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Abstract: Digital twin (DT) is an emerging key technology that enables sophisticated interaction
between physical objects and their virtual replicas, with applications in almost all engineering fields.
Although it has recently gained significant attraction in both industry and academia, so far it has no
unanimously adopted and established definition. One may therefore come across many definitions
of what DT is and how to create it. DT can be designed for an existing process and help us to
improve it. Another possible approach is to create the DT for a brand new device. In this case, it can
reveal how the system would behave in given conditions or when controlled. One of purposes of
a DT is to support the commissioning of devices. So far, recognized and used techniques to make
the commissioning more effective are virtual commissioning and hybrid commissioning. In this
article, we present a concept of hybrid virtual commissioning. This concept aims to point out the
possibility to use real devices already at the stage of virtual commissioning. It is introduced in a
practical case study of a robotic manipulator with machine vision controlled with a programmable
logic controller in a pick-and-place application. This study presents the benefits that stem from the
proposed approach and also details when it is convenient to use it.

Keywords: hybrid virtual commissioning; digital twin; robotics; simulation; machine vision; PLC

1. Introduction

In recent years, automation has undeniably gained a significant role in many engi-
neering fields. The effort to speed up and simplify the processes as much as possible
necessarily implies the requirement to make the time needed for design, development and
commissioning a device as short as possible. It is also similar in the case of designing new
machines or even entire production processes. There is a number of different approaches
and procedures on how to achieve the desired result. The arrival of the COVID-19 pan-
demic, which markedly affected the market and the entire economy, has exposed even
more the advantage of using digital tools to reveal or propose possible solutions to the
impacts of various events [1]. To a great extent, they use the concept of digital twin.

1.1. Digital Twin

In the literature, one can find many definitions of a DT; however, there is none
that is recognized both in academia and across industry sectors [2]. At the same time,
there are many approaches to the creation of a DT, see, e.g., [3–6]. In short, according to
Schluse et al. [7], DT can be understood as a representation of a real object or subobject
with its data, functions and means to communicate in a digital environment. Qin et al. [6]
describe the DT in a similar way and add that DT can also be used for process optimization,
monitoring, diagnostics and predictions based on artificial intelligence (AI), machine learn-
ing and software analysis. DTs are hence used for simulation and assessment of system
or process behavior, based on which it is possible to take appropriate actions. Note also
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that, within the Industry 4.0 concept, AI is very often used together with DT [8]. The
use of DTs for manufacturing systems can be aimed at the support of technical condition
analysis for the purpose of improvement and predictive planning of maintenance activities,
management and optimization of performance of devices during their lifecycle [9].

Before starting to create a DT, it is necessary to ask questions, in particular, whether it
makes sense and what benefits it would bring. Given our requirements on the model, is it
even necessary to create a DT? Would the investment into DT return or would it be lossy?
It may also happen that creation of DT will result in a model that is too complex, which
tends to be the case when striving for a DT model identical to the device [10].

Every simulation requires power and time to perform computations. When designing
a DT, it is therefore of utmost importance to consider which parts of the device or process
are meaningful to simulate and which in turn would be useless and only lead to an increase
in computational effort. There is of course an effort to approximate the real system as
good as possible. It is therefore necessary to know what precision to achieve already at the
design stage.

All these factors significantly affect the required resources—computational, time,
financial and last but not least, human.

Although there is no uniform definition of a digital twin, an international standard
ISO 23247 is currently published. This standard defines a framework to support the creation
of digital twins of observable manufacturing elements including personnel, equipment,
materials, manufacturing processes, facilities, environment, products and supporting
documents. It consists of four parts [11]:

• ISO 23247-1: General principles and requirements for developing digital twins
in manufacturing;

• ISO 23247-2: Reference architecture with functional views;
• ISO 23247-3: List of basic information attributes for the observable manufacturing elements;
• ISO 23247-4: Technical requirements for information exchange between entities within

the reference architecture.

The main principle of creating a DT according to ISO 23247 is illustrated in Figure 1.
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Figure 1. Principle of creating a digital twin according to ISO 23247.

In the first step, the standard assumes observing the device or process for which a
model is to be created. Based on this, it shall be determined which signals and data shall be
obtained from the process and further integrated into the DT model. Next, based on this
model we shall decide how to improve the process itself, i.e., what actions shall be taken in
order to improve its behavior or performance.

We refer the interested reader to [12] for a demonstration of various use case scenarios
for digital twin implementation based on ISO 23247.

Another possible approach is described in [13], according to which a DT shall consist
of the following four parts:

• Real space;
• Virtual space;
• The data link from real space to virtual space;
• In addition, an information link from virtual space to real space and virtual sub-spaces.

Note that the digital representation of a physical entity can be also built from multiple
parts. This approach allows to create a detailed physics-based simulation model for the
purpose of process analysis [13].
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1.2. Virtual Commissioning

Digital twin is often associated with the concept of virtual commissioning (VC). It de-
notes an approach when virtual prototypes of devices are used to validate functionality
of the program as well as the mechanics [14]. The employment of virtual commissioning
brings many other advantages that include, e.g., avoiding the risk of damaging the device
during commissioning while ensuring safety of the personnel.

Virtual commissioning typically builds on two main approaches: software in the loop
(SIL) and hardware in the loop (HIL). These are followed by hybrid commissioning (HC),
which eventually leads to real commissioning, as illustrated in Figure 2.
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Within the SIL approach, in addition to the simulated process, control hardware is
emulated as well. It is conveniently used in both testing and design phase, since not a
single piece of hardware is required, and programming of software is accelerated [16]. It is
thus a purely off-line analysis where all hardware components are simulated.

Within the HIL approach, real control hardware is connected to the real-time simula-
tion of the virtual devices. This enables to test even complex automation tasks with the
control system that is to be utilized in real commissioning. The HIL simulation can be used
at different levels of production [14].

Hybrid commissioning proposed in [17] represents an incremental procedure, which
starts as HIL and stepwise replaces virtual devices by real devices and thus leading to real
commissioning. In [17], the authors introduced the HC approach by means of an example
of a PROFIBUS driven production plant where they compare and combine the signal values
of real and simulated components.

1.3. Motivation

Let us now recall the ISO 23247 standard and its implementation presented in [12]
and demonstrated by means of three use case scenarios. The first two, “Machine Health
Digital Twin” and “Scheduling and Routing Digital Twin”, run above a real-world process
or machine and focus more on their optimization or Product Lifecycle Management (PLM).
It is however the third use case scenario, “Virtual Commissioning Digital Twin”, which
is the most interesting from the perspective of this study. It differs by not having a real-
time connection to the device. Specifically, it describes the use of VC for a CNC machine
with a programmable logic controller (PLC) which is not physically constructed yet, but
it is possible to perform its VC for various scenarios using a DT. The use case example
assumes the HIL approach for this purpose. It also presents possibilities of using simulation
environments to acquire appropriate signals for testing or verification and validation (V&V).
The authors note that after performing all the tests, it is possible to deploy such a program
on the real device.

Verification and validation of simulation models represent an integral part of the
development process. The model, ergo the DT, is created for a specified purpose. Even
before its design, it is therefore necessary to formulate questions that the system will be
asked or tasked to solve and that the model has to be able to answer.
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In [18], the author discusses different approaches to V&V of simulation models. He
also points out the fact that, despite that a model can be valid for various uses, it does not
guarantee its validity for use in all applications in a given field. Figure 3 illustrates the
relationship between value and cost of a model and its confidence. It implies that, beyond
a required model confidence, its value to the user starts to decrease rapidly, while the time
required to create the model has a dependence similar to the overall value of the model.
Note that the cost of the model tends to be quite significant, especially when a very high
model confidence is required. It is given by a sum of all incurred costs, from development
to V&V.
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A particular form of V&V is essentially the VC approach, which enables to shorten the
time needed for programming and to resolve various software errors—and in conjunction
with a suitable simulation environment, also construction defects. The connection of VC
and DT offers an effective perspective on the product lifecycle. VC, however, also entails
some drawbacks. In particular, it is to a great extent affected by accuracy of the model.
Low accuracy can cause grave problems during commissioning and thus increase both its
cost and required time. Hence, although VC can significantly accelerate the development
process, it may happen that its cost will be too high, especially in cases of increasingly
complex devices.

How would it thus be possible to lower the cost while maintaining the advantages of
VC? One of the options is to save on the number of used software, and thus on the number
of licenses as well as necessary programmers. Another option is to employ our proposed
concept of hybrid virtual commissioning (HVC).

2. Hybrid Virtual Commissioning

HVC represents an approach combining VC with features of HC. Its main idea is
to reduce the cost of simulation by using the available equipment, the cost of which can
be lower than the license fees, and to simulate only the parts that are less affordable or
currently unavailable. Use of this approach makes sense if the utilized devices or parts are
so complex that it is more convenient to directly use them than to simulate them. Such a
solution then requires even less time for commissioning since it allows for a more accurate
testing by using DT, which further increases the likelihood of detecting defects.

In comparison with VC, HVC does not require a purely virtual model but combines it
with available devices which do not need to be modeled or simulated. In comparison with
HC (as described in [19]), HVC does not assume a successive transition from VC to HC but
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a direct use of components already in the VC phase. Similar to VC, HVC enables to employ
both the SIL and the HIL approaches. Likewise, it can be followed by application of HVC,
which will also require less time.

Figure 4 shows a flowchart for deciding which commissioning approach to choose.
The feasibility of modeling can be understood as a software limitation, i.e., absence of
license and other. At this step, it is necessary to consider the cost factor. Unless software
limitations are an issue, efficiency of modeling needs to be taken into account as well.
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Feasibility involves the overall complexity of modeling and therefore poses a question
as to what amount of resources is required to model of a given element. The higher the
complexity, the more demanding the feasibility—which, in most cases, implies more time
needed for modeling and increase in costs, either of labor or hardware/software equipment
used for modeling. During the entire decision-making process, one has to keep in mind that
a model for DT is concerned; therefore, its repeatable use for future purposes needs to be
considered as well. If it turns out that it is efficient to use at least one physical device (except
for the control element, which would imply only a change from SIL to HIL simulation) in a
subsystem, we no longer deal with VC but HVC.

It may seem that this concept does not fulfill the requirements for DT. If we, however,
recall the definition of a DT, e.g., “A digital twin is a virtual representation of a physical
object or system across its lifecycle, using real-time data to enable understanding, learning
and reasoning” [20], it holds that also by using this approach it is possible to gather from
DT data about behavior of the system during its commissioning but also at a later stage
of lifecycle.

Our concept will be presented in more detail in a case study using a delta robot with
machine vision and PLC control. Delta robots belong to a class of robotic manipulators
with fast dynamics and are therefore suitable for tasks where their speed can be benefited
from [21]. The most common in practice are pick-and-place applications where the delta
robots replace the mostly monotonous manual labor. A pick-and-place task typically
consists of handling of objects transported on a conveyor belt, while the necessary position
information necessary for their gripping is acquired by a machine vision system. Note that
particular systems need to be properly interconnected, while required resources will differ
depending on used technologies.

Our device, situated in the authors’ “Learning factory for Industry 4.0” [22], combines
the proposed solutions to reduce costs by employing HVC as well as by using less soft-
ware environments. Validation of our model is performed by means of animation of DT.
According to [23], it is possible to use the tracing method for the purpose of V&V. The
author describes this method as a dynamical representation of the simulated system. In
order to use the tracing, it is however assumed that the creators are well familiar with the
real-world system the model corresponds to. In such a case, they shall be able to reveal
errors in the control program.

Figure 5 illustrates the proposed conceptual design of our device that will be subject
to hybrid virtual commissioning. The reference task represents a modern use of robot
manipulator in a pick-and-place application in combination with machine vision. The
objective of the robot is to pick randomly positioned objects and to sort them into containers
according to their type. The system for object recognition that determines the type and
position of parts is realized by a smart camera. A fully commissioned solution requires
physical availability of all of its elements—mechanics of the manipulator, gripper, work
space with the parts and sort containers, servo drives, control system, as well as the machine
vision system. This raises the price of possible mechanical adaptations, optimization of
robot arms and way of gripping the parts, as well as hinders parallel commissioning of
software during development and production work on the mechanics. It is therefore logical
to employ the virtual commissioning approaches. Modeling of the camera system intended
for this device would be hardly feasible and, given its availability, also ineffective. The HVC
concept seems optimal in this application since it enables to mirror the physical assembly
of parts scanned by the real camera into the virtual world of the digital twin, which leads
to a full realization of the environment for the pick-and-place application, i.e., robot with
gripper, containers and sorted parts. As it can be observed, the purpose of the device is to
scan the position of objects in real time and to subsequently convert them into digital space,
where virtual commissioning of the delta robot will take place. Its task is to sort the objects
based on their position data. To achieve an effective and reliable control, we propose to
create a digital twin of the delta manipulator.
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2.1. Used Components

The computer providing necessary power for running the simulation environment,
the programming environment and the OPC UA server features a 3.1 GHz i7-8705G CPU
and 32 GB of RAM.

For the purpose of controlling the delta manipulator, we chose a Siemens PLC from
the S7-1500TF series, which provides sufficient computing power for control of multiple
technology objects (TOs). Each version of the technology series offers a limited number of
technology sources. These can be combined in various ways, which allows to simultane-
ously control a larger number of even different TOs. The PLC enables to also create direct
or inverse kinematics calculations of motion or to use some of the predesigned kinematic
TOs. One of them is delta manipulator, and calculations for its TO are based on the inverse
kinematics problem. This PLC can also process a safety program for the automation tasks
and allows to create an OPC UA server. In our case, OPC UA server SIMATIC Net is used
for communication between the controller and the real-time simulation environment. In
Section 2.4, we will discuss how the choice of server affects the real-time simulation itself.

Programming of PLC is performed by means of the TIA Portal platform. Specifically,
the project is programmed in version 15.1. This work is greatly simplified by a good
availability of libraries and examples that can be used in one’s own program. This environ-
ment also enables to program a Human–Machine Interface (HMI) which allows effective
operation and control of the device and displays information about its state.

For the input-output (IO) signals, a distributed IO system SIMATIC ET 200SP is
utilized. It is connected via Profinet network to the PLC where IO signals are processed.

Information about the position of physical parts is acquired from a smart camera,
namely SIMATIC MV540 by Siemens. The camera is capable of recognizing digital codes as
well as objects. It uses the Profinet protocol for data communication. Its configuration via
web interface, specifically Web Based Management (WBM), and integration into TIA Portal
facilitate the programming.

In order to create a DT of the manipulator, we chose the Siemens NX Mechatronic
Concept Designer (MCD) environment which enables real-time simulations.

After HVC, the control is applied on the physical device. The controller determines
the required angular displacement of particular drives so that the effector achieves the
desired position within the manipulator’s coordinate system. The angles are calculated
within the TO in PLC and sent to corresponding frequency converters SINAMICS S210 by
Siemens. The PLC also performs the safety part of the program over every drive. All safety
functions achieve Safety Integrity Level (SIL) 2.

Mechanics of our delta picker robot, designated D4-500-S010 Demo, is manufactured
by Codian Robotics. As its working tool, we assume the Bernoulli gripper OGGB by Festo.
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2.2. Creating Digital Twin in NX MCD

NX MCD is an extension of the CAD software Siemens NX that, among other features,
enables to simulate physical behavior of the device. The MCD environment allows to
specify which parts will be considered as dynamic objects with physical properties and
which will be kept as static objects. This specification plays an essential role in terms of
realizing to which extent it is necessary to define the model. As pointed out in the previous
section, overdetermination of model would increase computational complexity and hence
the length of the operating cycle. In case of devices with fast dynamics, which include also
delta manipulators, it is necessary to keep this time as short as possible. That is why we
defined only the objects of arms and working tool of the delta robot. For CAD models, the
program determines basic parameters such as mass, center of gravity, etc. These can also be
set or modified manually, which allows the designers to test various settings. It was also
necessary to consider what types of joints are suitable for particular connections. Note that
the joints significantly affect the computational complexity.

Signals have been defined as well. They are fed to specific elements of the model by
means of UPC UA protocol. There are also functions which enable to calculate some values
directly in the software environment, e.g., angular displacement of the motors or position
based on data form PLC. In addition, we created signals that are acquired from model and
passed to PLC. They substitute the signals from sensors based on events that shall occur for
its activation.

2.3. Creating Control Program for the Device

In this subsection, we will discuss the advantages of using a single programming
environment for designing the entire device. The program for the device will be divided
into several parts and for each, these advantages will be pointed out.

2.3.1. Smart Camera

In today’s industry practice, one can encounter a variety of camera types. They are
used for object recognition, quality control, as well as position determination—which is also
assumed in our case study. Similarly, cameras can be programmed in various languages.
The acquired data can be subsequently utilized by other devices, such as in our application.
In that case, it is however required that they are all well mastered by a single programmer
or that more programmers cooperate. This implies certain mutual dependencies which
may lead to undesired delays.

Our camera allows for a simple interface with PLC. Although the program for the
camera is created via WBM, it concerns a very intuitive and undemanding programming.
Moreover, once the program is created in this environment, it is no longer necessary to use
it unless requirements for camera shooting need to be configured, e.g., adding the type of
scanned object, etc. All other operations are carried out directly in PLC. After entering the
required parameters, these functions also take care of synchronization of the coordinate
systems of camera and robot.

The objects that are to be recognized by the camera are, in reality, printed on a paper
that is scanned. This allows to easily alter the scanned scenes. Figure 6a illustrates the
object recognition by the camera system. Figure 6b depicts the working surface of the
manipulator in the NX MCD environment where a virtual image of the detected objects is
created. Therein, the picked-and-placed parts also inherit their physical properties.
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(a) (b)

Figure 6. Object recognition using smart camera. (a) Detection of parts. (b) Visualization of detected
parts in NX MCD.

2.3.2. Implementation of Kinematic System for Delta Manipulator in PLC

As outlined in Section 2.1, kinematic calculations for the manipulator were carried
out within the PLC program. In order to process the TOs, the TIA Portal environment
uses motion control (MC) functions. When using an arbitrary TO, organization blocks
(OBs) are automatically inserted into the project. These have their own execution level
and are called within the MC application cycle. It concerns the MC-SERVO (OB91) and
MC-Interpolator (OB92) blocks, which are know-how protected and cannot be unmasked
or edited. The calculations are performed in the MC-SERVO OB, which is executed before
the MC-Interpolator OB that evaluates MC instructions, generates reference values and
monitors functionalities [24].

Among the available TOs within MC, one may choose different object types, while two
of them are particularly important for this work. The first object type relates to selecting
the function of an axis, which may be set as a speed, positioning or synchronous one. The
axis TOs can be used independently to control a single actuator, e.g., an asynchronous
motor, or they can be used for a kinematic object, which is the second object type essential
for this work. The axis TOs can be simulated directly in the environment, which does not
necessitate a connection to the real device.

The kinematic objects, as the name implies, relate to kinematic systems. It is possible
to choose from a range of predefined objects and thus to create a custom kinematic system.
The predefined systems use preprogrammed kinematic transformations, which only need
to be assigned geometric parameters and axis TOs. On the other hand, custom systems
require to program kinematic transformations beforehand. A great advantage is the option
to employ virtual commissioning directly in the TIA Portal environment. The predefined
systems also include the kinematic system of a delta manipulator.

2.3.3. Used Libraries

The Siemens company offers strong software support with its products. Within
its Industry Online Support, it provides many libraries for various tasks together with
sample application problems. This facilitates the work of programmer and shortens the
required time.

To create the program for our device, we used the following libraries and
sample applications:

• LKinCtrl [25]—a library that facilitates the work with TOs by providing functions
for control of an entire kinematic system and for execution of path motion, as well



Sensors 2022, 22, 1621 10 of 17

as sample applications, one of them being a pick-and-place application for a delta
manipulator. We used some of its functions and modified them for our purposes.

• Virtual commissioning for kinematics in NX MCD with Software in the Loop [26]—
demonstrates how to interface NX MCD with PLC by providing several sample appli-
cations, including one for the delta manipulator from which we adopted functions to
process data fed to the simulation.

• Transformation of MV440 camera coordinates into robot coordinates [27]—demonstrates
how to use the smart camera by describing its integration, the identification procedure
and functions for its control. We adopted a function from this application that takes
care of the entire communication between PLC, camera and interface for position
data from the camera. Other functions are responsible for controlling the camera and
conversion between the coordinate systems of the camera and the robot.

• LDrvSafe [28]—a library that provides fail-safe blocks to implement various safety
applications. We used it for safety when transitioning to hybrid commissioning.

2.4. Communication Between Model and Controller Using PLC OPC UA Server

Communication between the PLC and the model was handled by OPC UA, a protocol
based on server–client framework. The server provides access to data and functions which
are object oriented. The client can access the server via a line with various security levels.

As mentioned in the previous section, the PLC that we employed allows to create an
OPC UA server. The initial idea was to use the PLC as the server. Such a server can be
assigned a sampling interval. Its minimum value for the given PLC can be set as 100 ms.
As shown in Figure 7, PLC contains data blocks which are used by NX MCD to read or log
data by means of so-called signal adapters. Particular signals need to be mapped in NX
MCD. This is facilitated by the possibility of automatic mapping when signals with the
same name in signal adapters and external signals are automatically connected.
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When connecting NX MCD to the OPC UA server, it is possible to set an update time,
i.e., how often the server data are to be read or logged. As it would not be meaningful to
make it shorter than the OPC UA sampling time, they were set as same.

There was however a fundamental problem with the communication, where the
communication speed was not sufficient. We will discuss it in more detail in Section 3.1.
It led to using SIMATIC PC Station, which is a software component that manages the
SIMATIC software products and interfaces on a PC. It was used to set up an OPC UA
NET server that allowed us to achieve a much lower cycle time, which we chose as 20 ms.
The impact of cycle time on real-time simulation will be discussed later as well. Note that
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the change of server also caused the structure of communication between the OPC UA
server and the client to change. This structure is shown in Figure 8.
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3. Results and Discussion

In this section, we present our findings resulting from testing of the DT of our delta
manipulator and application of the proposed HVC approach. Within the HVC phase of
our case study, we simulate everything except for the camera system and the controller. As
outlined in previous sections, all physical devices are simulated either in TIA Portal or NX
MCD environment.

Figure 9 depicts the model of our device designed in NX MCD. In addition to the mechan-
ics itself and the manipulated parts, this DT does not contain a model of the camera system,
which from our perspective has no impact on the mechanics and is not simulated in any way.

Figure 9. Digital twin of the delta robot manipulator designed in NX MCD environment.
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As we already pointed out, the smart camera that we used allows for easy WBM
programming. Importing the library into the control program enabled all the following
work in the TIA Portal environment. For using the camera system, it was necessary to
synchronize the coordinate systems of robot and camera. Note that the camera’s connection
to the system and information obtained from [27] made it easier to tackle this problem. This
turned out to be convenient within the next step in which we applied the created program
on real mechanics of the delta manipulator. The positions of scanned objects are written
to the data blocks which are used for control of the delta robot manipulator. Via the OPC
UA server, these data were simultaneously sent to NX MCD, where initial positions of the
picked-and-placed parts were set according to scanned images; recall Figure 6.

3.1. Hybrid Virtual Commissioning of Robotic Manipulator

The call structure of the PLC program for this testing is depicted in Figure 10. Com-
munication between PLC and NX MCD was taken care of by the PLC OPC UA server as
illustrated in Figure 7. To work with the camera, it was necessary to create a program for
calibration as well as a program for object recognition. Its objective is to set the position of
parts according to the scans obtained from the camera system and, subsequently, to control
the manipulator so as to pick and stack the parts in a chosen position. To make the control
even more user-friendly, we have also created an HMI which allows us to switch between
the programs for the camera as well as to track the evaluated scans.
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By testing, we validated the transfer of data for signal adapters of position control,
which simulate angular displacement of manipulator’s axes. Next, by comparing simula-
tion of the manipulator in NX MCD with its tracking using Kinematics trace in TIA Portal,
we validated synchronization of the coordinate systems.
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By means of the DT, we were able to test functionalities, communication between
environments and correct command execution in advance. During the testing, we also
tracked the trajectory of tool motion in NX MCD and also in Tia Portal; see Figure 11.

Figure 11. Trace of the tool visualized in TIA Portal.

The motion of tool in NX MCD however did not follow the programmed trajectory. As
shown is Figure 12a, there are loops arising. Since the tool traces in particular environments
differed, we included signal adapters for motion control into the tracking in NX MCD.
Time profile of the signal is depicted in Figure 12b.
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A detailed look at the signal (Figure 13) clearly shows its step changes which cause
the loops in tool trace. In fact, it is due to the communication speed that we mentioned in
Section 2.4. This problem thus needs to be solved for verification and validation (V&V)
of our model, which we performed by means of animation method. More specifically,
we used tracing to observe motion of the tool. For V&V to be acceptable, the tool has to
follow the trajectory without any loops. Such a behavior could, in some cases, lead to faulty
readings from NX MCD, which would impact the executed program. Therefore, although
the program could be correct, deviations in the animation would misrepresent the results
and eventually prolong the work.
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Figure 13. Detail of the signal obtained using PLC OPC UA server.

As already mentioned, the OPC PLC UA server was replaced with the faster OPC UA
NET server with a cycle time of 20 ms. After this change, the procedure of signal mapping
had to be performed again. The update time for NX MCD was also adjusted to match the
cycle time of the server. Next, we again observed the tool trace and the signal adapter of
one of the position axes. As shown in Figure 14a, the trace no longer contains any apparent
loops. Time profile of the signal depicted in Figure 14b is smoother, with no abrupt changes,
as shown in detail in Figure 15.
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3.2. Testing Scenarios

During the tests, we had encountered various errors, from minor to major ones that
could damage the device or even endanger safety of persons. One of the revealed errors
was an opposite alignment of the coordinate systems used by TIA Portal and NX MCD.
We fixed this error by additional recalculation of variables in NX MCD. Another error had
been revealed in the code, which allowed us to rectify misalignment of coordinate systems
of the camera and the manipulator. The errors that could cause damage to the real device
included one that could make the arms overturn and hence collide with the base and axes
of the manipulator. At the same time, it was possible to test how lighting affects the camera
resolution and hence the scanned parts. Already in the design phase, this helped us to
better understand what the optimal conditions for accurate object recognition are.

Hybrid virtual commissioning may however entail a disadvantage in combination
with available real-time simulation capabilities. In the current implementation, real-time
simulation for systems with fast dynamics, such as the delta robot, is due to limited
computational power not feasible for a full speed of motion attainable by the device.

3.3. Partial Application on Real Manipulator

Finally, we implemented the developed and by-HVC-validated program to control
the physical device. When transitioning to the real robot manipulator, safety functions
were added to the project and virtual axes were replaced with frequency converters of
the SIMATIC S210 series. Since we had not had the gripper components at our disposal,
its function remained in NX MCD where signals indicating gripping were obtained from.
Figure 16 depicts the real, partially implemented delta robot manipulator together with its
digital twin implemented in NX MCD and an HMI for controlling the manipulator.

Figure 16. Real, partially implemented delta robot manipulator and its digital twin implemented in
NX MCD.

After commissioning of the device, the DT can be reused, for example, when testing
a new type of work tool. This will shorten the time required for changing the work tool
of the real device. It can also be used for integration into a production line, where it will
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collaborate with other devices on performing given tasks, or for testing the feasibility of
new trajectories when modifying the control program.

4. Conclusions

Digital twins offer a great potential by predicting future behavior of manufacturing
systems and processes instead of analyzing the past. When combined with appropriate
equipment, it is possible to obtain more from the DT than what was invested in it. It is
therefore no surprise that there is an ongoing effort to make processes and their imple-
mentation more efficient. It is the implementation of solutions where one may observe
a diversity of environments and control approaches which allow to achieve the desired
result. This diversity often introduces additional requirements into the implementation of
a solution, which can lead to an increase in cost, required time or personnel. Hence, there is
also an effort to make the time from designing up to commissioning as short as possible.
This can be achieved already in the design stage by means of testing using various models—
mathematical, statistical or animative ones. These models are subsequently subject to the
aforementioned approaches of VC or HC.

Our proposed approach of HVC represents a concept that combines properties of VC
and HC. It makes sense to use it if the cost of simulating a device was higher or the work
required to model a certain subsystem was more demanding than direct implementation of
a particular device into the model. The HVC concept can be conveniently used as a tool in
the training and teaching process. Thanks to virtualization and simulation of processes,
there is no risk of damaging equipment or causing injuries.

The HVC concept has been demonstrated in a case study featuring a robotic manipula-
tor with machine vision and a single PLC in a pick-and-place application. Its DT created in
NX MCD allowed to accelerate the commissioning. At the same time, during verification
and validation of the control program, using an animation method, we were able to reveal
certain errors before implementing the program on a real device. Besides the concept
itself, we also used the case study to demonstrate the benefits of using fewer software
environments. In particular, we used three software environments, one of them via WBN.
This implies fewer programmers, although the requirement on programmer’s knowledge
is higher.

Our further research will focus on the possibility of using digital twin to determine
suitability of a device for improving a given process.
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