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Abstract: Underwater wireless sensor networks (UWSNs) comprise numerous underwater wireless
sensor nodes dispersed in the marine environment, which find applicability in several areas like
data collection, navigation, resource investigation, surveillance, and disaster prediction. Because
of the usage of restricted battery capacity and the difficulty in replacing or charging the inbuilt
batteries, energy efficiency becomes a challenging issue in the design of UWSN. Earlier studies
reported that clustering and routing are considered effective ways of attaining energy efficacy in
the UWSN. Clustering and routing processes can be treated as nondeterministic polynomial-time
(NP) hard optimization problems, and they can be addressed by the use of metaheuristics. This
study introduces an improved metaheuristics-based clustering with multihop routing protocol for
underwater wireless sensor networks, named the IMCMR-UWSN technique. The major aim of the
IMCMR-UWSN technique is to choose cluster heads (CHs) and optimal routes to a destination. The
IMCMR-UWSN technique incorporates two major processes, namely the chaotic krill head algorithm
(CKHA)-based clustering and self-adaptive glow worm swarm optimization algorithm (SA-GSO)-
based multihop routing. The CKHA technique selects CHs and organizes clusters based on different
parameters such as residual energy, intra-cluster distance, and inter-cluster distance. Similarly, the
SA-GSO algorithm derives a fitness function involving four parameters, namely residual energy,
delay, distance, and trust. Utilization of the IMCMR-UWSN technique helps to significantly boost the
energy efficiency and lifetime of the UWSN. To ensure the improved performance of the IMCMR-
UWSN technique, a series of simulations were carried out, and the comparative results reported the
supremacy of the IMCMR-UWSN technique in terms of different measures.

Keywords: underwater sensor networks; energy efficiency; metaheuristics; network lifetime; com-
munication; routing

1. Introduction

A large number of studies have been conducted on terrestrial sensor networks con-
cerning several aspects, and currently, the underwater wireless sensor networks (UWSNs)
have attracted growing interest from researchers [1,2]. They are different from the widely
employed land-based sensor networks in terms of the cost of expensive sensors, the trans-
mission system of acoustic signals, the dense deployment of sensors, the larger storage
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space to save maximal information, and the maximal power for transmission [3,4]. An
UWSN consists of movable and stationary nodes that interact via acoustic networks. UWSN
is utilized in various applications which have underwater environments, such as pollution
monitoring, particularly the monitoring of the population of underwater flora and fauna,
chemical waste, disaster prevention, examining the health of rare marine creatures, assisted
navigation, mine reconnaissance, oil leakage detection, nutrient production, oceanographic
data collection [5,6], distributed tactical surveillance, underwater military applications,
target tracking, and detection. The researcher faces a lot of problems while working in
UWSNs, such as longer propagation delays, narrow bandwidth, temporary loss of connec-
tivity [7,8], harsh geographical atmosphere, shadow zones, constrained energy, attenuation,
high bit error rates, and a comparatively smaller network scale.

Communication distance, energy consumption, and network life cycle are the three ma-
jor considerations for designing UWSNs [9]. Topology control using the clustering model
is the major solution to the problem of the UWSNs since it could balance the energy uti-
lization, prolong the lifetime of the networks, and reduce communication interference [10].
The objective of clustering is to split the whole UWSN into different areas. In all the
regions, sensors only interact with the cluster head (CH) within their own cluster. Earlier
routing protocols were developed for certain layers, for example, design protocols for the
transport or network layers [11]. This protocol entailed a layered protocol framework [12].
They do not take advantage of energy levels, joint optimization, and other causes, so total
performance becomes insufficient [13–15]. Hence, the present study focuses on designing a
protocol that could make use of data received by distinct layers, named the cross-layered
routing protocol [16].

There is another issue that makes underwater transmission difficult. One of the prob-
lems is limited bandwidth. It has a direct effect on the communication rate of the network.
Different sources of noise and water current lead to limited bandwidth in UWSN [17]. For
longer distance transmission in UWSN, oceanic waves are utilized that could travel several
kilometers at higher power and lower frequency [18]. The underwater network faces
the loss of connectivity and a high bit error rate because of multi-path interference from
oceanic networks. Because of the water temperature, multipath noise effect, and Doppler
spread, underwater transmission is not reliable [19,20]. Furthermore, the multi-path effect
causes the incoming signal fade. As a result, routing becomes costly and challenging in
UWSN [21].

This study introduces an improved metaheuristics-based clustering with a multihop
routing protocol for UWSN, named the IMCMR-UWSN technique. The IMCMR-UWSN
technique intends to properly arrange the nodes into clusters and determine the shortest
routes for inter-cluster data transmission in the UWSN [22,23]. To accomplish this, the
IMCMR-UWSN technique designs the chaotic krill head algorithm (CKHA)-based cluster-
ing and self-adaptive glowworm swarm optimization algorithm (SA-GSO)-based multihop
routing protocols [24–26]. Since multiple input parameters are used for the selection of
CHs and optimum routes in UWSN, the overall network efficiency can be considerably
improved. The experimental results of the IMCMR-UWSN technique are validated and the
results are distinct aspects are inspected [27–29].

The rest of the paper is organized as follows. Section 2 provides a brief review
of existing cluster-based routing techniques in UWSN. Next, Section 3 offers a detailed
discussion of the proposed model. Then, Section 4 evaluates the performance of the
proposed model, and Section 5 concludes the study.

2. Literature Review

Yadav and Kumar [30] proposed an optimum clustering for UWSN that is compliant
with free space optical (FSO), acoustic, and electromagnetic (EM) wave-based transmission
systems. In particular, the applicability of the above-mentioned methods for underwater
transmission is examined and their efficiency is compared based on optimal clustering and
energy utilization [31,32].
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Fei et al. [33] proposed a hybrid clustering model based on moth–flame optimization
(MFO) and fuzzy c-mean (FCM) techniques for improving the efficiency of the system.
The concept is to create an energy-effective cluster by utilizing FCM and later using an
optimization method to select an optimum CH within all the clusters [34,35].

In Song et al. [36], a dynamic hierarchical clustering data collection method based on
multi-criteria decision making in 3D UWSNs was developed. First, the whole monitoring
network is separated into different layers. In order to select a CH in all the layers, the
multi-criteria decision-making of hierarchical fuzzy integration and the analytic hierarchy
process (AHP) is adapted. Moreover, they utilized a sorting approach for the formation of a
clustering topology model to resolve the problems. Next, they proposed an energy-balanced
routing method between clusters [37,38].

Li et al. [39] proposed a clustering method based on the discrete particle swarm
optimization (PSO) algorithm. Next, the clustering method they used was shown to keep
UASN clustered, but with the CH moving around [40,41].

Yu et al. [42] designed an energy optimization clustering algorithm (EOCA) for the
multihop underwater cooperative sensor networks (UWA-CSNs) because of the constrained
energy source of the underwater sensors. The presented systems consider various factors,
like the distance between the underwater sensors and sink nodes, the number of neighbor-
ing nodes, the RE of all the nodes, and the movement of the sensors produced by the ocean
current [43,44].

Wang et al. [45] developed an energy utilization balanced protocol, called dynamic
clustering k-means (DC-K-means)-based simplified balanced energy adaptive routing
(S-BEAR), to extend the lifespan of underwater sensor networks (UWA-SN) by avoiding
the energy hole and balancing the energy utilization of underwater sensors.

Omeke et al. [46] presented a novel approach called the distance- and energy-constrained
k-means clustering system (DEKCS) for the selection of CH. The potential CH is chosen
according to its residual battery level and location in the cluster. Then, the remaining energy
threshold set for CHs is dynamically upgraded to guarantee that the network completely runs
out of energy before it is disconnected.

Xiao et al. [47] proposed a genetic algorithm (GA)-based enhanced mutation operation,
an encoding system, and a crossover operation. In addition, the back propagation neural
networks (BPNN) used for data fusion are enhanced by adopting a momentum technique
that could minimize energy utilization by decreasing the amount of transmitted data and
eliminating the redundancy of data [48–51]. The existing studies and their descriptions are
discussed in Table 1.

Table 1. The state-of-the-art clustering with multihop routing protocol for underwater wireless
sensor networks.

Ref. No. Methodology Description Pros Cons

[30] FSO communication
compliant

Free space optical (FSO),
acoustic, and electromagnetic

(EM) waves-based
transmission systems.

No extra packet
transmission occurs due to

the use of the
priority value.

High error
ratepacket

redundancy.

[33]
Fuzzy c-means and

moth–flame
optimization.

Creates energy-effective cluster
by utilizing FCM and later uses

optimization method for
selecting an optimum CH within

all the clusters.

Reduces energy
consumption. Enhances

network lifetime.

Time delay
packet loss.

[36] Multiple criteria
decision-making.

Sorting approach is utilized for
the formation of clustering
topology model to resolve

the problems.

Reduces network delay.
High packet delivery.

Low throughput.
Less reliability.
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Table 1. Cont.

Ref. No. Methodology Description Pros Cons

[13]
Improved particle

swarm optimization
algorithm.

Discrete particle swarm
optimization (PSO) algorithm

applied for effective
clustering model.

Throughput is high.
Reliability in clustering

process.
Efficient routing

mechanism.

Network life time
packet delivery ratio.

[39]
Underwater acoustic
cooperative sensor

networks.

Improves the constrained energy
source of the

underwater sensors.

Low energy
consumptions.

Improving lifetime of
network.

Time delay and
packet loss.

[42]
Multi-hop transmission
for underwater acoustic

sensor networks.

Extends lifespan of underwater
sensor networks by avoiding the

energy hole and balancing the
energy utilization of
underwater sensors.

Packet delivery ratio is
high.

Reliable transmission.

Not suitable for deep
water area networks.

Dead nodes formation.

[45] Dynamic clustering
protocol.

Dynamically upgrades the
energy threshold set for CHs to

guarantee that the
network communication.

Avoiding of Packet
collision

Reducing network
delay.

Optimal path routing.

Sensor
communication failure.

[47] Data fusion and genetic
algorithms.

Used for data fusion is enhanced
by adopting a momentum

technique that could minimize
energy utilization.

High throughput.
Reliable transmission.

Maximization of
connection time and

network delay.

3. The Proposed Model

The purpose of this work is to develop a novel IMCMR-UWSN technique for maxi-
mizing the energy efficiency and longevity of UWSN. The IMCMR-UWSN technique led to
the invention of the CKHA technique and formed the clusters effectively. Additionally, a
new routing technique dubbed SA-GSO has been introduced and derived as a function for
efficiently selecting base station routes (BS). The following sections discuss the operation of
two significant sub-processes. The IMCMR-UWSN technique’s entire operation is depicted
in Figure 1.Sensors 2022, 22, x FOR PEER REVIEW 5 of 17 
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3.1. Energy Model

The underwater energy utilization method shown in [52] is used in the study. This
study considered P0 as the minimum power that a node needed to receive the packet, and
minimum transmission power must attain P0 A(l), whereas A(l) represents an attenuation
function. The energy utilization for receiving and transmitting is estimated as follows:

Et(l) = TtP0 A(l) (1)

Er = TrP0 (2)

A(l) = l1.5al (3)

a = 10α( fC)/10 (4)

α( fc) = 0.11
f 2
c

1 + fc2
+ 44

f 2
c

4100 + fc2
+ 2.75× 10−4 f 2

c + 0.003 (5)

in which Et(l) indicates the energy utilization to transmit, and Er indicates the energy
utilized for receiving. Tt represents the time for the node to transmit the packet, and Tr
shows the time to receive the packets. l denotes the distance among transmitting and
receiving the nodes. α( fc) represents the absorption coefficient in dB/km and fc shows the
frequency in kHz.

3.2. Process Involved in CKHA-Based Clustering Technique

The sensor nodes are initially deployed in the target area and the startup process is
initiated. Krill head (KH) is a generic stochastic optimization technique for solving global
optimization problems. It is induced by the krill swarm’s activity [53]. While hunting
for food and interacting with one another, the KH approach repeats three motions and
follows the search direction, which enhances the objective function values. The flowchart
of the KH approach is depicted in Figure 2. Three motions primarily characterize the
time-based location:

i Foraging behaviour.
ii Motion impacted by other krill.
iii Physical diffusion.
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The standard KH method adapts the Lagrangian algorithm as follows:

dxi
dt

= Ni + Fi + Di′ (6)

whereas Ni, Fi and Di indicates the foraging motion, i.e., impacted by other krill and the
physical diffusion of krill i, correspondingly. The primary motion Fi consists of data about
the preceding position and the existing food position:

Fi = Vf β j + w f Fold
i (7)

in which:
βi = β

f ood
i + βbest

i (8)

the second move is dictated by the position of the food as well as the previous experience
with the item in question and Vf denotes the foraging speed, w f indicates the inertia weight
of the movement within (0, 1) and is the final foraging movement.

The direction directed by the second motion Ni, ai is evaluated by: repulsive, target,
and local effects. For a krill i, it is expressed by:

Nnew
i = N max ai + wnNold

i (9)

For the first motion, αi represents the direction of its motion and is determined by
a target, a local influence, and a repulsive effect. Here N max represents the maximal
induced speed, wn dents the inertia weights of the second movement in (0, 1) and is the
final movement impacted by other krill [54].

K-means clustering is a vector quantization method derived from signal processing
that tries to split n observations into k clusters, with each observation belonging to the
cluster with the nearest mean (cluster centers or cluster centroid), which serves as the
cluster’s prototype.

To i-th krill, in fact, the physical diffusion is an arbitrary method. This movement in-
cludes oriented vector and maximal diffusion speed. The physical diffusion is expressed by:

Di = D max δ, (10)

In the Equation, D max denotes the maximal diffusion speed and δ indicates the
oriented vector whose values are an arbitrary value among [−1, 1].

As per above, the time-based location from time t to t + ∆t is expressed as follows:

Xi(t + ∆t) = Xi(t) + ∆t
dxi
dt

. (11)

The chaotic concept is integrated with the krill head algorithm (KHA) to improve
search efficiency and ensure convergence to the optimal solution [55]. Given that Chebyshev
maps are the most often used chaotic behavioral maps, it is likely that chaotic sequences
can be generated efficiently and quickly. Additionally, longer sequences are not required.
Chebyshev maps utilized during the CKHA model changes the value of randomized
parameter ωchebychev =

(
ωd, ω f

)
in KH.

Chebyshev map updates the parameter ωd and ω f according to the following equations:

ω
chebychev
j = cos

(
j ∗ cos−1

(
ω

chebychev
j−1

))
(12)

The above equation generates a chaotic sequence in the zero and one range. For
each independent performance ω

chebychev
0 is randomly taken. The chaotic values ω

chebychev
j
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generated by a logistical map with three hundred runs and ω
chebychev
0 = 0.001 is represented

by. In the case of CKHA [22],

Nnext
k = N max αk + ω

chebychev
d,j Npresent

k (13)

Fnexi
k = Vf βk + ω

chebychev
f ,j Fprevious

k (14)

According to UWSN’s energy utilization approach, the network’s energy consumption
is influenced by the communication distance. In fact, the selection of CHs is an optimized
problem, and the optimized problem’s motivation is to reduce the generating function’s
main function. As a result, the distance between a sensor node and the CH of all clusters is
expressed as follows:

distCM =

Nj

∑
i=1

d
(
CMij, CHj

)
(j = 1, 2, . . . , c) (15)

where cMij implies the member node from cluster j, cHj refers to the CH from cluster j, and
in all the clusters, there are Nj nodes.

The distance amongst a CH and BS is as follows:

distCB = d
(
CHj, BS

)
(16)

where BS refers to the place of BS. The energy utilization of network to broadcast the data
packet is written as:

ETo =
c

∑
i=1

(Ei
CH +

Ni

∑
j=1

Eij
MEM) (17)

It may generate the primary function based on the three impacts mentioned above.
Additionally, if disparities exist between the three factors on the scale, the normalization
function can be used to eliminate them. The sigmoid function is used to convert the three
factors to zero and one. Generally, the sigmoid function was presented as:

S(x) =
1

1 + e−x (18)

However, it generates the main purpose is:

Fobj = W∗1 distCM + W∗2 distCB + W∗3 ETo (19)

where W1, W2, and W3 imply the weight co-efficient that is changed for determining the
priority of 3 factors. Concurrently, W1 + W2 + W3 = 1

3.3. Process Involved in SA-GSO-Based Multihop Routing

The SA-GSO technique can be used efficiently during the routing phase to determine
the ideal paths to the destination. GSO [23] is an intelligently tuned technique that relies
on the glow-worm light being used as a signal to attract another glow-worm. This strategy
utilizes a randomly distributed group of glow-worms from the solution space. Each glow-
worm is a viable solution denoted by their location. The glow-worm with the highest
luminosity attracts the glow-worm with the lowest luminosity. This way, the technique’s
global optimization is accomplished. The following are the fundamental phases:

Step 1. Initialization the fundamental parameter of GSO. This parameter contains the
population size g, fluorescein volatilization factor ρ, fluorescein upgrade rate γ, upgrade
rate β of the dynamic decision field, the group of glowworms Ni (t) from the decision field,
threshold nt for the number of glow-worms from the neighborhood, perception radius rs,
and move step s.
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Step 2. The fitness value of glow-worm i at tth iteration was changed as to the
fluorescein value with the subsequent equation:

li(t) = (1− ρ)li(t− 1) + γJ(X(t)) (20)

where ρ refers to the fluorescein decompose constants going from zero and one, and γ
demonstrates the fluorescein improvement constant.

Step 3. All the glow-worms choose individuals with superior brightness than them-
selves in their dynamic decision radius ri

d(t) for the procedure of their neighbor set Ni(t).
Step 4. Compute the probability pij(t) of glow-worm Xi(t) affecting the glow-worm

Xj(t) from their dynamic decision radius by Equation (21):

pij(t) =
lj(t)− li(t)

∑k∈Ni(t) lk(t)− li(t)
(21)

Step 5. Upgrade the place of glow-worm X(t) in Equation (22):

Xi(t + 1) = Xi(t) + s×
[

Xj(t)− Xi(t)∣∣∣∣Xj(t)− Xi(t)
∣∣∣∣
]

(22)

Step 6. Upgrade the dynamic decision radius of glow-worm X(t) in Equation (23):

ri
d(t + 1) = min {rs, max {0, β× (nt − |Ni(t)|)}} (23)

Generally, in the GSO algorithm, predefined values are allotted to the step size as a
fixed value. Since the proper choice of step size is important for effective outcome, in this
study, two factors influencing the step size are considered, namely the number of rounds
and distance between the glow-worm and optimal glow-worm at the nith round. If the
ith glow-worms are located farther from optimum solutions, the step size becomes high,
otherwise, it becomes small. At the nith round, when the ith glow-worm indicates the
optimal one, its step size results in 0. After examining the impact of moving step size on
the GSO algorithm [56,57], the SA-GSO algorithm (Algorithm 1) is derived by the use of
self-adaptive step size formulation, as given below:

si(t) = Di(t)·
(

len
(

e− t
Nt

))
‖xi(t)− xb(t)‖ (24)

where each xi(t) is assigned to exactly one si(t), even if it could be assigned to two or
more of them, where Di(t) implies an arbitrary number in uniform distribution, Nt denotes
maximum iterations, and xb(t) indicates the location of the optimal glow-worm at the
tth round.

The SA-GSO algorithm is derived by considering parameters like trust, energy, delay,
and distance in order to determine the optimal route for data transfer between sender and
destination via CHs in UWSN as discussed in Algorithm 1. Because the fitness with the
highest value is considered the optimal path, the maximal fitness can be computed using
the largest trust value, the shortest latency, the highest energy, and the shortest distance.
The maximal fitness function can be evaluated using the following formulas:

B =
1
4
[b + (1− h) + (1− β) + µ] (25)

b =
1
a

a

∑
K−1

bK (26)

h =
a
m

(27)
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β =
1

a2 × η

a

∑
K=1

∑a
T=1 β(K, T)
T = K + 1

(28)

µ =
1

3a2 × η

a

∑
K=1

[DT + RT + HT] (29)

whereas B represents fitness function, b indicates energy, h denotes delay, β represents the
distance, µ shows trust, and η indicates the normalization factor.

Algorithm 1: Pseudocode of GSO Algorithm.

Initialization: m dimension
Initialization: n glowworms
Let s be step size
Let xi(t) indicates the location of glow-worm t at time instant t
Deploy agents in an arbitrary way
deploy− agents–randomly;
for i = 1 to n do `i(0) = `0
ri

d(0) = r0
Consider highest number of iterations = max_iter;
assume t = 1;
while (t ≤ max_iter) do:
{
for every glowworm i do
`i(t) = (1− ρ)li(t− 1) + γ Fitness (xi(t));
for every glow-worm i do
{
Ni(t) =

{
j : dij(t) < ri

d(t); `i(t) < `j(t)
}

;
for every glow-worm j ∈ Ni(t) do:

pij(t) =
`j(t)−`i(t)

Σp∈Ni(t)`p(t)−`i(t)
;

j = select_glowworm
(→

p
)

;

xi(t + 1) = xi(t) + step
(

xj(t)−xi(t)
‖xj(t)−xi(t)‖

)
ri

d(t + 1) = min
{

rsy, maximumm
{

0, ri
d(t) + β(nt − |Ni(t)|)

}}
;

}
t← t + 1;
}

4. Experimental Validation

This section examines the performance of the IMCMR-UWSN technique using con-
temporary approaches in a variety of contexts. Figure 3 compares the IMCMR-UWSN
technique’s number of alive nodes (NAN) analysis to previous techniques over several
iterations. The experiment was conducted with the 2018a edition of MATLAB testing,
which was performed on a 5th generation, core i5 system with 8 GB RAM. This experi-
mentation was carried out with different grid sizes, which ranged from 500 m to 2000 m.
This is also true for the tests. The number of nodes used ranged from 0 to 300, and the
range of the nodes’ transmission range changed from 25 m to 200 m. Nodes are supposed
to stay in the same place or move very slowly because of water flow. The experimental
results indicated that the low-energy adaptive clustering hierarchy (LEACH) methodology
produced suboptimal outcomes with the smallest possible NAN. Following that, the EGRC
approach achieved a somewhat higher NAN value than the LEACH protocol. Accordingly,
the forward backward conventional particle swarm optimization (FBCPSO) and FCMMFO
approaches resulted in a somewhat closer NAN after numerous cycles. While the EECRP
methodology attempted to achieve a reasonable NAN in comparison to the other ways, the
disclosed IMCMR-UWSN strategy outperformed them all in terms of NAN.
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Figure 3. NAN analysis of the IMCMR-UWSN technique.

Figure 4 compares the IMCMR-UWSN technique with other strategies in terms of
the number of dead nodes (NDN). The graphic demonstrated the LEACH protocol’s
ineffectiveness in comparison to other approaches with a greater NDN. Additionally, the
EGRC approach achieved a somewhat lower NDN concentration than the LEACH protocol.
Accordingly, over numerous iterations, the FBCPSO and FCMMFO approaches resulted
in a moderately closer NDN. While the EECRP technique achieved a slight advantage in
terms of NDN over the other ways, the provided IMCMR-UWSN technique outperformed
the previous techniques with the least amount of NDN. Calculate the distance d (ni, CHp,
k) between node ni and all CHs, CHp, k for all ni = 1, 2, . . . , N.
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Table 2 and Figure 5 illustrate the IMCMR-UWSN technique’s named data networking
(NDN) analysis using modern techniques. The testing results validated the IMCMR-UWSN
technique’s increased NLT by extending the rounds of first node death (FND), half node
death (HND), and last node death (LND) (LND). In terms of FND, the IMCMR-UWSN
approach achieved FND after 698 rounds, whereas the LEACH, EGRC, FBCPSO, FCMMFO,
and EECRP strategies achieved FND after 355, 505, 546, 578, and 626 rounds, respectively.

Table 2. Network lifetime analysis of the IMCMR-UWSN technique.

Methods FND HND LND

LEACH 355 532 643
EGRC 505 711 799

FBCPSO 546 748 876
FCMMFO 578 796 896

EECRP 626 837 946
IMCMR-UWSN 698 875 970
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Furthermore, when HND is considered, the IMCMR-UWSN technique achieves HND
at an increased round count of 875 but the LEACH, EGRC, FBCPSO, FCMMFO, and EECRP
procedures achieve HND at reduced round counts of 532, 711, 748, 796, and 837, respectively.
Furthermore, when LND is considered, the IMCMR-UWSN technique achieved LND at
698 rounds but the LEACH, EGRC, FBCPSO, FCMMFO, and EECRP techniques reached
LND at 643, 799, 876, 896, and 846 rounds, respectively.

Figure 6 compares the IMCMR-UWSN approach to various techniques in detail in
terms of total energy consumption (TEC). The graphic demonstrated the LEACH protocol’s
ineffectiveness against other approaches with a maximum TEC. Additionally, the EGRC
method achieved a somewhat lower TEC than the LEACH technique. Additionally, the
FBCPSO and FCMMFO techniques resulted in a slightly closer TEC across a large number
of iterations. However, while the EECRP approach achieved a somewhat higher TEC than
the other approaches, the reported IMCMR-UWSN methodology outperformed current
techniques with a lower TEC.
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Table 3 and Figure 7 compare the IMCMR-UWSN method’s number of packets re-
ceived (NOPR) analysis to other methods in various iterations. The experimental results
demonstrated that the LEACH approach achieved worse results with a lower NOPR.
Following that, the EGRC technique achieved a slightly higher NOPR than the LEACH
protocol. Following that, multiple rounds of the FBCPSO and FCMMFO techniques re-
sulted in a moderately closer NOPR. While the EECRP strategy attempted to achieve a fair
NOPR in comparison to the other approaches, the disclosed IMCMR-UWSN methodology
outperformed them all with a greater NOPR.

Table 3. Number of packets received analysis of the IMCMR-UWSN technique with different rounds.

No. of
Rounds LEACH EGRC FBCPSO FCMMFO EECRP IMCMR-

UWSN

0 0 0 0 0 0 0
50 922 2296 2296 2951 3212 3932
100 2100 4063 4652 5437 6157 6680
150 3409 6026 6811 7662 8839 9886
200 4652 7792 8578 9494 10,344 11,326
250 5568 9232 10,213 10,671 11,718 12,700
300 6418 10,671 11,522 12,176 13,158 14,074
350 7923 11,718 12,176 13,092 14,270 15,579
400 8512 12,569 13,289 14,205 15,186 17,018
450 9167 13,485 14,205 14,793 16,364 18,065
500 10,344 14,401 14,924 15,840 17,411 18,850
550 10,999 14,728 15,906 17,149 18,588 19,504
600 11,522 15,448 16,822 17,672 18,915 20,224
650 11,849 15,644 17,280 18,196 19,766 21,009
700 11,849 16,298 17,738 18,785 20,420 21,336
750 11,849 16,887 18,130 19,374 21,206 21,925
800 11,849 16,887 18,392 19,766 21,467 22,187
850 11,849 16,887 18,785 20,028 21,729 22,514
900 11,849 16,756 18,915 20,224 21,991 23,038
950 11,849 16,822 18,785 20,224 22,056 23,234

1000 11,849 16,822 18,785 20,159 22,056 23,234
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By examining the tables and figures above, it is clear that the IMCMR-UWSN technique
has been demonstrated to be an excellent instrument for achieving maximum energy
efficiency and lifetime in the UWSN environment. The preceding findings compare the
IMCMR-UWSN method’s number of packets received (NOPR) analysis against existing
methods in various iterations. The experimental results demonstrated that the LEACH
technique performed poorly with a lower NOPR in all rounds. Following that, the EGRC
model achieved a somewhat higher NOPR than the LEACH methodology. Following that,
across numerous rounds, the FBCPSO and FCMMFO approaches resulted in a moderately
closer NOPR. With a larger NOPR, the proposed IMCMR-UWSN model achieved the
highest performance.

5. Conclusions

The purpose of this work is to develop a novel IMCMR-UWSN technique for maxi-
mizing the energy efficiency and longevity of UWSN. The IMCMR-UWSN technique led
to the invention the CKHA technique and formed the clusters effectively. Additionally, a
new routing technique termed the SA-GSO technique was introduced and identified as a
function for selecting the optimal routes to BS. The use of numerous CH input parameters
and effective route selection contributes to the network’s overall performance improvement.
The experimental results analysis for the IMCMR-UWSN technique is validated, and the
findings are examined under a variety of different circumstances. The complete comparison
analysis demonstrated the IMCMR-UWSN technique’s superior performance to other con-
temporary techniques. In the future, the IMCMR-UWSN technique’s energy efficiency can
be increased further through the design of data aggregation methodologies. Additionally,
resource allocation strategies based on metaheuristic algorithms can be created to efficiently
allocate resources.
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