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Abstract: Accurate and fast rolling bearing fault diagnosis is required for the normal operation of
rotating machinery and equipment. Although deep learning methods have achieved excellent results
for rolling bearing fault diagnosis, the performance of most methods declines sharply when the
working conditions change. To address this issue, we propose a one-dimensional lightweight deep
subdomain adaptation network (1D-LDSAN) for faster and more accurate rolling bearing fault diag-
nosis. The framework uses a one-dimensional lightweight convolutional neural network backbone
for the rapid extraction of advanced features from raw vibration signals. The local maximum mean
discrepancy (LMMD) is employed to match the probability distribution between the source domain
and the target domain data, and a fully connected neural network is used to identify the fault classes.
Bearing data from the Case Western Reserve University (CWRU) datasets were used to validate
the performance of the proposed framework under different working conditions. The experimental
results show that the classification accuracy for 12 tasks was higher for the 1D-LDSAN than for
mainstream transfer learning methods. Moreover, the proposed framework provides satisfactory
results when a small proportion of the unlabeled target domain data is used for training.

Keywords: fault diagnosis; deep learning; rolling bearing; domain adaptation; transfer learning

1. Introduction

Due to advances in industrial technology, rotating machinery is increasingly used in
many fields, such as electric power generation, chemical production, and aerospace [1,2].
Rolling bearings are indispensable elements in rotating machines [3] and are the main
source of faults in this equipment [4]. Rotating machines may operate under unfavorable
conditions, such as high ambient temperatures, high humidity, and overload conditions,
resulting in bearing malfunctions [5]. Bearing faults can cause significant damage to
mechanical equipment [6]. Therefore, accurate and rapid methods for rolling bearing fault
diagnosis are required to ensure the normal operation of rotating machinery.

In recent years, artificial intelligence methods, such as heuristic algorithm [7], expert
knowledge-based methods [8], and deep learning (DL) models [9], have gained increasing
attention in diverse fields. In particular, DL models have been broadly employed for
machinery fault detection and diagnosis systems [10]. Most DL models, such as the long
short-term memory network (LSTM) [11], deep belief network (DBN) [12], and convolu-
tional neural network (CNN) [13–15], perform well if the datasets of the source domain
and target domain tasks have the same distribution [16]. However, this assumption is
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rarely applicable in practical conditions. In many real-world applications, the working
conditions during testing and training differ [17]. Therefore, the unlabeled testing data
may not have the same distribution as the labeled training data, potentially leading to the
misclassification of DL methods [18]. Thus, it is essential to consider the change in working
conditions to improve the accuracy and efficiency of bearing fault diagnosis.

Transfer learning aims to extract information from one or more source tasks and apply
it to a target task [19]. Deep domain adaptation (DDA), a branch of transfer learning, is
designed to train a classifier or other predictor when the source domain data and target
domain data have different distributions [20]. Since DDA can minimize the distribution
discrepancy between different domains, it is well suited for solving cross-domain diagnosis
tasks. Yang et al. [21] developed a bearing fault diagnosis framework based on a two-
dimensional CNN and DDA. In this framework, multikernel maximum mean discrepancy
(MK-MMD) was used for domain adaptation in four convolution layers. Although the
method achieved an average accuracy value of 99.14% for 12 transfer learning tasks, the
diagnostic accuracy was only 97.52% when substantial differences in working conditions
existed. Wu et al. [22] converted raw data into two-dimensional time–frequency images
using continuous wavelet transform (CWT) and proposed an accurate model consisting of
a CNN and a deep adaptation network (DAN) for bearing fault diagnosis. The framework
achieved a diagnostic accuracy score of more than 98% on the bearing fault dataset of
Case Western Reserve University (CWRU). Although the method achieved satisfactory
accuracy for transfer learning tasks, converting the vibration signal into images was com-
putationally complex and time-consuming. Zhang et al. [23] proposed a domain adaptation
framework using an adversarial learning strategy for machinery fault diagnostics. An
instance-level weighted mechanism was also integrated to address the open-set problem.
Jiao et al. [24] proposed a residual network to extract features from raw vibration data and
combined the maximum mean discrepancy (MMD) with a domain adversarial strategy to
align the domain distribution. The method obtained an average fault diagnosis accuracy
value of 99.32% for 12 transfer learning tasks on the CWRU dataset. However, domain
adversarial-based methods contain several loss functions and converge slowly. Although
DDA approaches have been utilized for fault diagnosis, most methods (mapping-based
and adversarial-based methods) assume that the global distribution differs for the target
and source domains and try to reduce this difference. However, differences in the subdo-
main distribution of features and output labels among different working conditions are
rarely considered. Unsatisfactory results could occur if the fine-grained information is
not captured [25]. Therefore, a subdomain adaptation strategy that can exploit the local
affinity to capture the fine-grained information of each category is incorporated to match
the subdomain distributions of data from different working conditions.

In this paper, a novel one-dimensional lightweight deep subdomain adaptation net-
work (1D-LDSAN) framework is proposed for bearing fault diagnosis under different
working conditions. A 1D-CNN backbone is used to extract sufficient features from the raw
data as input to a fully connected (FC) classifier, which diagnoses the faults accurately by
utilizing advanced data features. A subdomain adaptation strategy is employed to match
the subdomain distributions of data from different working conditions. The contributions
of this paper are summarized as follows.

(1) A novel fault diagnosis framework (1D-LDSAN) consisting of a feature extraction
module and a classification and adaptation module is proposed. The feature extraction
module, a lightweight 1D-CNN backbone, is designed to extract a sufficient number of
comprehensive and significant features of different faults from the raw vibration signal.
The classification and adaptation module is used to classify the data and minimize the sub-
domain distribution discrepancy of the data from two domains to improve the classification
performance.

(2) Comparative experiments are performed to verify the performance of the proposed
framework on the CWRU dataset. Five other approaches, including deep domain confu-
sion (DDC), a domain-adversarial neural network (DANN), a residual joint adaptation
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adversarial network (RJANN), a Wasserstein distance-guided multi-adversarial network
(WDMAN), and a one-dimensional CNN, were evaluated for comparison to assess the
performance of the 1D-LDSAN. The results demonstrate the effectiveness and superiority
of the proposed framework.

The remaining parts of this paper are organized as follows. The theoretical back-
ground, the CNN, the domain adaptation, and MMD are introduced in Section 2. In
Section 3, the details of the proposed 1D-LDSAN model are presented. The datasets, the
experimental results, and the discussion are provided in Section 4. Finally, the conclusions
are summarized in Section 5.

2. Related Works
2.1. Convolutional Neural Network

A CNN is a multi-stage neural network composed of convolutional blocks and FC
layers [26]. Traditionally, a convolutional block is composed of a convolution layer and a
pooling layer [27], as shown in Figure 1a. In general, a batch normalization (BN) layer [28]
is added after the convolution layer to improve the network training speed, prevent
overfitting, and control gradient explosion and gradient disappearance. An activation
function is required for nonlinear transformation after the convolution operation. The
purpose of the activation function is to add nonlinear factors to the feature map after the
convolution operation [29]. In this paper, the rectified linear unit (ReLU) [30] activation
function is selected. Traditional CNNs require a pooling layer after activation to adjust the
output of the convolution layer [31]. Many techniques have been used recently to replace
the pooling function. MobileNet V2 [32] uses step convolution to replace the pooling layer.
The classifier of a CNN is often an FC layer [33] that maps the learned features to the
sample label space.
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Figure 1. Comparison of convolutional blocks for different architectures. (a) Convolution pooling
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2.2. Domain Adaptation

Domain adaptation is a specific area of transfer learning; it refers to training a discrim-
inative model in the presence of a domain shift between domains [34]. Domain adaptation
establishes a knowledge transfer from the labeled source domain to the unlabeled target do-
main by using domain-invariant structures that bridge different domains with substantial
discrepancies in the distribution [35,36].

In real-world applications, the working conditions of machines are often changed.
Different working conditions are defined as different domains. The working condition with
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labeled data is defined as the source domain Ds = {xi, yi}n
i=1, and the working condition

with unlabeled data is defined as the target domain Dt =
{

xj
}m

j=1. It is assumed that
they have the same feature space, Xs = Xt, and category space, Ys = Yt. However, the
distributions of the two domains, Ds and Dt, are different, Ps(xs) 6= Pt(xt). The goal of this
work is to use labeled source domain data Ds and unlabeled target domain data Dt to learn
a classifier f : xt → yt to predict the labels yt ∈ Yt of the target domain data Dt.

2.3. MobileNet V2

MobileNet V2 [32] is a lightweight CNN model for image processing. The main
block in the model is inherited from the separable block [37], as shown in Figure 1b, and
its main structure is combined with the residual structure [38] to construct an inverted
residual block with a linear bottleneck. MobileNet V2 is created by embedding the inverted
residual block instead of a standard convolution layer, as shown in Figure 1c,d. The linear
bottleneck removes nonlinearities in the narrow layers because they destroy information in
low-dimensional space. Hence, the linear bottleneck retains the representativeness of the
model [39].

2.4. Local Maximum Mean Discrepancy (LMMD)

The MMD [40] calculates the discrepancy between two distributions by mapping
sample points to the reproducing kernel Hilbert space (RKHS), which is a kernel method.
Minimizing the MMD between the two domains aligns the edge probability distribution
between the two domains in a neural network. The MMD between the source domain Ds
and target domain Dt is defined as

MMD2(Ds, Dt) = ‖ 1
ns

∑
xi∈Ds

∅(xi)− 1
nt

∑
xj∈Dt

∅
(
xj
)
‖2

H

= 1
n2

s

ns
∑

i=1

ns
∑

j=1
k
(

xs
i , xs

j

)
+ 1

n2
t

nt
∑

i=1

nt
∑

j=1
k
(

xt
i , xt

j

)
− 2

nsnt

ns
∑

i=1

nt
∑

j=1
k
(

xs
i , xt

j

) (1)

where H represents the RKHS, ∅(·) denotes the feature map to map the raw sample to the
RKHS, k is the kernel function k

(
xs, xt) =< ∅(xs),∅

(
xt) >, and < ·, · > represents the

inner product of two vectors.
The local MMD (LMMD) [25] is an improved version of the MMD for matching the

local probability distribution. The LMMD between the source domain data Ds and target
domain data Dt is calculated as follows:

LMMD2(Ds, Dt) =
1
C

C
∑

c=1
‖ ∑
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i∈Ds
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)
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)] (2)

where xs
i and xt

j represent the feature map of the source domain data and target domain

data, respectively; ωsc
i and ωtc

j denote the weights of xs
i and xt

i belonging to class c,
ns
∑

i=1
ωsc

i

and
nt
∑

j=1
ωtc

j are equal to 1, and ∑
xi∈D

ωc
i ∅
(
xi
)

is the weighted sum of class C.

3. Materials and Methods

Although DDA approaches have been used for fault diagnosis, most existing methods
assume that the global distribution differs for the target and source domains and try to
reduce this difference. However, differences in the subdomain distribution of features and
output labels among different working conditions are rarely considered. Thus, fine-grained
information in the categories may not be detected. Therefore, the 1D-LDSAN framework
is proposed for the fault diagnosis of rolling bearings under different working conditions.
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As shown in Figure 2c, the proposed framework consists of a feature extraction module
and a classification and adaptation module. The details will be introduced in the following
subsections.
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shown in (c). (c) displays the overall framework.

3.1. Framework Structure
3.1.1. Feature Extraction Module

Inspired by MobileNet V2, we designed the feature extraction module to extract deep
features from the raw data from the source domain and target domain. As shown in
Figure 2c, the feature extraction module consists of two regular convolutional blocks and
four unique convolutional blocks. The input size of the feature extraction module is 1024 ×
1. The regular convolutional block consists of a convolutional layer, a BN layer, and a ReLU6
layer. The first regular convolutional block has a kernel size of 4 × 1 and a stride of 4 to
reduce the length of input data. The second regular convolutional block has a kernel size of
1 × 1 and a stride of 1 to expand the number of feature channels. The unique convolutional
blocks consist of two types: a separable block and an inverted bottleneck block, as shown
in Figure 2a,b. The separable block is divided into two layers. The first layer is a depthwise
convolution that performs lightweight filtering by applying a single convolutional filter per
input channel. The second layer is a 1 × 1 convolution (pointwise convolution) responsible
for creating new features by computing linear combinations of the input channels. The
two-layer operation of the separable block replaces the full convolutional operator, which
substantially reduces the number of parameters of the convolution kernel. In the inverted
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bottleneck block, a pointwise convolution is inserted in front of the separable convolution
layer. In the second layer, the stride of the depthwise separable convolution is two. The
structure maps the features to a high-dimensional space for fine-grained feature extraction.
The details of the CNN backbone are listed in Table 1.

Table 1. Details of feature extraction module.

Block Layer Parameters Output Size

Input Input / 1024 × 1

Regular Conv ConvBNReLU6 Kernel size = 6@4 × 1 × 1 stride = 4 256 × 6

Separable
Block

ConvBNReLU6 Kernel size = 6@3 × 1 stride = 1 256 × 6
ConvBN Kernel size = 16@1 × 1v4 stride = 1 256 × 16

Inverted Bottleneck
Block

ConvBNReLU6 Kernel size = 96@1 × 1 × 16 stride = 1 256 × 96
ConvBNReLU6 Kernel size = 96@3 × 1 stride = 2 128 × 96

ConvBN Kernel size = 24@1 × 1 × 96 stride = 1 128 × 24

Inverted Bottleneck
Block

ConvBNReLU6 Kernel size = 144@1 × 1 × 24 stride = 1 128 × 144
ConvBNReLU6 Kernel size = 144@3 × 1 stride = 2 64 × 144

ConvBN Kernel size = 32@1 × 1 × 144 stride = 1 64 × 32

Separable
Block

ConvBNReLU6 Kernel size = 32@3 × 1 stride = 1 64 × 32
ConvBN Kernel size = 48@1 × 1 × 32 stride = 1 64 × 48

Regular Conv ConvBNReLU6 Kernel size = 64@1 × 1 × 48 stride = 1 64 × 64

Avg Pooling / / 1 × 64

3.1.2. Classification and Adaptation Module

As shown in Figure 2c, the classifier of the framework is an FC neural network. The
weights of the classifier are shared by the source domain features and the target domain
features. The number of neurons in the classifier is the same as the number of extracted
features. The input of the LMMD function has four items, including the source domain
features, the target domain features, the true label of the source domain data, and the
predicted label of the target domain data. The classification and adaptation module is
designed to minimize the classification errors of the source domain using a cross-entropy
function and reduce the subdomain distribution discrepancy between the target domain
and the source domain using the LMMD.

3.2. Optimization Objectives

This subsection describes the optimization objectives of the proposed framework. The
framework has two optimization objectives, as shown in Figure 2c. The cross-entropy [41]
function is implemented to minimize the classification error of the source domain dataset;
it is defined as follows:

Lc = −
C

∑
c=1

ysk × log
eỹsc

∑j eỹs j
(3)

where ỹs is the predicted label vector of the source domain data, ys is the true label vector
of the source domain data, and C is the number of labels.

As described in Section 2.3, the LMMD is used to minimize the local subdomain
distribution between the source domain data and target domain data. During training, the
LMMD loss LLMMD is calculated as follows:

LLMMD = LMMD2(xs, xt, ys, ỹt) (4)

where xs and xt are the features extracted from the source domain data and the target
domain data, respectively. ỹt is the label vector of the target domain data predicted by the
framework. ys is the true label vector of the source domain data.
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The cross-entropy function and loss function are combined and represent the opti-
mization goal, which is described as

L = Lc + λLLMMD (5)

where λ is the tradeoff parameter.

3.3. Network Training Strategy

Some DDA methods [18,42] must pre-train the neural network with the source domain
data, which increases the training time and complicates the training process. This paper
uses a strategy [20] of gradually increasing the tradeoff parameter λ from 0 to 0.2 during
training, where λ = 0.2×

(
2 /

(
1 + e(−10×(epoch) / epochs)

)
–1
)

. An Adam [43] optimization
strategy is used to optimize the network parameters, and a data augmentation algorithm
is implemented to enhance network generalization. The data are jittered up and down
randomly during training. Exponential attenuation of the learning rate is implemented to
improve the stability of the framework during training. The learning rate has an initial
value of 0.01 and decreases with an increase in the number of training epochs. The batch
size is 64. During training, 80% of the source domain data and 50% of the unlabeled target
domain data are used for domain-adaptive training. The remaining source data are used
for validation, and the remaining target domain data are used for testing. The pipeline of
training the 1D-LDSAN is presented in Algorithm 1.

Algorithm 1 1D-LDSAN.

Input: labeled source domain data and unlabeled target domain data.
Output: predicted category of target domain.
Begin
Step 1: normalize source domain and target domain data
Step 2: initial neural network parameters with random values
Step 3: input the normalized source domain and target domain data into the neural network to
calculate Lc and LLMMD
Step 4: optimize the parameters of neural network using Adam strategy, repeat Step 3 and Step 4
until the specified epoch is reached
Step 5: save the model
Step 6: diagnose the target domain data using the trained model
Step 7: output the classification results
End

4. Experiments

In this study, the CWRU dataset [44] was used to evaluate the performance and
practicability of the proposed 1D-LDSAN framework. Five other methods were evaluated
for comparison. Pytorch 1.8.1 was used to implement the proposed framework, and a
computer with the Windows 10 operating system and a gtx1050 GPU was used.

4.1. Dataset Description

The CWRU dataset is a standard bearing fault dataset collected by the bearing center
at CWRU. It is commonly used to validate and/or improve motor condition assessment
techniques. Here, it was used to verify the performance of the framework. Figure 3 shows a
photo and a diagram of the experimental platform. Bearings are used at the fan end and the
drive end of the motor to enable the rotation of the motor’s shaft. The drive-end bearing is
an SKF6205 deep groove ball bearing, and the fan-end bearing is an SKF6203 deep groove
ball bearing. Two acceleration sensors were placed above the bearing pedestal at the fan
end and drive end of the motor, respectively, to collect the vibration acceleration signal of
the faulty bearing.
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Figure 3. Photo (left) and schematic diagram (right) of the experimental device at Case Western
Reserve University to assess bearing failure [44].

There are three fault types in this dataset, i.e., inner race fault (IF), outer race fault (OF),
and roller fault (RF). The faults are machined by an electrical discharge machine (EDM),
and each fault type has three damage sizes (0.007, 0.014, and 0.021 inches). Therefore, the
CWRU dataset has ten classes (one normal class and nine fault classes (3 fault classes ×
3 fault diameters)). The fault data were collected under four operating conditions in the
experiment, including 0 HP, 1 HP, 2 HP, and 3 HP, with a sampling frequency of 12 kHz.
Thus, the data were divided into four domains (A, B, C, and D), and there were 12 transfer
learning tasks. The details of the dataset are presented in Table 2. Each sample contained
1024 data points.

Table 2. Description of the CWRU dataset.

Domain Load (HP) Rotating Speed
(r/min)

Number of
Samples

Number of
Labels

A 0 1797 1186 10
B 1 1772 1186 10
C 2 1750 1185 10
D 3 1730 1189 10

4.2. Comparison of Different Signal Lengths

We extracted features from the raw bearing data using four signal lengths (256, 512,
1024, and 2048) to determine the optimum signal length for the 1D-LDSAN framework.
Table 3 lists the number of samples obtained using the four signal lengths. In the experiment,
the batch sizes were 256, 128, 64, and 32, respectively. A total of 12 transfer learning tasks
were conducted. For example, transfer task A–B indicates that 0 HP is the source domain
and 1 HP is the target domain.

Table 3. Description of the samples of the four signal lengths.

Domain 256 Points 512 Points 1024 Points 2048 Points

A 4763 2379 1186 591
B 4762 2379 1186 591
C 4760 2377 1185 591
D 4769 2383 1189 592

The results are listed in Table 4. It was found that 1024 provided the best results and
was used as the signal length. This experiment demonstrates the power of the proposed
framework to model fault-related nonlinear vibration signals.
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Table 4. Classification accuracies of different signal lengths. The numbers in bold indicate the highest
classification accuracy in corresponding task.

Task 256 Points 512 Points 1024 Points 2048 Points

A-B 98.84% 99.65% 99.90% 99.93%
A-C 97.04% 99.45% 99.89% 99.90%
A-D 97.44% 99.64% 99.98% 99.90%
B-A 98.94% 99.79% 99.96% 98.70%
B-C 99.11% 99.66% 100.00% 99.93%
B-D 95.96% 96.27% 99.97% 99.93%
C-A 97.95% 98.90% 99.77% 98.80%
C-B 98.44% 99.45% 99.55% 99.73%
C-D 98.70% 99.80% 99.93% 99.97%
D-A 94.16% 97.11% 99.54% 98.80%
D-B 92.42% 95.94% 99.48% 97.17%
D-C 98.28% 99.19% 99.89% 99.77%
AVG 97.27% 98.74% 99.82% 99.38%

4.3. Comparison with Other Transfer Learning Methods

The detection accuracy of 1D-LDSAN was compared with that of five other methods,
including a 1D-CNN, DDC [45], DANN [46], RJANN [24], and the WDMAN [47]. The
1D-CNN has the same architecture as the proposed 1D-LDSAN for feature extraction. It
uses only the source domain samples to train a domain-shared 1D-CNN, and the model is
tested with the target domain samples. The DDC is a mapping-based DDA method. DANN
is a type of adversarial neural network. In this experiment, the 1D-CNN was employed
as the feature extractor of the DDC and DANN. Each method was implemented with the
optimal parameters. RJANN and WDMAN are other popular DDA methods used for fault
diagnosis.

Figure 4 displays the 1D-LDSAN’s validation loss during the training process. The
convergence occurs after 50 epochs. Each experiment was repeated ten times for each
model. The average detection results on the CWRU dataset are summarized in Table 5. The
proposed 1D-LDSAN achieves an average detection accuracy score of 99.82%, outperform-
ing the other five methods. Among the five comparison methods, the four deep transfer
learning methods are superior to the DL method. Although the WDMAN and RJAAN
achieve average classification accuracies above 99%, there are gaps between them and the
proposed method for some transfer tasks. The 1D-CNN, DDC, and DANN achieve good
results when the discrepancy is relatively small, such as the transfer task between A and B.
However, the transfer task performance is unsatisfactory for the three methods when the
working conditions change dramatically, resulting in low fault diagnosis accuracy. Notably,
the proposed 1D-LDSAN exhibits excellent accuracy for all 12 transfer tasks. Therefore,
these results demonstrate the effectiveness and superiority of the proposed method.
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Table 5. Classification accuracies of the different methods on the CWRU dataset. The numbers in
bold indicate the highest classification accuracy in corresponding task.

Task 1D-CNN DDC DANN WDMAN [15] Task 1D-CNN

A-B 99.23% 98.12% 99.53% 99.73% 99.20% 99.90%
A-C 89.20% 93.61% 95.50% 99.67% 99.37% 99.89%
A-D 77.88% 84.36% 84.43% 100.00% 99.37% 99.98%
B-A 98.23% 98.34% 97.39% 99.13% 99.01% 99.96%
B-C 91.59% 98.47% 98.50% 100.00% 99.92% 100.00%
B-D 78.51% 79.41% 88.17% 99.93% 99.31% 99.97%
C-A 88.90% 88.94% 92.70% 98.53% 99.13% 99.77%
C-B 90.66% 92.57% 93.76% 99.80% 99.40% 99.55%
C-D 84.59% 90.03% 90.72% 100.00% 99.40% 99.93%
D-A 77.27% 78.69% 79.19% 98.07% 98.84% 99.54%
D-B 69.82% 72.33% 76.71% 98.27% 99.24% 99.48%
D-C 80.06% 83.61% 86.37% 99.53% 99.61% 99.89%
AVG 85.49% 88.21% 90.25% 99.39% 99.32% 99.82%

Figure 5 shows the confusion matrices of the 1D-LDSAN, 1D-LCNN, DDC, and DANN
for the transfer learning task A-D. The proposed method achieves 100% accuracy for each
condition, except for the label OF021. As shown in Figure 5b, the 1D-LCNN misclassifies
many samples due to the significant distribution discrepancy between the domains. For
example, almost all samples of OF014 are misclassified as RF014. In contrast, the DDC and
DANN obtain better results than the 1D-LCNN.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Confusion matrices of the different models for transfer learning task A–D (the color of the 
background becomes darker as the values get larger). (a) 1D-LDSAN; (b) 1D-CNN; (c) DDC; (d) 
DANN. 

T-distributed stochastic neighbor embedding (t-SNE) [48] is used for nonlinear di-
mensionality reduction to visualize the features and analyze the domain adaptation and 
classification performance of the models. The visualization results of the 1D-LDSAN, 1D-
LCNN, DDC, and DANN for the randomly chosen transfer learning task D-A are shown 
in Figure 6. It is observed that the proposed 1D-LDSAN produces more separated clusters 
(Figure 6a) than the 1D-CNN (Figure 6b) (no transfer learning). These results indicate that 
the 1D-LDSAN can better deal with the domain shift between the source and target do-
mains. In contrast, there are substantial discrepancies between the source and target do-
mains in the two domain adaptation methods (Figure 6c,d), resulting in many misclassi-
fications. In summary, these results demonstrate that the proposed approach achieves 
more satisfactory classification performance and domain adaptation ability than the other 
methods. 

  

Figure 5. Confusion matrices of the different models for transfer learning task A–D (the color of the
background becomes darker as the values get larger). (a) 1D-LDSAN; (b) 1D-CNN; (c) DDC; (d) DANN.

T-distributed stochastic neighbor embedding (t-SNE) [48] is used for nonlinear dimension-
ality reduction to visualize the features and analyze the domain adaptation and classification
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performance of the models. The visualization results of the 1D-LDSAN, 1D-LCNN, DDC,
and DANN for the randomly chosen transfer learning task D-A are shown in Figure 6. It is
observed that the proposed 1D-LDSAN produces more separated clusters (Figure 6a) than
the 1D-CNN (Figure 6b) (no transfer learning). These results indicate that the 1D-LDSAN
can better deal with the domain shift between the source and target domains. In contrast,
there are substantial discrepancies between the source and target domains in the two domain
adaptation methods (Figure 6c,d), resulting in many misclassifications. In summary, these
results demonstrate that the proposed approach achieves more satisfactory classification
performance and domain adaptation ability than the other methods.
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4.4. Verification with a Small Proportion of the Target Domain Data

Different proportions of target domain data used for training produce different results.
An experiment was conducted to determine the subdomain adaptation ability of the pro-
posed model using a small proportion of the target domain data. We used six proportions
of the target domain data for transfer learning (0%, 10%, 20%, 30%, 40%, and 50%, where
0% indicates no transfer learning). The remaining target domain data were used for testing.

As shown in Table 6, the classification accuracy improved from 0% to 10%, especially
for tasks whose working conditions changed substantially. The accuracy of the 1D-LDSAN
was high for the last five proportions, indicating that the proposed framework has good
generalization performance for different percentages of the target domain data. Further-
more, when only 10% of the unlabeled target domain data were used for training in the
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12 transfer tasks, the proposed model achieved more than 98% accuracy based on the
remaining 90% of the target domain test data. The experimental results show that the
proposed framework has strong feature extraction and domain adaptation ability and can
extract sufficient information from a small proportion of the target domain data.

Table 6. Experimental results for different proportions of the target domain data. The numbers in
bold indicate the highest classification accuracy in corresponding task.

Task 0% 10% 20% 30% 40% 50%

A-B 99.23% 99.79% 99.57% 99.84% 99.92% 99.90%
A-C 89.20% 99.90% 99.79% 99.90% 99.94% 99.89%
A-D 77.88% 98.79% 98.85% 99.58% 97.48% 99.98%
B-A 98.23% 99.90% 99.86% 99.76% 99.91% 99.96%
B-C 91.59% 99.78% 99.96% 99.98% 99.75% 100.00%
B-D 78.51% 99.94% 99.27% 99.10% 99.99% 99.97%
C-A 88.90% 99.47% 99.70% 99.71% 99.87% 99.77%
C-B 90.66% 99.52% 99.53% 99.57% 99.65% 99.55%
C-D 84.59% 99.48% 99.66% 99.78% 99.82% 99.93%
D-A 77.27% 99.20% 99.61% 98.30% 99.33% 99.54%
D-B 69.82% 98.09% 98.38% 99.30% 99.09% 99.48%
D-C 80.06% 99.68% 99.78% 99.53% 99.79% 99.89%
AVG 85.50% 99.46% 99.49% 99.53% 99.55% 99.82%

4.5. Parameter Sensitivity Analysis

A sensitivity analysis of the five key parameters of the proposed framework was
conducted. The results for the validation task are presented in Figure 7. The influence of
multiple parameters was examined. It was found that the detailed framework architecture
had a negligible influence on the model performance, except for the kernel number of the
first convolution layer. The effects of the threshold parameter λ and the initial learning
rate were also investigated. The results indicate that λ has a relatively small influence on
the framework performance. It is worth noting that the initial learning rate has a marked
influence on model performance.
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5. Conclusions

We proposed the one-dimensional lightweight deep subdomain adaptation network
(1D-LDSAN) to classify fault types of rolling bearings under different working conditions.
The raw vibration signal was divided into small segments in the source and target domains.
The advanced features in the segments were extracted by a one-dimensional lightweight
convolutional neural network backbone. The local maximum mean discrepancy (LMMD)
was employed to match the subdomain distributions, and the cross-entropy function was
used to train a fully connected classifier using the labeled source domain data.

We compared the classification accuracy for different signal lengths and chose a
length of 1024. The proposed 1D-LDSAN framework outperformed five other models
for classifying rolling bearing faults on the CWRU dataset, indicating superior diagnosis
performance. An experiment with six proportions of the target domain data for training
indicated that the proposed framework could extract sufficient information from a small
proportion of the target domain data, indicating excellent domain adaptation performance.

This study provides a solution for the intelligent fault diagnosis of rolling bearings
and demonstrates the potential of domain adaptation for fault diagnosis under different
working conditions. In a future study, we will focus on more effective deep domain
adaptation methods.
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