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Abstract: The global prevalence of visual impairment due to diseases and accidents continues
to increase. Visually impaired individuals rely on their auditory and tactile senses to recognize
surrounding objects. However, accessible public facilities such as tactile pavements and tactile signs
are installed only in limited areas globally, and visually impaired individuals use assistive devices
such as canes or guide dogs, which have limitations. In particular, the visually impaired are not
equipped to face unexpected situations by themselves while walking. Therefore, these situations
are becoming a great threat to the safety of the visually impaired. To solve this problem, this study
proposes a living assistance system, which integrates object recognition, object extraction, outline
generation, and braille conversion algorithms, that is applicable both indoors and outdoors. The
smart glasses guide objects in real photos, and the user can detect the shape of the object through a
braille pad. Moreover, we built a database containing 100 objects on the basis of a survey to select
objects frequently used by visually impaired people in real life to construct the system. A performance
evaluation, consisting of accuracy and usefulness evaluations, was conducted to assess the system.
The former involved comparing the tactile image generated on the basis of braille data with the
expected tactile image, while the latter confirmed the object extraction accuracy and conversion rate
on the basis of the images of real-life situations. As a result, the living assistance system proposed
in this study was found to be efficient and useful with an average accuracy of 85% a detection
accuracy of 90% and higher, and an average braille conversion time of 6.6 s. Ten visually impaired
individuals used the assistance system and were satisfied with its performance. Participants preferred
tactile graphics that contained only the outline of the objects, over tactile graphics containing the full
texture details.

Keywords: image processing; object detection; artificial intelligence; blind; braille system

1. Introduction

The leading cause of visual impairment can be congenital or a result of accidents,
aging, or diseases. In addition, the number of people with acquired vision loss is increasing
because of urban environmental factors resulting from the development of electronic
devices [1,2]. A survey made by the World Health Organization (WHO) in 2020 indicated
that approximately 2.2 billion people, which accounts for 28.22% of the global population,
are visually impaired (i.e., near or distance visual impairment) [3,4].

Visually impaired people rely on their auditory perception and somatosensation—primarily
sound and braille—to obtain information from the environment; they use assistive devices
such as canes to recognize obstacles. However, although 28.22% of the global population
accounts for visually impaired individuals [5,6], accessible facilities are not universally
installed, leading to issues of social discrimination due to the limitations of their activi-
ties. Particularly, they cannot face unexpected situations outdoors independently, thereby
restricting their activities to indoors or in their neighborhood. Accessible facilities such
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as tactile pavements and tactile signs are not appropriately installed in all institutions.
Moreover, some countries do not provide support for assistive devices. In addition, most
artworks, such as paintings and sculptures, cannot be touched to preserve them, making it
difficult for visually impaired people to enjoy cultural activities through their imagination
alone with tactile brochures. Therefore, researchers conducted numerous studies to help
them become self-sufficient in their daily lives. In particular, studies on providing informa-
tion via braille have recently gained attention. However, most of these studies focused on
tactile maps or graphic image braille conversion. A system is needed worldwide to ease
their daily lives because it is difficult to assist the visually impaired individuals in real life.

This study proposes a living assistance system based on images of the surroundings
and objects that visually impaired people want to experience in real life that are captured
by smart glasses. The system stores object information using an object detection algorithm
to provide voice guidance when the user goes outdoors. Moreover, the system provides an
object image braille conversion service using an object extraction algorithm when indoors
and carrying a braille pad. The braille data are generated as binary data to enable use in
various braille pads, and the images are generated at three degrees of expression to enable
users to recognize the shapes at different types. The accuracy of the proposed system is
calculated by comparing the example tactile image with the expected tactile image on the
basis of the braille data, and the usefulness of the system is evaluated by comparing the
object detection results in real-life images and the execution time.

2. Related Research

Researchers conducted various studies regarding the living assistance for visually
impaired people. Previous studies were focused on the generation of tactile signs and maps
as navigation aids for the visually impaired, image conversion, and the development of
tactile image output devices for braille pads. However, there is a lack of studies on the
generation of tactile images based on real-life images or systems that assist with real-life
outdoor activities, such as the automatic object detection voice guidance system proposed
in this study.

2.1. Similar Research
2.1.1. Tactile Graphics

Tactile maps and images are generated through image processing based on general
maps to create tactile maps. Tactile maps are the most provided navigation aid for the
visually impaired people by public institutions. However, tactile maps are gradually being
provided by various institutions, fueling further research on their development.

Kostopoulos et al. [7] proposed a method for generating tactile maps based on a map
image created by reading the road names written on a map via OCR and converting it into
a road image, as shown in Figure 1. Although the proposed system for creating tactile maps
can quickly recognize roads on the basis of the road names, it cannot detect alleys without a
name. Moreover, OCR is slow and limited although it is faster than the existing algorithms.

Zeng et al. [8] developed an interactive map in which the user can zoom in and out,
as shown in Figure 2. They allowed users to explore the tactile map by dividing it into zoom
levels. However, a post-experiment survey found that visually impaired people preferred
maps with only two zoom levels, and the usage time increased due to various factors such
as the production of the interactive map, the guidance of the selections, and the selection.

Moreover, Krufkaf et al. [9] proposed an advanced braille conversion algorithm for
vector graphics on the basis of previous studies. The algorithm extracted object boundaries
using the outline information of the graphic based on the vector graphics hierarchical
characteristics. The levels are classified on the basis of the extracted boundaries, and the
multi-level braille is converted to a braille tablet using the tiger advantage braille printer
program [10]. Although the proposed multi-level braille conversion system can provide
meaningful results, it is difficult to apply to real-life objects using vector graphics, as shown
in Figure 3.
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Figure 1. Map image-based tactile map production method [7].

Figure 2. iPad and HBMap system-based interactive maps [8].

Figure 3. Outputs of proposed method for the vector graphic [9].

In Korea, Kim et al. [11] investigated braille conversion on the basis of images captured
via a webcam. The locations with and without data are compared to identify characters
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in the image by analyzing the images using MATLAB. Figure 4 shows the evaluation
of the recognition level according to the font size, font type, and camera performance.
In addition, an algorithm was developed by configuring an optimal environment based on
the evaluation results. Although their research showed significant results, the system can
only convert numbers and uppercase English letters, and it cannot identify objects other
than letters or recognize Korean letters.

Figure 4. Image conversion according to font size and font [11].

Lee et al. [12] developed a banknote recognition system using Raspberry Pi as a
camera. The process consisted of two steps (i.e., extraction and matching). The researchers
compared the extraction algorithms SIFT, SURF, and ORB; they adopted SIFT because
it yielded the highest recognition rate. The system achieved high accuracy even when
changing the shooting method or in unsuitable environments (e.g., low light or rotated
banknote) by generating vector images using extreme values as features. Nevertheless,
the brute-force algorithm requires extensive time for recognition, as shown in Figure 5,
making it unsuitable for this study, which uses many objects.

Figure 5. Keypoints Matching Using the Brute-Force Algorithm [12].

2.1.2. Braille Pad

Researchers have made several attempts to output tactile images by combining a
haptic device with a braille display [13].

Kim, S. et al. [14,15] proposed a 2D braille display to output data in the digital acces-
sible information system (DAISY) and the electronic publication (EPUB) formats. They
developed the braille pad for outputting braille information and the technology for tactile
image conversion, as shown in Figure 6. Tactile image tests were conducted using simula-
tors, and the tactile image conversion technology quantizes and binarizes data to convert
graphs, graphic images, and even photos, enabling them to obtain significant results.

Prescher et al. [16] proposed a PDF-editor-based braille pad and braille conversion
system. The user interface (UI) for displaying and editing PDF content was designed
to show on one screen using a horizontally long touch-enabled braille pad. As both the
content and editing UI are displayed on one screen, excessive information is provided at
once, making it difficult for first-time users. Moreover, it can only translate the diagrams
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and text input, which are in PDF files rather than images, although it can display diagrams
as shown in Figure 7.

Figure 6. Braille pad prototype and Output screen [14,15].

Figure 7. Braille pad and Output example [16].

2.1.3. Supplementation and Service

In addition, various products and services are being researched to assist the
visually impaired.

Kłopotowska et al. [17] studied architectural typhlographics and developed them
through multi-criteria analysis by integrating the characteristics of braille maps and archi-
tectures (Figure 8). The study results show the future growth potential of typhlographics
on the basis of its social values of enabling tourism for the visually impaired in addition to
its broad utility in the development of tactile architectural drawings such as diversification
of architectural education and interior design.

Morad [18] studied the assistive devices that receive location coordinates via the global
positioning system (GPS) and process data through a PIC controller to output specific voice
messages stored in the device for visually impaired people. The study aimed to develop an
affordable and easy-to-use assistive device that helps the visually impaired people find their
way on their own as they listen to the voice messages through the headset. It received a
positive response from them when the device was used by people with visual impairments.

On the other hand, Fernandes et al. [19] proposed a radiofrequency identification
(RFID)-based cane navigation system to guide people with visual impairments by using the
RFID device installed under the road. The navigation system provides audio navigation
assistance to reach the desired destination through the route calculation and location
tracking using the RFID tags once the user inputs a specific destination in the cane. It is
considered to have a significant growth potential owing to its higher accuracy than GPS
and the easy-to-update feature of the navigation system.

Liao et al. [20] proposed the integration of the GPS and RFID technologies to develop
a system for indoor use in order to address the shortcoming of the GPS system used. This
hybrid system receives location data based on GPS and fine tunes the specific location data
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with RFID, which was developed to provide walking assistance to users. The study results
are expected to facilitate the development of the walking assistance system for the visually
impaired individuals and the enhancement of GPS accuracy.

Figure 8. Typhlogics in the form of a book that shows tactile information tables and tourist facilities
for blind tourists [17].

2.2. Algorithms
2.2.1. YOLO

You Only Look Once v3(YOLOv3), a Darknet-53 network-based object detection algo-
rithm, passes through layers of various sizes and compares them with object characteristics
analyzed in the dataset to detect objects [21–23]. This study used YOLOv3 for object detec-
tion to identify objects within the line of sight of users. YOLOv3 has undergone several
versions of development, making it more accurate than other algorithms [24–27]. In addi-
tion, it is fast and specialized for real-time detection as it searches only once, enabling an
object detection from images in real time. According to the study of Redmon et al. [23].
YOLOv3 yielded an mAP of 57.9% in a COCO dataset test, demonstrating the high speed
and accuracy of the algorithm. Figures 9 and 10 shows the YOLOv3 operating structure and
the network structure, respectively. The method detected through the network is shown in
Figure 11 and is expressed by Equation (1).

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwetw

bh = pheth

(1)

2.2.2. Grabcut

The GrabCut algorithm allows more effective object feature classification and ease of
use than previous algorithms [28,29], such as Magic Wand, Intelligent Scissors, Bayes Matte,
Knockout2, and GraphCut. This algorithm is used to separate the detected objects from
the background, exploiting its advantages of high speed and extraction accuracy with only
user-specified regions. Through GraphCut-based segmentation, the color values between
pixels are calculated. A color model is generated on the basis of the color values of the
model, and the foreground and background are separated via segmentation, as shown
in Figure 12. After adding a mask to distinguish the foreground and background on the
basis of the selection of the user, the separated foreground can be re-extracted, as shown in
Figure 13.



Sensors 2022, 22, 1601 7 of 22

Figure 9. YOLOv3 network detection method [24].

Figure 10. YOLOv3 network architecture [24].
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Figure 11. Numerical expression of YOLOv3 object detection [23].

Figure 12. GrabCut principle image-Convergence of iterative minimization. (a) The energy E for the
llama example converges over 12 iterations. The GMM in RGB colour space (side-view showing R,G)
at initialization (b) and after convergence (c) [28].

Figure 13. Grabcut example image [28].
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2.2.3. Canny

In contrast to Contour, which is a contour line detection algorithm that generates
boundary lines based on the height of the boundary detection target [30], Canny identifies
the boundary values of the object to generate an outline [31]. In comparison to previous al-
gorithms for generating outlines, Canny is fast and applicable to color images. Therefore, it
was used to generate outlines for converting the extracted object to braille. In addition, new
criteria were added to prevent it from generating abnormal outlines to achieve a low error
rate and stable and improved system performance. Additionally, the criteria of existing
algorithms are strengthened, and a parametric closed outline generation technique is pro-
vided through numerical optimization. Accordingly, additional criteria were hypothesized,
and various equations and operators were used to satisfy the hypotheses. Figure 14 shows
the results of this application, indicating its suitability as an outline generation algorithm.

Figure 14. Canny example image [31].

3. System Design and Configuration of Use Environments

The automatic-object-detection-algorithm-based braille conversion system for the
living assistance of the visually impaired mainly targets visually impaired people including
those with limited sight who typically use braille since the system is fully operated by
smartphones. The images of surrounding environment and objects are captured with smart
glasses, and the braille images are generated on the braille pads. The relevant objects
are captured through smart glasses, and the tactile image is the output on a braille pad.
Figure 15 shows the structure of the system, which is operated through a smartphone.
To detect objects, it is connected to smart glasses via Bluetooth using the smartphone.
The camera screen of the smart glasses and the screen of the desired field of view are
confirmed through the smartphone and a shooting request is sent when the smart glasses
are connected. When the shooting request reaches the smart glasses, it takes a photo with
the built-in camera and sends it to the smartphone. The location and name of the objects
in the photo are transmitted through the smart glasses and confirmed via TTS when the
system performs object detection at the request of the user. The image is converted to
braille, and the braille data are transmitted to the braille pad to allow the user to confirm
the shape of the object. Once the transmission is completed, the user can recognize the
shape of the object with the tactile image generated through the braille pad.

Figure 15. System schematic.
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4. System Configuration

Table 1 shows the configuration of the proposed system in five steps: shooting, object
detection, object extraction, outline generation, and braille conversion. The algorithms for
all steps except shooting are constructed on an integrated server to increase the processing
speed and store and use various image data. Each step can be separately executed through
a smartphone on the basis of the scope of use and selections of the user. Moreover, only the
result data are stored on the smartphone. The data from each step are maintained until the
step is executed again. Figure 16 presents the overall process of the system.

Table 1. Requirements of proposed system.

Function Description

Image shooting

Capture photo of user-specified field of view and generate image

Transfer to image controller and store

Receive voice guidance data at user request

Object detection

Learn object images in database defined by system administrator

Generate object recognition model

Recognize objects based on image and store result image

Store analysis result data

Transmit voice guidance data at user request

Object extraction
Extract objects from image based on data

Resize and store extracted object images

Outline generation

Preprocess image

Calculate average color values based on extracted object images

Generate object outline based on color values

Braille conversion

Analyze generated outline and create braille data

Analyze resolution of linked braille pad

Convert data size to braille pad resolution

Figure 16. process.

4.1. Object Detection

In the object detection step, the YOLOv3 algorithm was used to detect a variety of
objects in real time. Figure 17 shows the results from the application of the system to a
real object.
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Figure 17. Object detection example [32].

4.2. Object Extraction

The extraction step was configured using Python, and image processing algorithms
used were from OpenCV. The objects were extracted using GrabCut after preprocessing the
image. Figure 18 shows the structure of the object extraction step.

Figure 18. Structural diagram of object extraction steps.

4.2.1. Image Preprocessing

The contrast of the entire image, which refers to the difference in brightness between
bright and dark areas in an image, is enhanced to clearly distinguish the colors of the
detected image. An image with a small difference in brightness between bright and dark
areas has a low contrast value, while an image with a large difference in brightness between
bright and dark areas has a high contrast value. The contrast value refers to the contrast
ratio. To increase the contrast value, dark areas must be darkened by increasing the color
value of the pixels, and bright areas must be brightened by lowering the color values of
the pixels.
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Although there are various algorithms for increasing contrast value, the most basic
technique is to multiply each pixel by a value based on the desired brightness of 1.0 [33,34].
Multiplication techniques are categorized into two methods: multiplying a MAT and using
the saturate equation through the clip algorithm. However, they are not suitable for this
study because these methods are mainly used on grayscale images to adjust only the
brightness values. Instead, we examined algorithms used for colored images. The contrast
of colored images is adjusted using a histogram equalization algorithm [35]. In addition,
histogram smoothing converts a colored image composed of RGB channels into YCrCb
channels and separates them into individual Y, Cr, and Cb channels, respectively, as shown
in Figure 19. Y represents the luminance component, while Cr and Cb represent the
chrominance components. Histogram equalization is applied to the separated luminance
channels to increase the contrast value of the image.

Figure 19. Histogram equalization Example.

Histogram equalization can be applied to an image composed of RGB channels to
increase the contrast of the image. It increases the contrast by converting a colored image
composed of RGB channels to YCrCb channels and separating them into individual Y,
Cr, and Cb channels, respectively. Y represents the luminance component, while Cr and
Cb represent the chrominance components. The contrast of color images is increased by
applying the histogram equalization in the separated luminance component.

However, histogram equalization adjusts the contrast value of the entire image at once,
making the bright areas very bright and dark areas very dark. This results in an unbalanced
image overall. The CLAHE algorithm, which separately adjusts the brightness of specific
areas in the image, was used to adjust the average brightness while increasing the contrast
value [36]. To apply CLAHE, the image is converted to the LAB format and separated
into individual channels to separate it into colored and grayscale [37] images. Channel L
represents the brightness of the light and is expressed as a black and white image, while
channels A and B represent the degree of color. Channel A represents magenta and green,
and channel B represents blue and yellow. Moreover, the images are sequentially searched
on the basis of the specified grid size, and the contrast value is adjusted to increase the
contrast value in channel L and the black and white images. The channels are combined
and converted back to the RGB format for other image processing after searching all images
and adjusting the contrast value. Using the image from Figure 17, the contrast of an image
was increased (Figure 20) through image channel separation, as shown in Figure 21.
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Figure 20. LAB Image by channel.

Figure 21. Contrasted image.

4.2.2. Object Extraction

The stored object location information is imported to extract objects from the image
whose contrast was increased in the preprocessing step. Approximately 10 is added to or
subtracted from each x and y value in the stored object location information to distinguish
the surrounding pixels easily, as shown in Figure 22. GrabCut is used for object extraction.
A black background is generated around it when an object is extracted, leaving only the
object. In addition, the image size is reduced on the basis of the location information
to fit the image size to the object and save it. Figure 23 shows the result of using the
GrabCut algorithm.

4.3. Outline Generation

It is hard for users who have difficulty distinguishing objects to recognize objects
with large amounts of information at once. Therefore, the tactile image generation was
divided into three types depending on the desired type of expression of the user. These
three types were “Out,” which displays only the outermost part such that the user can
recognize the overall shape of the object; “Feature,” to ensure that the user can recognize
the inner boundaries and form of the object; and “Detail,” which displays all information
even the text in the object. Figure 24 shows the structure of the outline generation step.
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Figure 22. Object measurement range.

Figure 23. Object extracted image.

4.3.1. Image Processing

In the image processing step for generating the outline, the noise was removed and
the colors were averaged. GaussianBlur was performed to remove the noise created by
increasing the contrast and other noise [38]. GaussianBlur is used to remove large noise,
while averaging [39,40] removes small components and detailed features, such as letters
and shapes. Each algorithm was performed with varying degrees of frequency and intensity
depending on the outline generation type selected by the user.

In the Out mode, starting from the 7 × 7 kernel and sigma 0, the algorithm was run
as it gradually reduces the search size to ensure an iterative and powerful preprocessing
and to completely remove noise, features, and information. In the Feature mode, starting
from the 5 × 5 kernel and sigma 0, the algorithm was run as it gradually reduces the search
size to moderately remove noise and information. On the other hand, in the Detail mode, it
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searched with a 3 × 3 kernel and sigma 0 to remove noise while maintaining features and
information. Figure 25 shows the image processing results.

Figure 24. Outline creation step structure.

Figure 25. Image after performing.

4.3.2. Outline Generation

Canny [31] was used because it had a higher speed than Contour [30] although both
Contour and Canny yielded similar accuracies for the outline generation algorithm. To gen-
erate the outline for each mode, the arrangement average and standard deviation of the
images are calculated based on the noise-removed image, and the sum is set to a maximum
value, so that the outline generation degree varies depending on the value range and mode.
The morphology operations erosion and dilation were used to remove noise and small
outlines remaining in the generated outline image. For braille conversion, the thickness
was increased three times to confirm the line region, and the generated outlines were stored
as individual images according to the mode. The thickness was increased three-fold by
repeating the morphology dilation operation [41] three times, and the generated outlines
were saved as an individual image on the basis of the mode to clearly define the lines for
braille conversion. Figure 26 shows the result of outline generation.

4.4. Braille Conversion

Finally, the braille data were generated in the braille conversion step. For the data size,
an image with a horizontal or vertical size of 416 was used as an input in the detection
network in YOLOv3. The transformed image was resized on the basis of the detected
location information of the object in the object detection process. Moreover, the data
size was converted through braille data resizing on the basis of the received braille pad
resolution when the braille pad was connected, ensuring that the output braille fitted the
braille pad.
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Figure 26. Outline image—Step-by-step image completed up to thickness increase.

n × n Comparison Conversion

At this stage, the outline images generated through Python were imported and con-
verted to braille data to create braille images. Colored values in which the color and
brightness can be identified were searched via array comparison because images in Python
are expressed as an array. A two-dimensional array of the same size as the image was
generated to perform the search. The image was searched in a 5 × 5 pixel neighborhood,
and it was checked whether there are color data in the center pixel (>0), as shown in
Figure 27. A value of 1 was stored in the same location as the generated two-dimensional
array if there are color data. An array was finally generated by searching the entire image,
which is stored for transmission to the braille pad. The tactile image was generated by the
same technique; the image was searched, and a circle was created in areas with a value.
Figure 28 shows the results of braille transformation through comparative transformation.

Figure 27. Example of braille conversion process.

Figure 28. Generated braille image.
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5. Experiment and Evaluation

We evaluated the accuracy and usefulness of the tactile image generated by the
proposed system. To evaluate the accuracy, the expected result images and the system
result images for a variety of objects were compared. On the other hand, to evaluate
the usefulness, the execution time of the system was calculated using photos in diverse
situations that can be confirmed in real life, which verified the applicability of the system
in real life.

5.1. Experiment
5.1.1. Object Data Generation

The highly well-known and stable Microsoft COCO dataset [42] was used as the basic
dataset because the dataset was required for object detection through YOLOv3. Table 2 lists
the selected objects. Additionally, based on the COCO dataset object list, objects that give
visually impaired people discomfort were added according to survey results, thus forming
a dataset with 100 types of objects. The survey was conducted among visually impaired
people in Korea at a welfare center. Table 3 summarizes the results.

5.1.2. Accuracy Evaluation

To select the objects for the evaluation criteria, the objects that the visually impaired
frequently use or encounter in real life were categorized into the following: (1) “indoors”
and “outdoors” and (2) based on their sizes (i.e., large, medium, and small), resulting
in a total of six objects. The following size criteria were applied: objects difficult to
hold in the hands were classified as large, objects that can be held with two hands as
medium, and objects that can be held with one hand as small. For the objects that are most
frequently encountered outdoors, “car” was selected for large, “fire hydrant” for medium,
and “traffic cone” for small. On the other hand, “closet” was selected for large, “chair”
for medium, and “comb” for small for the objects that are most frequently used indoors.
Figures 29 and 30 show the comparison between the expected data and actual object results.
The actual results were compared with [43,44] the braille for the “Detail” mode to verify
the expression of details in the images.

5.1.3. Usefulness Evaluation

To evaluate the usefulness, based on the three photos with the themes of “walking,”
“eating,” and “washing face,” the conversion time in each step was measured and averaged,
and the identified objects were compared with [43,44] the detected object list. Only the
name and location value of the object closest to the user were used when there were
duplicate objects in the braille conversion step, thus performing braille conversion without
any duplicate objects. Figure 31 shows the photos used for the evaluation, converted
photos, and detected objects list, with conversion times of 5.8, 4.5, and 7.4 s, respectively.

5.2. Overall Evaluation

The main object was compared with the expected generated data to evaluate the
accuracy of the tactile image. We verified the amount of time needed for conversion to
evaluate the usefulness of the system.

In the accuracy evaluation, the expected result image was visually compared with
the resulting image of the system, and the accuracy of the generated tactile image was
measured. The results showed that the final image has an average accuracy of 85% which
is similar to that of the expected image.

In the usefulness evaluation, the list of detected objects was compared and the con-
version time was measured on the basis of the photos of three situations that users can
encounter in real life. For the objects detected in photos of real-life situations, the results
indicated an accuracy of approximately >90%. By excluding duplicate objects, the average
time needed to convert the objects was less than 6.6 s, exhibiting that it can be quickly used
in real life.
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Table 2. COCO dataset object list [42].

Person Backpack Umbrella Handbag Tie Suitcase Bicycle Car Motorcycle Airplane
Bus Train Truck Boat Traffic light Fire hydrant Stop sign Parking meter Bench Bird
Cat Dog Goose Sheep Cow Elephant Bear Zebra Giraffe Frisbee
Skis Snowboard Sports ball Kite Baseball bat Baseball glove Skateboard Surfboard tennis racket Bottle

Wine glass Cup Fork Knife Spoon Bowl Banana Apple Sandwich Orange
Broccoli Carrot Hot dog Pizza Donut Cake Chair Couch Potted plant Bed

Dining table Toilet TV Laptop Mouse Remote Keyboard Cell phone Microwave Oven
Toaster Sink Refrigerator Book Clock Vase Scissors Teddy bear Hair drier Toothbrush

Table 3. List of selected objects.

Person Backpack Umbrella Handbag Tie Suitcase Bicycle Car Motorcycle Airplane
Bus Train Truck Traffic light Fire hydrant Subway Bench Bird Cat Dog

Sports ball Skateboard Bottle Wind glass Cup Fork Knife Spoon Bowl Chair
Tissu Potted plant Bed Dining table Toilet TV Laptop Mouse Remote Keyboard

Cell phone Microwave Sink Refrigerator Book Clock Pillow Scissors Toothbrush Toothpaste
Hair drier Braille pad Tree Street lamp Utility pole Manhole Vending machine Elevator Standing board Escalator
Shampoo Conditioner Lottion Stair Traffic cone Bollard Radio Desk Whellchair Eletric rice cooker

Gas cooker Closet Washing machine Teapot Electric fan Comb Bookmark Soap Glasses Key
Shoes Shower Tumbler Walking stick Plate Pencil Electric kettle Pen Eraser Earphones
Towel Chopsticks Meat Fish Hat Rice Kimchi Bread Cushin Mattress
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This system can output tactile images generated on the basis of braille data of objects
with a shape similar to those of real-life objects, yielding significant results.

Ten visually impaired individuals were satisfied with the performance of the assistance
system. Moreover, they preferred the Out type, which simplifies the tactile information
in a straightforward manner, over the Detail type, which converts the real objects of
complex composition.

Figure 29. Comparison of expected and actual data(Outdoors).

Figure 30. Comparison of expected and actual data(Indoors).



Sensors 2022, 22, 1601 20 of 22

Figure 31. As a result of applying it to real life photos.

6. Conclusions and Discussion
6.1. Conclusions

The proposed system was designed to inform visually impaired people about the
types of obstacles in their field of view and to help them recognize their shapes. The system
used an AI algorithm with high processing speed to quickly guide the user and integrated
a simple image processing algorithm to provide tactile images in a short time. This study
proposes a new and simple type of assistive device for visually impaired people who usually
use braille, including people with limited sight. However, new algorithms or the latest
technologies were not applied in the proposed system. The proposed braille conversion
algorithm yielded an accuracy of 85% in relation to the expected result, demonstrating its
usefulness. By excluding duplicate objects, approximately 12 out of 13 objects that can
be confirmed in real life were detected on average. In addition, the conversion took an
average of 6.6 s, indicating that the system is sufficient for use in real life.

6.2. Discussion

This study proposes a living assistance system that is applicable both indoors and
outdoors by integrating object recognition, object extraction, outline generation, and braille
conversion algorithms. According to the experiments and evaluations, we found that the
system developed on the basis of the database tailor-made to the needs of visually impaired
people (includes people with limited sight), who usually use braille, was useful.

However, some limitations of this study include the object extraction results obtained
through GrabCut using the coordinates of the detected objects with YOLOv3 did not match
with the real object. Moreover, some images other than the object image are left, indicating
an inaccuracy in the braille conversion.

Therefore, we plan to perform primary development research to further improve the
accuracy of the system and to generate and apply YOLOv3-based object masks although a
more advanced system may require additional conversion time. Furthermore, we plan to
conduct secondary development research to convert detected objects to icons and reflect
the areas of improvement found from tests.
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