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Abstract: With the new advancements in Internet of Things (IoT) and its applications in different
sectors, such as the industrial sector, by connecting billions of devices and instruments, IoT has
evolved as a new paradigm known as the Industrial Internet of Things (IIoT). Nonetheless, its
benefits and applications have been approved in different areas, but there are possibilities for various
cyberattacks because of its extensive connectivity and diverse nature. Such attacks result in financial
loss and data breaches, which urge a consequential need to secure IIoT infrastructure. To combat the
threats in the IIoT environment, we proposed a deep-learning SDN-enabled intelligent framework. A
hybrid classifier is used for threat detection purposes, i.e., Cu-LSTMGRU + Cu-BLSTM. The proposed
model achieved a better detection accuracy with low false-positive rate. We have conducted 10-fold
cross-validation to show the unbiasdness of the results. The proposed scheme results are compared
with Cu-DNNLSTM and Cu-DNNGRU classifiers, which were tested and trained on the same dataset.
We have further compared the proposed model with other existing standard classifiers for a thorough
performance evaluation. Results achieved by our proposed scheme are impressive with respect to
speed efficiency, F1 score, accuracy, precision, and other evaluation metrics.

Keywords: Industrial Internet of Things (IIoT); software-defined networking (SDN); deep learning
(DL); intrusion detection system (IDS)

1. Introduction

The Industrial Internet of Things (IIoT) connects physical machines, sensors, and
devices with the Internet. It then uses various software to perform deep analytics and
transform vast amounts of data into powerful insights and intelligence [1]. This term
highlights the IoT and its applications in sectors such as the Industrial sector, with strong
attention on machine-to-machine (M2M) communication, machine learning (ML), and
big data. Things covered in this domain include connecting wastewater systems, electric
meters, flow gauges, manufacturing robots, other connected systems and industrial devices.
With IIoT, enterprises and industries have better reliability and efficiency in their work [2,3].
The connecting working ability of multiple devices with the Internet allowes different threat
actors to perform anomalous activities. There are a growing number of vulnerabilities
and loopholes in the protocol used by IIoT architecture that threat actors can breach using
sophisticated attack approaches [4,5]. An attacker’s motives behind the exploit are to
gain valuable information, money theft, and to corrupt the resources [6]. By the end of
2030, cyberthreats could cost up to USD 90 trillion to the IIoT if no promising solution
is presented until then [7,8]. With the rapid increase in connecting IoT devices, securing
critical assets and infrastructure is becoming a serious concern for various businesses. With
all this, IoT brings three challenges: the first one is the IoT’s heterogeneous network [9,10].
The second is its massively dispersed architecture, whereas the third is the protocols that
IoT introduced for issues such as computation limitation and power in network sensors. In
environments such as IIoT, the most common threat is Zero-day vulnerability leveraged

Sensors 2022, 22, 1582. https://doi.org/10.3390/s22041582 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041582
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7831-8188
https://orcid.org/0000-0003-1326-7292
https://doi.org/10.3390/s22041582
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041582?type=check_update&version=3


Sensors 2022, 22, 1582 2 of 16

by malware [11,12]. The attacker’s main objective is to infect the critical devices to obtain
control and change their operations using various techniques such as Distributed Denial of
Service (DDoS), Advanced Persistent Threats (APT), and Denial of Service (DoS) attacks.
For example, in 2010, the Iranian Nuclear Program was attacked by Stuxnet Worm. After
that, in 2013, Iranian hackers got into the ICS of New York’s Dam. In 2015, 230,000
customers in Ukraine suffered from a power outage due to black energy malware [13].
Hence, these occurrences proved that traditional cybersecurity procedures are no longer
effective, including the authentication, security policies, firewall, and Intrusion Detection
System (IDS). We propose an intelligent, SDN-enabled framework for timely and effective
threat detection in IIoTs. The experimentation is conducted using the N-BaIoT dataset.

Contribution

• We propose a novel SDN-enabled Intillegent framework for early and efficient threat
detection in the IIoTs.

• Cu-LSTMGRU + Cu-BLSTM hybrid model is used for effective threat detection.
• We compare the performance of the proposed model with current benchmark algorithms,

i.e., Cu-DNNLSTM and Cu-DNNGRU, trained and evaluated on the same dataset.
• For further performance evaluation, we compare the proposed model with exist-

ing literature.
• We have employed standard evaluation metrics for a thorough evaluation.
• Finally, 10-fold cross-validation is employed for verification purposes of our results.

The remaining paper is arranged as follows. In Section 2, we discuss the background
and existing work. Section 3 is about the proposed methodology, dataset, and other details.
Section 4 is dedicated to experimentation and evaluation criteria. Section 5 is about the
experimental results, while the conclusion is discussed in Section 6.

2. Background and Existing Literature

SDN appears to be the most favorable networking model to be used in the coming
years. The architecture of SDN comprises a data plane, control plane, and application plane
with their APIs, i.e., northbound API and southbound API. The interface of northbound
refers to the domain of protocol-based communication between the controller and applica-
tions or higher-layer control programs. Communication with the switch fabric, network
virtualization protocols, and the integration of a distributed computing network are all
functions of southbound APIs. According to SDNs architecture, we have a control plane
isolated from the application and data plane. The control plane provides a review of the
underlying basic network and is a centralized and intelligent unit. Apart from this, the
control plane is a centralized decision-making and data-processing unit. Further, it has
the potential to forward data to the whole network. However, the data plane represents
the SDN agents and forwarding devices’ collection. The control plane is programmable,
and it has the ability to enhance its functionality by implementing different modules as
the entire framework depends on the control plane. Hence, SDN provides flexibility and
innovation, and its detailed architecture is presented in [14,15]. All SDN controllers are
capable of extending different modules. Because of this, the detection scheme proposed by
the authors is implemented on the control plane. For different SDN controllers, the archi-
tecture and design for most of them are the same; however, they differ in functionalities.
From controller to controller, the implementation language differs. For example, Java is the
implementation language of floodlight, while Python is used for writing POX.

The deep-learning models have aided the area of computer science through their
applications, which are used in almost every sector of business; from medical devices to
autonomous vehicles. The models of DL use the architecture of neural networks, which
is why these model are referred to as deep neural networks. These models use a large
set of labeled data for training, that automatically extracts features from data without
the requirement for manual feature extraction. Some other applications of DL are voice
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recognition, fraud detection, image classification, and threat detection, and it is also used
for the detection of pedestrians which results in a decrease in accidents.

The contemporary scientific evolution has witnessed the manifested competencies
of the Internet of Things (IoT) that encompass every facet of our lives. The conveniently
acquirable nature of IoT makes it impressionable to a diverse domain of security threats
that need to be addressed. Software-Defined Networks (SDN) are an imperative evolu-
tionary technology that provide promising solutions toward the security and integrity of
IoT. Several scientific contributions have been made to overcome the susceptible nature of
IoT; however, SDN-based security solutions prove their effectiveness at pre-eminent rank-
ing [16]. SDN also interacts with other relevant cutting-edge technologies to efficiently play
the role under contention. The integration of SDN and blockchain is, presented which com-
prises all the crucial security concerns regarding IoT in a futuristic perspective. Preservation
against Denial of Services (DoS) attacks, spoofing attacks, and routing attacks are the core
aptitude of that amalgamation [17]. SDN-enabled security solutions are considered to be
marvelous in terms of resource utilization. The constitutional scheduling mechanism of the
SDN central controller always comes with remarkable management of network resources.
Hence, SDN-enabled intrusion detection schemes inherit that feature and facilitate IoT in
gratifying protection frameworks, disbursing the least possible resources [18]. Another
security model needs to be mentioned here that is formulated to insulate sensitive IoT envi-
ronments against a broader range of potential security threats. The proposed model consists
of an SDN-enabled blockchain-inspired approach for large-scale receptive atmospheres.
The performance of the concerned model is evaluated, where favorable results seem to
make it an ideal choice for large-scale IoT networks [19]. SDN also shakes hands with
convolutional neural networks (CNN) to equip a distinguished safeguard for IoT against
the wide variety of legitimate concerns. The Distributed Denial of Services (DDoS)-based
attacks tree is an alarming sign against the smooth flow of communication in an IoT-based
automated environment. This phenomenon caught researchers’ attention, resulting in the
designing of an SDN-enabled CNN-based security framework for resource-constrained IoT
networks. The most significant feature of the proposed framework is efficient detection of
security threats with less consumption of network resources [20].

In recent years, researchers have put their remarkable interest in deep learning and
its applications in different research areas such as automotive designs, law, and the health
sector. Moreover, lots of work exists in the area of NIDS in SDN [21]. A DL-based intrusion-
detection framework was proposed by authors in [17], and employed RBM (Restricted
Boltzmann Machine) in SDN. For experimental setup, this scheme used the KDD99 dataset
and CMU dataset. For binary classification, this technique achieved 99.98% accuracy.
Another scheme proposed in [18] utilized IDS based on GRU–RNN (Gated Recurrent
Unit–Recurrent Neural Network) with CICIDS2017 and NSL-KDD datasets. The results
showed an accuracy of 89% for different classifications. Although SDN architecture is
flow based, the dataset NSL-KDD which was used is not flow-based. For attacks and
threat detection in SDN networks, authors in [17] presented a DL (deep learning) system
in which multilayer perception (MLP) is used. This scheme used the CTU-13 dataset,
and performance results showed 98.7% detection accuracy. A connection-based technique
is referred to as Credit-Based Threshold Random Walk (CB-TRW). Further, the authors
implemented rate limiting in [19] with intrusion detection and prevention systems. For
experimentation, network traffic was captured for five minutes. The results showed that
false positive rate (FPR) is 0% with 97% CPU utilization for captured traffic of 10,000
packets at the rate of one second. In [20,21], the authors used the RNN, CNN, and LSTM
for the network intrusion-detection framework. This framework used the ISCX2012 dataset.
The model achieved an accuracy of 98%. The authors of [22,23] employed GRU-RNN for
network intrusion detection systems (NIDS). The authors used the NSL-KDD dataset with
six basic features. Results showed that the framework achieved an accuracy of 89%, which
is not good for current evolving cyberattacks and threats. Authors in [24,25] proposed a
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method of anomaly detection entirely based on deep learning. This system used CNN,
LSTM, and MLP. For experimentation, data were collected via T-Shark and Wireshark.

Authors in [26] proposed a DL method on a DNN for flow-based intrusion. This
framework used Snort (network intrusion-detection system) with Barnyard and achieved
85% detection accuracy. Further, authors in [27,28] used a diverse variety of classifiers based
on machine learning (ML) and a DL model. The authors used extreme learning machine
(ELE), Ada-Boost, support vector machine (SVM), and decision tree. The authors proposed
an intelligent intrusion-detection System (IDS) in SDN, using the dataset NSL-KDD, and
acquired 80% detection accuracy. To address the issues of the Botnet detection mechanism,
authors in [29,30] presented a scheme in SDN, which depends on multilayer perception
(MLP). For experimentation, real data were used with an achieved accuracy of 98%. The
authors in [31,32] presented an IDS using RNN and this IDS was trained by using the
NSL-KDD dataset. The evaluation was performed on the network traffic. This model
achieved 81.29% of accuracy for the classification of multiclass. Authors in [33] presented
an SDN-based, intelligent scheme for intrusion detection in IoT. The authors used the
CICIDS2017 dataset for training and experimentation using deep-learning classifiers and
achieved a better detection accuracy. The literature review is summarized in Table 1.

Table 1. Existing literature.

Ref Year Algorithm Dataset Achievements Limitations

[7] 2019 SVM, RBM CMU, KDD99
Proposed detection scheme for mul-
ticlass using SVM and RBM with an
accuracy of 89%.

Dataset is not flow-based, old,
and static.

[25] 2018 LSTM, CNN, RNN ISCX2012
In the proposed scheme, feature filtra-
tion is performed with a verification
accuracy of 98%.

Time overhead as the scheme is com-
putationally complex.

[29] 2019 CNN, LSTM, MLP Tools Tshark, Wireshark
data

Used Fast Gradient Sign method
(FGSM), JSMA, JSMA-RE to solve port
scanning issue.

Computationally complex.

[32] 2018 DT, ELM, SVM, NN,
Ada-Boost NSL-KDD

For SDN proposed anomaly detection
scheme with the detection accuracy
of 80%.

Real-time environment performance
of the classifier is not enough.

[34] 2019 MLP CTU-13 ISOT
To detect botnet in SDN intrusion
detection scheme is proposed based
on MLP.

Experimentation is not performed on
botnet infected terminals.

[35] 2019 MLP Real time Botnet detection scheme using MLP
with a detection accuracy of 98%.

Evaluation is performed only on real-
time traffic.

[33] 2019 RL, CB-TRW Real traffic

In a software-defined network, DoS
and port scan detection and preven-
tion method is presented using RL
and CB-TRW.

Only false-positive rate (FPR) and
CPU consumption is used as a per-
formance parameter.

[36] 2017 RNN NSL-KDD R2L and probe detection using
RNN classifiers.

Comparison is made with machine-
learning algorithm.

[37] 2021 DNNGRU-BLSTM CICIDS2018
Obtained efficient detection rate by us-
ing a hybrid classifier of DL for multi-
class attacks.

The proposed method cannot detect
the DDoS attacks by reflecting all
of the features of the blocks formed
when the attack occurs.

[38] 2018 GRU-RNN NSL-KDD
Using six network features, the pro-
posed scheme GRU-RNN achieved
89% detection accuracy.

The dataset NSL-KDD is not flow-
based.

[39] 2018 DNN Barnyard
Proposed deep-learning and flow-
based detection scheme with snort
with a detection accuracy of 85%.

Computationally complex.

[40] 2012 Genetic Algorithm KDD99 Obtained sufficient detection rate. The dataset is not IoT-based and out-
dated, with high false-positive rates.

[41] 2018 RBM KDD99 The authors achieved a precision rate
of 94 %.

The dataset is not IoT-based and too
old.
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Table 1. Cont.

Ref Year Algorithm Dataset Achievements Limitations

[42] 2018 CNN-RNN CTU13-ISOT The model can detect botnets at the
packet level.

The detection accuracy is low, and
time complexity is high.

[43] 2018 DM, SM NSL-KDD Achieved efficient output by develop-
ing shallow and deep models. The dataset is not IoT based.

[44] 2015 SVM NSL-KDD Better detection accuracy. Inherent limitations, the strong signal
needed in data.

[45] 2018 LSTM-GRU NSL-KDD Achieved an accuracy of 87%. The detection accuracy is too low.

[46] 2017 FLS-Based Approach NGIDS-DS
Showed the rational attack activities
and usual traffic changing aspects of
real-world networks.

The complexity of the dataset is not
explored properly.

[47] 2019 GRU-RNN NSL-KDD, CICIDS17 Achieved 89% accuracy for multiclass
using GRU-RNN classifier.

Diverse features are not used for en-
hancement of classifier.

3. Proposed Methodology

The purpose of this research is to propose an intelligent DL-driven scheme for threat
detection in IIoT environments. This section is dedicated to the methodology of our work,
i.e., hybrid threat-detection framework, preprocessing of dataset, proposed network model,
and dataset description.

3.1. Proposed Network Model and Detection Scheme

During the past several years, SDN has emerged as an integrated network design. The
SDN’s application plane is designed to run a variety of applications in order to provide
different services to endusers. The application mechanisms, on the other hand, are managed
by the SDN’s control plane, which handles data transfers, routing decisions, and traffic
monitoring. For simplification and flexibility purposes in the SDN design, the data plane
and control plane are separated. In addition to this, the control plane came up with the
network’s global view and central control functions, which simplified the assembling of
network statistics. For the environment of IIoT, we proposed hybrid DL-driven, SDN-
enabled architecture to detect threats and intrusion. Figure 1 depicts the proposed model
(Cu-LSTMGRU + Cu-BLSTM) which is placed in the control plane of SDN. There are many
reasons for establishing the proposed model in the control plane. First, it is completely
programmable, and also it can extend the IIoT devices on the data plane. Second, open
flow switches are used in SDN, which is the solution for heterogeneity among IIoT devices
and SDN controllers. Furthermore, without any exhaustion, the control plane can manage
the main devices of IIoT in its data plane. The data plane is in charge of forwarding actual
IP packets and to transport data packets from the source to the destination. The SDN
framework and IIoT incorporation propose a better way to deeply examine the network
traffic to look for intrusions, unauthorized events, and attacks, with the advantage of being
cost-effective and centralized.
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Figure 1. Network Model.

Further, the authors propose a DL-driven hybrid model, i.e., Cu-LSTMGRU + Cu-
BLSTM, for threat detection in IIoT. To detect various threats, a very powerful, versatile,
and cost-effective scheme is developed that is visualized in Figure 2. This scheme comprises
Cu-LSTMGRU and Cu-BLSTM models for sophisticated malware detection in the IIoT
environment. The N-BaIoT dataset is tested and trained on the hybrid algorithms of deep
learning with high detection rates and fewer false positives (FP). This scheme comprises
multiple layers, i.e., Cu-LSTMGRU consists of 200 neurons and Cu-BLSTM has 100 neurons
in one layer. We have used softmax in the output layer for the activation function and Relu
function for other layers. For better results, the experimentation has been performed with 32
batch sizes until five epochs. We have used the Cuda-enabled version for experimentation
purposes for faster multiplication of matrices.

Figure 2. Detection Scheme.

Moreover, the proposed scheme uses the backend of Tensor flow and Keras frame-
work for Python. By making use of the two classifiers, a comparison is made with the
proposed scheme. The comparison classifiers are deep neural network–long short-term
memory (DNN–LSTM) with one layer of DNN and LSTM comprising 200 and 100 neurons,
respectively, and deep neural networks–gated recurrent unit (DNN–GRU), with one layer
of DNN comprising 200 neurons and the GRU with 100 neurons as the other layer.

In addition to this, a comparison of our hybrid model is made with existing models,
and the results are depicted in Table 6. By multiplication of matrixes, the whole performance
of the system improves. In Table 2, an in-depth description of our DL classifiers is presented.
However, the pseudocode of the proposed model is also provided as Algorithm 1.



Sensors 2022, 22, 1582 7 of 16

Table 2. Hybrid algorithms description.

Algorithm Layers AF Neurons LF Optimizer Batch-Size Epochs

Cu-LSTMGRU+Cu-BLSTM

Cu-LSTMGRU (1) Relu (200)
Cu-BLSTM (1) Relu (100)

Dropout – (0.3) CC-E Adamax 32 05
Output Layer (1) Softmax 07

Dense (3) – (200,100,50) –

Cu-DNN–LSTM

DNN Layer (1) Relu (200)
LSTM Layer (1) Relu (100)

Dropout – (0.3) CC-E Adamax 32 05
Dense (3) – (200,100,50) –

Output Layer (1) Softmax 07

Cu-DNN–GRU

DNN Layer (1) Relu (200)
GRU Layer (1) Relu (100)

Dropout – (0.3) CC-E Adamax 32 05
Dense (3) – (200,100,50) –

Output Layer (1) Softmax 07

Algorithm 1 Hybrid cuLSTMGRU–cuBLSTM detection model
1: procedure

Input: n th iiot features and malware labels:
2: Xn

iot, Yn
iot

3: cuLSTMGRU layers = M; cuBLSTM layers = l; k-Folds = k; epochs= e;
Output: Get the Error E and predictions P.

4: Get the Error E and predictions P.
5: for ∀ k :=1 to 10 do
6: for (epochs :=1 to e do
7: if select.layer [M] = cuLSTMGRU then
8: Calculate update gate for timestamp t.
9: Calculate reset gate to determine how much of past information to forget.

10: Starting with the usage of reset gate, new memory content which will
use reset gate to store information.

11: Calculating ht-Vector which holds information of the current position.
12: else
13: Generate a feature vector.
14: end if
15: if select.layer[l] = cuBLSTM then
16: Randomly generate the w and b of BLSTM
17: Compute the Hidden layers of BLSTM
18: Compute the output of Hybrid GRULSTM-BLSTM
19: end if
20: end for
21: end for
22: end procedure

3.2. Dataset

For the evaluation of threat-detection scheme performance, the use of an appropriate
dataset significantly matters. For threat detection in the IIoT environment, the literature
review shows that different authors used different datasets, e.g., NSLKDD [43–45], KDD
CUP99 [46,47], etc. Most of them do not have the IIoTs supportive feature. For IIoT devices,
some attackers scan them and then take control of these devices. In addition to this, they
also use DNS rebinding and malicious scripts for locating and attacking the IIoT devices.
Hence, the dataset used for the proposed model is a publicly available dataset N-BaIoT [48].
This dataset constitutes the network flow and IIoT supportive features, and it comprises
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the most dangerous malwares, i.e., Bashlite and Mirai. It consists of eight attacks and up to
115 traffic features. The dataset instances distribution is presented in Table 3 below.

Table 3. Dataset description.

Attack Category Subcategory Attack Instances

Benign – 49,500

Mirai

Ack 3400
Scan 3300
SYN 3300
UDP 3400

UDP Plain 3300

Bashlite
Combo 3300

Junk 3300
TCP 3400

Total – 76,200

3.3. Preprocessing of DataSet

The proposed work performed the preprocessing of the dataset by the following steps.
At the first step, we detected all the blank rows, rows with nan values, and then deleted
all of them as they can impact the performance of the evaluation model and data quality.
During the next step, using the label encoder, i.e., sklearn, we converted all non-numeric
values into numeric values as mostly numeric data can be processed by DL algorithms. In
addition, to diminish the chances of unexpected results, we executed one-hot encoding
on the output label as model performance can also be reduced due to category ordering.
Minmax Scaler is used for the purpose of data normalization, which enhances the model’s
effectiveness.

4. Experimental Setup

For experimentation purposes, we used graphic processing unit (GPU) and Core i7-
7700. Moreover, we used Keras to train the proposed module with a 3.8 version of Python.
In Table 4, the software and hardware specifications are given.

Table 4. Experimental setup.

CPU 7700 , i7 , 7th Generation with 2.80 GHz processor

RAM 16 GB

GPU Nvidia GeForce 1060 6 GB

Language Python, version 3.8

Libraries Keras, Numpy, Pandas, TensorFlow and Scikitlearn

OS Windows 10, 64 bit

Evaluation Metrics

Using the standard evaluation metrics such as precision, recall, accuracy, and F1-
score, we evaluated the performance of the proposed architecture. For certain parameters’
calculation, we have to calculate the false omission rate (FOR), true positive (TP), false
positive (FP), true negative (TN), false negative (FN), and Matthew’s correlation coefficient
(MCC).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

5. Result and Discussion

This section presents the complete results of the proposed hybrid model (Cu-LSTMGRU
+ Cu-BLSTM). For detailed performance evaluation, we compared this model with two other
hybrid models, Cu-DNN–LSTM and Cu-DNN–GRU, along with existing techniques in the
literature. The following standard metrics of evaluation evaluate the performance of the
proposed model.

5.1. Roc Curve Analysis

The Roc is a key parameter for checking the performance of any intrusion-detection
system (IDS). True negative rates (TNR) and true positive rates (TPR) are correlated, and
Roc plots the results. The Roc curve of our scheme is given below in Figure 3. This figure
depicts the relationship between a true negative and a true positive.

Figure 3. ROC curves of the models.

5.2. Confusion Matrix Analysis

This evaluation matrix show the output of the classification model. As per the con-
fusion matrix results, Cu-LSTMGRU + Cu-BLSTM recognizes the classes accurately. The
confusion metrics of the three models are given in Figure 4. It depicts that the proposed
model correctly identifies the classes and surpasses the other two models, (Cu-DNN–LSTM
and Cu-DNN–GRU).

Figure 4. Confusion metrics of the models.
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5.3. Cross-Validation

We used 10-fold cross-validation to prove the neutrality of our results. A detailed
description of each fold is given in Table 5.

Table 5. 10-fold results of the hybrid models.

Parameter Hybrid Models 1 2 3 4 5 6 7 8 9 10

Precision (%)

Cu-LSTMGRU+Cu-
BLSTM

98.30 99.85 98.76 99.81 99.83 99.21 99.65 99.93 98.41 99.67

Cu-DNN–LSTM 98.92 98.52 93.77 96.23 98.94 97.53 95.69 98.29 97.51 99.37
Cu-DNN–GRU 97.76 96.50 95.30 96.50 96.50 97.40 96.90 96.90 97.15 97.10

Recall (%)

Cu-LSTMGRU+Cu-
BLSTM

99.83 98.52 99.23 97.74 98.39 99.11 97.52 97.29 98.44 98.92

Cu-DNN–LSTM 99.49 99.39 99.93 99.81 99.31 99.41 99.91 97.96 99.09 98.54
Cu-DNN–GRU 99.37 98.50 98.50 99.30 99.30 99.37 98.30 98.21 98.21 97.37

Accuracy (%)

Cu-LSTMGRU+Cu-
BLSTM

99.50 99.11 99.23 99.74 99.39 99.66 99.25 99.29 99.44 99.92

Cu-DNN–LSTM 98.96 98.63 95.62 97.32 98.85 97.97 97.01 97.51 97.74 98.62
Cu-DNN–GRU 99.18 97.73 95.64 98.36 98.81 99.23 98.94 98.31 98.85 98.10

F1-Score (%)

Cu-LSTMGRU+Cu-
BLSTM

99.83 99.52 99.23 99.74 99.39 99.11 99.25 99.29 99.44 99.91

Cu-DNN–LSTM 99.49 99.39 99.93 99.81 99.31 99.41 99.91 97.96 99.09 98.54
Cu-DNN–GRU 99.37 97.80 97.50 97.70 99.20 99.15 99.40 99.40 99.10 99.50

5.4. Accuracy, Recall, F1-Score, and Precision

The efficiency and performance of a classifier are demonstrated by accuracy. It shows
how many samples are accurately identified by the proposed scheme. In Figure 5, we
presented the accuracy performance of our proposed scheme (Cu-LSTMGRU + Cu-BLSTM).
This hybrid model achieves 99.45% accuracy with 98.49% of recall. The records which are
identified correctly indicate precision. The proposed model has a precision of 99.34% with
a 99.47% F1 score. The 10-fold results are depicted in Table 5 for recall, precision, accuracy,
and F1-score.

Figure 5. Accuracy, recall, F1-score, and precision.
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5.5. FPR, FOR, FNR, and FDR Analysis

To effectively evaluate our proposed scheme, we calculated the FOR, FPR, FDR, and
FNR. The results are presented in Figure 6. We can see that our proposed model has FOR
and FPR of 0.004% and 0.003%, respectively, while the FDR and FNR values are 0.002% and
0.0020%. Hence, our proposed model Cu-LSTM-GRU outperforms the other two models.
In addition to this, DNN–GRU performs better than DNN–LSTM.

Figure 6. FPR, FNR, FDR and FOR Results.

5.6. TPR, TNR, and MCC Analysis

To evaluate further, we used a confusion matrix for in-depth analysis of the proposed
model to obtain the TPR, TNR, and MCC analysis values. In Figure 7, TNR, TPR and MCC
are shown with values of 99.33%, 99.13%, and 98.03%, respectively. By casting an analytical
look at the Figure 7, it is concluded that Cu-LSTMGRU+Cu-BLSTM has better performance.

Figure 7. TPR, TNR, and MCC.
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5.7. Speed Efficiency

The time taken by the proposed model for testing is shown in Figure 8. Here, we are
not considering the training phase as it was mostly performed offline. While illustrating
the model’s performance and efficiency, testing is very important. The time consumed by
our proposed hybrid model is 9.79 ms, which is computationally efficient. However, for
the other two models, DNNLSTM is computationally better than DNNGRU, with a testing
time of 12.9 ms.

Figure 8. Speed efficiency of the models.

5.8. Cu-LSTM-GRU–Cu-BLSTM Comparison with Existing Literature

To highlight the efficacy of the proposed scheme, we compared it with two existing
hybrid DL models (Cu-DNN–LSTM and CU-DNN–GRU). For evaluation, we used the
same metrics for both models and all of the three models were tested and trained on the
same dataset N-BaIoT. The details of these models are given in Table 2.

Moreover, a comparison is also made with other benchmark algorithms. In Table 6,
the proposed model’s comparison with the existing literature is given. It can be seen that
Cu-LSTMGRU + Cu-BLSTM outperforms in terms of precision, F1-Score, accuracy, and
speed efficiency. Furthermore, the testing time of the proposed model is 9.79 ms, which is
significantly better than the existing benchmarks.

Table 6. Comparison with existing benchmarks.

Ref [47] [49] [50] Proposed

Algorithm GRU-RNN Autoencoder(EDSA) Multi-CNN Cu-LSTMGRU +
Cu-BLSTM

Dataset CICIDS17 CICDDoS2019 NSL-KDD N-BaIoT
Accuracy 89% 98% 86.95% 99.45%

10-fold - - X X
Multiclass X X - X

GPU-Enabled - - - X
F1-Score 99% - 88.41% 99.47%

Recall 99% - 87.25% 98.49%
Precision 99% - 89.56% 99.34%

Testing time - - - 9.79 ms

5.9. Limitations of the Proposed Model

The proposed hybrid model is a potential intrusion-detection system in an IIoT envi-
ronment. Despite the considerable performance of our proposed method, there are some
limitations that we will address in the future, i.e., the proposed model requires well-labeled
data for training. On the other hand, these data are infrequent, and obtaining them ne-
cessitates a significant amount of effort. Further, the proposed intrusion-detection model
outperformed the existing techniques; however, it will be more effective if it can detect
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insider attacks where intruders can harm the network without affecting the traffic flow
between the sensor network and the internet.

6. Conclusions

There is a need for flexible and secure IIoT infrastructure. This can be achieved using
Cuda-enabled deep-learning classifiers. Intrusion-detection systems based on DL can have
the ability to detect any emerging cyberthreats. We proposed SDN-enabled, intelligent
architecture to protect the IIoT environment from sophisticated threats. For successful
threat detection, we have used a hybrid classifier (Cu-LSTMGRU + Cu-BLSTM). The
proposed scheme is scalable, and also it has a low cost. Moreover, we compared the results
with other hybrid algorithms, i.e., Cuda-DNNLSTM and Cuda-DNNGRU. Results showed
that our proposed scheme outperforms the other two hybrid models and those existing
in the literature. We have used standard evaluation metrics to evaluate the model, i.e.,
speed efficiency, F1 Score, accuracy, precision, recall, TPR, FPR, etc. The proposed scheme
consumes a testing time of only 9.79 ms with 0.0035% FPR and 99.45% accuracy. Our model
has better results as compared to the existing literature. In the future, the authors aim to
use different hybrid classifiers along with blockchain and SDN for efficient threat detection,
and will propose a scheme for isolating the compromised IIoT devices. Lastly, the authors
endorse SDN-based intelligent frameworks for the security of IIoT environments.

Author Contributions: Conceptualization, D.J.; methodology, D.J. and M.T.K.; validation, D.J.; formal
analysis, D. and M.T.K.; writing—original draft preparation, D.J.; writing—review and editing, D.S.;
visualization, T.G.; supervision, T.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under Grant
Number 52130403 and China Fundamental Research Funds for the Central Universities under Grant
Number N2017003.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Acknowledgments: We are thankful to China Fundamental Research Funds for Central Universities
and National Natural Science Foundation of China for funding this research project.

Conflicts of Interest: The authors declare no conflicts of interest associated with this research work.

Abbreviations
The abbreviations used in this paper are as follows

IoT Internet of Things
IIoT Industrial Internet of Things
MLP Multilayer Perceptron
IDS Intrusion-Detection System
LSTM Long Short-Term Memory
ROC Receiver Operating Characteristic
DDoS Distributed Denial of Service
GRU Gated Recurrent Unit
SDN Software-Defined Networking
Cu Cuda
DNN Deep Neural Network
RF Random Forest
API Application Programming Interface
SVM Support Vector Machine
CNN Convolutional Neural Networks
RBM Restricted Boltzmann Machine
FGSM Fast Gradient Sign Method



Sensors 2022, 22, 1582 14 of 16

ELE Extreme Learning Machine
CB-TRW Credit-Based Threshold Random Walk
GPU Graphics Processing Unit
TP True Positive
FP False Positive
TN True Negative
MCC Matthew’s Correlation Coefficient
CPU Central Processing Unit
TCP Transmission Control Protocol
AF Activation Function
OF Open Flow
NIDS Network Intrusion Detection System
APT Advanced Persistent Threats
RELU Rectified Linear Unit
RNN Recurrent Neural Network
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