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Abstract: In the current smart era of 5G, cellular devices and mobile data have increased expo-
nentially. The conventional network deployment and protocols do not fulfill the ever-increasing
demand for mobile data traffic. Therefore, ultra-dense networks have widely been suggested in the
recent literature. However, deploying an ultra-dense network (UDN) under macro cells leads to
severe interference management challenges. Although various centralized and distributed clustering
methods have been used in most research work, the issue of increased interference persists. This
paper proposes a joint small cell power control algorithm (SPC) and interference-managed hybrid
clustering (IMHC) scheme, to resolve the issue of co-tier and cross-tier interference in the small cell
base station cluster tiers. The small cell base stations (SBSs) are categorized based on their respective
transmitting power, as high-power SBSs (HSBSs) and low-power SBSs (LSBSs). The simulation results
show that by implementing the IMHC algorithm for SBSs in a three-tier heterogeneous network, the
system throughput is improved with reduced interference.

Keywords: hybrid clustering; interference; throughput; three-tier heterogeneous network (HetNet)

1. Introduction

In the context of future networks, a high data rate is the key requirement for the
construction of smart cities, highlighting the significance of 5G networks and other ad-
vanced technologies. By implementing 5G ultra-dense networks, the usage of different
indoor and outdoor applications and services will also increase, because applications in
health, sports, monitoring and managing data collections, and precision agriculture, among
others, require high data rates to work efficiently. A multi-tier heterogeneous network is the
vital component required to fulfill the exponentially increasing user requirements. These
multi-tier future networks also require an efficient controlling and managing mechanism to
be implemented at multiple levels in the network.

In conjunction with the benefits of future networks, a number of challenges also exist,
the most significant of which is to achieve an efficient throughput. An ultra-dense 5G
network consists of high-powered macrocell base stations (MBSs) employed as a sink for
numerous densely deployed small cell base stations (SBSs). The SBSs transmit at different
power levels i.e., micro, pico, and femto base stations (BSs), which are the commonly
used SBSs in three-tier heterogeneous network architectures. In this paper, we categorize
the SBSs as high-power SBS (HSBS) and low-power SBS (LSBS) nodes serving users at
multiple tiers.

These SBSs are deployed randomly and ensure the enhanced capacity is achieved at
the cost of increased interference in the network. High interference is the result of the dense
and random deployment of SBSs. To reduce this interference in the network, extensive
work has already been conducted, and efforts are focused on designing various interference
mitigating techniques. Among the existing interference management techniques, clustering
has proven to be the most promising approach to achieve an improved data rate with
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reduced interference [1,2]. In principle, co-tier interference occurs between BSs serving on
the same tier, whereas cross-tier interference occurs between the BSs located on different
tiers [3].

1.1. Motivation

Improved throughput can be attained by reducing interference at the user’s end, and
extensive research has already been conducted on clustering and other methods to improve
network capacity and throughput. Nonetheless, there is a need to undertake research and
investigate methods considering the deployment of small cell base stations. If SBSs receive
efficient power and signals in a multi-tier heterogeneous network, then the users connected
to these SBSs can be served and managed proficiently. Clustering is performed with either
a centralized or distributed approach, and rarely with a hybrid scheme. However, there is
a requirement for a hybrid clustering technique to significantly reduce interference at SBSs
(per tier level) in a multi-tier heterogeneous network to achieve improved throughput and
capacity in UDNs.

1.2. Prior Work

Clustering has emerged as a proficient means to manage UDNs in an organized
manner by forming clusters. Interference management, frequency management, and
power optimization can be performed more competently. Extensive work has already been
performed in the relevant fields to improve wireless network performance. Furthermore,
targeting the selection of an efficient method for radio resource management, the authors
in [2] critically analyzed the existing techniques, including clustering, frequency reuse,
graph theory, power minimization, and stochastic geometry to attain efficient radio resource
management in heterogeneous networks. Through literature analysis, Farhan et al. [1,2]
verified that by implementing clustering in a heterogeneous wireless network, efficiency in
scalability, fairness, and an adaptive solution with reduced complexity can be achieved. The
joint clustering algorithms implemented with the parameter controlling metrics and graph
theory in [2,4–7] are also termed hybrid clustering methods in the literature, in addition
to the algorithms proposed as an arrangement of centralized and distributed clustering
algorithms in a single, hybrid scheme.

In the research presented in [8], the author proposed a distributed clustering algorithm
with mixed-integer NP-Hard complexity. The problem is divided into two sub-problems:
first, the decision of resource allocation and, second, offloading computations. The parti-
cle swarm optimization algorithm is used to reduce the overall computing overhead of
mobile devices.

Similarly, in [9], multilayer user clustering and scheduling were performed in a dis-
tributed manner to increase capacity and improve fairness in a dense radio access network.
In reference [10], the author proposed a distributed clustering algorithm, FCRA, and
resolved the resource contention problem and interference issue after forming disjoint
clusters. In comparison, the concept of enhanced interference coordination was proposed
in [11] for radio resource management (RRM) in UDNs. The authors used the distributed
MIMO technique to integrate the classification of user equipment.

Therefore, through distributed clustering, the CMs can decide based on the information
collected from the neighboring CMs and form clusters with elected CHs. The advantages
include energy-efficient clusters with adaptive and dynamic environment requirements.
However, distributed clustering also involves a few limitations, such as non-uniform CH
distribution and clustering overhead [12].

Contrary to this, research on centralized clustering was performed in [13,14] with SBSs
using femtocell base stations. The authors performed radio resource management using
SBSs in 5G HetNets through spectrum sharing and network slicing. Furthermore, research
work on RRM using SBSs or MBSs with centralized clustering is shown in Table 1.

The sink node collects and processes data from the cluster head (CH) node in a
centralized clustering approach. Whereas the CH is responsible for transmitting signals
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and providing coverage to all cluster members(CM) base stations serving within the
cluster, CMs give coverage to all UEs of the same cluster. In [15], the author performed
hierarchical agglomerative clustering in a wireless network as an energy efficient technique
and formed energy efficient clusters with increased network lifetime. The presented scheme
was verified with dendrograms giving quantitative results, in addition to simulation
findings. Centralized clustering provides the advantages of an optimum number of CH
deployment, reduced overhead, uniform CH distribution, and multi-level clustering [12].
However, there are a number of limitations; for example, low scalability, compromised
efficiency, and making early decisions about cluster formation [12] are common issues with
centralized clustering.

In [16], the author considered the repulsion feature of BS deployment in the SBS tier of
HetNet. They first adopted a HetNet model by applying the Poisson point process (PPP)
with the repulsion function and then resolved the resource allocation problem with the
‘Hybrid Clustering Game’ (HCG) by improving throughput and capacity in the network.
The author generated an interference graph and then mitigated the interference.

Moreover, other techniques also exist that are used to reduce interference in 5G
HetNets to achieve a smart living concept. Commonly, non-orthogonal multiple access
(NOMA), Internet-of-Things (IoT), and multi-cell environments have strong potential to
transform future living ideas. However, these works are more commonly implemented to
improve the user association with the relevant base stations in the heterogeneous networks.
The work performed in [17] discusses the importance of non-orthogonal multiple access
(NOMA) to achieve smart city concepts, intelligent transportation, and smart manufac-
turing industries. In particular, the authors of [17] proposed a four-layered architecture
based on heterogeneous IoT (HetIoT), consisting of sensing, cloud computing, networking,
and applications.

Interference management and power allocation were also proposed in [18] to in-
vestigate an efficient resource optimization framework with the improved IoT’s spectral
efficiency (SE) under the power domain NOMA. Khan et al. proposed a novel solution that
utilizes the NOMA protocol to improve SE for the maximum number of IoT devices of indi-
vidual frequency blocks by controlling and managing the power received among different
IoT devices and ensuring successive interference cancellation (SIC) at the receiving ends.

Subsequently, in [19,20], the author implemented NOMA-enabled back-scattered V2X
on a vehicular network to achieve improved system data rates, enhanced energy efficiency
with NOMA, and supported connectivity of low-powered Internet-of-Vehicle (IoV) for a
6G transportation system. The results were verified through simulations to demonstrate
an efficient scheme that outperformed the results gained with a conventional sub-optimal
NOMA protocol. In [21], the authors performed a critical review of the NOMA protocol
and proposed a solution to achieve better network performance in terms of interference
management, bit error rate (BER), capacity, and energy efficiency using the NOMA protocol.
It can be deduced from the previous research work that NOMA contributes to wireless
networks in terms of efficient access technology, considering the user association with base
stations. In [22], energy efficiency is maximized by a joint solution for efficient device
association and a power control mechanism based on Karush–Kuhn–Tucker conditions,
and the approach was verified with simulations. In [23], power-controlled interference
management for an uplink NOMA-enabled multi-cell heterogeneous environment was
performed with Nakagami-m faded links.

Contrary to the aforementioned approaches, the author of [24] used intelligent reflect-
ing surfaces for wireless networks to achieve a smart radio environment by controlling
the channel propagation. The authors performed the research to achieve better channel
performance rather than working on receivers or transmitters to gain high data rates in 6G
wireless networks.

In [25], threshold-based clustering is performed. This approach initializes the pre-
defined threshold distance values allowed for clusters and the minimum cluster size with
SBSs. Then, by including the closest point, it forms the disjoint clusters; with this algorithm,
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the author improved the cluster performance. In [26], the evaluation of coverage probability
is undertaken with threshold SINR values. The study also states that the Wyner model
is impractical because it sets SIR to be constant. However, in OFDMA systems, the SIR
value varies frequently across the cell. In [26], stochastic geometry is used to study the
spatial realizations of a network. By comparison, the node locations are determined using
the Poisson point process, and clustering is performed in a distributed manner using
the Poisson cluster process, with the Matern point process used to improve the coverage
probability in a dense heterogeneous network.

In summary, the above investigation of the various existing techniques indicates
the clustering technique is the most popular and effective means to achieve improved
performance at the base station within the multi-tier HetNet. Table 1 shows an analysis of
the recent research conducted to improve network performance using different clustering
techniques. It can be determined from Table 1 that extensive work has been conducted
using clustering algorithms in either the centralized or distributed manner, whereas a
hybrid clustering algorithm has rarely been implemented.

On an individual basis, neither of the two clustering approaches proficiently fulfills
the efficient clustering requirement of ultra-dense heterogeneous networks, and eventually
results in the need to design a clustering algorithm that achieves the benefits of both
clustering approaches, i.e., centralized and distributed, in a hybrid manner for multi-tier
heterogeneous networks.

Table 1. Existing work on various clustering approaches.

Ref. Year Delay Throughput Capacity Interference Power HetNet Hybrid Centralized Distributed Clustering

[27] 2021
√ √ √ √

[28] 2020
√ √ √

[29] 2021
√ √ √ √ √

[30] 2019
√ √ √ √

[31] 2018
√ √ √

[32] 2018
√ √ √ √ √

[33] 2017
√ √ √ √

[34] 2017
√ √ √

[35] 2017
√ √ √

[36] 2017
√ √ √

[37] 2017
√ √

[38] 2017
√ √ √

[39] 2015
√ √ √ √ √

[26] 2015
√ √ √ √

[40] 2014
√ √ √ √ √

[41] 2014
√ √ √

[42] 2013
√ √ √

[43] 2013
√ √ √ √

Existing work on Hybrid Clustering

Hybrid clustering provides improved performance in terms of availability, data rate,
reliability, and high-speed data transmissions. It emerged as an excellent approach to reduce
co-tier interference in a heterogeneous network environment [36]. It comprises attributes of
both of the above-mentioned clustering techniques. In a few research articles, clustering is
achieved based on a hybrid approach to optimize load balancing. In [44], hybrid clustering
provides an optimal solution for sub-channel power allocation and increased user demand
in dense HetNets by offering an interference mitigation scheme. A few existing hybrid
clustering algorithms are summarized below:
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• H K Mean—The Hierarchical K-Means clustering algorithm is a self-decisive hybrid
technique used to obtain an optimum number of clusters.

• EEHMC—The energy-efficient, multi-hop clustering technique is used to prolong the
network’s life by adding multiple hops between CH and BS in wireless networks.

• MFABC—The Multi-Objective Fractional Artificial Bee Colony technique is another
energy-efficient hybrid clustering technique, and is based on the bee colony algorithm.

Similarly, in [37], the author proposed a hybrid approach to achieve energy efficiency
under distributed clustering. Furthermore, in [45], the author presented an H K Mean–
hybrid clustering scheme and improved the existing K-Means clustering algorithm to
identify high-density clusters. In [46], a discussion is presented on determining the optimal
number of clusters under the hybrid self-decisive clustering approach, considering the
Hierarchical Agglomerative clustering and K-Means clustering algorithms. Distinct evalua-
tion of an optimum number of clusters by both centralized and distributed clustering is a
challenge compared to a hybrid technique. Some of the most broadly identified problems
identified with hierarchical clustering algorithms have not shown successful results with
the outliers in a cluster. According to [46], K-Means is mainly implemented on extensive
datasets but the quality is dependent on the value of ‘k’. Additionally, [47] proposed a new
metric to estimate the amount of interference in the network by working under a hybrid
clustering approach using graph theory.

Thus, it can be observed that clustering is implemented in various ways to achieve
effective radio resource management under centralized, distributed, or hybrid clustering
architectures. In [43], the author implemented a hybrid of centralized and distributed
clustering techniques to achieve efficient radio resource management on HetNet. Research
performed with the hybrid clustering methods is shown in Table 2.

Table 2. Existing hybrid clustering techniques.

Year Paper Parameter Hybrid Clustering Technique

2021 [48] BER against the achieved
SNR values.

Successive interference cancellation
technique. NOMA and CDMA.

Worked on spread spectrum

2018 [16] Fairness, spectral efficiency,
and improved throughput.

Mitigated interference by
implementing Hybrid clustering
game algorithm based on Matern

Hard core process (MHP).
Spectrum sharing.

2017 [49] Coverage capacity,
outage probability

Indoor deployment and clustered
resource allocation.
Spectrum sharing.

2016 [50] Minimized system
power consumption.

Holistic framework for green C-RAN
under the constraint of limited front
hauls capacity for VM. Performed
hybrid clustering by controlling

power metric.

2016 [44]
Achieved improved system
utility and throughput for

large scale networks.

Interference-separation
clustering-based game-theoretic
solution. Worked on spectrum.

2012 [47]

Improved SINR of MUE and
FUE is achieved. Regional

Average Channel State
(RACS) metric is proposed to

estimate the weight
of interference

Hybrid clustering based on
interference graph (HCIG) is

projected to reduce interference. The
optimal clustering problem is

identified as a MAX-K cut problem,
and a heuristic algorithm has

been proposed.
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Despite the previous research work undertaken on 5G HetNets to achieve improved
performance and efficient radio resource management in clustered architectures, there is
still a requirement to investigate clustering methods to improve system throughput and
reduce interference in ultra-dense networks. Due to the close deployment of SBSs in ultra-
dense HetNets and massive network transmissions, interference at the SBSs increases and
requires mitigation to achieve high data rates. This leads to the arrangement of SBSs in such
a way that interference can be minimized at both co-tier and cross-tier levels. We propose a
hybrid clustering algorithm with a power controlling scheme to reduce interference in SBSs.
In Figure 1, the MBS and SBS nodes are deployed randomly under a Poisson distribution
on a Voronoi tessellation representing cell areas.
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1.3. Contribution

This research introduces a hybrid clustering algorithm with an efficient power control-
ling mechanism. The significant contributions of this paper are as follows:

• A critical analysis of existing cluster-based interference mitigating techniques is per-
formed in our research. Through simulation results, we verified that our proposed
hybrid clustering algorithm outperforms the approaches implemented under central-
ized clustering, distributed clustering, and existing hybrid clustering techniques in
terms of interference management and improved system throughput.

• A multi-level clustering technique is proposed to mitigate interference in HetNet.
Clustering is applied at multiple layers in a 3-tier heterogeneous network to reduce
interference with the proposed IMHC model.

• To manage interference at layer-1 and layer-2, we introduced a power controlling
algorithm (SPC), which enables the SBSs to achieve the target SIR threshold value at a
minimum transmit power.

• The SIRs achieved with HSBSs (pico BSs) and LSBSs (femto BSs) are compared, and it
was verified through simulation results that better signal power is achieved with HS-
BSs compared to LSBSs. This implies that better throughput is achieved by deploying
dense HSBSs in a multi-level heterogeneous network.
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1.4. Organization

This paper is structured as follows. In Section 2, the system model and problem
formulation are explained. In Section 3, the interference-managed hybrid clustering (IMHC)
algorithm and small cell power control algorithm (SPC) are explained. In Section 4, the
results and simulation methodology, and the simulation parameters, are presented. Finally,
the last section presents the conclusion and future dimensions of this research.

2. System Model and Problem Formulation

We designed a three-tier heterogeneous cellular network consisting of a macro cell and
small cell base stations, as shown in Figure 2. In the IMHC model, clustering is performed at
two levels. Moreover, an interference mitigation algorithm SPC is implemented to achieve
reduced interference in a three-tier clustered heterogeneous network. The IMHC network
is comprised of MBSs at tier-1 and with a random number of SBSs deployed at tier-2 and
tier-3 consisting of pico base stations (HSBSs) and femto base stations (LSBSs), respectively.
The MBSs are overlaid by randomly distributed SBSs, whereas the SBSs of each tier differ
in terms of transmit power, node densities, and link reliabilities. Throughout this paper, we
use the terms HSBS and LSBS to categorize high-powered SBSs and low-powered SBSs,
respectively.
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Figure 2. IMHC HetNet Model.

Node Deployment and Performance Metrics

The selection of the serving BS amongst the candidate BSs depends on the
clustering method applied at the relevant tier. The IMHC scheme is comprised of the
following considerations.

• Initially consider a network with one MBS deployed per cellular region with the area
‘A’; the MBS acts as a sink connected to a small cell gateway (SGW) at tier-1. Assume
that the SGW provides the ‘k’ number of connections to HSBSs; if ‘k’ is the total number
of links provided by SGW, then ‘ka’ will be the number of active links provided by
SGW at tier-2. The SGW act as a central controller to the ‘k’ number of nodes of HSBS
at tier-2, and CHH to the CMH in the respective clusters, as shown in Figure 3.

• The CMH will act as a sink to the LSBSs. The LSBSs will form distributed clusters with
CHL elected by the CML within the one-hop distance from CHL. The HSBSs CHH
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and CHL radius is denoted by RH and RL, respectively. However, the LSBSs coexist
within HSBSs with a coverage area less than the coverage area occupied by HSBSs; the
topology is shown in Figures 2 and 3.

• Agglomerative clusters of high-power small cell base stations (HSBSs) are formed at
tier-2 of the IMHC model with a single linkage. Thus, CHH will be the cluster head
and CMH will be the cluster members of tier-2.

• Each HSBS clustered BS (CMH) acts as a sink to the low-power small cell base stations
(LSBSs). However, at tier-3, the LSBSs are clustered in a distributed manner using
the Poisson cluster process. CHL will be elected as cluster head at tier-3 of HetNet
based on the highest interference degree by LSBSs as CML within the one-hop distance
of CHL.

• Results are generated using MATLAB simulations. Moreover, the results of the IMHC
scheme are compared with the results of existing clustering approaches.
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The base station locations are deployed under a Poisson distribution with MBS density
λm, HSBS density λp, and LSBS density λf. All links are assumed to experience a standard
power-law path loss with α >= 2, considering Rayleigh fading (3GPP). If ‘Φ’ represents the
Euclidean space, then the received power at a typical receiver from the ith tier BS located at
a Euclidean distance |Xi| [51] will be:

Φ = ∑
i

δxi (1)

Pr = Pi hi |xi|
−α (2)

where ‘α’ is the path loss exponent, ‘hi’ is the channel gain, and ‘Pi’ is transmit power and
is assumed to be constant for the BSs at tier—i (i Є {s,m}). The indexes ‘m’ and ‘s’ denote
macro cell tier and small cell tiers, respectively. The candidate serving BS location is:

X*i = arg maxzi Є ϕi Pi|xi|
−α (3)

where X*i is the location of the nearest BS of the ith tier (i.e., ϕi) to the typical user. The
general SINR expression for MBSs in a heterogeneous network is given as:

SINR = Pr,M/ ∑M
k=1 IM + ∑S

k=1 IS + NO (4)
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where Pr,m is the received power at MBS, IM is the total interference caused by neighboring
macro cells’ base stations, IS is the total interference caused by nearby small cell base
stations, and NO is the AWGN noise factor. In this paper, as we focus on interference, we
assume a network where the noise factor is not considered because similar considerations
have been made in many research articles by H.S. Dhillon and others [12,37,38]. To define
SIR, consider a wireless network of transmitters with positions x1, . . . ,xn in a region of
space. At location ‘xi’, ‘Pi(x)’ denotes the power of the received signal at location ‘x’ from
transmitter ‘xi’.

SIR(x, xi) = Pi(x)/ ∑n
j=1 Pjx− Pix (5)

According to Equation (4), by increasing the number of base stations/transmitters
at location ‘x’, the SIR value will be decreased, whereas, with a higher number of base
stations available for the receiver to be connected, there will be an increased probability of
connecting to a base station with a larger ‘Pi(x)’. Thus, the general expression of SIR for
HetNet will be:

SIR = Pr,M/ ∑M
k=1 IM + ∑S

k=1 IS (6)

However, the SIR expression at a typical SBS ‘i’ used in this paper for calculating
system SIR in a three-tier network is:

SIRi = Pr,i + hi + |Xi|/ ∑HSBS
k=1 IH + ∑LSBS

k=1 IL +∑z
k=1 Iz (7)

where Pr,i, hi, and |Xi| are the transmitting power, channel gain, and position of SBS,
respectively, in the intended tier. IH, IL represent the total cross-tier interference power
from the clustered HSBS and LSBS, respectively, and Iz denotes the aggregated co-tier
interference within the same cluster of the SBS ‘i’.

It is required to compute throughput coverage probability, usually denoted by ‘Pc’. Pc
is formally defined as the probability of SIR that a node experiences by the neighboring
nodes is higher than the desired threshold value. It can be given as:

Pc = P (SIR > β) (8)

where β represents the target SIR threshold. Then, throughput can be found by using the
following equation. In Equation (7), λ represents the total density of simultaneous active
SBSs in the per unit area:

T = λ log 2 (1 + β) Pc (9)

Moreover, signal propagation channel losses and shadowing are common phenomena.
Path loss models used primarily on research for wireless communication are Rayleigh fading
and Rician fading for non-line-of-sight and line of sight propagation. Path loss occurs due to
the dissipation of energy, and depends on the distance between the receiver and transmitter,
whereas the shadowing effect occurs due to obstacles and is caused by absorption and
reflection of energy. Given Rayleigh fading, the mathematical propagation model consists
of the random and deterministic components; the general form can be given as:

Pi(x) = Fi/lr (|Xi|) (10)

where ‘Fi’ is a non-negative random variable and ‘lr’ is a non-negative path loss function.

lr = (kr)−Γ ∀ (Γ > 0) and (k > 0) (11)
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The function ‘lr’ is assumed to decrease with the increase in ‘r’, as the path loss
increases with the increase in distance ‘r’. ‘Γ’ and ‘k’ in Equation (9) are model constants,
fitted to real-world data. Channel fading can be categorized as large-scale fading and
medium-scale fading with free space losses and shadowing, respectively.

Lp = 20 log 10 (πλ/4) + 20 log 10 (d) (12)

Typical distributions for fading variables include the exponential and gamma distri-
butions, whereas the log-normal distribution is usually used for shadowing. Maximum
fading and shadowing variables are assumed to be independent and identically distributed
(i.i.d), whereas rarely random fields are used to include a degree of statistical dependence
between variables.

3. Interference-Managed Hybrid Clustering (IMHC) Scheme

Consider a wireless network with macro, pico, and femto BSs located randomly in
an open access model over area ‘A’, with distribution λm, λp, λf densities. All nodes
broadcast their power level ‘Pa’ (Pa Є P) to SGW, whereas SGW forms a list and compares
the received Pa value with the threshold power value ‘Pt’. This threshold value ‘Pt’ helps
the SGW decide whether the intended SBS will be considered a HSBS or LSBS. The nodes
assigned as HSBS will receive the value ‘k’ from SGW to form CHH. Thus, clusters of
HSBS with centralized control will be formed based on their respective Euclidean distances,
agglomerative clustering will be performed, and a proximity matrix ‘W’ will be formed.

IMHC—Pseudo Code
Small Cell Base Stations (SBSs)

Tier-2
Centralized Cluster Formation
Randomly Deployed in Euclidean space ‘Φ’

1: Let, A = All active nodes, SBS = H ∪ L
2: H = All high-power small cell base stations (HSBS)
3: L = All low-power small cell base stations (LSBS)
4: X = {The position co-ordinates xv of nodes (SBSs) v, xv |v Є H}
5: Node v sends its position xv and interference level Iv to the Gateway.
6: The Gateway performs the following function.

a. Set the weight proximity matrix W based on the Euclidean distance, where W = {w1,
w2, . . . , wn} by random numbers.

b. Sets the target SIR value.
c. Find the nearest wk Є W to xv

7: For each K Є {1, 2, . . . , k}, kth CH is assigned to the closest node v Є H. Let, C = {v Є H is
CH} be the set of CHs, then, c (k) Є C denotes the Kth cluster.

8: All nodes, i.e., v are allocated to Kth cluster, in the intended CH will be the closest CH to v.
9: SGW broadcasts the selected CH and cluster assigned CMs. This will also reduce the overhead

interference in tier-2.
10: All CMs will compute and send their received total interference (It) value to the CH.
11: The decision is taken by the CH, such that, Pi (It <= τ) threshold interference value.
12: The interference threshold value is introduced at each CH as the success probability, to

mitigate interference.
13: Therefore, the total interference will be achieved as: It = IM+IH+IL

Tier-3
Distributed Cluster Formation
Randomly Deployed
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1: Each Femto access point FAP (LSBS) begins by listing its respective one-hop neighbor list,
comprising of the identity of its respective interfering LSBSs by the sensing environment.

2: Every LSBS calculates the number of interfering LSBSs; this parameter can be called the
‘interfering degree’ of each of its one-hop low-powered femto base stations.

3: Based on this, CH will be elected and later notified to its respective CMs.
4: The LSBS with highest interference degree will be CH, and other one-hop neighbors will be

the CMs.
5: In the case of a stand-off situation, in which all LSBSs have an equal interference degree, a

random tie break will be used, and in the other similar cases, when no node is elected as CH.
All neighbors will be associated as CMs to other clusters.

Due to the agglomerative clustering of HSBSs, there will be interference between
the HSBSs. Both co-tier and cross-tier interference will occur among the base stations if
HSBSs experience increased interference, which will eventually weaken the transmit power
of SBSs to users. Due to a lower transmit power of SBSs to the user, the overall system
throughput will ultimately decline.

Therefore, we proposed a small cell power control algorithm (SPC) that enables the
SBSs to achieve the target SIR at a minimum aggregate transmit power, assuming that the
target SIRs are feasible. However, in the case of the proposed tier-2 agglomerative clustering
method, when achieving the target SIR is not achievable by HSBSs, the selected HSBSs will
be thinned and considered LSBSs, and will form clusters with LSBSs. Conversely, HSBSs
with a target SIR or higher will continue to serve within the same tier, i.e., tier-2 of the
HetNet model.

Small Cell Power Control Algorithm for clustered SBSs (SPC):

Step 1: The target SIR is achieved based on threshold interference value.
Step 2: CMs of the intended tier will achieve the target SIR under the assumption that the target SIR

is feasible within the achievable service range.
Step 3: CMs that achieve the target SIR continue to serve within the same tier.
Step 4: CMs that failed to achieve the target SIR will be thinned from the current tier cluster to the

cluster of low-powered tier.
Step 5: Thus, the outage probability of SBSs with high transmission power will be reduced and

improved system throughput will be achieved with clustered SBSs.

LSBSs with low transmit power form clusters with distributed control, so that LSBSs
will be organized efficiently. This will also reduce interference among the base stations by
grouping LSBSs in clusters. However, within the distributed clusters, co-tier interference
will arise, but will be managed by implementing the SPC algorithm as shown in the flow
diagram, i.e., Figure 4.

Therefore, by clustering the HSBSs in a centralized manner with the SPC algorithm,
the co-tier and cross-tier interference is reduced. Furthermore, at the succeeding layer, by
clustering the LSBSs once more with the SPC algorithm, the co-tier and cross-tier interfer-
ence is also reduced. Thus, it will eventually minimize the overall system interference in
an ultra-dense heterogeneous network laid on three tiers or more. The pseudo-code for
clustering with distributed control is explained below.
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4. Simulation Methodology and Results

To evaluate the IMHC scheme of the hybrid clustering interference controlled al-
gorithm, MATLAB was used to perform simulations. The overall simulation setup is
summarized in Table 3; the values were selected based on 3GPP standards and simulation
parameters used in [12,16,52]. All active SBS nodes were deployed randomly using a
Poisson random distribution, within a macro cell area.

Figure 5 shows a single linkage dendrogram of agglomerative clusters formed of
HSBS nodes. Agglomerative clustering is performed on single and average linkage, but the
results with single linkage are found to be better than the average linkage clusters. After
forming centralized clusters with a single linkage of random HSBS nodes, we performed
the proposed distributed clustering on the acquired values from centrally controlled clus-
ters. Then, we generated the silhouette graphical representation of clusters/partitions to
ensure the tightness within the clusters and separation between the clusters. A silhouette
representation is a popular machine learning display technique to show mean fairness in
the formed clusters [53]. Figure 6 shows the silhouette graph generated for tier-3 LSBSs
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with the number of clusters, n = 4. It can be observed in the Figure 6 graph that the
silhouette value reaches 0.8 and that means fair distributed clustering was performed on
the acquired values.

Table 3. Simulation parameters.

Parameters Values

Bandwidth 10 MHz

Transmission Power of MBS 46 dBm

Transmission Power of Pico BSs (HSBS) 30 dBm

Transmission Power of Femto BSs (LSBS) 15 dBm

Channel Gain (MBS) 14 dBi

Channel Gain (SBS) 7 dBi

Indoor/Outdoor Path loss Coefficient 2

Radius of MBS (Macro BS) 500 m

Radius of HSBS (Pico BS) 25 m

Radius of LSBS (Femto BS) 10 m

Wall Penetration loss 6

No. of HSBS 100

No. of LSBS 1000
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Figure 5. A dendrogram of the HSBS centrally controlled clusters.

Moreover, the separation between the clusters shows that the probability of interfer-
ence among LSBS clusters is reduced. It can also be observed in Figure 6 that the clusters
are formed with varying densities.

Figure 7 shows simulation results for the received SIR at HSBSs with centralized
clustering, distributed clustering, the existing hybrid clustering method, and the IMHC
hybrid clustering method. The IMHC hybrid scheme gives better SIR values than other
clustering methods for HSBSs that can provide service coverage up to the distance of
30 m. In Figure 7, the received SIR vs. the HSBS service range in meters is given; it can be
observed that the IMHC scheme improves the SIR values by 42%, 38%, and 25% compared
to centralized clustering, distributed clustering, and the existing hybrid clustering approach,
respectively. With the increase in distance, the SIR value decreases for nearly all clustering
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methods and eventually the service efficiency declines. This suggests that dense clusters
with shorter radii should be formed to improve the respective clusters’ data rates.
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Figure 7. Comparison of received SIR vs. distance in meters at LSBSs with centralized clustering,
distributed clustering, existing hybrid clustering, and the IMHC hybrid clustering scheme.

The simulation results in Figure 8 show that better SIR values are achieved with the
IMHC hybrid clustering algorithm with LSBSs. It can be observed that, with the shorter
service ranges, the IMHC scheme improves the SIR values of LSBSs by nearly 40%, 10%,
and 6% compared to centralized clustering, distributed clustering, and existing hybrid
clustering, respectively. Thus, reduced interference is achieved in both levels of clustering,
i.e., at tier-2 and tier-3, with pico BSs and femto BSs, respectively. Again, it can be observed
that the denser the LSBSs clusters deployed, the better the received SIR power.
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Figure 8. Comparison of received SIR vs. distance in meters at LSBSs with centralized clustering,
distributed clustering, existing hybrid clustering, and the IMHC hybrid clustering scheme.

Figure 9 shows the overall system throughput achieved after implementing the IMHC
hybrid clustering scheme of SBSs, i.e., by increasing the number of SBSs, the achieved
system throughput was improved significantly.
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Figure 9. System throughput achieved with the IMHC scheme by increasing the number of SBSs
in HetNet.

Finally, to validate the obtained results, we generated the CDF of SIRs achieved for
the SBSs that performed better in the IMHC hybrid clustering environment, as shown in
Figure 10. Moreover, it can be analyzed from Figure 11 that the performance of the IMHC
scheme was better with HSBSs than LSBSs. This implies that the IMHC scheme yields a
lower outage ratio of HSBSs than LSBSs.
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5. Conclusions

It can be concluded from the proposed research that, in a heterogeneous network
environment, the small cell base stations are deployed closely and randomly under dense
conditions in a given area. Therefore, by categorizing the SBSs based on the received power
and deploying them in a multi-tier architecture, the interference is reduced in the SBS
tiers. In a multi-tier network with BSs having various power values, it is evident that BSs
with high-power values will cause more interference than the BSs with low-power values.
Therefore, by categorizing the SBSs as high- and low-power SBSs using efficient clustering
methods, and implementing the SPC algorithm with the IMHC scheme, interference is
managed more effectively and improved network throughput is achieved. In the future,
NOMA or other multi-access-based user association schemes under the IMHC scheme can
be implemented to achieve improved coverage and capacity.
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Abbreviations

Acronym Description
BS Base Station
SBS Small Cell Base Station
MBS Macro Cell Base Station
HSBS High-Power Small Cell Base Station
LSBS Low-Power Small Cell Base Station
UDN Ultra-Dense Network
IMHC Interference-Managed Hybrid Clustering
SPC Small Cell Power Control
CH Cluster Head
CM Cluster Member
UE User Equipment
SUE Small Cell User Equipment
SGW Small Cell Gateway
SIR Signal To Interference Ratio
HetNet Heterogeneous Network
PPP Poisson Point Process
NOMA Non Orthogonal Multiple Access
HetIot Heterogeneous Internet-of-Things
RRM Radio Resource Management
RAN Radio Access Network
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