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Abstract: Collaborative reasoning for knowledge-based visual question answering is challenging
but vital and efficient in understanding the features of the images and questions. While previous
methods jointly fuse all kinds of features by attention mechanism or use handcrafted rules to generate
a layout for performing compositional reasoning, which lacks the process of visual reasoning and
introduces a large number of parameters for predicting the correct answer. For conducting visual
reasoning on all kinds of image–question pairs, in this paper, we propose a novel reasoning model of
a question-guided tree structure with a knowledge base (QGTSKB) for addressing these problems.
In addition, our model consists of four neural module networks: the attention model that locates
attended regions based on the image features and question embeddings by attention mechanism, the
gated reasoning model that forgets and updates the fused features, the fusion reasoning model that
mines high-level semantics of the attended visual features and knowledge base and knowledge-based
fact model that makes up for the lack of visual and textual information with external knowledge.
Therefore, our model performs visual analysis and reasoning based on tree structures, knowledge
base and four neural module networks. Experimental results show that our model achieves superior
performance over existing methods on the VQA v2.0 and CLVER dataset, and visual reasoning
experiments prove the interpretability of the model.

Keywords: tree structure; knowledge base; compositional reasoning; neural module network;
attention mechanism

1. Introduction

Visual question answering (VQA) is an intersecting field of computer vision and
natural language processing, which has just been proposed in recent years. The meaning of
visual question answering is to fully understand the features of images and texts and make
the appropriate decision. In the field of visual question answering, visual reasoning is a
very difficult but extremely important problem to be solved. However, most of the existing
methods [1–5] are similar to black box operations. For example, the image features extracted
by convolution neural network (CNN) are fused with the encoded text features, and then
the fused features are fed to the artificial neural network. Therefore, these methods turn the
visual question answering into a multi-label classification task. The drawback is that these
methods lack the ability of logical analysis and reasoning, and fail to explore why such
results are obtained. Furthermore, there are some models [6] dedicated to the study of VQA
dataset bias, which is only effective for partial datasets, and the models fail to be widely
used. Recently, some work [7–11] has not been satisfied with improving the accuracy of the
model, and began to analyze the structure of the image and the question. According to the
structural characteristics of the question, the task is divided into several subtasks.
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The layout generated by these subtasks is considered as a reasoning map for predicting
correct answers. However, the disadvantage of these manually pre-defined subtasks is
that the questions and images provide very few features, and thus they are short of some
common sense knowledge relationship to fully understand the features in the process
of reasoning.

In this paper, we propose a reasoning model of a question-guided tree structure
with a knowledge base (QGTSKB) for addressing these problems. The inherent textual
structure of the question is parsed into a tree structure. As shown in Figure 1, our network
makes full use of the dynamics of the tree structure and the adaptability of different tasks
of the modular network structure, which are utilized to generate a modular reasoning
layout. Each word in the question is mapped into the knowledge base, and then the
corresponding supporting facts are selected by keyword matching. The task-related and
content-complementary facts are essential for building the relationship between images
and questions for understanding and reasoning.

Figure 1. An example of our question-guided tree structure with knowledge base model that from
bottom to up performs reasoning over question-guided parsing tree nodes with the help of knowledge-
based relation. Given the word nodes, the attention maps are generated using modular networks for
explicit visual reasoning.

In order to solve complex reasoning tasks comprehensively and effectively, we propose
four modular networks with different functions, which are the attention module, gated
reasoning module, fusion reasoning module and knowledge-based relation module. The
attention model not only uses the word encodings of the current tree node, but also fuses the
attention map of the child node with the relationship between words from the knowledge
base to extract local visual evidence for explicit reasoning. The gated reasoning model
is inspired by Gated Recurrent Neural Networks. The advantage of the gated reasoning
model is that the information flow can be modulated according to different tasks without
a separate memory cell, which can reduce the memory consumption during calculation.
Since the gating reasoning model has the function of forgetting and updating, it can delete
and update the features passed by the child nodes according to the features of the current
node. The fusion model combines the attention features of the current node and the features
of the child nodes, which uses bilinear fusion to increase the variability of the fused features
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so as to enhance the flexibility of the model. The combination of external knowledge and
visual information helps humans answer various questions. Therefore, the knowledge base
in natural language processing has been gradually paid more attention.

The knowledge-based facts are extracted from the three commonly used knowledge
base datasets which are DBPedia [12], WebChild [13] and ConceptNet [14]. The knowledge
base model fuses knowledge-based facts and the output representations of two reasoning
models, which can make up for the effective information beyond the image and ques-
tion features.

We conduct extensive experiments to prove that our model has superior performance
on CLVER and VQA2.0 public dataset. In addition, the attention map of each node is con-
sidered as a qualitative experimental result in the process of explicit visual reasoning, which
further shows that our model is interpretable and has strong adaptability to different tasks.

The main contributions are summarized as follows:

1. We propose an interpretable and practical VQA model which unifies the visual,
textual, knowledge-based factual representations from different modalities. Given the
question-guided parsing tree structure, it performs remarkable reasoning based on
the attention mechanism with the help of a knowledge base.

2. We propose a tree-structure reasoning model based on modular network structure,
which has four notable advantages: First, the modular network effectively mines and
merges features of different modalities and implements parallel reasoning over tree
nodes for logical reasoning. Second, the knowledge base provides some common
knowledge other than images and texts to facilitate collaboration and communication
between child nodes and parent nodes. Third, the attention mechanism has good in-
terpretability of clearly performing explicit logical reasoning, and the gated reasoning
model can tailor and update features.

3. The proposed model has achieved excellent results on benchmark datasets, including
VQA2.0, CLVER and FVQA, which indicates that our model has strong adaptability
and versatility for different tasks. Through ablative experiments, it can be seen that
the contribution of each module network to improving the overall performance of
the model.

The structure of the paper is organized as follows: In Section 1, the motivation and
outcome of our work are introduced. In Section 2, we present the previous work strongly
related to our work and analyze their pros and cons. In Section 3, we show the internal
structure and parameters of our model in detail. In Section 4, we conduct experimental
analysis and visual reasoning on different datasets. In Section 5, we present the conclusions
and expectations of our work.

2. Related Work
2.1. Visual Question Answering

Visual question answering (VQA) is an intersecting topic that has emerged in the
field of computer vision and natural language processing in recent years. Given the
image–question pair, the VQA model needs to infer the correct answer in natural language
according to the visual information provided by the image, which requires in-depth mining
of the characteristics of the image and the question itself, and a full understanding of
the fusion features of the image and text. Previous common VQA solutions used CNN-
RNN-based [15,16] architectures trained in an end-to-end method, which randomly fused
linguistic embedding and visual semantics as clues for predicting the answer. In order to
obtain high-dimensional features and reduce the amount of high-complexity computation,
bilinear pooling methods [17,18] exploited the fusion of multi-modal features in a fine-
grained state. Although these methods introduce the joint embedding of the whole image
and text representation, they also introduce redundant noise, which affected the accuracy
of the model to a certain extent. To alleviate this discrepancy, attention mechanisms [19–22]
are widely adopted in the field of visual question answering, which aims to find out
the local visual area related to the question on the image. Anderson et al. [23] created
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a bottom-up and top-down attention mechanism that extracted the candidate regions of
the image by Faster-RCNN, that is, the image-guided attention mechanism, and then
took advantage of the question-guided attention mechanism to predict the correct answer.
However, this method lacks the mining of spatial features of the image and cannot make
effective inferences in the process. Santoro et al. [24] designed an RN module for relational
reasoning, which can be embedded in any neural network that needs to deal with tasks
related to relation inference. Wu et al. [25] proposed a multi-step and hierarchical attention
mechanism for reasoning, passing the current attention matrix to the next step to generate
new compound objects for inferring correct answers.

Most of the above reasoning models focus on images and questions, ignoring the
external knowledge base in the field of natural language processing. Moreover, the optimal
reasoning structure can adapt to different types of questions, so it is appropriate to have
inference structures that are specific to the input question. According to the structure of
the text itself, our model uses a neural modular network and attention mechanism for
visual reasoning

2.2. Knowledge Base

A knowledge base (KB) stores complex structured fact entries in some hierarchical type
such as tuple form (S,R,T), where S means subjects, R means the relationship between S and
T, and T means targets. The application of knowledge base in visual question answering
has attracted increasing attention. Wang et al. [26] proposed a fact-based VQA model
which answered the questions by extracting supporting facts from the knowledge base
which is a subset of three structured datasets: DBPedia, WebChild, and ConceptNet, and
learning the query mappings. However, in the reasoning stage, the relationship between
image content and knowledge-based facts is not considered for reasoning. Wu et al. [27]
introduced the AMA model of combining the automatically generated image captions
with external knowledge-based facts and attribute vectors for predicting the answers. The
disadvantage of the model is that it is not interpretable and cannot be used for explicit
reasoning based on image features. To bridge this discrepancy, Wang et al. [28] presented
the Ahab model to detect the relevant visual content of the image and associate it with
the knowledge base and then the question was converted to a query through multiple
layers of reasoning for obtaining the final answer. This approach does not have extensive
applicability. Once the particular type of question exceeds the scope of the question
templates, the accuracy of the model decreases. Yu et al. [29] formulated knowledge-based
visual question answering as a recurrent reasoning process for obtaining complementary
evidence from multimodal information. Marino et al. [30] addressed the task of knowledge-
based visual question answering and provided a benchmark where the image features
relied on external knowledge resources. Different from the above methods, our model
deeply combines the supporting facts from the knowledge base with image features, and
utilizes the fused features for reasoning and answering questions.

2.3. Neural Module Network

Neural module networks (NMN) play a significant role in generating layouts that
constructs deep networks with flexible computational expressions for addressing com-
positional visual reasoning. Instead of adopting a fixed network structure, this method
assembles a task-specific network from a set of predefined sub-models according to various
tasks. Hu et al. [8] proposed using sequence-to-sequence GRU to form a layout, which
made multi-step reasoning through a neural module network. Andreas et al. [31] presented
a neural module network using a fixed layout generated from a dependency parser. Later,
the dynamic neural network model [32] learned to assemble modules by optimizing a
limited layout from a list of three to ten candidates, and then trained the weights of these
modules, so as to form a new structure for reasoning. Our neural module network not only
deeply explores the feature of the image and question, but also fuses the knowledge base
to enhance the logical reasoning ability of the model.
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3. Approach

We propose a model of a question-guided tree structure with a knowledge base
(QGTSKB) for explicit reasoning in visual question answering tasks. The overall structure
of the proposed model is shown in Figure 2. It shows the three steps of model operation:
parsing the question into a tree structure, extracting supporting facts from the knowledge
base, and assembling the whole network using a neural module network.

Figure 2. The framework of the proposed QGTSKB model. (a) The tree-structured layout is generated
by parsing the question with the Stanford Parser. (b) The model queries the common sense of each
noun in the question from the knowledge base. (c) Based on the four neural module networks, our
model follows the bottom-up direction of the syntax tree for visual reasoning.

We introduce model structures in detail in the following four sections. The overview
(Section 3.1) describes the entire pipeline of the model. The attention model (Section 3.2)
introduces the attention mechanism that locates key regions based on the image features
and question embeddings. The reasoning model (Section 3.3) describes the gated reasoning
model and fusion reasoning model. The gated reasoning model shows the process of
forgetting and updating the features of the attention map atti and the summed knowledge-
based reasoning feature Eh

i . The fusion reasoning model mines the fusion features of the
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summed knowledge-based reasoning feature Ez
i and the attended visual feature vi. The

knowledge-based fact model (Section 3.4) introduces external knowledge to make up for
the lack of visual and textual information. Answer prediction (Section 3.5) expounds on
the loss function and scoring function of the model.

3.1. Overview

As shown in Figure 2a, the tree-structured layout is generated by parsing the question
with the Stanford Parser [33] which analyzes the structure of sentences and the relationship
between syntactic components at each level. We prune words that are not essential for
reasoning, such as prepositions (a, an, the), retaining the leaf node of nouns. Too many
leaf nodes can easily cause the model to overfit the data, reducing the complexity of
the tree by pruning to avoid overfitting. The tree-structured layout is represented as a
4-tuple L = (v, q, T, K), where v represents visual features, q represents question embedding,
T denotes the nodes in the tree structure, which contains the word embedding wi(i=1:N) from
the question, and K denotes knowledge-based supporting facts in the form K = (S, R, T).

As shown in Figure 2b, the model queries the common sense of each noun in the ques-
tion from the knowledge base, then the knowledge mapping is formed by the candidates.

As shown in Figure 2c, our model follows the bottom-up direction of the syntax tree
for visual reasoning. The image features v are extracted from the conv4 features of the
ResNet-101 [34]. The question is split into consecutive words, which are encoded by the
glove embedding algorithm of a look-up table with 300-dimensional vectors. Furthermore,
the fixed-length word embedding w is generated by the hidden vector of bi-directional
gated recurrent unit (Bi-GRU) in the original order. The question embedding q is denoted
by the hidden vector from the last hidden state of Bi-GRU.

The neural module network composes a model with logical reasoning ability according
to the layout of the tree structure. The input of the model includes an image feature v, a
question embedding q, a word embedding wi and supporting knowledge-based facts k. The
attention module fa creates the attention map atti based on the image feature v, wording
embedding wi and the summed knowledge-based reasoning feature Eh

i and Ez
i . The gated

reasoning model fg takes advantage of the structure of the Gated Recurrent Unit to forget
and update the attention map atti. The fusion reasoning model fz deeply mines high-level
semantics of the attended visual feature vi and knowledge base. The knowledge-based fact
model provides the external knowledge for reasoning.

3.2. Attention Model

In leaf node i, the attention module fa generates an attention map over the whole
image, which is used to locate key objects or attributes related to the image features and the
wording embedding. As indicated in Figure 3, to ensure that the image feature v and the
summed knowledge-based reasoning feature Eh

i have the same dimension, we expand the
matrix Eh

i to fit the image feature matrix v. cv is produced by the element-wise multiplication
of matrix Eh

i and matrix v. The word embedding wi and the summed knowledge-based
reasoning feature Ez

i are passed through a fully connected layer to perform spatial mapping
transformation and then made in an element-wise multiplication operation. We map cv
and cw to 2048-dimensional features and conduct element-wise multiplication on these
two products. The result passes through a convolutional layer and a softmax layer for
regularizing the final attention map into the range (0, 1). For visual attentions, the attended
visual feature vi of the node i is represented by the weights of attention maps atti multiplied
by the image feature v as:

cv = v� Eh
i (1)

cw = (w1wi)� (w2Ez
i ) (2)

atti = softmax(ReLU(w3(cv � cw))) (3)
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vi =
N

∑
i=1

atti · v (4)

where w1, w2, w3 are learned parameters, and � denotes the element-wise multiplication.

Figure 3. The internal structure of the attention model. The model focuses on the attended image
features upon image features and word embeddings.

3.3. Reasoning Model

In this section, we introduce the internal structure of the gated reasoning model and
fusion reasoning model. As shown in Figure 4, the gated reasoning model takes advantage
of the structure of the Gated Recurrent Unit which is a simplified version of the LSTM
with fewer parameters. It adopts a gated mechanism to get rid of the problem of gradient
vanishing and gradient explosion. The input of the gated reasoning model is the summed
knowledge-based reasoning feature Eh

i and attention map atti, and output of the model
is the hidden representation of the final state hi. The model has two kinds of gated units
which are reset gate and update gate. Intuitively, the reset gate determines how to combine
the feature Eh

i with the attention map atti. The concatenation of these two features passes
through a convolutional layer to perform feature fusion and then through a sigmoid layer
to update a reset matrix ri. The function of the update gate is to control the amount of
information flow, that is, to select valuable parts of the feature Eh

i and the attention map atti
saved into the current state. The calculation method of gated threshold ui is the same as the
process of calculating reset value ri. The element-wise product of the reset ri and the feature
Eh

i is saved in the memory cell ci. The gated threshold ui is created by the element-wise
multiplication instead of simple multiplication for adjusting the amount of the memory
cell ci and the feature Eh

i retained in the hidden representation of the final state hi as:

Eh
i = ∑

i∈C
eh

i (5)

ui = σ(wu · [Eh
i , atti]) (6)

ri = σ(wr · [Eh
i , atti]) (7)

ci = tanh(wc · [ri � Eh
i , atti]) (8)

hi = (1− ui)� Eh
i + ui � ci (9)

where wu, wr are learned parameters, and [ , ] denotes concatenation operation.
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Figure 4. The framework of the gated reasoning model. The gated reasoning model forgets and
updates the features of the attention map atti and the summed knowledge-based reasoning feature Eh

i .

As shown in Figure 5, the fusion model fz generates fusion reasoning features zi
based on the attended visual features vi and the summed knowledge-based reasoning
feature Ez

i . Low-level feature fusion concatenates original features to create a feature
vector. However, it has a small effect on improving the reasoning ability of the model. The
fusion operation increases the change of features and obtains higher-level semantic features.
A fully connected layer changes the spatial structure of features. The sigmoid and ReLU
layer act as the activation functions to enhance the nonlinear mapping of the model as:

Ez
i = ∑

i∈C
ez

i (10)

zi = [ReLU(w4vi)� σ(w5Ez
i )]⊕ [ReLU(w6vi)� σ(w7Ez

i )] (11)

where w4, w5, w6, w7 are learned parameters and ⊕ denotes the element-wise summation.

Figure 5. The structure of the fusion reasoning model. It mines high-level semantics of the attended
visual features and knowledge-based facts.

3.4. Knowledge-Based Fact Model

The knowledge base compensates for the shortage of features of images and texts
by providing facts related to the entities in the question. In the leaf node i, ki is the
concatenation of supporting facts and the question. The supporting fact ki (S, R, T) can be
obtained by extracting the entity in the question and querying the entity in the knowledge
base. For example, given the question ”What color is the hat of the girl riding a horse?”,
the supporting fact (Hat, on, Head) indicates the spatial relationship between the hat and
the girl and the supporting fact (Horse, bigger, Girl) presents the size difference between a
girl and a horse. The supporting facts provide sufficient clues to locate the related objects
for answering questions and logical reasoning.
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As shown in Figure 6, the knowledge-based supporting fact ki and the fusion rea-
soning feature zi go through the fully connected layer and the activation layer (ReLU)
which performs spatial transformation and obtains the same dimension, respectively. The
knowledge-based reasoning feature ez

i is achieved by the element-wise multiplication of
these two resulting vectors as:

ez
i = [ReLU(w8zi)]� [ReLU(w9ki)] (12)

where w8, w9 are learned parameters.

Figure 6. The framework of the knowledge-based fact model. The knowledge-based reasoning
feature ez

i is generated by the element-wise multiplication of the fusion reasoning feature zi and the
knowledge-based supporting fact ki.

3.5. Answer Prediction

Traversing each node of the tree from bottom to top, our model obtains the final result
ez

i and eh
i at the root of the tree. The result eh

i passes through a convolutional layer and
concatenates with the vector ez

i . The concatenated vector is fed into a softmax layer to
achieve the probability s as the answers for the question–image pair. Formally,

s = softmax(ReLU(w11[w10eh
i , ez

i ])) (13)

where w10, w11 are learned parameters.
Since there is only one candidate labeled as the ground-truth answer and the rest of

the candidates are annotated as negative answers in each training batch, it is efficient to
adopt binary cross-entropy loss [35] to deal with the question–image pairs as:

L =
M

∑
i

N

∑
j

(
1− sj

i

)
log

(
1− ŝj

i

)
− sj

i log
(

ŝj
i

)
(14)

where M represents the batch size and N represents the number of candidate answers. sj
i is

the ground truth label while ŝj
i is the predicted probability.

4. Experiments
4.1. Datasets

CLVER [36] is a synthesized dataset including a training set, a validation set and a test
set. It contains images of 3D-rendered objects of different sizes, shapes, material types, and
colors. Each question in CLEVR is generated by a functional program in natural language.
The questions in the data set always require a series of reasoning processes. In order to
evaluate the reasoning ability in detail, all questions are divided into 5 categories: Exist,
Count, Compare Integer, Query Attribute and Compare Attribute.

The VQA v2.0 [37] is a widely used dataset containing open-ended questions about
images. It is an updated version of the VQA v1.0, which has less data bias. It contains
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265,016 images from COCO [38], more than 3 questions per image, 10 ground-truth answers
per question and 3 plausible answers per question. There are three types of answers: yes/no,
number and other.

The FVQA dataset contains 193,499 facts corresponding to the questions. The knowl-
edge base is constructed by querying top visual concepts from three knowledge bases:
DBPedia, ConceptNet and WebChild.

4.2. Implementation Details

In our experiment on the CLVER dataset, each image is resized to 224 × 224. Fur-
thermore, we extract the 1024 × 14 × 14 feature maps by forwarding the 3 × 224 × 224
resized image through the res4b22 layer of the Resnet-101 with the kernel size of (1, 1)
and (3, 3) trained on the ImageNet classification. For improving spatial reasoning, we
connect two coordinates x

14 and y
14 with the resulting feature map, which passes through

a convolution layer to obtain a 128 × 14 × 14 feature map. For question and support-
ing facts representations, each word of the question and supporting fact is embedded by
300-dimensional GloVe word embeddings [39]. The sequence of the word embeddings
is fed into a bidirectional GRU with a 512-dimensional hidden layer for both directions.
Each word embedding is extracted from the hidden vector at the corresponding position
of the Bi-GRU. The output of the knowledge-based model and gated reasoning module
are 128 × 14 × 14 for both hidden representation hi and knowledge-based features Eh

i . The
attended visual feature and the feature vi are 128 dimensions.

During supervised training, our model is trained by Adam optimizer [40] with
12 epochs, where the batch size is 128 and 64 for the VQA v2.0 and CLVER dataset,
respectively. The learning rate is 0.0003 and 0.0001 for CLVER and VQA v2.0, respectively.
The β1 is 0.9 and β2 is 0.999. The model is trained on the training datasets and evaluated
on the test or validation dataset.

4.3. Comparison with Existing Methods

We evaluate our model and the previous model on each question type in the CLVER
dataset. As shown in Table 1, the Q-type model of predicting the most frequent answer
based on a question’s category obtains the lowest score. In the LSTM model, questions are
encoded by the word embedding and then are fed into LSTM. The result is passed to an MLP
layer to predict a probability distribution of answers, which has no obvious improvement
compared to the previous one. Compared with the first two models, the accuracy of
the CNN + LSTM model performing reasoning based on the image features extracted by
the CNN and question features encoded by the LSTM is slightly improved. “N2NMN
scratch” using reinforcement learning with layout supervision has a good performance
in the Query Attribute dataset. “N2NMN cloning expert” utilizes the supervised layout
from the expert policy. Compared with the “N2NMN scratch”, the accuracy of the model is
greatly improved by 10%, which indicates that full supervision helps improve the model’s
logical reasoning ability. “N2NMN policy search” achieves higher performance in all
aspects by further training the parser from “N2NMN cloning expert”. “PG + EE (9 K prog.)”
and “PG + EE (700 K prog.)” use 9 K and 700 K ground-truth programs, which indicates
the model has a deeper understanding of features as the number of ground-truth programs
increases. Our model outperforms the previous methods without using a fixed layout.
Compared with the RN model, our model has a higher accuracy rate and explicit reasoning.
The knowledge base helps our model to effectively reason about complex questions.
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Table 1. Accuracy comparison between the proposed method and the existing methods on
CLVER dataset.

Model Overall Count Exist Compare
Numbers

Query
Attribute

Compare
Attribute

Q-type model [36] 41.8 34.6 50.2 51.0 36.0 51.3
LSTM [36] 46.8 41.7 61.1 69.8 36.8 51.8

CNN + LSTM [36] 52.3 43.7 65.2 67.1 49.3 53.0
N2NMN scratch [8] 69.0 55.1 72.7 78.5 83.2 50.9

N2NMN cloning
Expert [8] 78.9 63.3 83.3 80.3 87.0 78.5

N2NMN policy search [8] 83.7 68.5 85.7 84.9 90.0 88.7
PG + EE(9 K prog.) [7] 88.6 79.7 89.7 79.1 92.6 96.0

PG + EE(700 K prog.) [7] 96.9 92.7 97.1 98.7 98.1 98.9
RN [24] 95.5 90.1 97.8 93.6 97.9 97.1

QGTSKB (Ours) 97.6 94.2 99.1 93.6 99.3 99.2

We compare our model with previous methods on the VQA v2.0 in Table 2. The
accuracy of our model is greatly improved, which is 2% higher than that of the second
place. It gains obvious progress in answering “Yes/No” questions. Compared with the
above algorithms, our model not only has certain advantages in accuracy, but also has
the function of logical reasoning. The multiple glimpse, bidirectional attention, stacked
attention and memory unit method are used in these methods. However, these models
are like black boxes and cannot make explicit visual inferences based on the content of the
question. Moreover, compared with the above models, our model introduces a knowledge
base. The knowledge-based supporting facts are effectively fused with image features and
question features to perform modular reasoning.

Table 2. Performance comparison on VQA v2.0 dataset.

Model Test-Dev Test-Standard

Overall Yes/No Number Other Overall

QTA [4] 57.99 80.87 37.32 43.12 58.24
SAN [22] 58.7 79.3 36.6 46.1 58.9
HQIC [3] 61.8 79.7 38.7 51.7 62.1
DAN [5] 64.3 83 39.1 53.9 64.2
MFB [17] 65.9 84 39.8 56.2 65.8
DCN [21] 66.89 84.61 42.35 57.31 67.02
Count [16] 68.09 83.14 51.62 58.97 68.41

QGTSKB (Ours) 70.5 86.76 52.54 60.68 70.62

4.4. Visual Reasoning

In this section, we introduce the process of visual reasoning based on the tree structure
parsed from the question. The CLVER dataset is generated by codes for reasoning. Thus,
the knowledge base provides limited supporting facts for the nouns in the question. As
shown in Figure 7, the first example shows that our model counts the number of brown
blocks. The first step is to find the position of the tiny cylinder, and secondly, our model
defines spatial location relationship according to the “left”. The third step is to locate the
brown square and count its number. Finally, the root node extracts the fused feature and
predicts the answer “1”. The second example indicates that our model can figure out the
shape of objects. Firstly, our model locates the small cylinder and then searches out the
“behind” spatial relationship. Later, it finds out the large block based on the fused features
and searches for the “left” spatial relationship. Finally, the root node “is” predicts the
answer “Sphere”. The third example shows that our model can identify the color of an
object through complex reasoning. The model locates objects and finds out the spatial
position relationship according to the question multiple times. The fused feature of “ball”
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and “color” is passed through the root node “is” to obtain the probability distribution of the
question. These examples prove that our model can be adapted to many types of tasks, and
the attention mechanism clearly shows the reasoning process of the model. The prominent
feature of the model is the flexibility to adjust network structures according to the structure
of the question.

Figure 7. Three exanples of the model performing visual reasoning by focusing on related regions
according to the words on CLVER.

We also evaluate the interpretability of the model on the VQA v2.0 dataset which
contains open-ended questions and realistic images. Questions require an understanding
of features of images, questions and commonsense knowledge to answer. As shown in
Figure 8, the first example shows that the model counts out the number of birds on the
branch based on the supporting knowledge facts. The second example indicates that the
model can identify the object in the dinosaur’s mouth. The third example demonstrates that
our model can identify the color of the object based on the fused feature of the umbrella and
the girl. The fourth example shows that our model can deal with complex spatial relations
between the objects. Through the above four examples, it can be concluded that our model
has excellent adaptability, stability and interpretability for different question types.
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Figure 8. Examples of the model performing visual reasoning by focusing on related regions accord-
ing to the words on VQA v2.0.

5. Conclusions

In this paper, we propose a reasoning model of a question-guided tree structure with
a knowledge base (QGTSKB) for visual question answering. To the best of our knowledge,
this is the first visual reasoning model that leverages the combination of the entire language
structure, visual features and knowledge base. Our model can automatically perform
interpretable visual reasoning over a parsing tree structure from the question, which has
strong flexibility and universality of adjusting the structure according to different types of
questions. Compared with previous methods, it does not rely on annotations or manual
rules to set the network layout. The knowledge base provides supporting facts making up
for the lack of the original visual features and question features for reasoning. The neural
modular network simplifies a single large-scale into small and manageable modules. Each
module of the neural module network has specific functions and is independent of other
modules. Due to parameter sharing, a modular neural network reduces computation cost
and improves the efficiency of the model. Our model obtains excellent results and performs
visual logical reasoning on the VQA v2.0 and CLVER dataset.
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Our model uses convolutional neural networks to extract visual features of objects as
representations of images. However, it cannot accurately capture the relationship between
objects. We are going to adopt the method of graph network to model the fully connected
graph according to the relationship of objects in the image, in which the objects in the image
are represented as nodes of the image and the relationship between objects is represented
as edges of the image. How to deeply mine object relationships in images to establish a
graph neural network for reasoning on visual question answering is essential.
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