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Abstract: Trajectory data represent an essential source of information on travel behaviors and human
mobility patterns, assuming a central role in a wide range of services related to transportation
planning, personalized recommendation strategies, and resource management plans. The main issue
when dealing with trajectory recordings, however, is characterized by temporary losses in the data
collection, causing possible spatial–temporal gaps and missing trajectory segments. This is especially
critical in those use cases based on non-repetitive individual motion traces, when the user’s missing
information cannot be directly reconstructed due to the absence of historical individual repetitive
routes. Inserted in the context of location-based trajectory modeling, we tackle the problem by
proposing a technical parallelism with the natural language processing domain. Specifically, we
introduce the use of the Bidirectional Encoder Representations from Transformers (BERT), a state-of-
the-art language representation model, into the trajectory processing research field. By training deep
bidirectional representations from unlabeled location sequences, jointly conditioned on both left and
right context, we derive an explicit predicted estimation of the missing locations along the trace. The
proposed framework, named TraceBERT, was tested on a real-world large-scale trajectory dataset
of short-term tourists, exploring an effective attempt of adapting advanced language modeling
approaches into mobility-based applications and demonstrating a prominent potential on trajectory
reconstruction over traditional statistical approaches.

Keywords: BERT; neural networks; trajectories; human mobility; spatial–temporal gaps

1. Introduction

The research interest on human mobility analysis has extensively expanded over the
last few years, driven by the increasing availability of trajectory data acquired by pervasive
motion tracking technologies. These data represent a primary source of information on
human travel behaviors [1,2], giving rise to a multitude of data mining investigations
on motion analysis and trajectory-related applications [3–6], ranging from personalized
recommendation systems [7,8], to transportation planning [9,10], to resource management
plans [11,12]. In today’s digital world of location-based services and positioning devices,
the collection of mobility data covers a variety of acquisition modalities, including mobile
phone networks, GPS signals, and social media platforms. The resulting tracking of
large numbers of people leads to the creation of big datasets of historical motion traces,
whose use has been widely explored according to several different tasks, such as trajectory
prediction [13–15], trajectory classification [16,17], motion flow modeling [18–20], or activity
recognition [21,22].

When dealing with this kind of mobility data, however, the primary issue is repre-
sented by the fact that their quality is rarely optimal, presenting, in most cases, a lack of
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completeness and a certain degree of information loss [23,24]. Trajectory recordings are
indeed often characterized by temporary losses in the data collection, causing possible
spatial–temporal gaps and missing trajectory segments [25–27]. These losses can be of
various nature, namely depending on event-based recording modalities, ad hoc acquisition
strategies, signal interferences, or technical malfunctioning [28–30]. Our research aims to
find an effective way to properly fill these geospatial information gaps.

The research task is therefore interpreted as inferring the missing spatial–temporal
observations of an individual, based on the known visited locations along the trajectory.
While daily life movements can generally be easily reconstructed, due to the repetitive
nature of the mobility routine, a critical condition is represented by cases of non-repetitive
behaviors, whereby a motion trace lacks spatial and temporal regularity. In that condition,
the user’s missing information cannot be directly inferred from a sequential approximation
of a single probability distribution, because of the absence of historical individual repetitive
routes. Our paper intentionally targets this specific situation.

Inserted into the context of location-based trajectory modeling, we tackle the problem
by proposing a technical parallelism with the natural language processing (NLP) domain.
Specifically, we present an original approach called TraceBERT, introducing the use of the
Bidirectional Encoder Representations from Transformers (BERT) [31], a state-of-the-art
language representation model, into the trajectory processing field.

The way that NLP developed its powerful methodologies represents a hotbed of
analytical tools for sequential-based problems. From a technical perspective, the processing
of text in the form of sequences of words can be generalized into a sequential processing
of generic categorical entities. Among many disciplines, geospatial and urban studies
have also taken inspiration from the NLP world; examples include the adoption of neural
embeddings to model locations, points of interest and functional areas [32–36], and the use
of advanced deep learning algorithms in the context of trajectory analysis [37–39].

Our work pushes this modeling parallelism to a further level, transforming the state-
of-the-art language representation network into a trajectory reconstruction model. Inspired
by the masked-language modeling (MLM) approach [31], which masks certain words over
the text and attempts to re-identify them based on the context provided by the non-masked
words, we aim to predict the missing locations along the trajectory by leveraging the context
provided by the known recorded locations in the sequence, as reported in Figure 1.
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Figure 1. Trajectory reconstruction problem: predict the missing locations given the known recorded
locations along the trace.

The underlying idea is to apply bidirectional training of the transformer architec-
ture, a popular attention-based neural network model [40], to location-based trajectory
representations, making sense of the complete information on mobility context and flow
along each motion trace. By training deep bidirectional representations from unlabeled
location sequences, jointly conditioned on both the left and right context, we derive an
explicit predicted estimation of the missing locations along the trace. The methodological
procedure consists of four steps: first, raw traces are pre-processed into discrete location
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sequences; then, the training set is defined by randomly hiding a portion of locations in
each trajectory, replacing their unique identifiers with a masking token in the corresponding
position along the sequence; subsequently, the BERT model is trained through backprop-
agation, by feeding the partially hidden location sequences with the goal of optimizing
the correct prediction in the masked positions; finally, the model is evaluated by means
of testing trajectories, leading to an automatic gap-filling of the missing locations along
each trace. The model is intended to capture motion patterns directly from the collec-
tive processing of location sequences, without requiring any manual feature extraction or
external information.

The proposed framework was tested on a real-world large-scale trajectory dataset of
short-term tourists. In contrast to daily life’s mobility, implying a significant probability
of returning to a limited number of highly frequented locations [41,42], the natural char-
acterization of tourists’ motion behavior is made of non-repetitive trajectories of users
moving in unfamiliar areas. Moreover, the focus on large-scale movements entails a wide
territory, determining further issues such as trajectory sparseness and a multitude of loca-
tions. Experiments demonstrated the effectiveness of our proposed deep learning approach,
reporting a higher feasibility trait when compared to traditional statistical methods in
this mobility regime. By defining a valid system to disclose missing spatial–temporal
information in movement data recordings, TraceBERT arises as a novel beneficial trajectory-
based application of adapted NLP-inspired advanced neural network models within a
geospatial discipline.

2. Methodology

The process is designed for automatic detection of hidden patterns from collective
historical human motion data, in order to reconstruct a complete version of individual
users’ incomplete input trajectories. The task is formally defined as follows: Given an
individual user’s trajectory, sampled at a given time step, affected by spatial information
gaps in correspondence of some specific time spans, our modeling solution allows filling of
the gaps by inferring the unknown visited locations at those points in time.

The methodological details are organized into four subsections. The structural steps
are the following:

• Trajectory pre-processing, defining the procedure of transforming the original raw
trajectory recordings, continuous in time and space, into discrete location sequences;

• Location masking, reporting how the space–time information gaps are artificially
created by masking a portion of elements in the sequences;

• BERT model training, describing how the derived incomplete traces are processed by
the deep learning model, allowing the system to learn the underlying semantics of
user mobility patterns;

• Location gap inference, characterizing the evaluation phase as an automatic generation
of location data in correspondence of missing trajectory segments, turning incomplete
input traces into complete output sequences.

2.1. Trajectory Pre-Processing

The first methodological step is represented by a process of trajectory discretiza-
tion, conforming raw traces to an adequate input format for the neural network model.
A raw trajectory recording is a series of chronologically ordered track points, carry-
ing information on the geographic coordinates and time stamp of acquisition, namely
T = {pi|i = 1, 2, 3, . . . , N}, where pi = (loni, lati, ti). The discretization task involves
transforming the continuous longitude and latitude values into discrete locations and the
continuity of time into fixed time steps.

The pre-processed trajectory representation is intended to be described as a sequence
of location identifiers T = [loc_IDt, loc_ID2t, loc_ID3t, . . .], referring to fixed consecutive
time steps of duration t (e.g., if t = 1 h, the sequence is based on the concatenation of
user’s positions at each consecutive hour). In general, if more than one record was acquired
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within the same time step, the chosen location is identified as the one associated to the
majority of track points in that time span. The length of the fixed time unit is case specific,
conditioned by the data source and the desired set up. A long unit may negatively affect
the study of fine resolution movements; a short unit may critically fragment trajectories
in the case of discontinuous traces. Space resolution is also-case specific, allowing for a
higher- or lower-level discretization depending on the data sparseness and the planned
configuration. Moreover, when human mobility is not uniformly distributed across the
territory, inaccessible locations may be discarded, avoiding worthless computational effort.

In conclusion, a user’s pre-processed trajectory is a sequence of discrete identifiers
unfolding in fixed time steps, each of them representing a specific unique location within a
finite set of possible reference locations over the territory.

2.2. Location Masking

To enable the definition of the final data format for the BERT training, a process of
location masking is included. Given the assumption that the inference goal is to fill the gaps
in missing trajectory segments, the location masking procedure aims indeed to artificially
generate location gaps, so that the model can be trained on learning how to fill them.

Considering a certain sequence [LOC846, LOC37, LOC911, LOC51, LOC89, . . .], the
idea is to randomly mask, with a defined masking probability, some of the locations
along the sequence, therefore potentially transforming it into a corresponding masked
version [LOC846, 〈masked〉, LOC911, LOC51, 〈masked〉, . . .]. Each trajectory undergoes this
masking process; the model training relies on feeding masked trajectories as an input, and
their corresponding hidden locations as a desired output, with the goal of learning how to
perform meaningful trajectory reconstructions from a spatial–temporal perspective. The
model is intended to be trained by optimizing the probability of guessing the artificially
masked locations correctly, with help of the contextual information provided by the non-
masked locations.

In other words, we aim to reconstruct the complete trajectory based on an incomplete
input, by predicting the masked locations along the input sequence. The intrinsic prediction
task assumes the meaning of generating a reasonable path for the unknown trajectory
segments, based on the known related contextual spatial–temporal information.

2.3. BERT Model Training

To perform the sequence reconstruction process, we adapted the MLM training ap-
proach featuring BERT [31], current state-of-the-art in most language processing tasks.
While we leverage the same internal architecture and characteristic training process, the
model is, in fact, trained from scratch on the previously described location-based pre-
processed trajectories. Conceptually, the original implementation, conceived for dealing
with sequences of words (sentences), is adapted into a processing of location sequences
(motion traces).

An exemplifying representation is depicted in Figure 2. MLM consists of feeding BERT
with a partially masked sequence, and consequently optimizing its weights for properly
revealing, as an output, the masked elements of such sequence. The BERT architecture
allows performing bidirectional learning, inferring the context of each element along the
sequence by observing the elements appearing both before and after it (in contrast to
previous methodologies using unidirectional predictions [43], or a combination of left-to-
right and right-to-left training to approximate bidirectionality [44]). Therefore, our model
uses the full context in the trace to predict the masked location, taking both the previous
and next locations into account at the same time. Analogously to the original BERT, which
learns linguistic patterns through contextual word occurrences along the sentences, our
TraceBERT aims to model motion patterns by processing location visits along individual
mobility paths.
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The BERT model design is based on stacking multiple transformer encoders on top of
each other. The transformer architecture refers to the multi-head attention module that has
shown substantial success in many vision and language tasks [40,45,46]. Each transformer
encoder consists of two layers: a multi-head self-attention layer, and a position-wise fully
connected feed-forward network. The attention layer encodes each element’s relations
with every other element in the sequence, giving more importance to the most relevant
ones; the feed-forward network then applies itself to each resulting element’s output vector
parallelly. Overall, in our case, the process consists of determining the contextual relations
between the locations in the trace, assessing their relevance and acquiring “semantic”
information. Instead of looping multiple times over the input (as in the case of recurrent
neural networks [47]), BERT uses multiple attention layers through which the information
passes linearly. To address ordering issues, the transformer architecture encodes the
position of a location along the sequence directly into a dedicated embedding vector, as
a marker for attention layers. Indeed, in addition to the traditional entity embedding
input representation as low-dimensional vectors of location identifiers, the further use
of positional embeddings is provided. Since the multi-head attention layers are time-
distributed (the output has a one-to-one correspondence with the input at the same index),
they do not directly grasp the relative order of the elements in the sequence, but they
only look at their relations; therefore, external positioning information is required to be
added. Finally, the model includes also skip-level residual connections, to help information
traverse in case of deep networks.

By adding a fully connected softmax layer on top of the final encoder output vector,
the prediction probability distribution of the masked location is computed over the totality
of locations in the “vocabulary”: an input masked location may be predicted, for instance,
as LOC37 with a probability of 40%, as LOC55 with a probability of 10%, as LOC89 with a
probability of 5%, etc.; the location with the highest probability represents the first choice
of the output location. The probability-based outcome reshapes the problem into a regular
classification task, allowing for the use of the cross-entropy loss function between the output
probability distribution and the real label. The loss is calculated only over the masked
locations, so that the model learns to predict locations it has not seen, while observing the
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context around them. The process relies on backpropagation and mini-batch stochastic
training to determine the required gradient changes and the resulting weight optimizations.

2.4. Location Gap Inference

The inference phase refers to the generation and evaluation of the results, assessing
the generalization capabilities of the model, after the training process is concluded and
optimized weights are assigned. The underlying idea is to feed new location sequences,
unseen by the model during training, and explore the outcomes that the model provides.
The generation of missing locations is therefore solely based on a collection of new incom-
plete input trajectories and the same parameter configuration defined at the end of the
training phase. Given an input sequence with location gaps, TraceBERT generates each
missing location as a function of its position along the sequence and the contextual known
locations preceding and following it, defining a plausible trajectory path that could have
been traveled by a visitor based on the initially provided partial information.

For instance, given an input sequence [LOC83, 〈unknown〉, LOC92, LOC721, LOC87, . . .],
the goal is to reveal the unknown location based on the information derived from the known
ones, hence taking the whole known context into account. LOC83 and LOC92 may suggest
that the unknown location is placed in a geographic area between them, but this may
comprise many candidate locations; the further conditions provided by the presence of
LOC721 and LOC87 narrow down the search, identifying the most likely missing location
(or a small pool of most likely candidates). While for humans this would require a deep
study on the complexity of motion activities, for BERT it just comes from having observed
a lot of trajectories and learned their collective motion patterns. The model may not know
the functional characteristics of LOC83, LOC92, LOC721, and LOC87, but it does find an
answer based on the learned mobility correspondences and location co-occurrences. The
outcome of this process relies on an advanced automatic comprehension of the underlying
sequential motion patterns across the territory.

3. Experiment

The model was implemented and executed on TensorFlow, using AWS EC2 p3.2xlarge
GPU instance.

3.1. Dataset

We evaluated the TraceBERT framework on non-repetitive motion trajectories of short-
term visitors in a foreign country. In particular, we leveraged a real-world large-scale
collection of seven months of anonymized mobile phone call detail records (CDRs) of
roamers in Italy, whose mobility traces cover the study area with redundancies, creating
a sufficiently large and complete dataset. To fall in the context of individual short traces
and non-repetitive behaviors, we only selected those visitors located in the country for a
maximum of two weeks; moreover, we discarded the completely stationary users. From a
data acquisition perspective, each user’s geographic information was recorded according to
the position of the device associated to any mobile phone activity, registering the coverage
area of the principal antenna and the corresponding time stamp. CDR data have been
extensively used in human mobility research and trajectory-related studies [48–51].

To overcome the erratic profile of mobile activity and address the purpose of modeling
large-scale movements, we pre-processed mobility traces into sequences unfolded in 1 h
time step, with a minimum spatial resolution of 2 km. Accordingly, the reference points
over the territory were selected as the antennas counting the highest number of connections
within the minimum spatial resolution, consequently merging the other coordinates to
the closest reference point; if more than one recording was acquired within the same
hour, the current location of the user was chosen as the one identified by the majority of
those recordings. Very rare locations, almost randomly visited, were discarded, not being
significant to the overall trend of visitors’ travel behavior. In any case, different selections
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of time and space resolution are possible, based on the targeted application and the data
characteristics.

Our final dataset consists of hourly location sequences, comprising a total of 5903 possi-
ble discrete geographic points over the territory. To appropriately align different acquisition
profiles on the focus for short mobility behaviors and make prediction results comparable
over the entire dataset, we proceeded to divide trajectories into segments of a standard
length of 7 h, determining 13 million consistent trajectory segments (with a median dis-
placement of 36.1 km) generated by a total of 1.4 million users. We consider this large
amount of data as an acceptable representative approximation of the real large-scale motion
activity of short-term foreign visitors.

3.2. Experimental Settings

The BERT model implementation was designed to comprise three transformer en-
coders, each of them characterized by a two-head attention mechanism. The size of the
feed-forward neural network layers was set up to 256 neurons, while the embedding dimen-
sion was defined as 64. The training process relied on mini-batch stochastic training based
on the cross-entropy cost function and Adam optimizer [52]. To measure the performance
on newcoming data, we randomly allocated two portions of the dataset into a training set
and a test set, including 80% and 20% of the users.

To deliver a clearer assessment, TraceBERT results were compared to traditional statis-
tical approaches for modeling sequential data and transition probabilities. In particular, we
reported three comparison baselines, each representing a different perspective of investi-
gating the intrinsic motion characteristics of the dataset under study:

• Personal Markov model (PMM). It focuses on separately modeling individual move-
ment patterns. Locations are represented as states and movements between locations
as state transitions. Transition probabilities are estimated by counting each single
user’s transitions between unmasked locations, therefore building, for each individual
user, a “personal” transition matrix. At inference time, masked locations are predicted
as the ones sharing the highest transition probability, according to the user-specific
transition matrix, with their neighboring unmasked locations along the sequence.

• Global Markov model (GMM). It focuses on modeling collective movement patterns.
Probability distributions are estimated by counting the collective state transitions of
all users together, generating one global transition matrix. At inference time, masked
locations are predicted as the ones sharing the highest transition probability, according
to the global transition matrix, with their neighboring unmasked locations along the
sequence.

• Global location co-visits (GLC). It focuses on grouping locations that are often visited
together within the same trajectory segment, investigating the general shared related-
ness between co-visited places. The predicted location of a given trace in the test set is
identified as the one sharing the highest number of co-visits with the known locations
in the trace, according to the global motion behavior observed in the training set. The
sequential order is not modeled; only the overall amount of inherent co-visits, within
the whole segment’s time span, is taken into account to generate the prediction.

3.3. Results

For an overall assessment of the model performance, we report the prediction results
in the form of top-K accuracy metrics. If the real label is equal to one of the top K locations
with the highest prediction probability, the accuracy is 1, otherwise it is 0; the global score
refers to the average of all testing trajectories. Table 1 displays the comparison results.
TraceBERT is shown to substantially outperform the baseline approaches, presenting a 6%,
11%, and 10% improvement, over the best baseline, in correspondence to the top-1, top-3,
and top-5 accuracy scores, respectively.
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Table 1. Overall accuracy comparison between TraceBERT and the three baseline approaches, namely
the personal Markov model (PMM), global Markov model (GMM), and global location co-visits (GLC).

Top-1 Accuracy Top-3 Accuracy Top-5 Accuracy

PMM 0.2050 0.2931 0.3012

GMM 0.4482 0.6198 0.6817

GLC 0.3658 0.5890 0.6613

TraceBERT 0.4745 0.6870 0.7492

As expected, PMM, solely modeling individual mobility, implies very low perfor-
mances in this motion regime. GMM and GLC, which take into account the collective
information of all users, present a significant improvement, with GMM exceeding GLC,
meaning that neighboring location transition probabilities provide a better-focused infor-
mation than a general estimation of location co-visits. TraceBERT, however, exhibits an
additional increment, averagely overcoming the best baseline’s accuracy of 5.4 percentage
points (with a peak of 6.75 points), therefore demonstrating its powerful capability of
mining intrinsic trajectory patterns.

Additionally, we analyzed how the accuracy scores are affected by different motion
characteristics, segmenting the performance evaluation according to different values of
mobility features.

Table 2 reports the accuracy scores for several ranges of traveled distance within the 7 h
trajectory segment. Five bins were considered: ≤10 km, 10–25 km, 25–50 km, 50–100 km,
and ≥100 km. Observing the results, despite an expected overall lower performance in
correspondence of longer traveled distances, PMM always behaves poorly, while GMM and
GLC tend to decrease their performance as the distance increases. TraceBERT consistently
exceeds every baseline in each distance bin, with a remarkable improvement for very long
distances (≥100 km).

Table 2. Comparison of top-1 accuracy, top-3 accuracy (in round brackets), and top-5 accuracy (in
square brackets) for different ranges of traveled distance.

Traveled
Distance = ≤10 km 10–25 km 25–50 km 50–100 km ≥100 km

PMM
0.4005

(0.5391)
[0.5414]

0.2644
(0.4027)
[0.4153]

0.1829
(0.2784)
[0.2938]

0.1321
(0.1931)
[0.2040]

0.0622
(0.0827)
[0.0855]

GMM
0.7039

(0.9227)
[0.9582]

0.5449
(0.7770)
[0.8523]

0.4458
(0.6273)
[0.7143]

0.3627
(0.5101)
[0.5829]

0.2237
(0.3191)
[0.3686]

GLC
0.5864

(0.9070)
[0.9550]

0.4642
(0.7648)
[0.8559]

0.3635
(0.6084)
[0.7135]

0.2903
(0.4791)
[0.5659]

0.1617
(0.2545)
[0.3014]

TraceBERT
0.7145

(0.9524)
[0.9741]

0.5604
(0.8441)
[0.9069]

0.4671
(0.7041)
[0.7892]

0.3916
(0.5792)
[0.6586]

0.2722
(0.4085)
[0.4769]

Table 3 shows, instead, the scores for several ranges of radius of gyration (ROG),
according to the bins of ≤3 km, 3–10 km, 10–32 km, and ≥32 km. Reinforcing the previous
statements, we notice a tendency of performance decrease for increasing ROG values, poor
behavior of PMM, positive achievements of GMM and GLC towards small values (≤3 km)
and a corresponding consistent drop in performance for very large values (≥32 km). Trace-
BERT, once again, overcomes the baselines, slightly exceeding the GMM scores in the≤3 km
bin, and progressively enlarging the difference as the ROG grows, greatly outperforming
every method for very large ROG values (≥32 km).
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Table 3. Comparison of top-1 accuracy, top-3 accuracy (in round brackets), and top-5 accuracy (in
square brackets) for different ranges of the radius of gyration.

ROG = ≤3 km 3–10 km 10–32 km ≥32 km

PMM
0.3531

(0.5059)
[0.5117]

0.2190
(0.3279)
[0.3428]

0.1634
(0.2249)
[0.2343]

0.0705
(0.0908)
[0.0931]

GMM
0.6305

(0.8958)
[0.9449]

0.4885
(0.6709)
[0.7598]

0.4184
(0.5510)
[0.6116]

0.2401
(0.3347)
[0.3823]

GLC
0.5603

(0.8961)
[0.9495]

0.3981
(0.6649)
[0.7722]

0.3152
(0.4980)
[0.5804]

0.1709
(0.2637)
[0.3099]

TraceBERT
0.6509

(0.9360)
[0.9679]

0.4995
(0.7464)
[0.8301]

0.4430
(0.6139)
[0.6810]

0.2903
(0.4250)
[0.4915]

Moreover, we inspected the performance variation in different hours of the day.
Figure 3 reports the top-K accuracies of each model over time. While the scores improve in
the evening and nighttime because of the higher motion regularity, rush hours are reported
to be easier to predict in the afternoon rather than in the morning. Nonetheless, Trace-
BERT was proved to overcome the other approaches in every hour, with a larger accuracy
gap in correspondence of morning and afternoon hours, indeed when mobility becomes
more chaotic.
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the day.

Results were then investigated according to the amount of missing information, in
terms of the number of masked locations along the trajectory segments. This represents
a sign of evaluation measure for variable degrees of missing data gaps, ranging from
moderate to severe information loss. Table 4 shows the top-K accuracies in correspondence
of different numbers of masked locations per segment, namely 1–2 locations, 3–4 locations
and over 5 locations. Besides a reasonable drop when increasing the missing location
information level, the superiority of TraceBERT is once again clearly exhibited. However,
despite it always exceeds every baseline, its performance seems to be more negatively
affected by big information gaps, since the model cannot take full advantage of the implicit
information derived from a wide context of known locations.
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Table 4. Comparison of top-1 accuracy, top-3 accuracy (in round brackets), and top-5 accuracy (in
square brackets) for different amounts of masked locations per segment.

# Masked Locations = 1–2 Locations 3–4 Locations ≥5 Locations

PMM
0.2732

(0.4043)
[0.4201]

0.1719
(0.2365)
[0.2394]

0.0370
0.0373
0.0374

GMM
0.4670

(0.6357)
[0.6965]

0.4426
(0.6155)
[0.6778]

0.3765
(0.5562)
[0.6212]

GLC
0.3691

(0.5977)
[0.6722]

0.3654
(0.5871)
[0.6584]

0.3495
(0.5505)
[0.6166]

TraceBERT
0.5017

(0.7177)
[0.7789]

0.4640
(0.6760)
[0.7386]

0.3875
(0.5830)
[0.6471]

Finally, particular attention is directed to the analysis of prediction errors, targeting
those cases when the model is not able to identify the correct missing locations. The outputs
of TraceBERT were compared with GMM, the baseline with the best overall accuracy
scores, to verify their error differences when both methods are mispredicting. Figure 4
depicts the bar graphs reporting the error distance distribution of the masked locations
that are wrongly predicted by both approaches. The error distance of a top-K prediction is
calculated as the minimum distance between the real target and each of the K predicted
candidates. The figures suggest a clear trend of TraceBERT for prediction errors with a
shorter error distance.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15 
 

 

Results were then investigated according to the amount of missing information, in 
terms of the number of masked locations along the trajectory segments. This represents a 
sign of evaluation measure for variable degrees of missing data gaps, ranging from mod-
erate to severe information loss. Table 4 shows the top-𝐾𝐾 accuracies in correspondence of 
different numbers of masked locations per segment, namely 1–2 locations, 3–4 locations 
and over 5 locations. Besides a reasonable drop when increasing the missing location in-
formation level, the superiority of TraceBERT is once again clearly exhibited. However, 
despite it always exceeds every baseline, its performance seems to be more negatively 
affected by big information gaps, since the model cannot take full advantage of the im-
plicit information derived from a wide context of known locations. 

Table 4. Comparison of top-1 accuracy, top-3 accuracy (in round brackets), and top-5 accuracy (in 
square brackets) for different amounts of masked locations per segment. 

# Masked 
Locations = 

1–2 Locations 3–4 Locations ≥5 Locations 

PMM 
0.2732 

(0.4043) 
[0.4201] 

0.1719 
(0.2365) 
[0.2394] 

0.0370 
0.0373 
0.0374 

GMM 
0.4670 

(0.6357) 
[0.6965] 

0.4426 
(0.6155) 
[0.6778] 

0.3765 
(0.5562) 
[0.6212] 

GLC 
0.3691 

(0.5977) 
[0.6722] 

0.3654 
(0.5871) 
[0.6584] 

0.3495 
(0.5505) 
[0.6166] 

TraceBERT 
0.5017 

(0.7177) 
[0.7789] 

0.4640 
(0.6760) 
[0.7386] 

0.3875 
(0.5830) 
[0.6471] 

Finally, particular attention is directed to the analysis of prediction errors, targeting 
those cases when the model is not able to identify the correct missing locations. The out-
puts of TraceBERT were compared with GMM, the baseline with the best overall accuracy 
scores, to verify their error differences when both methods are mispredicting. Figure 4 
depicts the bar graphs reporting the error distance distribution of the masked locations 
that are wrongly predicted by both approaches. The error distance of a top-𝐾𝐾 prediction 
is calculated as the minimum distance between the real target and each of the 𝐾𝐾 predicted 
candidates. The figures suggest a clear trend of TraceBERT for prediction errors with a 
shorter error distance. 

   

Figure 4. Bar graphs reporting the error distance distribution of the masked locations that are 
wrongly predicted by both TraceBERT and GMM (from left to right: wrong predictions in top-1, 
top-3, and top-5, respectively). 

Figure 4. Bar graphs reporting the error distance distribution of the masked locations that are wrongly
predicted by both TraceBERT and GMM (from left to right: wrong predictions in top-1, top-3, and
top-5, respectively).

Furthermore, if we analyze both models’ misprediction on the same correspond-
ing masked location, we can directly derive their difference of error distance with re-
gard to the same target gap. Figure 5 reports the subtraction error_distance(GMM) −
error_distance(TraceBERT). A positive value means that the wrong prediction provided
by TraceBERT is closer in space to the real one, compared to the GMM solution; a nega-
tive value is instead in favor of the baseline. The high bars on the right side of the plots
imply a substantial number of masked locations whereby GMM encounters prediction
errors registering an error distance of a few tens of km larger than the TraceBERT case.
Consequently, our approach, in addition to the better accuracy scores, also provides shorter
error distances.



Sensors 2022, 22, 1682 11 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

Furthermore, if we analyze both models’ misprediction on the same corresponding 
masked location, we can directly derive their difference of error distance with regard to 
the same target gap. Figure 5 reports the subtraction 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒(𝐺𝐺𝐺𝐺𝐺𝐺) −
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒(𝑇𝑇𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇). A positive value means that the wrong prediction provided 
by TraceBERT is closer in space to the real one, compared to the GMM solution; a negative 
value is instead in favor of the baseline. The high bars on the right side of the plots imply 
a substantial number of masked locations whereby GMM encounters prediction errors 
registering an error distance of a few tens of km larger than the TraceBERT case. Conse-
quently, our approach, in addition to the better accuracy scores, also provides shorter er-
ror distances. 

   

Figure 5. Bar graphs reporting the difference of error distance between GMM and TraceBERT in the 
case of common misprediction (from left to right: wrong predictions in top-1, top-3, and top-5, re-
spectively). 

3.4. Discussion 
We introduced a novel approach for reconstructing spatial–temporal gaps along in-

complete trajectory segments. The methodology relied on historical collective large-scale 
human mobility and a deep learning-based model adapted to process location sequences. 
In particular, the NLP-related state-of-the-art BERT model was proposed in the context of 
trajectory analysis, evaluating its potential use within the human motion domain. We in-
vestigated the capabilities of this approach in the particular case of individual users with 
short data history and non-repetitive behaviors, whereby prediction algorithms approxi-
mating single probability distributions are not reliable. 

The comparative evaluation highlighted indeed the problem of a probabilistic strat-
egy based on a single individual’s mobility in this motion regime, indicating the necessity 
of collective motion information. This collection of non-repetitive trajectories leads the 
transition-probability-based Markov model to generally outperforming an approach fully 
based on location co-visits, highlighting the importance of location ordering and direc-
tionality. On the other hand, BERT, directed to mine complex patterns in sequential data, 
overcame the other approaches, indicating a prominent higher feasibility of identifying 
the correct missing locations along individual motion traces. 

In addition, we examined how predictability was altered by various motion charac-
teristics. Besides the reasonable trend of local movements to be more predictable than 
long-distance mobility (the first ones implicitly define a restricted set of potential candi-
dates, whereas the second case imply a wider explored area including a larger amount of 
likely locations), our model was always reported to present higher accuracy scores than 
the baselines. Significantly, it exhibited the largest accuracy improvement exactly towards 
high values of traveled distance and ROG, therefore demonstrating a valuable predicta-
bility even for very wide explored areas. Furthermore, we provided an additional focus 
according to the time variable, organizing the accuracy scores with respect to the hour of 

Figure 5. Bar graphs reporting the difference of error distance between GMM and TraceBERT in
the case of common misprediction (from left to right: wrong predictions in top-1, top-3, and top-5,
respectively).

3.4. Discussion

We introduced a novel approach for reconstructing spatial–temporal gaps along in-
complete trajectory segments. The methodology relied on historical collective large-scale
human mobility and a deep learning-based model adapted to process location sequences.
In particular, the NLP-related state-of-the-art BERT model was proposed in the context of
trajectory analysis, evaluating its potential use within the human motion domain. We inves-
tigated the capabilities of this approach in the particular case of individual users with short
data history and non-repetitive behaviors, whereby prediction algorithms approximating
single probability distributions are not reliable.

The comparative evaluation highlighted indeed the problem of a probabilistic strategy
based on a single individual’s mobility in this motion regime, indicating the necessity
of collective motion information. This collection of non-repetitive trajectories leads the
transition-probability-based Markov model to generally outperforming an approach fully
based on location co-visits, highlighting the importance of location ordering and direc-
tionality. On the other hand, BERT, directed to mine complex patterns in sequential data,
overcame the other approaches, indicating a prominent higher feasibility of identifying the
correct missing locations along individual motion traces.

In addition, we examined how predictability was altered by various motion charac-
teristics. Besides the reasonable trend of local movements to be more predictable than
long-distance mobility (the first ones implicitly define a restricted set of potential candi-
dates, whereas the second case imply a wider explored area including a larger amount of
likely locations), our model was always reported to present higher accuracy scores than the
baselines. Significantly, it exhibited the largest accuracy improvement exactly towards high
values of traveled distance and ROG, therefore demonstrating a valuable predictability
even for very wide explored areas. Furthermore, we provided an additional focus according
to the time variable, organizing the accuracy scores with respect to the hour of the day.
Again, TraceBERT outperformed the baselines, presenting a consistent improvement over
the 24 h, with a higher predictability of afternoon hours over morning hours.

An additional investigation highlighted the performance on the basis of the amount of
missing spatial–temporal information, registering prediction capabilities in correspondence
of different numbers of masked locations along the sequences. TraceBERT, once again,
exceeded the baselines, achieving promising results even for very fragmented location
sequences. The largest improvement, however, was obtained in correspondence of those
traces with a smaller amount of missing information, as the neural network could fruitfully
take advantage of a more complete context surrounding the missing locations and therefore
acquire a better hint to correctly define their reconstruction.

A final important perspective was then related to the evaluation of the prediction
error. While the best possible solution would be the correct detection of a missing location,
whenever a misprediction occurs, it would be still valuable to assess the entity of this
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mistake. Comparisons revealed that the error distance of TraceBERT was often a few tens
of km smaller than the best baseline approach. This underlined an inherent tendency of
making less serious prediction errors, hence reinforcing its superiority even more.

In conclusion, we assessed the feasibility of converting the NLP-oriented BERT ap-
proach for masked language modeling into an explicit deep learning model for processing
location-based trajectories, therefore introducing its use in the human mobility domain. Al-
though the main purpose was strictly methodological, our research opens to a wide variety
of possible applications dealing with location-based services. The most straightforward use
would be aimed to improve the data quality for subsequent downstream tasks, generating
complete trajectories out of sparse recording observations or missing recording gaps. Such
newly generated traces can be then utilized in a multitude of implementations involving
trajectory data. Among many options, correctly reconstructing missing mobility informa-
tion of single individuals can lead to potential improvements in the quality of personalized
recommendations and touristic experiences, assuming that the previously visited venues
and attractions intrinsically carry information on the user’s characteristics and potential
future trips, further leading to promotions, service opportunities and demand estimations.
In broader terms, the reconstruction of individual mobility traces can improve the overall
view of the evolving time-dependent human collective distribution over the territory.

From a higher-level perspective, this work contributes to the investigation of the
potential of advanced deep neural network methodologies on human motion studies,
proposing a feasible adaptation of the BERT model as a promising tool for trajectory
pattern mining.

4. Conclusions

Inspired by advances in computational linguistics, this paper explored the possibility
of converting cutting-edge language modeling methodologies into the human mobility
domain. In particular, we proposed a deep learning approach for inferring missing location
gaps along incomplete trajectory segments. Trained on people’s collective mobility, the
model was able to automatically detect motion patterns from location sequences in a purely
data-driven manner. While the methodology is in principle applicable to any kind of
trajectory-related context, we selected a use case inserted in the field of tourism mobility,
naturally characterized by short and non-repetitive motion traces, aiming to reconstruct
short-term foreign tourists’ motion activity.

The workflow comprised four parts, i.e., the pre-processing of raw traces into fixed-
step location sequences; a random location-masking procedure based on a selected masking
probability; the training of a BERT-like neural network, including transformer architectures
with attention mechanism; and the final inference phase on incomplete testing trajectories.
Our proposed approach has been shown to outperform baseline methodologies, denoting a
remarkable potential for detecting complex mobility patterns. We believe that our findings
will inspire further research activities on the application of sequence-oriented advanced
neural network models towards human mobility analysis.

Future extensions of our work may point to multiple directions. An option would
be to explore possible augmentations of trajectory data with further information, such as
tourists’ personal characteristics or explicit time features. A different research direction may
focus instead on trajectory reconstruction at a smaller scale, investigating more detailed
resolutions in time and space. In addition, a variety of diverse mobility-based use cases
may be tackled, even exploring more sophisticated implementations of technical aspects
such as further masking strategies or variable-length trajectory segments. Finally, a more
conceptual direction should target a better theoretical clarification on the inherent semantic
choices of the model with regard to location dependencies, digging into the causes that
lead to filling a certain location gap in a certain specific way.

In conclusion, the adaptation of the BERT architecture for reconstructing trajectory
segments represents a promising tool in the field of motion analysis, deserving further
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attention and exploratory studies to more deeply investigate its potential in a range of
applications within the mobility domain.
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