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Abstract: Distributed array radar provides new prospects for three-dimensional (3D) inverse synthetic
aperture radar (ISAR) imaging. The accuracy of image registration, as an essential part of 3D
ISAR imaging, affects the performance of 3D reconstruction. In this paper, the imaging process of
distributed array ISAR is proposed according to the imaging model. The ISAR images of distributed
array radar at different APCs have different distribution of scatters. When the local distribution of
scatters for the same target are quite different, the performance of the existing ISAR image registration
methods may not be optimal. Therefore, an image registration method is proposed by integrating
the feature-based method and the area-based method. The proposed method consists of two stages:
coarse registration and fine registration. In the first stage, a dominant scatters model is established
based on scale-invariant feature transform (SIFT). In the second stage, sub-pixel precision registration
is achieved using the local correlation matching method. The effectiveness of the proposed method
is verified by comparison with other image registration methods. The 3D reconstruction of the
registered experimental data is carried out to assess the practicability of the proposed method.

Keywords: distributed array ISAR; image registration; SIFT; correlation matching; three-dimensional
imaging

1. Introduction

Inverse synthetic aperture radar (ISAR) is a type of radar used for the imaging of
noncooperative moving targets. ISAR transmits wideband signals to obtain high-range
resolution and achieves high azimuth resolution via synthetic aperture caused by relative
motions [1]. ISAR technology enables radar systems to develop from target detection
and ranging [2–4] to acquiring detailed features of the target [5–7]. Traditional ISAR
imaging is the two-dimensional (2D) projection of the target onto the imaging plane, which
only reflects the shape information of the target. In addition, 2D ISAR imaging suffers
from problems such as information loss and image feature instability. A high-resolution
three-dimensional (3D) image can reflect the 3D geometry of the target and provide more
robust features.

Earlier researchers mainly used a single-station wideband radar to implement 3D
ISAR imaging. The main methods include 3D imaging based on sum-diff beams [8,9] and
3D reconstruction based on sequence ISAR images [10,11]. The sequential ISAR imaging
method is highly sensitive to the target’s motion posture, causing difficulties in ensuring
the accuracy of the 3D reconstruction result, and thus limited practical value. Therefore,
researchers have focused on multiview 3D ISAR imaging technology; multi-station radars
are used to observe the target at the same time to obtain 3D images. In recent years, many 3D
ISAR imaging methods, such as interferometric ISAR imaging [12–14], array ISAR [15,16]
and MIMO ISAR [17], have been studied by scholars. Among these, distributed array
radar combining MIMO radar real-aperture imaging and ISAR synthetic-aperture imaging
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has become a research hotspot, as it can shorten the imaging time and obtain a higher
elevation resolution. In particular, distributed array ISAR imaging requires high-quality 2D
ISAR images from each antenna. After image registration, a spectral analysis is conducted
on the 2D ISAR images with different antenna phase centers (APCs) to obtain the 3D
reconstruction results.

One of the keys to 3D ISAR imaging technology is the multiview 2D ISAR image
registration, which is primarily achieved by area-based, feature-based or hybrid meth-
ods. Area-based methods focus on image intensity, including the correlation matching
method [18] and the max-spectrum method [19]. In the case of a short-length baseline, the
correlation matching method and the max-spectrum method are commonly used for ISAR
image registration. Feature-based methods focus on feature extraction. These methods
include the Harris corner detector method [20], the scale-invariant feature transform (SIFT)
method and its improved versions [21–24]. A SIFT-like algorithm was first proposed in [25]
for multiview SAR image registration. An automatic and fast image registration method
was presented in [26] for GF-3 SAR images, which combined an adaptive sampling method
with the SAR-SIFT algorithm. In [27], an improved SIFT method was proposed for single-
station sequential ISAR image registration, and 3D reconstruction of the simulated aircraft
data was carried out. However, distributions of scatters of the same target on different
APCs are different due to the long baseline length of the distributed array antenna. Overall,
area-based methods are subject to image mismatch, while feature-based methods suffer
from insufficient registration accuracy [28].

Thus far, there is in general very little research that has been conducted on distributed
array ISAR image registration. Inspired by the application of the SAR-SIFT algorithm in
multiview SAR image registration, this paper proposes an image registration method that
combines the advantages of feature-based and area-based methods to address the above
problems. Our main contributions include:

1. Based on the SAR-SIFT algorithm, a dominant scatters model is proposed for multi-
view ISAR image registration;

2. Compared with existing ISAR image registration methods, the superiority of the
proposed method is verified;

3. Subpixel registration and 3D reconstruction are carried out on different experimental
data to verify the effectiveness and practicability of the proposed method.

The rest of this paper is organized as follows. Section 2 outlines the 3D imaging model
of the distributed array ISAR system. Our proposed image registration algorithm based on
dominant scatters is described in Section 3. In Section 4, the registration analysis of different
registration methods on the experimental data is presented, and the 3D reconstruction is
carried out. Finally, the conclusions are drawn in Section 5.

2. Imaging Model of the Distributed Array ISAR System

Figure 1 shows the geometry of the distributed array ISAR for 3D ISAR imaging.
The radar system consists of a central station (CO), N transmitting stations with the same
structure (Tx) and N receiving stations with the same structure (Rx), which means that
there are Np (= N × N) APCs. Here, we assume that the target bears a constant velocity in
the direction of v.

The echo signal is denoted by deskewing:

SRm(t) = VRm × rect
[

t−τm+∆τm/2
Tp−∆τm

]
×

cos[2πkRF∆τm(t− τ) + 2π fRF∆τm(t− τ) + πkRF∆τ2
m]

(1)

where ∆τm is the delay experienced by the radar signal from the transmitting antenna to
the receiving antenna through the target and VRm, kRF and Tp denote the amplitude, chirp
rate and period of the echo signal, respectively.
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A Fourier transform is applied after sampling the output deskew signal. This gives
rise to the result of the range dimension pulse compression, expressed as follows:

IRm( f ) = ARmsin c[(Tp − ∆τ m)( f − kRF∆τm)]×

exp[j(2π fRF∆τm + ∆ϕm)]
(2)

where ∆ϕm is the additional phase introduced into the signal transmission.
With the N × N APCs each being an independent channel, Np-channel 2D ISAR

images are obtained by motion compensation after applying Sc( f ) = exp(−j∆ϕ) for the
additional phase as follows:

Inp( f , fm) = Aisin c
{

Tp
′[ f + kRF

c (RTn + RRm − 2Rre f )]
}
×

sin c
{

TA[ fm + (VTn+VRm)
λ ]

}
×

exp
{
−j 2π fRF

c (RTn + RRm − 2Rre f )
} (3)

where n is the index of the transmitting antenna, m is the index of the receiving antenna,
RTn and RRm are the distance from the target to the n-th transmitting antenna and m-th
receiving antenna, respectively, VTn and VRm are the target’s velocity relative to the n-
th transmitting antenna and the m-th receiving antenna, respectively, fm is the Doppler
frequency and λ is the wavelength corresponding to the center frequency of the radar’s
transmitted signal.

Figure 2 presents a flowchart of the imaging process of the distributed array ISAR. The
16 echo signals of different APCs are passed through matched filtering, motion compen-
sation and other signal processing steps to obtain 16 ISAR images. Among them, motion
compensation mainly solves the problem of envelope shift caused by translational motion
and high-order phase error caused by rotational motion. Next, the proposed method is used
to register multiview ISAR images, and the registration area in the master image is used as
the reference calibration area to correct the amplitude and phase errors. Finally, through
super-resolution imaging processing of the elevation dimension, 3D re-construction of the
target is realized.
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Figure 2. Flowchart of the imaging process of the distributed array ISAR.

3. ISAR Image Registration Method Based on Correlation Matching of
Dominant Scatters

Following the imaging model introduced in Section 2, the proposed image registration
method for a distributed array radar system is proposed in this section. Firstly, the SIFT
algorithm is used to extract the features between the master image and the slave images,
and the random sample consensus (RANSAC) algorithm is adopted to eliminate the
mismatched relationship. Then, the registration control points are determined by the
dominant scatters model. Finally, the relative offset is determined via correlation matching
to complete image registration. The flowchart of the proposed method is shown in Figure 3.
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3.1. Feature Extraction

SIFT is an algorithm for detecting and describing local features in images; it is widely
adopted in the field of computer vision. First proposed by David Lowe in 1999 and
subsequently supplemented and improved in 2004, SIFT adopts a Gaussian convolution
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kernel for scale transformation to obtain the corresponding scale space of the image, which
can be calculated by the following expression [21]:

L(x, y, σ) = G(x, y, σ)⊗ I(x, y) (4)

where σ is the scale space factor, (x, y) are the pixel coordinates of the image at the scale
of σ and ⊗ denotes the convolution operation in the x and y directions. The Gaussian
convolution kernel G(x, y, σ) is given by:

G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 (5)

The difference-of-Gaussian scale space is computed by convolving the difference-of-
Gaussian kernel of different scales with the image:

D(x, y, σ) = [G(x, y, ησ)− G(x, y, σ)]⊗ I(x, y)

= L(x, y, ησ)− L(x, y, σ)
(6)

The image is sampled at different scales to improve the anti-noise performance of
feature extraction, while achieving the invariant transformation of the image scales. The
extrema of the scale space are acquired from the difference images of adjacent images in the
same frequency order, and the exact feature points are obtained by 2D function fitting. Next,
the gradient directions with high robustness are computed using the statistical properties of
the image’s gradient direction histogram around the feature points. The calculated gradient
directions are then used as the main direction of the feature points. The magnitude and
direction of the corresponding gradient at (x, y) are given by:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2

θ(x, y) = arctan
(

L(x,y+1)−L(x,y−1)
L(x+1,y)−L(x+1,y)

) (7)

Treating the image pixel as a unit, for the current feature point, the main direction of
the feature point is obtained by using the statistical characteristics of the gradient histogram
of the region around the extracted feature point. First, we rotate the axes to the orientation
of the feature points to ensure rotation invariance. Next, we take a 16× 16 window centered
on the feature point. Then, eight gradient direction histograms are calculated on a 4 × 4
small block, and the accumulated value of each gradient direction is drawn to form a seed
point. Each feature point is described by 4 × 4 = 16 seed points; each seed point has the
information of eight direction vectors. Finally, a 16 × 8 = 128-dimensional SIFT feature
vector is obtained.

The 2D ISAR image of the distributed array ISAR is mainly composed of dominant
scatters. Figure 4 shows the distribution of scatters in the master image and the slave image
in different viewpoints. The engine of the target is selected for zoom-in analysis. The
dominant scatters in the red circle have relatively robust characteristics, while the same
target has different scatter characteristics in different viewpoints in the green circle. It can
be seen that the feature point correspondence between the master image and the slave
image is unstable after feature extraction with SIFT.

The feature points include corner points, edge points, bright spots in dark areas
and dark points in bright areas, all of which are not directly relevant to image registra-
tion. Generally speaking, dominant scatters are used as registration control points in
ISAR image registration. After feature extraction, the RANSAC algorithm is leveraged
to establish a dominant scatters model to determine registration control points through
mapping relations.
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3.2. Improved Correlation Matching Method Based on Dominant Scatters
3.2.1. Dominant Scatters Model

For the master image and the slave images, SIFT obtains two groups of descriptor
vectors. If the element of two descriptor vectors has a Euclidean distance greater than a
certain threshold, the element is selected as a feature point. The Euclidean distance corre-
sponding to the descriptor vectors of two groups of different feature points is computed as
follows [29]:

Disi,j(ε) = ‖X1
i,ε − X2

j,ε‖

=
√
(x1

i,ε − x2
j,ε)

2
+ (y1

i,ε − y2
j,ε)

2
(8)

Based on the geometric similarity between feature points in the master image and
the slave images, a dominant scatters model between different 2D images is established.
RANSAC denotes the correct matching points as inner points and the incorrect matching
points as outer points. The steps of the RANSAC algorithm are shown in Table 1. The
parameters of the model are estimated iteratively from a group of observed data containing
the incorrect matching points.

Table 1. The RANSAC algorithm used to eliminate mismatching in feature extraction.

The RANSAC Algorithm Flow

1. Randomly select two points in the dataset and substitute them into the fitting equation.
2. Calculate the Euclidean distance between all matching points after and before fitting.
3. Those points with Euclidean distances less than the threshold are recorded as inliers, and the
number of inliers is counted.
4. After repeating Steps 1 to 3 K times, the group with the most significant number of inliers is
identified as the final fitting parameters.

The Euclidean distance corresponding to two sets of descriptor vectors of different
feature points is taken as the dataset, and the probability of the interior point in the whole
dataset is assumed to be v, given by:

v =
ninliers

ninliers + noutliers
(9)
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Assuming that two points are required to determine the above model and K is the
number of iterations, then the probability of obtaining the correct solution is as follows:

P = 1− (1−vn)K (10)

According to Equations (9) and (10), the number of iterations K is defined as:

K =
log(1− P)

log(1−vn)
(11)

3.2.2. Calculating the Relative Offset

The proposed registration method involves two steps, namely coarse registration and
fine registration. Based on the coarse registration, the value of the selected control point is
interpolated, and the correlation matching method is used to perform fine registration with
the subpixel unit. Through these steps, the registration accuracy is expected to reach the
subpixel level.

The first step is coarse registration of the gridded master image, and the extremum
in the grid is taken as the alternative control point. SIFT extracts feature points for corner
points. The position of the alternative control points in the slave image is determined by
the dominant scatters model described in the above section, and the alternative control
points with high correlation between images are selected as the control points to reach the
pixel registration accuracy.

The second step is fine registration. A matching window around the control points is
taken to perform 16-fold 2D linear interpolation to meet the subpixel registration accuracy.
We set the two matching windows to be registered to be A1(i, j) and A2(i, j). Then, the
normalized cross-correlation function of the two images can be obtained:

Xcorr =
∑

(i,j)∈W
|φ1(i,j)×φ2(i+r,j+c)|√

∑
(i,j)∈W

φ1(i,j)
2× ∑

(i,j)∈W
φ2(i+r,j+c)2

φk(i, j) = Ak(i, j)− E[Ak(i, j)]

(12)

where r and c represent the offset of the row and column directions of the two images,
respectively, W is the size of the image area and E[∗] is the mean value of the image.

When the master image and the slave image are accurately registered, the relative
offset of the center position of the correlation coefficient window is effectively the accurate
offset of registration. This method can also be implemented in the frequency domain by
Fourier transform.

Once the exact offset of the corresponding point is obtained, the polynomial model is
employed for accurate correction. The polynomial model establishes a set relation between
radar image coordinates and the target’s physical coordinates. It considers the global
deformation of a 2D ISAR image as the resultant effect of translation, scaling, rotation and
other higher deformations. The binary quadratic polynomial is as follows:

x′k = ak0 + ak1x + ak2y + ak3x2 + ak4y2 + ak5xy

y′k = bk0 + bk1x + bk2y + bk3x2 + bk4y2 + bk5xy
(13)

According to Equation (12), an offset is calculated in the master image A1(i, j). Its
matching position is then found in the slave image A2(i, j). The value at this position
is obtained by using bilinear interpolation to interpolate the complex number of pixels
around the matching position in the slave image A2(i, j).
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The bilinear interpolation is expressed as:

I(P) =
2
∑

i=1

2
∑

j=1
I(i, j)×W(i, j)

=

[
I11 I12
I21 I22

]
×
[

W11 W12

W21 W22

] (14)

where Wij = W(xi)W(yj).

W(x1) = 1− ∆x; W(x2) = ∆x

W(y1) = 1− ∆y; W(y2) = ∆y
(15)

Substituting Equation (15) into Equation (14) yields:

I(P) = W11 I11 + W12 I12 + W21 I21 + W22 I22

= (1− ∆x)(1− ∆y)I11 + (1− ∆x)∆yI12 + ∆x(1− ∆y)I21 + ∆x∆yI22
(16)

The slave image is registered with the master image after bilinear interpolation.

4. Experimental Results

In this section, the performance of the proposed method is analyzed by using ex-
perimental data collected from distributed array radars. In Section 4.1, an experiment is
described in which we obtained multiview 2D ISAR images of different channels. The reg-
istration details of the proposed method are also presented. The analysis and comparison
of different registration methods for 16-channel 2D ISAR images are given in Section 4.2.
Section 4.3 presents the 3D ISAR imaging results for a variety of aircraft based on 16-channel
2D ISAR images after registration, verifying the practicality of the proposed method.

4.1. Distributed Array Radar System and Image Registration

To assess the effectiveness of the proposed method, the ISAR imaging experiment of
the distributed array radar was carried out near the Beijing Capital International Airport.
Relevant system parameters are listed in Table 2. Figure 5 shows a distributed array radar
system and the observation aircraft in foggy weather conditions. The system consists of
four transmitters and four receivers.

Table 2. Configuration of the distributed array radar system.

Parameter Symbol Value

Carrier frequency fc 10 GHz
Bandwidth Bω 2 GHz

Pulse repetition frequency PRF 2.5 kHz
Reference range RRef 850 m

Number of APCs Np 16
Maximum baseline D 10.8 m

The 16-channel echo signals are obtained through a reasonable layout of the equipment.
As shown in Figure 6, a total of 16 2D ISAR images are obtained after 2D ISAR imaging of
the 16-channel echo signals. The difference in the location of the transceiver antennas leads
to the imaging planes of the target not coinciding with each other. The 2D ISAR images
of adjacent equivalent phase centers between different channels at the same time are not
entirely identical. Meanwhile, different transceiver antennas also have slightly different
SNRs in their measurements, which affects the quality of the 2D ISAR images.
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Figure 5. The radar system and our experiment setup. (a) The distributed array ISAR system. (b) The
observed airplane. (c) Distribution of APCs. The distance between adjacent array elements is d. The
maximal baseline length is D.
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In this paper, the channel-8 image is taken as the master image. The 16-channel 2D
ISAR images are registered, and the channel-2 image and channel-9 image are taken as
examples for analysis. First, the proposed method uses the SIFT algorithm for feature
extraction. Figure 7 shows the matching results of the master–slave pair.
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Figure 7. The matching results of the master image and the slave image. (a) The mapping relationship
with a low SNR. The SNR of the slave image is 16.3 dB lower than that of the master image. (b) The
mapping relationship with different distributions of scatters. A small number of mismatches can be
seen in the matching results, as marked in the yellow arrow in (b).

After feature extraction, the RANSAC algorithm is used to reduce the influence of
mismatched feature points. Compared with the least square (LS) algorithm, RANSAC
obtains a robust mapping relation in building the dominant scatters model. The relative
offset of coarse registration between the master image and the slave image is obtained by
the dominant scatters model. Figure 8 shows the mapping relationship between the master
image and the slave image.
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Figure 8. The mapping relationship of the master image and the slave image. (a) The mapping
relationship of cross-range direction with a low-SNR image. (b) The mapping relationship of range
direction with a low-SNR image. (c) The mapping relationship of cross-range direction with the
distribution of scatters. (d) The mapping relationship of range direction with the distribution of
scatters. A small amount of mismatching points is marked in the yellow box in (c,d).
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After the master image is meshed, as shown in Figures 9 and 10, dominant scatters
are selected as registration control points, and the relative offset of fine registration is
determined by the correlation matching method. Finally, a polynomial is used to fit the
offset, and the image registration is completed by interpolating the slave image.
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4.2. Result Analysis

The correlation coefficient of 2D ISAR images is taken as the metric to assess the image
registration quality, and the registration method proposed in this paper is qualitatively
analyzed. Different registration methods are used to register 16-channel 2D ISAR images.
The following analysis reveals that the correlation matching method [18], max-spectrum
method [19] and SAR-SIFT method [26] have poor registration performance when the SNR
and distributions of scatters differ in distributed array ISAR imaging.

4.2.1. Correlation Coefficients between ISAR Images

The correlation coefficient is as follows:

ρ =
E[A1 × A∗2 ]√

E
[
|A1|2

]
×
√

E
[
|A2|2

] (17)

where ρ represents the correlation coefficient, A1, A2 are two 2D ISAR images, ∗ denotes
the complex conjugate and E[∗] denotes the mathematical expectation.

Figure 10 shows the correlation coefficient distribution of each channel’s 2D ISAR
image after registration with the proposed method. Remarkably, the larger the modulus,
the better the registration effect between the master image and the slave image.

4.2.2. Analysis and Comparison of Different Image Registration Methods

In this section, the correlation matching method, the max-spectrum method, the
SAR-SIFT method and the proposed method are used to register 2D ISAR images of
experimental data. The region with a correlation coefficient greater than 0.8 is regarded
as the interested region for image registration, and an interval of 0.05 is used to count the
number of interested region larger than the threshold. In the interested region, the larger
the correlation coefficient, the better the registration quality. The ISAR image is mainly
composed of a small number of scatters and a large amount of noise. In the correlation co-
efficient distribution of the ISAR image, a large part of the correlation coefficient distribution
is meaningless noise. Therefore, it is necessary to calculate the correlation coefficient of
the region containing only scatters in the ISAR image to compare the registration effect of
different methods.

As shown in Table 3 and Figure 11, the slave image has a relatively low SNR; there
is an image mismatch between the correlation matching method and the max-spectrum
method, and the registration accuracy of the SAR-SIFT method is low. The number of pixels
in the interested region of our method is much greater than that of the other three methods
in the interested region of 0.95~1. Our proposed registration method produces more pixels
with a higher correlation coefficient through the dominant scatters model and achieves
better registration outcomes.

Table 3. The relation between pixels and correlation coefficients of the channel-2 image and the
channel-8 image.

ρ 0~0.80 0.80~0.85 0.85~0.90 0.90~0.95 0.95~1

Correlation Matching Method 43619 1090 402 184 201
Max-Spectrum Method 43638 813 440 381 224

SAR-SIFT Method 40914 2362 1135 539 546
Proposed Method 37211 2159 2086 2273 1767
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Figure 11. Correlation coefficients after image registration. (a) Correlation coefficient distribution of
the channel-2 image. (b) Correlation coefficient distribution of the channel-2 image only containing
the scatters area.

As observed in Table 4 and Figure 12, the slave image has different distributions
of scatters; the peak correlation coefficient of the correlation matching method and the
max-spectrum method is 0.91, and that of the SAR-SIFT method is 0.89, whereas that of
the proposed method is 0.97. Furthermore, the proposed method not only has a closer to 1
peak position, but also has a great number of pixels with a higher correlation coefficient in
the interested region, achieving higher registration accuracy.

Table 4. The relation between pixels and correlation coefficients of the channel-9 image and the
channel-8 image.

ρ 0~0.80 0.80~0.85 0.85~0.90 0.90~0.95 0.95~1

Correlation Matching Method 31,135 3475 4118 4122 2647
Max-Spectrum Method 30,907 3305 3967 4426 2891

SAR-SIFT Method 31,210 4524 4700 3860 1202
Proposed Method 29,902 3243 3409 3930 5012

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

  

(a) (b) 

Figure 11. Correlation coefficients after image registration. (a) Correlation coefficient distribution 

of the channel-2 image. (b) Correlation coefficient distribution of the channel-2 image only con-

taining the scatters area. 

As observed in Table 4 and Figure 12, the slave image has different distributions of 

scatters; the peak correlation coefficient of the correlation matching method and the max-

spectrum method is 0.91, and that of the SAR-SIFT method is 0.89, whereas that of the 

proposed method is 0.97. Furthermore, the proposed method not only has a closer to 1 

peak position, but also has a great number of pixels with a higher correlation coefficient 

in the interested region, achieving higher registration accuracy. 

Table 4. The relation between pixels and correlation coefficients of the channel-9 image and the 

channel-8 image. 

  0~0.80 0.80~0.85 0.85~0.90 0.90~0.95 0.95~1 

Correlation Matching Method 31,135 3475 4118 4122 2647 

Max-Spectrum Method 30,907 3305 3967 4426 2891 

SAR-SIFT Method 31,210 4524 4700 3860 1202 

Proposed Method 29,902 3243 3409 3930 5012 

 

  
(a) (b) 

Figure 12. Correlation coefficients after image registration. (a) Correlation coefficient distribution 

of the channel-9 image. (b) Correlation coefficient distribution of the channel-9 image only con-

taining the scatters area. 

Figure 12. Correlation coefficients after image registration. (a) Correlation coefficient distribution of
the channel-9 image. (b) Correlation coefficient distribution of the channel-9 image only containing
the scatters area.



Sensors 2022, 22, 1681 14 of 18

It can be seen from the above analysis that the proposed registration method can
achieve accurate registration for both images with a low SNR and images with different
distributions of scatters. The next section will show the effect of different image registration
methods on the elevation 3D reconstruction.

4.3. Three-Dimensional ISAR Imaging

The traditional and the proposed registration methods are used to register multiview
2D ISAR images. Based on the image registration results, the dominant scatters of the
master image are selected to compensate for the amplitude and phase consistency of all 2D
ISAR images.

In [15], echo signals obtained by the distributed array radar system have sparsity in
the elevation dimension; they can be used for super-resolution imaging by a compressive
sensing algorithm. The sparse representation of the signal x ∈ RN is as follows:

x =
N

∑
i=1

θi ϕi = ΨΘ (18)

where Ψ = {ϕi|i = 1, 2, · · · , N} is the orthogonal basis matrix, θi =< x, ϕi > is the projec-
tion coefficient and Θ=ΨTx is the projection coefficient vector.

When the signal x is K− sparse in the Ψ domain, the observation matrix A ∈ RM×N

can be used to measure the sparse coefficient Θ linearly, and the observation vector y ∈ RM

can be obtained as follows:
y = AΘ (19)

When the signal contains noise e, the observation vector becomes:

y = AΘ + e (20)

Compressed sensing is a technique for the reconstruction of sparse signals. When Θ

of Equation (19) or Equation (20) is K− sparse, sparse solutions can be obtained by solving
the following optimization problem:

min
Θ
‖y−AΘ‖2

2s.t.‖Θ‖0 ≤ K (21)

Common reconstruction methods include the greedy tracking algorithm, the convex
relaxation algorithm and the combination algorithm. The greedy tracking algorithm is
widely used for its simple structure and low computation requirement. In this paper,
OMP [30], one of the greedy tracking algorithms, is used to reconstruct the image sequence
after amplitude and phase correction.

The OMP algorithm gradually approaches the original signal by selecting a locally
optimal solution in each iteration in a greedy manner. First, the correlation principle is
adopted to select the atom that best matches the iteration margin. Second, the selected
atoms are Gram–Schmidt orthogonalized. Third, the signal is projected onto the space
composed of these orthogonal atoms, and the component and iteration margin of the signal
on the selected atoms are obtained. Finally, the residual is decomposed using the above
procedure. The components and iterative residuals of the signal on the selected atom
are obtained, and the residuals are decomposed using the same method. The residual is
expressed as follows:

rk = y−Ak
^
Θk (22)

Table 5 describes the steps of the OMP algorithm.
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Table 5. The OMP algorithm used for super-resolution imaging.

The OMP Algorithm Flow

1. Initialize r0 = y, Λ0 = φ, A0 = φ, t = 1.
2. Find the index λt with the smallest correlation coefficient: λt = arg max

j=1,2,...,N

∣∣∣< ri−1,aj >
∣∣∣.

3. Λt = Λt−1 ∪ {λt}, At = At−1 ∪ {aλ}.

4. Find the approximate solution
^
Θt of least squares:

^
Θt = argmin

Θt
‖y−AtΘt‖ = (AT

t At)
−1

AT
t y.

5. Update the residual rt = y−At
^
Θt = y−At(AT

t At)
−1

AT
t y.

6. t = t + 1, if t ≤ K, return to Step 2; otherwise, stop iteration.

7. In the last iteration,
^
Θt reconstructs the non-zero term of Λt.

Figure 13 shows the 3D reconstruction results, in the form of 3D point clouds, of 2D
ISAR images with different registration methods using the OMP algorithm. The 3D point
cloud images obtained by the proposed method contain fewer outliers and clearer features.
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Figure 13. The 3D reconstruction results of 2D ISAR images with different registration methods.
(a) Results of the correlation matching method. (b) Results of the max−spectrum method. (c) Results
of the SAR−SIFT method. (d) Results of the proposed method.

Different exceptional echoes are registered with our proposed method, followed by
3D ISAR imaging. Figure 14 shows the 3D ISAR imaging filtering results of different types
of the Airbus aircraft. As evident in Figure 14, the Airbus A321 has a longer fuselage than
the Airbus A319, which is reflected by the different detailed features.
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image of Airbus A321. (d) Optical image of Airbus A321.

5. Conclusions

When the length of the baseline is non-negligible in the distributed array radar, the
distribution of scatters is different in the 2D ISAR images. In addition, different transceiver
antennas may also cause inconsistent SNRs in actual experiments. For the above reasons,
the correlation matching method and the max-spectrum method have image mismatches
for distributed array ISAR systems. To solve these problems, a novel image registration
method is proposed that leverages feature extraction to build a dominant scatters model
for coarse registration, and then uses local correlation matching for fine registration. After
image registration, amplitude and phase correction is performed on the 16-channel 2D
ISAR images, and the OMP algorithm is employed for super-resolution imaging in the third
dimension. Compared with traditional image registration methods, the proposed method
achieves better registration accuracy under the condition of a lower SNR and different
distributions of scatters. The 3D reconstruction results of different aircrafts offer more
detailed features, which lay the foundation for target identification. In future research,
we will further explore the impact of a longer length of baseline and longer observation
distance on 2D image registration and 3D reconstruction of the distributed array ISAR.
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