-
ing on TDoA informations and require higher time difference SNR to catch the goal suc-
cessfully. 

5. Conclusions 
In this paper, we proposed a regular tetrahedral array (RTA), which deployed four 

synchronized Ultra-wideband (UWB) transceivers on its vertexes and configured with ar-
bitrary aperture. An all-directional DOA estimation algorithm using combined TDoA and 
wrapped PDoA was conducted. A new cost function based on geometric identical and 
variable neighborhood search strategy using TDoA information was proposed for ambi-
guity resolution. Simulation and numerical experimentation results demonstrated excel-
lent performance of the proposed RTA and corresponding algorithm. 

When SNR = 20 dB, Using proposed method, the azimuth angle RMS error is about 
0.0942° and elevation angle RMS error is about 0.1981°. The accuracy of proposed method 
is at least 18 times higher than the method using only TDoA. Comparing different search 
strategies, the proposed method adopting TDoA initial value and variable neighborhood 
search strategy demonstrated excellent performance. When 0.2 / 1cτσ λ≤ < , the search 
steps are about 20. When / 0.15cτσ λ ≤ , the search goal catches at the very first step. At 
last, the boundarys of searching success for the different ratio /r λ  were found from the 
results of numerical experiments. 
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