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Abstract: The piezoelectric effect, along with its associated materials, fascinated researchers in all
areas of basic sciences and engineering due to its interesting properties and promising potentials.
Sensing, actuation, and energy harvesting are major implementations of piezoelectric structures in
structural health monitoring, wearable devices, and self-powered systems, to name only a few. The
electrical or mechanical impedance of its structure plays an important role in deriving its equivalent
model, which in turn helps to predict its behavior for any system-level application, such as with
respect to the rectifiers containing diodes and switches, which represent a nonlinear electrical load. In
this paper, we study the electrical impedance response of different sizes of commercial piezoelectric
discs for a wide range of frequencies (without and with mechanical load for 0.1–1000 kHz with
resolution 20 Hz). It shows significant changes in the position of resonant frequency and amplitude
of resonant peaks for different diameters of discs and under varying mechanical load conditions,
implying variations in the mechanical boundary conditions on the structure. The highlight of our
work is the proposed electrical equivalent circuit model for varying mechanically loaded conditions
with the help of impedance technique. Our approach is simple and reliable, such that it is suitable for
any structure whose accurate material properties and dimensions are unknown.

Keywords: piezoelectric; impedance; electrical model; wide-range frequency

1. Introduction
1.1. Piezoelectric Materials

Piezoelectric effect is a phenomenon where mechanical deformation generates charge
on its surface (direct effect) or electric field deforms the material (indirect effect). It is
exhibited by quartz, semicrystalline polyvinylidene polymer, poly-crystalline piezoceramic,
and many more [1,2]. Most commercial piezoelectric structures are made of perovskite lead
zirconate titanate (PZT) due to its low cost, direct coupling, high voltage, and moisture
tolerance. Due to concerns of lead toxicity, research on lead-free piezoelectric ceramics is
gaining significant attention. Apart from the ceramics, flexible polymer based piezoelec-
tric structures such as poly-(vinylidene flouride) (PVDF), and fiber-based structures are
developed. The choice of a material depends on its properties, cost, operating frequency,
temperature, and area of implementation. For any chosen material, a variety of piezoelectric
structures are possible according to its design geometry or architecture [3,4].

1.2. Related Work

A piezoelectric element is a favorite choice as an energy harvester, sensor, or actuator
implemented in medical instruments, wearable devices, automation, aviation, buildings,
bridges, etc. For example, its electrical impedance, which is related to structural impedance,
is used to monitor and detect mechanical cracks in most engineering structures [5,6].
Furthermore, it is suitable as both a wearable or nonwearable sensor to analyze human gait
quality for patients with Parkinson’s disease or thrombosis, stroke, or diabetes, and also
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during rehabilitation and sports training [7–13]. Apart from sensing applications, they are
also used for energy harvesting applications. Over the last few years, with growing interest
in renewable and sustainable energy sources, piezoelectric elements gained attention
as potential and reliable options to take advantage of ambient mechanical vibrations to
generate usable electrical energy. They are used to operate sensor networks in remote areas
by making them self-powering or to lower the dependency on batteries [14,15]. With every
physical activity, there is mechanical vibration in human motion or vehicle movement,
which piezoelectric elements can take advantage of to operate low power and miniaturized
biomedical and portable devices for health monitoring of an individual [16,17].

For any piezoelectric energy harvesting system, there is a need of interface circuitry
to serve the purpose [18–22]. The actual implementation of such integrated system is
only possible after estimating it in simulation software. For such a scenario, the electrical
impedance of its structure is a determining factor to optimize the electrical power harvest.
With several application possibilities in broad range of operating frequency, varying tem-
perature of experimental set-up, and varying load power demand of proposed application,
the harvested power depends on the impedance matching between the load and input.
The harvested power could be maximized with optimal impedance matching, without
compelling the transducer to operate at resonant frequency. Moreover, by basic principle
of piezoelectric element, its electrical power depends on the mechanical boundary condi-
tions, which in turn is related to the impact of mechanical load on electrical impedance.
Thus, apart from the importance of impedance matching for electrical power harvest, the
impedance evaluation of our study allows us to cover the mechanical effects inside the
circuit simulator, deriving several elements for equivalent circuit model [23–25].

For a system level application, and with several possible configurations and choices of
materials, as discussed above, the modeling of piezoelectric element is a prerequisite to
predict its performance and optimize its design. There are many modeling methods such as
spring model, thermal analogy, and finite element to name a few, which are mostly based on
mathematical equations of physical laws [24,26,27]. Since our focus is electrical simulation,
we limit our discussion only to equivalent circuit models derived from electrical impedance.

2. Background
2.1. Existing Electrical Equivalent Models for Piezoelectric Elements

There are seven main existing electrical equivalent models for piezoelectric elements :
Mason, Van Dyke, Sherrit, Park, Guan, Easy, and Banerjee models, which will be discussed
in this section. Mason’s equivalent model is one of the oldest electromechanical equivalent
circuit with mutual transformations of mechanical and electrical parameters on both sides as
shown in Figure 1. It is designed for both unloaded and loaded conditions, with impedance
elements and electromechanical coupling factor dependent on several material constants.
The material constants are real coefficients for lossless materials and complex coefficients
for lossy materials. With addition of load to the element, the number of impedance elements
increases on the mechanical port and derivation of such elements for lossy materials become
more complicated. Another major drawback of Mason’s equivalent model is the negative
capacitance on the electrical port, which is considered unrealistic [28–31].

−C0C0

Z1

Z2

Z2

(a)

−C0C0

Z1

Z2

Z2 Z3

Z4

(b)

Figure 1. Mason’s model: (a) unloaded case and (b) loaded case.

Finite element analysis is one of the common techniques where mechanical parameters
are used to derive their electrical analogies, from which the Van Dyke model is designed
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with lumped parameters. For the unloaded Van Dyke model, Li, Ci and Ri are dependent
on the mechanical equivalents as

Li =
M
α2 , Ci =

α2

Km
, Ri =

η

α2 (1)

where M is the rigid mass, Km is static stiffness of the PZT disc, α is force-voltage coupling
factor, and η is its mechanical loss factor or equivalent damping.

The Van Dyke model for unloaded and loaded conditions are shown in Figure 2.
The number of parallel Ri-Ci-Li branches increases for loaded condition as the number of
resonant peaks increases. The accuracy of such models depends on the dimension of the
structures and material properties [27,32,33]. The Van Dyke electrical equivalent model
perfectly fits only in the resonant ranges but not in the nonresonant ranges.

C0

R1 L1
C1

(a)

C0

R1 L1
C1

R2 L2
C2

Rn Ln
Cn

(b)

Figure 2. Van Dyke model: (a) unloaded case and (b) loaded case.

Due to inaccuracy in nonresonant ranges, which is more commonly found in materials
with significant losses, it was improved in the Sherrit model using complex circuit compo-
nents, which were calculated from the material constants in the mathematical equations [34].
The Sherrit model was only proposed for unloaded case as shown in Figure 3, with a pair
of Li-Ci in parallel to the static capacitance C0.

C0

L1
C1

Figure 3. Sherrit model: unloaded case.

However, in cases when the exact material composition is unknown, it is difficult to
evaluate the material constants that govern such equations. For such cases, impedance
response measurement provides a simple and straightforward modeling technique to
derive electrical equivalent model. It is independent of structure geometry and material
constants, and is more suitable for transducer application. The Park model was the basic
circuit model with R-C0 combination to demonstrate the equivalent circuit model, as shown
in Figure 4. But this model did not consider the resonant peaks and was suitable only for
lower frequency ranges [35].
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Figure 4. Park model: (a) series and (b) parallel.

The Guan models for unloaded and loaded cases are shown in Figure 5. It was the
first model to consider resonant peaks, based on visual inspection of impedance response.
It was inspired by the Van Dyke model and comes with additional components Rp and Rs
to represent energy dissipation. The choice of values for Rp and Rs introduced inconsis-
tency and inaccuracy in the fitted model, as energy dissipation was mainly dependent on
amplitude and frequency of the excitation signal [36].

C0 Rs

R1 L1
C1

Rp

(a)

C0 Rs

R1 L1
C1

Rn Ln
Cn

Rp

R2 L2
C2

(b)

Figure 5. Guan model: (a) unloaded case and (b) loaded case.

Based on impedance fitting, an R0-C0 circuit model with additional lumped parameters
is derived to obtain an accurate equivalent circuit model for both mechanically loaded
and unloaded conditions, separating the nonresonant and resonant parameters. The Easy
model is a modified Van Dyke circuit with parallel Ri-Li-Ci with C0 in series, as shown in
Figure 6 [37], but based on impedance response. The Banerjee model is the most recent
equivalent circuit model for unloaded case, where the concept of residual impedance was
introduced for simplified modeling [25]. It estimated complex permittivity of the element
by using the derived electrical model parameters and its dimensional constants. Its circuit
schematic is shown in Figure 7.

2.2. Fundamental Equations

In support of the claims discussed in the above section, it is important for us to
understand the governing equations of piezoelectric discs that relate the electrical and
mechanical physical quantities. The constitutive equations of piezoelectric effect are:

S = sET + dtE (2)

D = dT + εTE (3)

where S is mechanical strain, T is mechanical stress, E is electric field, D is charge density,
sE is stiffness at constant electric field E, d is matrix for the direct and reverse piezoelectric
effect, and εT is dielectric permittivity under constant stress T [38].
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Figure 6. Easy model: (a) unloaded case and (b) loaded case.

Cx Rx

R1 L1
C1

C0

Figure 7. Banerjee model: unloaded case.

The authors in [39] clearly summarized the electro-mechanical equations of an active
material. For a piezoelectric disc of width w, thickness h, and length l, the mechanical
impedance Zmech, also known as short-circuit mechanical impedance, is defined as the ratio
of excitation force F and velocity response v. It is written as:

Zmech =
F
v
= −Km(1 + η)

ω

kml
tan(kml)

(4)

ω = 2π f (5)

where ω is angular frequency and km is the wave number.
Again, the electrical current I flowing through the disc is related to electric field E

as follows:

I = ωEwl
[

d2Y
Zmech

Zmech + Zh

tan(kml)
kml

+ εT − d2YE
]

(6)

where Y is the elastic modulus of the disc, and Zh is the impedance of host structure.
The applied electrical voltage V can be rewritten as:

V = Eh (7)

The inverse of electrical impedance is denoted by Yelec and is expressed as:

Yelec =
I
V

(8)

Substituting from Equations (6) and (7) on (8), we get:

Yelec = ω
wl
h

[
d2YE Zmech

Zmech + Zh

tan(kml)
kml

+ εT − d2YE
]

(9)

Rewriting Equation (9) with V, I, P, A and v, we get:

I
V

= Yelec = ω
wl
h

[
d2YE

P×A
v

P×A
v + Zh

tan(kml)
kml

+ εT − d2YE

]
(10)



Sensors 2022, 22, 1710 6 of 18

where
P =

F
A

(11)

and A is the cross sectional area of the disc.
Thus, the Equations (9) and (10) establish the relationship between mechanical and

electrical impedance for any PZT disc [39]. As discussed in Section 1.2 and observed in
the above equations, material properties and dimensions are crucial for determining the
electro-mechanical impedance. But for commercial piezo structures where the accurate
values of w, l, h, d, YE, km, η and d are unknown, the impedance analyzer provides a
reliable and fast scope to understand the behavior of PZT discs and derive its electrical
equivalent circuit.

3. Research Methodology
3.1. Proposed Work

Electrical impedance response measurement is a fundamental step to understand
electrical behavior of sensors or energy harvesters. In our work, we make comparative study
of electrical impedance response of piezoelectric elements for a wide range of frequencies
0.1–1000 kHz for mechanically unloaded and varying loaded cases. The existing equivalent
models are derived for only few kHz of frequency range. The elements are not connected
to any electrical load. Our focus is commercial piezoelectric elements because they have
limited information about material properties to derive accurate model for system level
application. In this paper, we use elements from Murata Electronics, which are quite
popular due to their low-cost and ease of implementation. As discussed, due to limited
information in the data-sheet, we use electrical impedance behavior as basis to derive
equivalent circuit model for mentioned elements.

The purpose of our comparative study is to observe: (1) the influence of diameter on
impedance response for mechanically unloaded piezoelectric discs of different diameters;
and (2) the influence of varying mechanical load on the discs of specific diameter, which
was not previously investigated for commercial piezoelectric elements using a wide range
of frequencies. The change in electrical impedance response, observed in terms of resonant
frequency shift and shape of resonant peaks (Q-factor), determine the values of electrical
parameters in the derived model, which is crucial for accurate prediction of electrical be-
havior. Based on this study for a wide range of frequency, a new electrical equivalent circuit
model for mechanically loaded condition is proposed for the first time. Considering the
summary of all the existing models (from Section 2.1) mentioned in Table 1, we picked up
the simplified technique from Easy modeling and residual impedance from Banerjee mod-
eling to propose a new model to study the dependence of mechanical load on impedance
response for a wide range of frequencies. The need for wide frequencies is important due
to the harmonics present within nonlinear circuits, such as rectifiers containing diodes and
switches, and thus offering nonlinearity in the system. The main novelty of this work is the
measurement method to understand the influence of mechanical clamp on the impedance
behavior of the piezoelectric elements.

3.2. Experimental Details
3.2.1. Piezoelectric Discs

The commonly used piezoelectric structure is a brass disc with a thin layer of PZT
on its top (as shown in Figure 8) [40–42]. The brass disc, above which the PZT layer is
deposited, is the host structure. Three different sizes of PZT discs were used in our work
and their physical parameters are mentioned in Table 2.
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Table 1. Overview of existing models.

Name Based on Condition Remarks

Mason Material constants, field
constants, and
structure geometry

Both loaded and
unloaded condition

Negative capacitance and
determination of complex
elements for
lossy materials

Van Dyke Material constants, field
constants, and
structure geometry

Both loaded and
unloaded condition

Inaccurate in nonresonant
frequency range and for
lossy materials

Sherrit Material constants, field
constants, and structure
geometry

Only unloaded condition Determination of complex
elements

Park Impedance response Only unloaded condition Below ultrasonic
frequency range

Guan Impedance response Both loaded and
unloaded condition

Based on visual inspection,
energy dissipation

Easy Impedance response Both loaded and
unloaded condition

Limited frequency range,
Simple

Banerjee Impedance response Only unloaded condition Limited frequency range,
Simple

Our model Impedance response Both loaded and
unloaded condition

Wide frequency range,
Simple

(a) (b)

Figure 8. Piezoceramic disc: (a) top view and (b) side view.

Table 2. Physical parameters of 3 perovskite lead zirconate titanate (PZT) discs.

Product Name Plate Diameter (mm) Structure Thickness
(mm)

Ceramic
Thickness(mm) Mass (mg)

7BB-12-9 12 0.22 0.12 142
7BB-20-6 20 0.42 0.22 776
7BB-27-4 27 0.54 0.24 1968

3.2.2. Test Equipment

The impedance response is measured by electrical impedance analyzer Keysight
HP4194A, with the excitation voltage of −500 mV to 500 mV. This voltage induces me-
chanical expansion and contraction on the structure by indirect piezoelectric effect. The
mechanical vibration as a result generates electrical response, which is measured in the
form of current to calculate the electrical impedance.
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3.3. Method for Electrical Impedance Measurement

The measurement is performed for two conditions:

1. Without mechanical load: To understand the influence of plate diameters, three PZT
discs with diameters of 12 mm, 20 mm and 27 mm are selected for measurement
in the frequency range 0.1–1000 kHz with resolution of 20 Hz. PZT discs are sus-
pended in the air as shown in Figure 9, such that they can vibrate freely to obtain the
impedance response.

Figure 9. Experimental arrangement for mechanical unload.

2. With mechanical load: To observe the influence of varying mechanical load, the
impedance response of three discs are measured over the frequency range 0.1–1000 kHz
with a resolution of 20 Hz at different load weights. The disc is placed flat on the
table and then on top of it, equal loads are added one after another. Each load has a
mass of 1.25 kg, which corresponds to force F = 12.25 N. Therefore, the pressure P
equivalent to each mechanical load is derived from Equation (11). The definition of
loading for the existing models mean that the piezoelectric element is mounted on a
host structure, which we describe as mechanically unloaded in this paper. But in our
case of mechanical loading, we apply a known mechanical load on top of the element
as shown in Figure 10 below. The mechanical load on the arrangement generates
normal displacement on the disc, perpendicular to its plane.

Figure 10. Experimental arrangement for mechanical load.

3.4. Derivation of Electrical Model Parameters

A pair of resistor R and capacitor C0 is commonly used to model a PZT disc as shown
in Figure 4, where R is a high value resistance and C0 is a static capacitance. It is sufficient
to understand the electrical behavior of the disc in low frequency applications. This R-C0
model is extended with other elements (Ri-Ci-Li) as shown in Figure 11 to understand its
behavior for wide frequency range. The number of Ri-Ci-Li loop depends on the number
of resonance peaks.



Sensors 2022, 22, 1710 9 of 18

C0R

R1 R2

L1

C1

L2

C2

R0

Cn

Ln

Rn

Figure 11. Equivalent circuit model of piezoelectric disc.

The C0 is calculated from the measured impedance response Zmeas at starting frequency
0.1 kHz, given by:

ZC0 = Zmeas( f=0.1kHz) sin(2π f ) (12)

ZC0 =
1

2π f C0
(13)

The static capacitance C0 is mainly dependent on the physical parameters of the disc
with area A and plate separation d, and its dielectric constant ε which is given by:

C0 =
Aε

d
(14)

The base resistance R0 is determined from impedance at the last measured frequency,
i.e., 1000 kHz:

ZR0 = Zmeas( f=1000kHz) cos(2π f ) (15)

As mentioned in the Banerjee model [25], we calculate the residual impedance Zres to
identify the resonant peaks accurately as:

Zres = Zmeas − ZC0 (16)

For each resonant frequency, fi, Ri, Li and Ci values are determined. Qi is the quality
factor, which is related to the sharpness of each peak. Ri is determined from the resistance
at each peak, and the Li and Ci values are calculated from following equations:

ωi = 2π fi (17)

Qi =
ωi

BW
(18)

where BW is the 3 dB bandwidth of the resonant peak

Li =
Ri

ωiQi
(19)

Ci =
1

ωi
2Li

(20)

The total impedance of a disc for unloaded case is given by:

Zmodel =

(
R0||R +

N

∑
n=1

ZRi||ZCi||ZLi

)
|| 1

ωC0
(21)

Zmodel =

(
R0||R +

N

∑
n=1

Zi

)
|| 1

ωC0
(22)

Zi =
1

1
Ri

+ ωCi +
1

ωLi

(23)



Sensors 2022, 22, 1710 10 of 18

where Zi is impedance due to a resonance peak.
The choice of best model fit depends on the difference between measured and sim-

ulated response (RE) and the correlation coefficient (COE) between them for the whole
frequency range. The mathematical equations for RE and COE are:

RE =
Zmeas−Zmodel

Zmeas
× 100 (24)

COE =
∑ (Zmeas − Zmeas)(Zmodel − Zmodel)√

∑ (Zmeas − Zmeas)2 ∑(Zmodel − Zmodel)2
(25)

All calculations are performed in a Matlab program, and the corresponding LTspice
model file is generated automatically. The Matlab program then calls LTspice to complete
the simulation and process the data to generate the figures.

4. Results and Discussion
4.1. Without Mechanical Load

The residual impedance Zres in Equation (16) [25] of three PZT discs are shown in
Figure 12, with rectangular blocks highlighted to show three resonant peaks. The peaks
in this figure represent resonant peaks of each disc. With increase in plate diameter of
the PZT discs, each resonant peak of a disc exhibits increasing impedance magnitude and
increasing resonant frequency. For wide range of measured frequency, each PZT disc has
three resonant peaks, where the second resonant peak has lowest amplitude. E.g., PZT-27
has three resonant peaks around 5, 33 and 100 kHz. The influence of diameter on three
resonant frequencies of each disc are shown in Figure 13. The error bands considered in
our figures are calculated from 5 sets of measurements for each type of disc.

10
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6

Frequency in Hz

0
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30

M
a
g
n
it
u
d
e
 o

f 
Im

p
e
d
a
n
c
e
 i
n
 k PZT-27mm

PZT-20mm

PZT-12mm

First peak
Second peak Third peak

Figure 12. Magnitude of residual impedance of three PZTs.

Based on the Equations (17)–(20) from [37], the values of model parameters are cal-
culated to design an equivalent circuit model for mechanically unloaded condition. With
Matlab-LTspice coupled simulations, the best fit of the first peak for PZT-27 is shown in
Figure 14 from equivalent circuit model of the tested disc in Figure 15 and model parame-
ters in Table 3. The decreasing impedance graph as ω→ ∞ in Figure 14 is associated with
ZC0, as given in Equation (13). Thus, C0 is responsible for the capacitive behavior of the
discs at low frequency range.
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Figure 13. Influence of diameter at (a) first, (b) second, and (c) third resonance peaks.
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R0 R1 R2 R3

C0R

L1

C1

L2

C2

L3

C3

Figure 15. Equivalent circuit model of PZT-27 without mechanical load.

Table 3. Model parameters for PZT-27 without mechanical load.

Resistance Capacitance Inductor Quality Factor

R = 106 Ω
R0 = 0.4 Ω C0 = 16.85 nF
R1 = 30,300 Ω C1 = 95.40 nF L1 = 12.1 mH Q1 = 85
R2 = 355 Ω C2 = 770.56 nF L2 = 32.1 µH Q2 = 55
R3 = 2525 Ω C3 = 118.34 nF L3 = 20.9 µH Q3 = 190

In our measurements, it is observed that the electrical impedance response might vary
slightly from one PZT disc of a particular size to another with different values of Ri, Li and
Ci, but the number of resonant peaks remains the same, with a fixed number of electrical
parameters. Without mechanical load, the derived model parameters for PZT discs of
different plate diameters are shown in Figures 16 and 17. A gradual trend in C0, R0, R1, C1
and L1 is observed with increase in plate diameter of PZT disc. As observed in Figure 16a,
the static capacitance increases with increase in diameter of the disc, and it is in agreement
with Equation (14). From the electrical–mechanical analogies in Equation (1), the increase
in R1, C1 and L1 with increase in diameter can be interpreted as increase in damping and
decrease in stiffness of the discs.

4.2. With Mechanical Load

For discs of all three diameters, the influence of mechanical load is observed in
frequency shift of the first and third resonance peaks. The low quality factor of second
resonance (as referred in Table 4) contributes to the disappearance of this peak due to
mechanical load. So, the second resonant peaks of all discs vanish due to the influence of
mechanical load on them. The impact of mechanical loading on frequency shift of PZT-12,
PZT-20, and PZT-27 discs are shown in Figures 18 and 19 for first and third resonant peaks.

Based on the impedance data, a new equivalent circuit model derived for mechanically
loaded case is shown in Figure 20. The equivalent circuit model without mechanical load
(as shown in Figure 15) is extended with four sets of Rpi-Lpi-Cpi in parallel to the three sets
of resonance loops Ri-Li-Ci. The influence of mechanical load in the optimized values of
four sets of Rpi-Lpi-Cpi for PZT-27 are noted in Table 4. For each addition of mechanical
load 21.39 kPa, the values of Rpi-Lpi-Cpi decrease, which is related to decrease in structural
damping and increase in stiffness of the discs. Changes in electrical impedance response
provide an understanding about changes in mechanical properties as a result of addition
of mechanical load. What is interesting in our measurement is that loading only results
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in attenuation of resonant peaks instead of an increase in the number of resonant peaks,
which was observed in other literature [37].
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Figure 16. Influence of diameter on (a) static capacitance (b) base resistance of PZT discs.
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Figure 17. Influence of diameter on (a) resistance, (b) capacitance, and (c) inductance for first resonance.
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Figure 18. Influence of mechanical load on first resonant frequency of (a) PZT-12, (b) PZT-20, and
(c) PZT-27.
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Figure 19. Influence of mechanical load on third resonant frequency of (a) PZT-12, (b) PZT-20, and
(c) PZT-27.
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Figure 20. Equivalent circuit model of PZT-27 with mechanical load.

Figure 21a,b show measured and simulated impedance response of PZT-27. A right-
ward shift around first and third resonant frequencies with increase in mechanical load is
observed for each case. The impact of mechanical load does not affect the quality factor of
first resonant peaks. However, the peaks widen around the third resonance with increase
in load, which is related to decrease in quality factor. The accuracy of simulated model to
measured data can be interpreted from Table 5, which is acceptable considering the wide
range of data.

(a) (b)

Figure 21. Influence of mechanical load on frequency dependence of PZT-27 disc around (a) first
resonance and (b) third resonance peaks.
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Table 4. Model parameters for PZT-27 with mechanical load.

Load Resistance Capacitance Inductor

No load R = 106 Ω
R0 = 0.4 Ω C0 = 16.85 nF
R1 = 30,300 Ω C1 = 95.40 nF L1 = 12.1 mH
R2 = 355 Ω C2 = 770.56 nF L2 = 32.1 µH
R3 = 2525 Ω C3 = 118.34 nF L3 = 20.9 µH

21.39 kPa Rp1 = 900 Ω Cp1 = 14.14 µF Lp1 = 0.7162 H
Rp2 = 1400 Ω Cp2 = 105.2 nF Lp2 = 3.3 H
Rp3 = 1180 Ω Cp3 = 10.5 nF Lp3 = 230.1 µH
Rp4 = 470 Ω Cp4 = 101.5 nF Lp4 = 11.08 H

42.79 kPa Rp1 = 400 Ω Cp1 = 0.795 µF Lp1 = 0.0141 H
Rp2 = 1300 Ω Cp2 = 65.9 nF Lp2 = 2.526 H
Rp3 = 980 Ω Cp3 = 9.7 nF Lp3 = 190 µH
Rp4 = 450 Ω Cp4 47.16 nF Lp4 = 0.9549 H

64.19 kPa Rp1 = 350 Ω Cp1 = 0.641 µF Lp1 = 0.0137 H
Rp2 = 1000 Ω Cp2 = 48.7 nF Lp2 = 2.16 H
Rp3 = 920 Ω Cp3 = 8.5 nF Lp3 = 181.58 µH
Rp4 = 370 Ω Cp4 = 40.4 nF Lp4 = 0.8660 H

85.5 kPa Rp1 = 300 Ω Cp1 = 0.573 µF Lp1 = 0.0129 H
Rp2 = 850 Ω Cp2 = 44.25 nF Lp2 = 1.89 H
Rp3 = 900 Ω Cp3 = 8.47 nF Lp3 = 181.51 µH
Rp4 = 300 Ω Cp4 = 40.4 nF Lp4 = 0.5684 H

Table 5. Relative error and correlation coefficient for PZT-27.

Load Relative Error Correlation Coefficient

0 9.46 % 0.9985
21.39 (kPa) 11.76 % 0.9995
42.79 (kPa) 11.83 % 0.9995
64.19 (kPa) 12.76 % 0.9994
85.59 (kPa) 14.21 % 0.9995

5. Conclusions

Understanding of electrical and mechanical impedance response is fundamental for
the application of piezoelectric elements. The occurrence of resonant peaks and nature of
impedance magnitude depends on the structural and material specification of the discs.
This paper provides insight into the electrical behavior of piezoelectric discs for a wide
range of frequencies under mechanically loaded and unloaded conditions. Based on
impedance equations, optimized electrical equivalent circuits of the discs were derived.
The relative error for our modeling study is below 15 %, and correlation coefficient is
greater than 0.9985 for all cases considered in this work. The diameter of disc affects its
model parameters, and so does the addition of mechanical load. The impedance magnitude
resonance increases and resonant frequency decreases with an increase in the plate diameter.
For mechanically loaded condition, the impedance magnitude at resonance decreases and
resonant frequency increases with addition of load. This frequency shift provides hints
of changes in the mechanical structures under various mechanical loading conditions.
However, each disc has a unique impedance response, and the values of derived equivalent
circuit parameters may vary slightly in their magnitudes. The technique used in this work
can be implemented to understand impedance behavior and derive equivalent circuit
model for other commercial piezoelectric discs as well.
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With the existing single port models, our work attempts to derive a two-port model in
future, where actual mechanical vibrations and their dynamic variations can be modeled
inside the circuit simulator. Our study provides an overview of varying input mechanical
effects on the piezoelectric elements. This will provide a reliable mechanical port in terms
of electrical parameters to estimate correct prediction for energy efficiency of interface
circuit and electro-mechanical power conversion for any device application.
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