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Abstract: This paper studies the problem of detecting human beings in non-line-of-sight (NLOS)
conditions using an ultra-wideband radar. We perform an extensive measurement campaign in
realistic environments, considering different body orientations, the obstacles’ materials, and radar–
obstacle distances. We examine two main scenarios according to the radar position: (i) placed on
top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several
input representations and machine learning (ML) methods—supervised and unsupervised, symbolic
and non-symbolic—according to both their accuracy in detecting NLOS human beings and their
adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML tech-
niques, avoiding environment-specific configurations and benefiting from knowledge transference.
Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown
or only partially known observation models and insufficient labeled data, which usually occur in
emergencies or in the presence of time/cost constraints.

Keywords: ultra-wideband (UWB); non-line-of-sight (NLOS); machine learning; transfer learning;
human detection

1. Introduction

Ultra-wideband (UWB) radars have found application in several fields over the last
decade, such as the biomedical and industrial ones, thanks to technological progress.
Specifically, the UWB-radar transmits exploratory signals with a much larger spectrum
than conventional radars, resulting in significant advantages in localization owing to its
centimeter-level range resolution, multipath robustness, high penetration ability, low cost
and energy consumption. One of the most impressive characteristics of these systems is
their ability to locate human beings by detecting small chest movements while breath-
ing [1], even in non-line-of-sight (NLOS) conditions. This capacity can be helpful in many
situations. Three examples are recognizing moving human targets in a surveyed area,
remotely monitoring patients’ vital functions, and identifying survivors that are trapped
under rubble after an earthquake or a catastrophe.

Classical model-based TLC approaches for human detection usually rely on scenario-
specific studies and optimizations, justifying the need for new and easily generalizable
data-driven solutions. This paper presents an extensive measurement campaign with
different environments, obstruction materials, and body orientations using an UWB-radar.
We examine various machine learning (ML) and deep learning (DL) methods to find the best
classifier that can distinguish between the presence and absence of a normally-breathing
human being under NLOS radio propagation conditions by adequately processing the
backscattered UWB signal. We assess model performance with typical classification metrics.
Finally, the general validity of the best models presented in the paper is investigated by
applying transfer learning techniques.
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The remainder of the paper is structured as follows. In Section 2, we describe related
work. In Section 3, the measurement campaign set-up is illustrated. The collected data, the
validation methods, and the main evaluated ML algorithms are introduced in Section 4,
whereas in Section 5, NLOS human being classifiers are derived, examined, and compared
with a standard periodogram-based TLC algorithm. Section 6 discusses the obtained results
and the advantages of the proposed models. In Section 7, conclusions are drawn.

2. Related Work

The problem of human being detection in NLOS settings has been studied in several
works. The first literature mention can be found in [2], where Ossberger et al. proposed a
method for vital parameter detection through a UWB pulse radar, using the Continuous
Wavelet Transform (CWT) with special background subtraction. This technique allowed
for respiration detection up to a distance of 5 m, including behind walls.

In [3], Yarovoy et al. conducted an in-depth investigation of the scattering characteris-
tics of the human body. They implemented a novel motion/breathing detector based on
spatial variation measurements. This contribution did not require separating the signal
component backscattered by the body from that scattered by the environment (clutter).
It worked reliably in an environment characterized by multipath propagation. The two
variables used to locate a human being were the direction and time of arrival.

In [4], Zaikov et al. proved that it is possible to detect trapped persons under rub-
ble by means of an M-sequence UWB-radar, inlucuding in wet debris. Specifically, the
authors detected a breathing person by evaluating the radargram variations after a signal-
enhancing step.

After the success of UWB-radar technology for through-wall detection, in [5], Li et al.
proposed a method based on Fast Fourier Transform (FFT). In this paper, the authors
showed how to extract the central frequencies of life signals and locate the position of
human targets with high accuracy.

In [6], Schleicher et al. introduced three methods of movement determination. Among
these, the slope-to-slope tracking between direct coupling and object reflection was found
to be the most suitable (i.e., slightest detection error).

In [7], Rittiplang et al. investigated a through-wall S-band 1-Tx/5-Rx UWB switched-
antenna-array radar scheme for detecting stationary human subjects from respiration. The
signals were preprocessed to remove unwanted noises, and statistical variance analysis
was undertaken for 3D–2D array conversion. A back-projection algorithm was imple-
mented to reconstruct the images, refined by the Sinc filter. The results revealed that
the through-wall UWB switched-antenna-array radar could distinguish between human
subjects and mannequins.

Another method that involves the spectrogram analysis to detect and localize human
targets in NLOS condition was explained in [8]. In this paper, the Curvelet Transform (CT)
was applied to remove the direct wave and the background clutter. Subsequently, Singular
Value Decomposition (SVD) was used to reduce the noise in the weak life signal. Finally,
a spectral analysis with FFT was carried out to separate and extract the breathing and
heartbeat frequency.

In [9], Casadei et al. proposed a spectrogram approach to facilitate the detection
of a breathing person and their estimated distance from the radar. In other words, they
showed breath activity detection rates with the corresponding threshold values by using a
periodogram. Performance was evaluated in a realistic NLOS scenario in terms of detection
accuracy and false alarm rate, achieving a score of 70% and 5% for brick walls, respectively.
Another classic method is shown in [10], in which the authors reported a minimum missed
rate equal to 2%.

Classical signal detectors [11–13] have also proven effective in radars, sonars, and
communications. Per contra, simple radio signal measures such as Received Signal Strength
Indicator (RSSI) readings are heavily affected by obstruction at the LOS between a transmit-
ter and receiver [14], making them unsuitable under the analyzed conditions. In this sense,
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Barral et al. [15] confirmed the significant degradation effect caused by NLOS conditions in
UWB-based distance estimation.

A comprehensive review of the latest research on a UWB through-wall radar has
been presented by Yang et al. [16], covering human detection theory and signal-processing
algorithms such as human vital sign measurement. For human detection (i.e., determining
the absence or presence of a target in the inspected radar signals) with NLOS sensing,
the authors identified three main strategies: (i) constant false alarm rate (CFAR), where
the goal is determining the power threshold above which any return can be considered
to likely originate from a target as opposed to one of the spurious sources; (ii) statistical
characteristics of the received signal (skewness, kurtosis, energy, etc., also used in this
work); (iii) multipath models of the radar return signal.

Even though the results achieved by the above-mentioned papers are quite satisfactory
in the dissected scenarios, we would like to highlight the need for a suitable backscatter
signal model and an empirical tuning of its parameters. Unfortunately, the model and
the tuning process are scenario-specific. Hence, such classic methods—which usually
imply the use of an analytical model to prepare the signal for a threshold breath activity
detector—might fail under conditions that are different from those designed for them.

With the aim of pursuing a better generalization capacity, the other category con-
cerns machine learning approaches. ML techniques can effectively deal with different
NLOS conditions caused by distinct environments, wall materials, and target orientations,
recognizing patterns that are difficult to find otherwise.

One of the very first approaches to adopt ML and WiFi Sensing to classify and estimate
human respiration activity dates back to 2017 [17]. In this paper, Khan et al. developed a
Convolutional Neural Network (CNN), reaching an accuracy of 94.85%. However, they
considered only line-of-sight (LOS) conditions and worked on a dataset of limited size.

In [18], the Autoencoder NN architecture exhibited a maximum accuracy of 99%.
Similarly, in [19], Ding et al. evaluated five supervised learning algorithms. Even in this
case, the dataset was small, and an Autoencoder was proved to be the best method, reaching
99% accuracy.

Park et al. [20] proposed a transfer-learning-based UWB NLOS identification scheme
for unmeasured environments, showing an accuracy similar to deep learning models
trained with 30× data and 48× computation times. However, they analyzed only multilayer
perceptrons and convolutional neural networks, without exploring additional architectures
and human detection tasks.

The main limitation of the ML contributions in the literature is the dataset dimen-
sion, which is typically relatively small and not suitable for AI techniques, which are
are notoriously data-hungry. Unlike previous works, we aim to obtain a larger dataset
from an extensive measurement campaign by considering multiple scenarios and settings.
In addition, we analyze a broader spectrum of ML and DL methods, evaluating their
generalization properties through transfer learning techniques.

3. Measurement Campaign Setup

We performed an extensive measurement campaign in different scenarios and tar-
get displacements to create a comprehensive database for applying and evaluating deep
learning algorithms as human being classifiers.

We employed the Novelda NVA-R661 radar development kit—based on NVA-6201
chip and operating in the 6–8.5 GHz band—as the commercial device for the campaign
(Figure 1). It comprehends an IO module for PC communication and a software library. In
addition, the kit provides a couple of sinuous antennas with dielectric lenses for narrowing
the radiation pattern. Antenna and transceiver datasheets are available at https://www.
laonuri.com/en/product/sinuous/ and https://www.laonuri.com/en/product/nva-r661/,
accessed on 22 December 2021.

https://www.laonuri.com/en/product/sinuous/
https://www.laonuri.com/en/product/sinuous/
https://www.laonuri.com/en/product/nva-r661/
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(a) (b)

Figure 1. UWB-radar instrumentation. (a) Radar Novelda NVA-R661. (b) Sinuous antennas and
dielectric lenses.

Notice that the chosen bandwidth is 2.5 GHz and, by definition, is UWB. In fact,
according to FCC, a signal is UWB if its bandwidth is larger than 500 MHz. Unfortunately,
international regulations do not allow for the exploitation of the whole 3–10 GHz band,
whose usage is restricted to some sub-bands depending on the area and with different limi-
tations (e.g., detection-and-avoidance (DDA) or low-duty cycle (LDC) schemes). Moreover,
the available chipsets and standards allow for a maximum bandwidth of about 1.6 GHz
(however, this is typically 500 MHz). Therefore, in our opinion, the choice of the 6–8.5 GHz
is reasonable because (i) it is allowed worldwide and without DDA/LDC restrictions;
(ii) it is also available at a practicable low cost today, thus making the results valid for
affordable technology.

The selected radar is general-purpose and can be programmed and configured for
sensing applications of up to 60 m with 4 mm spatial resolution. With equipped lenses, the
typical antenna gain is 6.7 dBi. Furthermore, it is a bistatic radar; it includes transmitter
circuits to generate a Gaussian impulse signal in the 6–8.5 GHz band, a receiver to collect
the reflected (backscattered) signal, and special circuitry to gather the range data for target
detection and imaging.

The Novelda Radar Software Bundle installation program contains all necessary in-
structions to interface with the radar and documentation. Moreover, the software library
gives the developer easy access to the complete functionality of the Novelda Radar using
RadarScope GUI application. This software allows all the control parameters for transmis-
sion to be managed, such as pulse generator frequency, spatial length, and Pulse Repetition
Frequency (PRF). The radar periodically sends a large number of UWB pulses at frequency
PRF. Then, it collects the signal samples backscattered by the surrounding environment
in a limited observation window of duration Tf , starting from a selectable time offset. In
our tests, we have chosen PRF = 6 MHz so that, according to the Radar datasheet, 69 wave-
forms/s can be acquired. The observation window duration is Tf = 7.11ns, corresponding
to 1.06 m at the sampling time of ts ≈ 30 ps. The total number of samples collected per
observed window is K = 256.

Experimental data were collected in different indoor scenarios in the main building
of the School of Engineering at the University of Bologna, Cesena Campus. First of all,
we considered a static measurement, which means that the radar was placed still on a
mobile cart at about 130 cm from the ground. The target was always placed d = 20 cm
far behind the obstacles, which was r = 30, 60 and 90 cm from the radar. Using s as the
material thickness, we considered different obstacles. In particular, we chose to consider:
double-glazing s = 10 cm, wooden door s = 3 and 5 cm, brick wall s = 15 cm, and glass
window s = 2 cm. In the second scenario, we inspected a more realistic situation in which
the radar was handheld at different heights, so that small movements made the acquisition
dynamic. For this experiment, we ignored the double-glazing window.

As depicted in Figure 2, various measurements were taken to consider different body
orientations. For each combination of obstacle type, target orientation, and radar distance,
N = 512 consecutive waveforms were collected for a total measurement time of ≈7 s.
The selected measurement time was chosen as it is large enough to contain one breath in
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normal conditions. Three different body orientations were collected: (i) the person with
his chest facing the radar; (ii) the person rotated 90 degrees; (iii) the person with their
back to the radar. During the acquisitions, the target people were asked to vary their
breathing frequency.

In Table 1, we show the measurement campaign setup. We obtained two datasets in
the form of I × J matrix M. For the static case, the number of total instances is I = 23.552;
for the dynamic one, I = 17.408. J = 256 (K) for both cases. The number of rows I is
obtained by concatenating every pulse set from the measurement campaign, discarding the
erroneous ones (i.e., absence of information content and high presence of noise) based on a
qualitative inspection.

Figure 2. The different body orientations considered within our experiments for through-wall human
detection. Note: r = radar-obstacle distance; s = obstacle thickness; d = target-obstacle distance.

Table 1. Measurement setup.

Condition Variants

Body orientations no person
person front faced (0 degrees)
person in profile (90 degrees)
person back faced (180 degrees)

Obstacle’s material double-glazing s = 10 cm (only static case)
wooden door s = 3 and 5 cm
brickwall s = 15 cm
glass window s = 2 cm

Radar-obstacle distance r = 30 cm (only static case)
r = 60 cm
r = 90 cm
r = 120 cm (only dynamic case)

Radar position Static pose, 130 cm from the ground
Dynamic pose
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3.1. Data Processing and Datasets Creation

Having arranged the labeled raw data in two matrices, we extracted three more
datasets for each one of them. The starting matrices, which are 23,552 × 256, for the static
case and 17,408 × 256 for the dynamic one, will be referred to as the datasets containing
the signals in the time domain (raw data). An example of such pulses is shown in Figure 3,
in which we reported four signals that were acquired in the s = 3 cm wooden door scenario
and static condition showing the normalized amplitude on the observation window Tf .

Figure 3. Example of time-domain pulses acquired in static condition.

A second and a third dataset were obtained from the raw data by computing the
horizontal and vertical Fast Fourier Transform (FFT). Particularly, the horizontal FFT was
calculated through the Fast Time direction, which means over the time of each interrogation
signal. The vertical FFT was applied over the Slow Time direction, which indicates the time
of pulse acquisition. Specifically, the horizontal FFT should capture the changes in the
signal spectrum due to obstacle/person. In contrast, the vertical FFT should capture the
slow variation in the backscatter signal caused by breath or movements (Doppler spectrum).
In Figure 4, we clarify this concept.

Figure 4. Slow Time and Fast Time.

To create the fourth dataset, we extracted a set of statistical attributes from the wave-
forms, which are distinctive for UWB signals analysis, as shown in [21]. This elaboration is
also useful when obtaining new, possibly significant data from the raw signals. In Table 2,
we present the statistics we used as attributes. Below, we list their definitions.
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Table 2. Attributes calculated from each waveform.

Attribute’s Name Meaning Notation

Max maximum value xMax
min minimum value xmin
Mean mean value x̄
Std.deviation distribution’s standard deviation σX
Skewness distribution’s skewness b1
Kurtosis distribution’s kurtosis g2
Energy signal’s Energy E
Max/min ration between max and min xMax/xmin
Max−min difference between max and min xMax − xmin
SD/mean std.deviation–mean ratio s/x̄
Max−minsqrd max and min squared difference (xMax − xmin)

2

Skewness is a measure of the lack of symmetry in a dataset. A dataset, or distribution, is
symmetric if it looks the same to the left and right of the center point. Kurtosis is a measure
of whether the data are peaked or flat relative to a normal distribution. In particular,
datasets with high kurtosis tend to have a distinct peak near the mean, then decline rather
rapidly, followed by heavy tails. Datasets with low kurtosis are more likely to have a flat
top near the mean rather than a sharp peak. Taking xi as the signal samples, x̄ as the mean,
σX as the standard deviation and n as the number of datapoints, skewness b1 and kurtosis
g2 are defined as follows:

b1 =
∑n

i=1 (xi − x̄)3

(n− 1)σ3
X

(1)

g2 =
∑n

i=1 (xi − x̄)4

(n− 1)σ4
X

(2)

whereas the energy of the signal is:

E =
n

∑
i=1

x2
i (3)

Considering the above, we obtained four datasets for both cases, containing: raw data
(time-domain waveforms), horizontal FFT signals (horizontal–frequency domain), vertical
FFT signals (vertical-frequency domain or Doppler spectrum), and attributes extracted
from the raw data (statistic domain).

The obtained measurement data are available for public use: https://github.com/disi-
unibo-nlu/uwb-nlos-human-detection, accessed on 22 December 2021.

4. Materials and Methods

Deep learning is part of a broader family of machine learning methods based on
artificial neural networks. Learning can be supervised, semi-supervised, or unsupervised.
Before applying algorithms to discover patterns, the target dataset must be large enough.
In the preprocessing phase, the target dataset is created and reduced into feature vectors,
one for each observation. Then, a set of such vectors, also called instances, can be fed to a
learning algorithm, which treats them as examples from which to extract the underlying
patterns. Many learning algorithms exist, based on different theoretical bases and yielding
to models of distinct formats.

We consider two different learning approaches according to the nature of the input
data. Supervised learning algorithms take labeled instances as input. Therefore, each instance
must be labeled with the class of interest. In our case, waveform instances are marked
as either “Person YES” or “Person NO” to allow the final model to classify subsequent
preprocessed waveforms into one of these cases. Unsupervised learning algorithms take
unlabeled instances as input, with no additional information, and divide the given data
into clusters. In a general vein, they are employed in a wide range of AI-based applications,

https://github.com/disi-unibo-nlu/uwb-nlos-human-detection
https://github.com/disi-unibo-nlu/uwb-nlos-human-detection
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like topic detection [22] and job recommendation [23]. These algorithms maximize the
similarity between instances of the same cluster and minimize that between instances of
different clusters. As a result, each cluster will contain instances with specific, prominent
characteristics. The advantage of this type of learning is that it can provide a high-level
classification, avoiding the labeling phase, which is usually time-consuming and made by
users. By contra, a disadvantage is that the unsupervised approach yields a more generic
model that subdivides instances into groups with no predefined meaning. The collected
labels are used only to calculate unsupervised algorithm evaluation metrics. These models
are expected to be far less accurate than the supervised ones, but not less interesting, due
to their ease of training. In fact, the considerable advantage of using clustering methods is
that they do not require training data to be labeled. We implemented each model in Keras.

In the following, we first describe how we preprocessed the raw data to create different
datasets; then, we present the specific supervised and unsupervised learning methods that
we examined.

4.1. Validation Methods

To evaluate how our classification models make predictions, we considered the Confu-
sion Matrix (CF) and the associated metrics. A confusion matrix is a summary of prediction
results on a classification problem. The number of correct and incorrect predictions are
summarized with count values and divided by each class. We can formally define the
CF-associated metrics as TP, TN, FP, and FN, which are the well-known True Positives,
True Negatives, False Positives, and False Negatives, respectively. In this case study, the
presence of a human being behind the obstacle will be considered a Positive, while the
absence of the subject will be a Negative. The first and main metric is the Accuracy, which
is defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

The problem with accuracy is that it assumes equal costs for both kinds of errors. For
this reason, we also considered Precision and Recall.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

High Precision indicates that an example labeled as positive is indeed positive (small
FP). High Recall indicates that the class is correctly recognized (small FN). F1 Measure is
a measure that represents both Precision and Recall.

F1 = 2 · Precision · Recall
Precision + Recall

(7)

This is usually nearer to the smallest value. High recall and low precision mean
that most positive examples are correctly recognized (low FN), but there are a lot of false
positives. In contrast, low recall and high precision show that we miss a lot of positive
examples (high FN), but those we predict as positive are indeed positive (low FP).

From the above metrics, it is possible to derive the Receiver Operating Characteristic
(ROC curve) and the Precision–Recall curve (PRC). The former is a performance measure
defined at various thresholds settings. This shows how capable a model is of distinguishing
the classes. The higher the Area Under The Curve (AUC), the better the model is as a classifier.
A PRC plots Precision against Recall and does not consider TN values.

The first validation method we applied to evaluate our models’ performance is the
Hold-Out Validation. With Hold-out, the dataset is split into a train and a test set. The training
contains the model’s data, whereas the test set is used to see how well that model performs
on unseen data. The split we adopted is 70% of data for training and the remaining 30% for
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testing. Due to its time efficiency, we used this evaluation method for Neural Networks
(NN) models evaluation.

Another more robust validation method we applied to evaluate our models’ perfor-
mances is K-Fold Cross Validation (K-Fold CV). With K-Fold CV, a given dataset is initially
divided into K subsets (folds). Each fold is then used as a test set, whereas the remaining
ones are merged as the training set. This process is repeated until each fold has been used
as the testing one. The results are K metrics: one for each analysis. Calculating the average
of these parameters, we obtained a more solid measure of the model performances. In this
work, we chose K = 5.

The subsequent chapters briefly describe the ML and DL algorithms that we evaluated
as classifiers.

4.2. Gradient Boosting Decision Trees

A Decision Tree is a flowchart-like structure in which each internal node represents
a “test” on an attribute, each branch represents the outcome of the test, and each leaf
node represents a class label (decision). The paths from the root to the leaf represent
classification rules. Tree-based learning algorithms are considered one of the best and most
used supervised learning methods. Tree-based methods empower predictive models with
high accuracy, stability, and ease of interpretation. Moreover, unlike linear models, they
map non-linear relationships quite well.

Gradient Boosting is a ML technique for regression and classification problems, which
produces a prediction model in the form of an ensemble of weak prediction models, which
are typically decision trees. It builds the final model in a stage-wise fashion as other
boosting methods do, and it generalizes them by allowing optimization of an arbitrary
differentiable loss function. Decision Trees are very flexible and efficient algorithms, but a
single Tree could easily be subjected to overfitting, making it difficult to generalize.

Gradient Boosting Decision Trees (GBDT) combine multiple Decision Trees predictions
to generalize as good as possible the result. GBDTs are iteratively trained, one by one. The
critical thing to notice is that, for the Decision Tree definition, searching for the best splits
requires the generation and the evaluation of every possible split. Therefore, an analytical
solution, which provides the best split without considering them all, does not exist. This
computational issue is the most challenging aspect of the Decision Trees’ training.

There are several GBDT algorithms, which mainly differ from one another in the ways
in which they avoid the evaluation of all the possible split. In this work, we considered three
GBDT algorithms which proved to be excellent classifiers: XGboost [24], LightGBM [25], and
CatBoost [26].

4.3. Feed-Forward, Recurrent, Autoencoder Neural Networks

A standard NN consists of many simple connected processors called neurons, each pro-
ducing a sequence of real-valued activations. Input neurons are activated through sensors
perceiving the environment, and others are activated through weighted connections from
previously active neurons. Learning is about finding weights that make the NN exhibit
the desired behavior. Depending on the problem and how the neurons are connected,
such behavior may require long causal chains of computational layers, where each stage
transforms (often in a non-linear way) the aggregate activation of the network [27]. Feed-
forward Neural Network (FNN) was the first and simplest type of artificial neural network
conceived. In this NN, the information moves in only one direction, forward, from the
input nodes, through the hidden nodes, and to the output nodes. There are no cycles or
loops in the network.

Long Short-Term Memory (LSTM) is an artificial Recurrent Neural Network (RNN).
Unlike FNN, LSTM has feedback connections [28]. A standard LSTM unit comprises a cell,
an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary
time intervals, and the three gates regulate the flow of information into and out of the cell.
LSTM networks are well-suited to classify processes and make predictions based on time
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series data since there can be lags of unknown duration between essential events in a time
series [29,30]. We expect to obtain high-accuracy results on raw data with the LSTM model
thanks to its ability to recognize temporal dynamic behavior in time-domain waveforms.
The difference between FNN and LSTM neurons is shown in Figure 5.

Figure 5. Difference between FNN (left) and LSTM Neurons (right).

An Autoencoder (AE) is a type of NN used to learn efficient data codings in an unsu-
pervised manner. An autoencoder aims to learn a representation (encoding) for a set of
data, typically for dimensionality reduction, by training the network to ignore signal noise.
Along with the reduction side, a reconstructing side is learned, where the Autoencoder
tries to generate a representation that is as close as possible to its original input from the
reduced encoding [31]. Several variants of the basic model exist to force the learned input
representations to assume valuable properties. Autoencoders are effectively used to solve
many applied problems, from face recognition to acquiring the semantic meaning of words.
In this work, we used them to process time-series data, such as in [32]. In Figure 6 we
depicted the Autoencoder NN architecture we developed as a classifier, which gives the
input’s class as output. Notably, each letter corresponds to a layer, and the lowercase
number stands for the associated neurons.

Figure 6. Implemented Autoencoder classifier architecture.

4.4. K-Means

K-Means (KM) is a simple unsupervised algorithm that is capable of clustering datasets
very quickly and efficiently, often requiring only a few iterations. The primary input to the
clustering algorithm is the number of clusters K. This parameter determines the clustering
mechanism and how the clusters themselves are created. K is not always known a priori,
but it is in this case study. We aim to let KM discover two clusters, one for each class of
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interest (“Person YES” and “Person NO”). Given a set of observations x1, x2, . . . , xn, where
each observation is a d-dimensional real vector, KM clustering partitions the n observations
into K ≤ n sets S = S1, S2, . . . , SK to minimize the within-cluster sum of squares. Formally,
the objective is to find:

arg min
S

K

∑
i=1

∑
x∈Si

‖x− µi‖2 = arg min
S

K

∑
i=1
|Si|VarSi (8)

where µi is the mean of points in Si. This is equivalent to minimize the pairwise squared
deviations of points in the same cluster:

arg min
S

K

∑
i=1

1
2|Si| ∑

x,y∈Si

‖x− y‖2 (9)

To equivalence between Equations (8) and (9) can be obtained from the identity:

∑
x∈Si

‖x− µi‖2 = ∑
x 6=y∈Si

(x− µi)(µi − y) (10)

Because the total variance is constant, this is equivalent to maximizing the sum of
squared deviations between points in different clusters, which follows from the law of total
variance [33].

4.5. Dimensionality Reduction Techniques: PCA and t-SNE

In statistics, machine learning, and information theory, Dimensionality Reduction is the
process of reducing the number of random variables under consideration by obtaining
a set of principal variables. For high-dimensional datasets, such as the ones we have,
dimension reduction is usually performed before applying an unsupervised algorithm to
avoid the effects of the Curse of Dimensionality. Dimension reduction can be achieved by
using several techniques as a pre-processing step before applying the clustering approach.
Dimensionality Reduction has several advantages. First of all, it reduces the time and
storage space required. In the second instance, removing multi-collinearities improves
the interpretation of the ML model parameters. Then, it allows for data visualization in
lower-dimension domains, such as 2D or 3D.

In this work, we considered two Dimensionality Reduction techniques: Principal
Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE).

PCA is a statistical procedure that uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables, called principal components. This transformation is defined so that the first
principal component has the largest variance, and each succeeding component has the
highest possible variance under the constraint that it is orthogonal to preceding components.
Variance is directly proportional to the variability in the dataset. The resulting vectors are
an uncorrelated orthogonal basis set. These vectors are linear combinations of the variables
and contain n observations. An important note is that PCA is sensitive to the relative
scaling of the original variables [33,34].

t-SNE is a nonlinear dimensionality reduction technique, well-suited to embedding
high-dimensional data for visualization in a low-dimensional space of two or three dimen-
sions. It models each high-dimensional object by a two- or three-dimensional point in such
a way that nearby points refer to similar objects and distant points to dissimilar ones, with
high probability. The t-SNE algorithm comprises two main stages. First, t-SNE constructs a
probability distribution over pairs of high-dimensional objects so that similar objects have
a high probability of being picked, whereas dissimilar points have a minimal probability of
being selected. Second, t-SNE defines a similar probability distribution over the points in
the low-dimensional map. It minimizes the Kullback–Leibler divergence between the two
distributions with respect to the locations of the points in the map. Note that, while the
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original algorithm uses the Euclidean distance between objects as the base of its similarity
metric, this could be changed as appropriate [35].

5. Experiments and Results

This section shows and compares the results we obtained by applying the above
algorithms on each dataset in both static and dynamic cases. In the following tables, we
present the Accuracy of each model we developed, together with Precision, Recall, and F1
values for both classes. Then, we highlight only the normalized CF and the ROC curve
associated with our best result.

We considered eight datasets containing both signals in the time and frequency do-
mains, as well as the attributes extracted from the waveforms. Moreover, we considered
multiple subsets of features, which we chose among those described in Section 3.1. From
now on, the two classes “Person YES” and “Person NO” will be shortened to “YES” and
“NO”, respectively. In Table 3, data types and corresponding dataset names are shown.

Table 3. Datasets legend.

Dataset Name Data Type

raw data time-domain waveforms
orz fft transformed raw data (horizontal FFT)
ver fft transformed raw data (vertical FFT)
all att all attributes from raw data
4 att Max, Min, Mean, Std.Deviation
E att Energy
4+E att Max, Min, Mean, Std.Deviation, Energy
SK att Skewness, Kurtosis

5.1. Supervised Methods

As expected, the comparison between Tables 4 and 5 highlights that less accurate
models are obtained when the radar is held by someone instead of being in a fixed position.
In particular, a drop in accuracy of about 5% can be observed for NN architectures and 10%
for GBDT models. This difference is shown in Figure 7. LSTM has proven to be the best NN
working with raw data, thanks to its ability to recognize temporal dynamic behavior in time
series data, e.g., time-domain waveforms. LSTM models achieved the best performance
metric values among all the trained models. Figure 8 shows the normalized CF obtained
for the LSTM model, which was trained on raw data in the static case. Furthermore, it can
be noticed that GBDT algorithms are the best-suited to dealing with attributes extracted
from raw data. Similar results were achieved with all the considered subsets.

RAW DATA ORZ FFT ALL ATT
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Figure 7. Comparison of best supervised models in static and dynamic cases.
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Table 4. Supervised methods—static case.

Accuracy Class Precision Recall F1 Method

raw data 99.70% YES 99.70% 97.82% 98.75% LSTM
NO 98.54% 99.15% 98.85%

orz fft 97.10% YES 97.10% 93.84% 95.44% LSTM
NO 97.98% 93.70% 95.79%

ver fft 70.38% YES 52.29% 83.43% 64.52% AE
NO 89.04% 64.16% 74.58%

all att 89.86% YES 90.30% 88.55% 88.19% XGBoost
NO 93.47% 92.33% 92.48%

4 att 89.58% YES 89.99% 88.15% 87.86% XGBoost
NO 93.10% 92.27% 92.28%

E att 88.02% YES 88.13% 86.67% 86.22% XGBoost
NO 92.29% 90.56% 91.02%

4+E att 89.58% YES 89.99% 88.15% 87.86% XGBoost
NO 93.10% 92.27% 92.28%

SK att 87.21% YES 87.07% 85.36% 85.18% CatBoost
NO 90.84% 90.96% 90.59%

Table 5. Supervised methods—dynamic case.

Accuracy Class Precision Recall F1 Method

raw data 94.83% YES 92.01% 95.96% 93.94% LSTM
NO 97.01% 94.02% 95.49%

orz fft 92.56% YES 87.93% 95.26% 91.45% AE
NO 96.38% 90.62% 93.41%

ver fft 83.87% YES 77.65% 86.58% 81.87% AE
NO 89.37% 81.91% 85.48%

all att 79.14% YES 80.11% 78.65% 78.69% CatBoost
NO 80.50% 81.44% 80.51%

4 att 79.30% YES 80.77% 78.64% 78.81% CatBoost
NO 80.18% 82.40% 80.75%

E att 78.10% YES 79.39% 77.09% 77.38% CatBoost
NO 79.27% 82.83% 80.57%

4+E att 79.22% YES 80.62% 78.53% 78.72% CatBoost
NO 79.93% 82.43% 80.66%

SK att 76.26% YES 77.73% 75.34% 75.66% CatBoost
NO 76.32% 80.56% 77.90%

Figure 8. Normalized Confusion Matrix LSTM model—raw data, static case.
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5.2. Unsupervised Methods

The performance metrics obtained for the unsupervised models are shown in Tables 6 and 7
for the static and dynamic scenarios, respectively. Before applying the K-Means algorithm,
we considered three different situations, in which the datasets were elaborated either
without a dimensionality reduction step, by using PCA, or by developing t-SNE. We aimed
to reduce the analysis to a two-dimensional problem and minimize the computational
cost by preserving the most relevant information. The tables clarify that t-SNE is the best
technique to work with K-Means, reaching an accuracy of about 74%. The two-dimensional
projection of the statistical attributes dataset in the static case is illustrated in Figure 9;
here, we highlight the two clusters found by the K-Means algorithm after the t-SNE
dimensionality reduction.

The best models we obtained in both scenarios were trained on the horizontal trans-
formed data and all the attributes extracted from the waveforms. These models are char-
acterized by high Precision and low Recall for the “Person YES” class; for the “Person
NO” class, the models show low Precision and high Recall. Such metrics prove that the
system finds “Person YES” in just a few cases. However, in such cases, the predicted
labels are correct compared to the training labels. On the other hand, the model returns
many “Person NO”, even though such results are not always accurate. Moreover, our study
highlights a small accuracy gap between the unsupervised models trained on static and
dynamic datasets. Furthermore, clustering algorithms seem to work better with attributes
extracted from raw data rather than with the waveforms themselves, as NNs and GBDTs
do. The model we trained using all the attributes—whose normalized CF is shown in
Figure 10—proved to be the best and most stable one.

Figure 9. 2D data projection with K-Means t-SNE model—all attributes, static case.

Figure 10. Normalized Confusion Matrix K-Means with t-SNE model—all attributes, static case.
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Table 6. K-Means—static case.

Accuracy Class Precision Recall F1 Method

raw data 52.31% YES 66.61% 58.63% 62.36% PCA
NO 31.66% 40.86% 35.68%

orz fft 74.61% YES 95.86% 65.13% 77.57% t-SNE
NO 56.75% 94.19% 70.82%

ver fft 52.79% YES 68.73% 54.95% 61.07% t-SNE
NO 34.17% 48.32% 40.03%

all att 74.37% YES 94.54% 65.77% 77.57% t-SNE
NO 56.56% 92.17% 70.11%

4 att 58.29% YES 75.47% 56.46% 64.60% t-SNE
NO 41.09% 63.58% 49.92%

4+E att 58.72% YES 75.58% 57.23% 65.14% t-SNE
NO 41.16% 61.78% 49.41%

SK att 75.64% YES 94.81% 67.55% 78.89% t-SNE
NO 57.93% 92.36% 71.20%

Table 7. K-Means—dynamic case.

Accuracy Class Precision Recall F1 Method

raw data 52.02% YES 60.98% 51.20% 55.66% t-SNE
NO 43.28% 53.20% 47.73%

orz fft 72.82% YES 82.72% 67.99% 74.63% t-SNE
NO 63.55% 79.72% 79.72%

ver fft 54.89% YES 63.01% 56.47% 59.56% t-SNE
NO 45.84% 52.64% 49.01%

all att 73.55% YES 82.06% 70.44% 75.81% t-SNE
NO 64.88% 78.00% 70.83%

4 att 52.97% YES 61.25% 54.55% 57.70% t-SNE
NO 43.86% 50.70% 47.04%

4+E att 52.62% YES 61.43% 52.28% 56.49% t-SNE
NO 43.80% 53.11% 48.01%

SK att 65.23% YES 73.34% 64.25% 68.49% t-SNE
NO 56.62% 66.64% 61.22%

5.3. Comparison with a Periodogram-Based TLC Algorithm

We compared the results described in Section 5.1 with a classical periodogram-based
TLC approach (pseudocode in Algorithm 1, implemented in MatLab) to formally assess
the benefits of ML techniques for general through-wall human detection. This algorithm
studies the spectrum of the waveforms received by the UWB radar—which derive from
the interaction between the transmitted train of Gaussian pulses and the surrounding
environment (human target included)—to classify the presence of a person based on the
identification of respiratory rate components. Normally, by breathing, a relaxed person
can cause a displacement of the rib cage ranging from 0.1 mm to a few centimeters. Such
movements occur with a frequency that is commonly between 0.2 and 0.7 Hz [36], which is
possibly detectable by observing the harmonics of the received signal’s spectrum.

Starting from the raw matrices presented in Section 3, we followed three macro-steps:

• Static clutter removal (i.e., elimination of unwanted echoes, generally due to the
reflection of electromagnetic energy on the natural and artificial elements surrounding
the target);
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• DC component removal;
• Signal spectrum computation via vertical FFT.

Algorithm 1: Periodogram-based TLC human detector
Input : n_pulses← 512,

n_samples← 216,
dtpulse ← 14ms, . Measure time / pulse set size
breath_ f req← [0.2, 0.7], . Breathing frequency (Hz)
Mall ← Matrix (n_measures x n_pulses) x n_samples,
ampth ← Minimum amplitude for human detection

Output : CF
CF ← zeros(2, 2) . Confusion Matrix initialization
VerifyHumanPrecenceInMeasure (Mmeasure)

NFFT ← 1024;

Fwindow ←
1

dtpulse
;

f req←
(

0 :
NFFT − 1

2

)
× Fwindow

NFFT
;

Mdi f fmeasure ← Mmeasure − rowAvg(Mmeasure);
M f inalmeasure ← Mdi f fmeasure − colAvg(Mdi f fmeasure);
M f f t ← zeros(NFFT, n_samples);
for k = 1 : n_samples do

M f f t(:, k)← |fft(M f inalmeasure(:, k), NFFT)|
n_samples

;

end for
max_amp, pulse_idxmax_amp ← max(max(M f f t));
pred_target← f alse;
if max_amp > ampth then . Potential target

pred_ f req← f req(pulse_idxmax_amp);
if pred_ f req ∈ breath_ f req then . Target detected

pred_target← true;
end if

end if
return pred_target;

foreach Mmeasure, gold_target ∈ getMeasuresData(Mall) do
CF ← UpdateCF(
VerifyHumanPrecenceInMeasure(Mmeasure),
gold_target);

end foreach

Next, the harmonic with greater amplitude is searched in the spectrum; if it exceeds a
certain amplitude threshold ampth and conforms to a Doppler compatible with the breath,
the human target presence is deduced (Figure 11). Alternatively, the correspondence
between the highest harmonic and a valid signal can be verified by calculating the difference
between the predicted radar-target distance and the real one, using the well-known formula
D = 0.5× ∆t× c, where ∆t is the temporal distance and c is the light speed. However, we
focused on the first case to avoid introducing and calibrating additional scenario-specific
parameters besides ampth, e.g., the delay introduced by the obstacle and the target for
establishing ∆t.
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We evaluated Algorithm 1 on a set of 600 ampth test values, ranging from 0 to 0.2.
Figure 12 highlights the performance contrast between the LSTM models and the above-
described approach in static and dynamic acquisitions. The ROC curves corroborate the
strengths of ML techniques, which makes them significantly more effective and robust to
radar semi-movements.

(a) (b)

Figure 11. Simple spectrum comparison in LOS conditions between present and absent human target
scenarios. (a) Signal spectrum with human target. The fundamental harmonic related to respiration
is highlighted in red (≈13 breaths/min), while the others are at multiple frequencies with decreasing
amplitudes. (b) Signal spectrum without human target.

(a) (b)

Figure 12. ROC curves LSTM vs. Periodogram-based TLC models in static and dynamic settings. The
red dashed line indicates a random classifier. (a) ROC Curves LSTM model—raw data. Discriminating
threshold = probability predicted by the model for the gold class. (b) ROC Curves Periodogram-based
model—raw data. Discriminating threshold = minimum amplitude in the vertical FFT spectrum for
human detection (ampth).
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5.4. Generality of Neural Models and Transfer Learning

The experiments we illustrated above are all in-domain type, which means that the
models are trained and tested over sub-sets belonging to the same dataset, namely, those
belonging to the same scenario. Since our goal is to evaluate the generalization capacity of
these models, we compare their accuracy by applying them to different scenarios concerning
their training environment.

Adapting a pre-trained model for a target scenario different from the source one is
known in ML literature as transfer learning (TL) [37]. TL has recently revolutionized many
AI fields, especially natural language processing [38–40]. The generality of a model is an
important aspect, particularly when new data signals for new scenarios cannot be labeled,
such as in emergency situations or due to limits in time and cost sustainability. Potentially,
the more general a model is, the more it could be online distributed without performing in
loco new measurement campaigns.

In this work, the model generality has been evaluated by considering the static dataset
as source because of the higher reliability of the acquired signals, and the dynamic one as
target. This subsection reports two sets of experiments based on cross-domain with and
without fine-tuning.

In the cross-domain experiments, we trained models on the static case data, while
the test was carried out on dynamic datasets. We used this method to verify if the models
obtained from one measurement campaign are also efficient for the other one.

Figure 13 illustrates how the GBDT models, which were obtained for the static case and
tested on dynamic data, present better performances than the dynamic ones, which were
trained and tested in-domain. On the flip side, NN architectures are less adaptable, losing
about 10–15% accuracy. Including the fine-tuning in the cross-domain experiments, we only
worked with NN architectures. To take the lack of measurements into account, we trained
the models obtained from the Cross-Domain evaluation again, by using small sub-sets of
dynamic data. We evaluated three train-test divisions for the dynamic datasets: 10–90%,
20–80%, and 30–70%. In this way, not only do we want to verify if the models trained on
static data suit the dynamic scenario, we also want to test if these models providee better
results than the corresponding ones, trained in-domain (i.e., trained in the same condition
without fine-tuning), even under lack-of-data conditions.
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Figure 13. Comparison of best models trained on raw data—Cross-Domain experiment.

It could be notied that NN models exhibit high generality, and they work very well
even in with a lack of training data. From Figure 14, it is possible to observe how cross-
domain LSTM models, trained with few measurements, work even better than the corre-
sponding in-domain ones, trained on larger datasets. The latter consideration does not
apply to AE architectures, for which the best model remains the one trained in-domain.
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Figure 14. Comparison of best models trained on raw data (10%)—Cross-Domain with fine-tuning
experiment.

6. Discussion

Traditional TLC techniques based on detection theory achieve an excellent
performance—better than any other approach—only if the observation model (signals,
propagation, noise, clutter) is perfectly consistent with reality. However, if such a model is
not known or only partially known, they may give poor results or require the calibration of
unknown parameters, which risk being scenario-dependent (environment, wall material,
radar positioning, etc.). Carrying out and repeating complex mathematical studies on
waveforms and extensive parameter searches for each new usage scenario is unscalable
and highly costly (considering both economics and time). Additionally, it is not possible
for some real-world emergency scenarios, such as earthquake disasters, where the confor-
mation of the rubble under which there could be trapped liives is completely arbitrary and
not measurable a priori. ML approaches and recent breakthroughs in transfer learning
can overcome these challenges, automatically learning and adapting model parameters to
converge towards a maximum accuracy value, even in very complex dynamic conditions
where the transponder is held in-hand (semi-movement).

To the best of our knowledge, this is the first work to compare such a variety of
classifiers—supervised and unsupervised, symbolic and neural—on the task in question by
considering: (i) various target orientations, obstacle materials, and radar-obstacle distances;
(ii) raw data with and without Fast Fourier transformations and multiple sets of features; (iii)
static and dynamic radar pulse signal acquisitions; (iv) generality towards unseen scenarios
with a limited amount of training data. The same ML model can effectively deal with
different environments and NLOS conditions, recognizing patterns that would be difficult
to find otherwise. Our study highlights the effectiveness of deep learning models operating
directly on time-domain waveforms as sequential inputs, where feature engineering—
which is mostly helpful in unsupervised settings—is replaced by automatically learned
dense and hidden representations. From our experiments, LSTM emerges as the most
effective architecture, with an accuracy of 99.70% in static acquisitions and 94.83% in
dynamic ones (96.85% through fine-tuning of static models, demonstrating the utility of
overcoming the isolated learning paradigm in related tasks). The performances achieved
by our deep neural models suggest their ability to recognize patterns related to breathing,
generalizing to various obstacle types and data acquiring modalities. We hope that this
paper will stimulate future research in the area, providing insights into the most effective
configurations and encouraging the community to apply deep-learning advancements on
UWB signals.
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7. Conclusions

In this paper, several machine learning approaches for detecting human beings were
analyzed using UWB signals. Starting from the data collected in an extensive measurement
campaign in realistic environments, which considered different obstacles and body orienta-
tions, we extracted a knowledge model to classify the presence or absence of a person. We
considered many supervised learning techniques and an unsupervised one, which does
not require training data to be labeled. The former includes three GBDT algorithms and
three NN architectures, whereas, in the latter, we used K-Means as a clustering method,
combined with PCA and t-SNE as dimensionality reduction techniques. The goodness of
fit of such models was evaluated with Accuracy, Precision, Recall, and F1-Measure.

Our classifiers outperformed similar works in the literature using raw data, without
the need for large preprocessing phases or massive hyperparameter-tuning operations.
Moreover, it was possible to obtain comparable or superior accuracy scores when general-
izing the best models (e.g., LSTM) with transfer learning techniques. Our contributions
could lead to software and hardware applications employing reliable human presence
classification models even in limited-data settings, different or unseen scenarios, playing a
huge role in life rescue, anti-terrorism, and other fields.

Future works may aim to achieve a similar performance by using simpler datasets with
less significant attributes rather than attempting to improve classification model accuracy,
which is already satisfactory. This result might be achieved using self-supervised Trans-
former models, as presented in [41]. As already deepened with different data modalities, we
argue that combining symbolism and connectionism may be a promising avenue for the evo-
lution of radar signal processing, emphasized by the urgent need for explainability [42,43].
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