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Abstract: The unprecedented development of Internet of Things (IoT) technology produces humon-
gous amounts of spatio-temporal sensing data with various geometry types. However, processing
such datasets is often challenging due to high-dimensional sensor data geometry characteristics,
complex anomalistic spatial regions, unique query patterns, and so on. Timely and efficient spatio-
temporal querying significantly improves the accuracy and intelligence of processing sensing data.
Most existing query algorithms show their lack of supporting spatio-temporal queries and irregular
spatial areas. In this paper, we propose two spatio-temporal query optimization algorithms based on
SpatialHadoop to improve the efficiency of query spatio-temporal sensing data: (1) spatio-temporal
polygon range query (STPRQ), which aims to find all records from a polygonal location in a time
interval; (2) spatio-temporal k nearest neighbors query (STkNNQ), which directly searches the query
point’s k closest neighbors. To optimize the STkNNQ algorithm, we further propose an adaptive
iterative range optimization algorithm (AIRO), which can optimize the iterative range of the al-
gorithm according to the query time range and avoid querying irrelevant data partitions. Finally,
extensive experiments based on trajectory datasets demonstrate that our proposed query algorithms
can significantly improve query performance over baseline algorithms and shorten response time by
81% and 35.6%, respectively.

Keywords: spatio-temporal sensing data; spatio-temporal data processing; spatio-temporal index;
polygon range query algorithm; k nearest neighbor query algorithm; query optimization; Spatial-
Hadoop

1. Introduction

With the development of Internet of Things (IoT) technology and the proliferation
of mobile smart devices, a large amount of spatio-temporal sensing data have been gen-
erated continuously by diverse applications, such as GNSS-enabled mobile devices [1,2],
urban traffic [3,4], satellites, and various sensing devices [5,6]. Continuous, consistent,
and long time-series data from remote sensing are essential to monitor changes in geolo-
cation information. The derived datasets have the advantage of extensive spatial and
temporal coverage. Accurately extracting these sensing data can significantly give impetus
to data mining [7,8] and data prediction [9]. For example, storing the speed and direction
of moving objects in a spatio-temporal database can predict the location, which can as-
sist spatio-temporal applications such as urban management [10,11], traffic control [12],
and route planning [13]. Location-based social networks (LBSNs) can extract and analyze
large amounts of user location information to provide geomarketing and recommendation
services [14]. This paper is an extended version of our conference paper: Huayan Yu,
Xin Li, Ligang Yuan, Xiaolin Qin. “Efficient Spatio-Temporal-Data-Oriented Range Query
Processing for Air Traffic Flow Statistics.” Proceedings of 2021 IEEE Intl Conf on Parallel
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& Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/Social-
Com/SustainCom), New York, USA, 30 September–3 October 2021.

However, processing such datasets is often challenging due to complex sensor data
geometry characteristics, anomalistic spatial region, and so on. The spatio-temporal process-
ing operation refers to the analysis of data with temporal attributes and relative positions
in three-dimensional space based on the spatio-temporal data models [15]. Enormous
spatio-temporal data objects are unique in terms of time and space attributes. They are
characterized by high dimensionality, spatio-temporal dynamic correlation, and multiple
semantic operations, which intensely burden data processing work in efficient respond-
ing data queries. Existing spatial processing systems do not support spatio-temporal
data analysis since they lack support for spatio-temporal data types and operators. The
spatio-temporal processing framework must perform preprocessing operations such as
data cleaning, segmentation, and compression on the original dataset. It also concludes
the execution of spatio-temporal query and similarity matching operations based on the
construction of spatio-temporal indexing.

Timely and efficient spatio-temporal query plays a significant role in improving the
accuracy of data processing, providing assistance to support the efficient extraction of
valuable information. Among those data processing operations, the spatio-temporal query
is one of the most basic but time-consuming operations. Firstly, the query time cost is
high. A spatio-temporal query usually involves a series of distance-based queries and
data aggregation operations, demanding a lot of storage and computing resources. It
often requires access to the entire spatio-temporal database for retrieval query results [16].
Secondly, the query pattern is unique due to the complex structure and high dimension
of data, for example, to query the flow of people or traffic in a particular area for a period
of time or to query the recommended service information of nearby stores near a query
point [17]. These queries are usually not efficiently supported by traditional inverted or
B+ tree indexes. B+ tree is a variant of B tree, whose non-leaf nodes only contain index
information. B+ tree index has better spatial locality, so that it can efficiently support queries
such as single-dimensional numerical ranges, but it is difficult to support high-dimensional
queries on spatio-temporal data. In order to efficiently match query requests in different
scenarios, it is necessary to provide more creative query methods.

However, existing query algorithms show their weakness in three parts: (1) Existing
research lacks support for multidimensional spatio-temporal queries. The current query
and processing algorithms [18–20] only consider the spatial dimension, ignoring the tem-
poral information, and are only suitable for geospatial scenarios. However, users are more
concerned about the location relationship that changes dynamically over time; (2) The ex-
pansion ability under the complex spatial region model is insufficient. The research [21–23]
only supports the rectangular spatial model, which rarely pays attention to the problem
of range query under complex irregular polygonal shapes (such as city boundaries and
delivery areas). These regions usually have characteristics such as large boundaries and
irregular shapes and often require a large number of vertices to be accurately represented
in a vector-based form; (3) The efficiency of the spatio-temporal query needs to be further
improved and optimized. Due to the ubiquitous spatial correlation in spatio-temporal data,
coupled with the randomness and complexity of the time dimension, the spatio-temporal
query algorithm needs to have high execution efficiency. Existing query optimization tech-
nologies [24,25] are mainly based on spatio-temporal index to improve query performance.
Plentiful indexing techniques for spatio-temporal data have been proposed to improve
the performance of spatio-temporal queries (such as R-tree [26], quad-tree [27], and KD-
tree [28]). However, they are not optimized to deal with large-volume spatio-temporal data
covering high-dimensional features with high performance.

Motivated by these observations, in order to consider the multidimensional spatio-
temporal query, support the expansion of complex spatial region models, and further
improve the query response performance of massive data, we propose two spatio-temporal
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range query MapReduce algorithms based on SpatialHadoop to analyze spatio-temporal
data efficiently and effectively. We extend SpatialHadoop by designing a parallel spatio-
temporal polygon range query (STPRQ) algorithm and the spatio-temporal k nearest
neighbor Query (STkNNQ) algorithm. The contributions of this paper are summarized
as follows:

• We propose a distributed spatio-temporal polygon range query algorithm STPRQ.
The algorithm proposes a polygon range query model based on the global index in the
spatial range search stage and refilters the data objects under the spatial and temporal
constraints based on the record reader.

• We propose a spatio-temporal k nearest neighbor algorithm STkNNQ, which compre-
hensively considers the temporal and spatial factors to calculate the spatio-temporal
proximity. To improve query efficiency, we propose a spatio-temporal data partition
strategy based on the global index. We also propose an adaptive iterative range opti-
mization (AIRO) strategy, which can optimize the iterative range of the algorithm to
avoid the time cost caused by querying irrelevant data blocks.

• We conduct extensive experiments on real-world aviation trajectory datasets to evalu-
ate the efficiency and effectiveness of our proposed query algorithms. The experimen-
tal results show that the STPRQ algorithm can improve query efficiency by reducing
the query cost to 19%. The experimental results also indicate that the STkNNQ al-
gorithm can improve the query efficiency of spatio-temporal data, shortening the
response time by 35.6%.

2. Related Work
2.1. Spatio-Temporal Data Management and Processing

Early research mostly focuses on spatio-temporal data models [29], spatio-temporal
query languages [30], and query processing and optimization. In recent years, some generic
database systems (such as SECONDO [31], Oracle Spatial, and PostGIS) have been designed
so that we can store, query, and manage spatio-temporal data. To optimize query efficiency,
scholars have turned their attention to designing indexing techniques to index spatio-
temporal data [26–28]. Theodoridis et al. [32] proposed an indexing scheme 3D-R tree,
which regards the time dimension as the third attribute dimension besides latitude and
longitude. However, it is not suitable for storing large timespans of data. Tao et al. [33]
proposed an extension to the 3D-R tree to make filtering better. Most of these explorations
are based on spatio-temporal data systems run on single-node servers and encounter
scalability bottlenecks when in tremendous data scenarios.

Some attempts have been made to improve the efficiency of spatio-temporal data
management in the distributed environment. The existing solutions for spatial data can
be classified as Hadoop-based systems and Spark-based systems, which are mostly built
on top of distributed spatial data management systems (DSDMSs). The extremely out-
standing contributions in the context of Hadoop-based DSDMSs are the following research
prototypes: SpatialHadoop [18], Hadoop-GIS [19], and HadoopTrajectory [34]. However,
as mentioned above, all techniques mostly focus on processing traditional spatial data such
as rivers, railways, and buildings. ST-Hadoop [35] is an extension of SpatialHadoop [36]
that integrates spatio-temporal concepts in each layer of SpatialHadoop. Thus, it can
support spatio-temporal range queries and joins. Although these systems exhibit high
scalability data processing operation, Hadoop will involve heavy IO access from the disk.

Due to the high IO cost in Hadoop, some systems based on Spark are proposed [20–22,37].
GeoSpark [20] extends Spark for processing spatial data. Simba [21] offers scalable and
efficient in-memory spatial queries for big spatial data. The STARK [22] framework adds
spatio-temporal support to Spark, including spatial partitioners and several models for
indexing. All spatial data systems above share a drawback: they are all not suitable for
performing spatio-temporal operations. A possible explanation is that their indexes are
only for processing spatial operations and cannot identify the characteristics of spatio-
temporal data.
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2.2. Distributed Spatio-Temporal Query

The spatio-temporal query is a typical distributed spatio-temporal processing and
analysis method. The spatio-temporal query operations include range query, k nearest
neighbor (kNN), k closest pair query, and distance join query. Table 1 depicts the most
representative systems with functional comparisons. As we can see, range query and kNN
query are the most common operations, while most distributed data management systems
do not fully support the expansion in spatio-temporal dimensions. They show a lack in
supporting multi-dimensional spatio-temporal queries and complex spatial regions. This
paper mainly focuses on the query optimization research of range query and kNN query.

Table 1. The most representative DSDMSs with functional comparisons.

DSTDMS Architecture Query Operation

Hadoop-GIS Hadoop Range query, spatial join
SpatialHadoop Hadoop Range query, kNN, spatial join

ST-Hadoop Hadoop ST-range query, ST-join, kNN
Hadoop-Trajectory Hadoop Pass, Traj, WindowIntersect

Simba Spark Range query, kNN, spatial join
SpatialSpark Spark Range query, spatial join

GeoSpark Spark Range query, kNN
STARK Spark Range query, kNN, spatial join
JUST NoSQL ST-range query, kNN

2.2.1. Spatio-Temporal Range Query

Spatio-temporal range query is generally used in spatial databases to query data in
complex geometric regions to determine a set of candidate spatial objects that may satisfy
the query conditions. Related research works [10,18,35] introduce spatial indexes and
implement range query algorithms for processing spatio-temporal objects. Chen et al. [24]
designed a built-in index structure STEHIX for HBase to handle spatio-temporal queries.
Oh et al. [25] extended the standard range query algorithm to moving objects and made
improvements and optimizations, and proposed an effective method for range space
keyword query. Nevertheless, these methods only support the rectangular spatial model,
which rarely pays attention to the range query problem under complex irregular polygonal
shapes (such as city boundaries and delivery areas).

There are few studies for spatio-temporal polygon range query processing, where his-
torical trajectories are used to predict the possibility that a moving object will move towards
the following polygon location. The challenge is that accurate polygon queries require high
data correlation and a compact representation of query range, whereas spatial indexes to
filter data are coarse-grained. Zacharatou et al. [38] converted a polygon aggregation query
into a set of drawing operations on a canvas and provided accurate results when combined
with a polygon index. Zhang et al. [39] designed and developed an end-to-end system
on graphics processing units (GPUs) to associate points with the polygons by utilizing
the massive data-parallel computing power of GPUs. In the paper [12], we integrated
the spatio-temporal polygon range query algorithm to solve the problem of traffic flow
statistics for civil aviation airspace. We will further optimize the spatio-temporal polygon
range query method proposed. In conclusion, the expansion ability under the complex
spatial region model is insufficient, so it is urgent to make our design for a spatio-temporal
polygon range query.

2.2.2. Spatio-Temporal k Nearest Neighbor Query

As can be seen from Figure 1, the spatio-temporal k nearest neighbor query calculates
the temporal proximity and spatial proximity and returns k data objects closest to the query
point. The k nearest neighbor query algorithm has been extensively studied in the literature.
However, most existing solutions for kNN consider the spatial closeness only. They either
ignore temporal concurrency or suffer from poor query efficiency. Chen et al. [24] designed
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a two-layer index structure based on HBase and proposed a load balancing and scalable
kNN query. Some research works also consider the problem of k-nearest neighbor join
query between two datasets. García-García et al. [40] elaborated and compared the existing
distance join query work. Using the repartitioning technology of dense spatial regions,
they improved the k nearest neighbor join query algorithm based on MapReduce and
extended the spatial object to more complex objects such as polygons or line segments.
Zhang et al. [41] designed a MapReduce-based k-nearest neighbor join query, used pruning
rules to filter spatial distances, and proposed two approximate algorithms to minimize the
number of replicas. Liu et al. [42] extended the kNN method based on the MapReduce
framework but only considered the spatial proximity and ignored the temporal proximity.
For considering both spatial and temporal proximity, Li et al. [43] proposed the ST-kNN
algorithm. In order to achieve an effective ST-kNN connection, this study also proposes
a time range count index (TRCindex) to reduce the data transmission overhead between
different machines. The above analysis shows that the current research work has not
solved the spatio-temporal proximity in the k nearest neighbor query problem, and the
query efficiency needs to be further optimized. Our previous research [12] integrates the
spatio-temporal k nearest neighbor algorithm to SpatialHadoop, which supports spatio-
temporal proximity but is still not efficient enough. We will further optimize query models
in this paper.

Figure 1. The scenario of spatio-temporal k nearest neighbors query [44]. Given a set of check-ins
of spatio-temporal points, kNN (k = 3) finds the nearest points of query point Q. The r denotes the
minimum extension radius of query range that contains exactly k results. If we consider spatial
closeness only, we will obtain three points for Q, i.e., P1, P2, and P3. However, if we consider temporal
concurrency as well, P3 may no longer be the k nearest to Q when it is outdated.

3. Problem Preliminaries

In this section, we first define spatio-temporal data. After that, semantic details
of respective range query algorithms and the corresponding notation and processing
paradigms are presented below.

3.1. Spatio-Temporal Data

In order to formally describe the entire spatio-temporal range query, the definition of
spatio-temporal data is given first. Spatio-temporal data usually refers to a collection of
location records marked with timestamps, which can be any data type (such as a point,
a line string, etc.). Spatio-temporal data can provide accurate and comprehensive general
information, containing two parts: (1) spatio-temporal information, including a spatial
attribute and a time attribute; and (2) other properties, including height, speed, angle
information, etc. Table 2 is an example of spatio-temporal record. Using the millions of
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spatio-temporal records continuously uploading from the Hadoop Distributed File System
(HDFS), we can carry on different range queries in a spatial area within a temporal range.

Definition 1 (ST-point). A spatio-temporal dataset is defined as a collection P = {p1, p2, . . . , pn}.
For each ST-point (spatio-temporal point), p = (lng, lat, t), lng represents longitude, lat represents
latitude, t represents timestamp, and δ means other attributes information.

Table 2. An example of spatio-temporal record.

Record Spatio-Temporal Properties Other Properties

r1 lng1 lat1 time1 height1 speed1 angle1
r2 lng2 lat2 time2 height2 speed2 angle2
... ... ... ... ... ... ...
ri lngi lati timei heighti speedi anglei

3.2. Spatio-Temporal Polygon Range Query

To describe the spatial region range, a characterization of the polygonal region model
is given. As shown in Figure 2, the bounding area of a polygon is defined by the coordinates
of a series of spatial vertices and the line segments connecting the coordinate points. Let
P = {p1, p2, . . . , pn} be a set of spatio-temporal points in Ed (d-dimensional Euclidean
space); for each p ∈ P, we have p = (lng, lat, t). A query range of polygon Q = (S, T)
contains a spatial range S and a time range T, where S is a shape of polygon, and T = (τs, τe)
is a time range, and τs, τe denote the start and end time of the interval. The timespan of p is
defined as |T| = τs − τe. Polygon query range S consists of a set of spatial points forming
its boundary, which is represented by a positive number n, a set of x-axis coordinates
X = {lng1, lng2, . . . , lngn}, and a set of y-axis coordinates Y = {lat1, lat2, . . . , latn}, where
lng, lat denote the longitude and latitude coordinates of a point. Each pair of (lng, lat)
defines a vertex of the polygon. Then, the first and final pairs of (lng, lat) points are joined
by a line segment that closes the polygon.

Figure 2. Description of the query condition of spatio-temporal polygon range.

Definition 2 (MBR). The MBR (minimum bounding rectangle) is the smallest axis-aligned rect-
angle containing all query range points. We define the MBR of the polygon as the maximum
range of the polygon expressed in two-dimensional coordinates, which can be represented by two
points MBR = <(lngmin, latmin), (lngmax, latmax)>. Compared with directly searching the spatial
relationship of spatial objects, finding MBR is simpler and more efficient.

Definition 3 (STPRQ). Given a spatio-temporal dataset, a polygonal range, and a temporal range,
the STPRQ finds all the points of the dataset that fall within the polygonal shape, comprising a list
of line segments. The spatio-temporal polygon range query is formulated as

STPRQ(P, S, T) = {p ∈ P|p ∗MBR ∧ p � S ∧ p.t ∈ T} (1)
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p ∗MBR = {p ∈ P|∃p ∈ P, lngmin ≤ p.lng ≤ lngmax ∧ latmin ≤ p.lat ≤ latmax} (2)

p � S = {p ∈ P|∃p ∈ P, S.PNPOLY(p.lng, p.lat)} (3)

p.t ∈ T = {p ∈ P|∃p ∈ P, τs ≤ p.t ≤ τe} (4)

Here, PNPOLY() (point inclusion in polygon test) means the classic algorithm to find if a
point lies within a polygon.

3.3. Spatio-Temporal k Nearest Neighbor Query

The STkNNQ is one of the most important and studied spatio-temporal operations.
For example, when an airplane encounters an emergency, it obtains a communication
connection by immediately calculating the k nearest neighbors with other airplanes. The
spatio-temporal k nearest neighbor query discovers the k closest points to a given query
point (i.e., it reports only the top k points). To locate spatio-temporal points and calculate
the distance between points, we use Euclidean space to calculate the distance for simplicity.
The formal definition of the STkNNQ for points is as follows:

Definition 4 (STkNNQ). Let P = {p1, p2, . . . , pn} be a set of spatio-temporal points in Ed (d-
dimensional Euclidean space), a query point q in Ed, a positive number k ∈ N+, a spatio-temporal
predicate θ(θspace, θtime), and a spatio-temporal sorting function Fα; the STkNNQ returns a set of
spatio-temporal data P

′ ⊆ P, and |P′ | = k, i.e., the k closest points to q. For each point pi ∈ P
′
,

Fα(q, pi) ≤ Fα(q, pj), that is,

STkNNQ(P, q, θ, Fα, k) = {pi ∈ P
′ |P′ ⊆ P ∧ ∀pj ∈ P\P′ , Fα(Q, pi) ≤ Fα(Q, pj)} (5)

where pi denotes the i-th point which belongs to dataset P
′
, and pj denotes the j-th point which

belongs to dataset P but does not belong to P
′
. The k points also satisfy that they are included by

θtime and θspace. For the spatio-temporal sorting function Fα, the definition is as follows:

Fα(q, p) =


fs(q.loc, p.loc) α = 1

α× fs(q.loc, p.loc) + (1− α)× ftl(q.time, p.time) 0 ≤ α ≤ 1
ft(q.time, p.time) α = 0

(6)

The spatio-temporal sorting function Fα indicates whether the query user-defined is
more inclined to spatial proximity or temporal proximity. The Fα combines the spatial
proximity and spatio-temporal proximity of each point to the query point and sorts in turn.
α = 1 denotes that users focus more on spatial proximity, and α = 0 denotes that users are
more concerned about temporal proximity. In order to locate the distance between objects
and query objects in space, this paper uses Euclidean distance to measure the distance
between objects, which can fully reflect the mutual distance between objects. The distance
between two points in space is expressed as

fs(q.loc, p.loc) =
dist(q, p)

θspace
(7)

Here, dist(q, p) denotes the Euclidean distance between p and q.

ft(q.time, p.time) =
∆(q, p)

θtime
(8)

Here, ∆(q, p) denotes the time deviation between p and q.
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4. Query Processing Algorithms
4.1. Spatio-Temporal Polygon Range Query
4.1.1. The Framework of Spatio-Temporal Polygon Range Query

The framework of our proposed solution for STPRQ contains two main steps: (1) spa-
tial range search and (2) refilter and refine.

• Spatial range search. Spatial search mainly performs a spatial range query on each
matching partition and filters data that is not within the spatial range to select data
blocks that intersect the query range. We use the global spatial index based on
SpatialHadoop to partition the data block, such as grid index, R-tree index, quad-tree
index, KD-tree index, space-filling curve, etc. The purpose of a global index is to store
spatially adjacent data together to satisfy the principle of spatial locality. Although the
space division ideas of diverse indexes are different, their essence is to use different
space division algorithms to maximize the preservation of space characteristics and
provide fast and efficient query efficiency.
As shown in Figure 3, we regard the spatio-temporal dataset as points distributed in
the spatial area with time attributes, then build an index for spatial data partitioning.
Each index node can be regarded as a uniform data partition, of which the border is a
rectangle. Since the boundary information of the partition of the data block is stored
on the node of the global index, it is easy to judge the intersection of the partition and
the polygon or the MBR of the polygon by using the global index.
In combination with the query range for the index metadata, we clip data blocks to
filter out all blocks that do not contain the records required by the query informa-
tion. Since the location coordinates of data change dynamically with time, the data
distribution still exhibits uneven characteristics. Therefore, using the spatial pruning
strategy, coarse-grained filtering results can be obtained and passed to the next stage
for execution.

• Refilter and refine. The spatial range search phase cannot guarantee that every record
in the data block is within the query space and time query period. Therefore, it is nec-
essary to perform refiltering and refining for each data block collected after pruning.
In each spatial search step, we use the built-in SpatialRecordReader of SpatialHadoop
to traverse the data blocks obtained and compare each record’s time attribute with the
query’s time interval to select records that match exactly. This step is essential because
when a partition is selected, some areas may overlap with the query interval instead
of being wholly included in the time interval, so the records need to be refined to
delete for records that are not within the time interval. Once the data blocks within the
spatial query range are selected, we will filter each matched data block for the precise
temporal and spatial range. Finally, we verify whether the queried spatio-temporal
records meet the conditions given by the user.

Figure 3. The process of polygonal spatial search. Each spatial partition is a data node of the global
index. A polygon query range may spatially overlap with multiple data partitions.
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4.1.2. Spatio-Temporal Polygon Range Query Algorithm

Algorithm 1 provides the pseudocode for polygonal range query operation. The input
includes a spatio-temporal dataset D , where each object o ∈ D is represented by (lng, lat, t),
a time interval T = (τs, τe), a polygon query range S, and a range query result Res. Each ri
∈ Res is satisfied such that the location of ri lies inside polygon range S.

Algorithm 1: STPRQ MapReduce Algorithm
Input: Dataset D, a polygon spatial range S, and a temporal range T;
Output: STPRQ query results Res;

1 gindex← getGlobalIndex(D);
2 querymbr← getMBR(S);
3 Qlist← Ø;
4 for p ∈ gindex do
5 if querymbr.contains(p) then
6 if p.isIntersected(S) then
7 Qlist.collect(p);

8 else
9 continue;

10 else if p.isIntersected(querymbr) then
11 Qlist.collect(p);
12 else
13 continue;

14 for p ∈ Qlist do
15 for r ∈ p do
16 if S.contains(r.lng, r.lat) and r.t ∈T then
17 Res.collect(r);

18 else
19 continue;

20 return Res.

First of all, we initialize a set of parameters of the polygon range query. We use the
global index to limit file size. Then, we obtain the minimum bounding rectangle (MBR) of
the polygon query range. After that, an ordered collection is created to store the results
of partitions that need to be processed by a MapReduce job. Next, we process partitions
located in the query range. There are two cases: (1) the partition that is wholly contained
in the MBR and intersects the polygon query range S; (2) the partition that both intersects
with the MBR and intersects with S.

In general, partitions that are entirely contained in the query range should be processed
and copied to output directly. In this way, we can filter out data partitions that do not
contain query results. Finally, we check and filter all the records in the partitions and return
records in the polygon area S and time range T.

Compared with the expensive logarithmic or even the power time complexity offered

by traditional solutions, our range query achieves O(
nε

m
) expected time, where n is the

number of conditional partitions overlapping with the polygon query range, ε is the number
of records in a partition, and m denotes the number of map tasks completed by each node.
Regardless of the spatial indexes, the number of partitions, N, is defined by

N = dS(1 + α)

B
e (9)
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where S is the input files size, B is the HDFS block capacity, and α is an overhead ratio,
set to 0.2 by default, which accounts for the overhead of replicating records and storing
local indexes.

4.2. Spatio-Temporal k Nearest Neighbors Query
4.2.1. The Framework of Spatio-Temporal k Nearest Neighbors Query

In distributed environments for STkNNQ, it is vital to design a good data partition
strategy, which requires the following: (1) Spatio-temporal proximity. Objects that are close
spatially and temporally should be assigned to the same partition as much as possible.
(2) Even distribution. The numbers of objects in different partitions are as equal as possible;
thus, we can achieve load balance.

Figure 4 presents the framework of our proposed solution for STkNNQ, which consists
of three main steps: (1) data partition, (2) filter partitions, and (3) results refinement.

Figure 4. Overview of STkNNQ algorithm.

• Data partition. This paper devises a simple but effective spatio-temporal data partition
strategy. The partitioning stage is divided into four steps: sampling, time partition,
spatial partition, and reassignment. During the sampling phase, a set of random
samples are drawn from the dataset at a sampling rate of η = 1%. Since it is randomly
sampled from the original dataset, it maintains its spatio-temporal distribution charac-
teristics. In the spatial partition step, we divide the global spatial range into multiple
disjoint data partitions with clear boundary information. The quad tree is generally
used to divide the global spatial domain in this paper. Compared with other indexes,
quad tree considers all parts of the spatial domain, which can alleviate the problem of
unbalanced spatial distribution and make it easier to divide the space. The minimum
enclosing rectangle MBR of each object is adopted in this paper because checking the
spatial relationship of two MBRs is much faster than checking the spatial relationship
of the two records. In the reassignment phase, the global index generated based on
the data samples is broadcast to each partition, and all datasets are traversed. For each
p ∈ P, if p intersects with some partition of the global index, we inspect the record
and update the boundary identifier of the current partition. At last, we repartition
according to the bounded identifier.

• Filter partitions. In this step, with the global index, we can query and filter partitions
based on the latitude and longitude of the point to be queried. First, we construct
the MBR of the query point q, then calculate the distance from each partition to q
according to the global index, and then obtain the time range θtime, spatial range θspace,
and sorting function Fα according to the input, and the priority of the partition can
be obtained. When the number of existing results is less than k, the partition will be
selected from the remaining partitions for processing according to the sorting priority.

• Results refinement. After filtering the query partitions, each data partition containing
objects that meet the conditions is obtained. This step is mainly to solve the problem of
fully considering the time factor in the conventional spatial k nearest neighbor query
and improving the query algorithm’s efficiency. Firstly, we scan the partitions to be
processed, filter them by time range and spatial range, and deduplicate the duplicate
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records. Then, the results are redivided into new partitions. Finally, the local results of
each partition are merged into global results.
A priority queue is then constructed to prioritize each record according to a user-
supplied spatio-temporal sorting function. If the results do not satisfy k, it will
go back to the second step to continue the diffusion search; if k is satisfied, it is
necessary to judge whether the nearest k points are already in the result set. Due to
the density of data and the influence of the global index, other untraversed partitions
have likely qualified records. Therefore, defining a query test area is necessary to
reconfirm whether the k records in the result set are the final result. If the delineated
test circle area intersects with other data partitions and the data block has not been
processed before, a range query needs to be restarted to scan the data block to obtain
closer results.

4.2.2. STkNNQ MapReduce Algorithm

Algorithm 2 gives the pseudocode of the kNN query algorithm. The basic idea behind
the query processing algorithm for STkNNQ is a four-step approach:

Generate the initial answers (lines 6–13). This step calculates the initial answers of k
closest points to q. We first use a spatial range query to find all the partitions overlapping
with q. Note that we may fail to find a matched partition. In this case, we trigger a kNN
query to find the nearest partition. Then, we add all partitions to the priority queue.
After that, a conditional matching on the partitions is performed within the priority. When
distp is less than the current distk, the partition will be ejected from the priority queue.
Finally, each record in the partition whose time in the temporal range T will be traversed.
This process will produce k initial results.

Check the correctness (lines 14–17). This component will check whether the k initial
results are the final results. We calculate the new test range C, which is a circle centered at
the query point q, and distance to the kth neighbor as radius. If C does not intersect with
other partitions, then the k initial results are final, and cq is directly returned. Otherwise,
the final results must be determined.

Determine the final results (lines 18–21). A spatial range query is triggered to obtain
all the points insides the test circle C and back to the loop for several iterations. Finally, we
determine the k points closest to the query point.

Initialization (lines 1–4). This step initializes some variables. The rq priority queue is
used to store candidate records that meet the kNN condition. The pq is a priority queue
that records all data blocks to be traversed. We use distk to store the kth shortest distance
from the query point q in the rq queue. We define the distance from the query point q to the
partition p as the minimum distance from the point to the partition, which is defined as

distp(p, q) = min
i∈p

dist(i, q) (10)

The time complexity of the STkNNQ algorithm is O( nmt
ω logk), where n is the number

of selected partitions overlapping with the query point, m is the number of points in a
partition, t is the number of iterations, k means the maximum heap of size, and ω is a factor
that depends on different indexes. The number of iterations represents that the job may
need multiple iterations when the total number of results is less than k in one iteration.
Note that the optimal time complexity of the STkNNQ algorithm is O(mlogk), where the
number of iterations is 1. Using our proposed approach, a significant reduction of the
consumed computation time is obtained because the number of partitions decreases, which
means fewer mappers.
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Algorithm 2: STkNNQ MapReduce algorithm
Input: Dataset D, query point q, a positive number k, a temporal range T;
Output: STkNN query results Γknn;

1 Initialize a priority queue rq which stores records with distance, with a max size k,
whose elements r are ordered by dist(r, q);

2 Initialize a priority queue pq which stores partitions with distance, whose
elements p are ordered by distp(p, q);

3 distk ← 0;
4 pq← OverlappedParitionWith(q);
5 loop :
6 while pq.size() > 0 and distp(pq.top(), q) ≤ distk do
7 p← pq.pop();
8 while p 6= ∅ do
9 for each r in p do

10 if dist(r, q) ≤ distk and r.t ∈ T then
11 rq← insert(r, dist(r, q));

12 if rq.size() ≥ k then
13 distk ← distp(rq.top(), q);

14 C← new Circle(q, distk);
15 DCR ← spatial range query by C;
16 if pq = ∅ then
17 return rq as Γknn;

18 else
19 Add all pq ∈ DCR;
20 goto loop;

21 return rq as Γknn.

4.2.3. Adaptive Iterative Optimization Algorithm

In order to reduce query time, it is crucial to design the scope of iterative searches
elastically. Due to the different sparsity of data blocks, when the query point is in a sparse
area, diffusing the search with a fixed iterative range will result in fewer data satisfying
the query in the same spatial range. Therefore, the search cost of a new round of iteration
is increased.

One of the most expensive overheads in a distributed environment is the data trans-
mission among different machines, which is triggered when we query data blocks. Due to
the limitation of the MapReduce framework, it usually takes much time for the map task to
scan each data partition. The STkNNQ algorithm expands the radius of the iteration range
in each iteration, resulting in unnecessary data blocks being queried in the map phase.
Therefore, the new iteration range will repeatedly scan the already queried data blocks,
resulting in a sizable total response time.

In this paper, we propose an adaptive iterative range optimization algorithm (AIRO)
considering data distribution, which can jointly consider the characteristics of data distri-
bution and spatio-temporal query range and improve the overall stability for the STkNNQ
algorithm. We take the time range, spatial range span of the dataset, and query range into
account, then generate a distance function to set the iteration. We make a trade-off between
the number of iterations and query data blocks based on the features.

The goal of this algorithm is to converge the test circle radius as soon as possible, reduce
the overhead of querying data blocks, and ultimately improve the algorithm’s performance.
As shown in Figure 5, at first, the algorithm generates an initial iterative range based on the
results of the first iteration range. Each time a new round of diffusion search is performed,
the iteration range radius is expanded based on the original iteration range. Assuming
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that three expansions are required to obtain the final result set, the iterative range radius of
three rounds needs to be generated, respectively. The primary factors are as follows:

1. Set the initial iteration range radius and step size. We select the farthest object from
the query point q in the intermediate results O generated by the previous iteration
range and calculate its distance σ to the q

σ = {disti|∀i ∈ O, ∀j ∈ O, disti ≤ distj} (11)

and set the initial iteration range radius gr = σ ∗ β, and the initial step size gs =
σ ∗ 0.001. The reason for this setting is that all objects in the previous iteration range
may not satisfy the query conditions so that the obtained result set is farther away
from the query point than the actual distance.

2. Calculate the time impact factor. The larger ∆ is, the smaller the influence on the
iteration range.

∆ =
δ(q.t, T)

θtime
(12)

δ(q.t, T) denotes the difference between the query point q and the time range T.
3. Generate the new radius of the new iteration range. We take the initial iteration range

gr, and combining the time influence factor ∆, and taking the step size gs into account,
the radius of the new iteration range is finally generated.

Figure 5. Overview of AIRQ algorithm. The iteration range for each round is a test circle of increasing
radius, with each iteration overlapping new data records.

5. Experiment Results and Analysis
5.1. Experimental Datasets and Setup
5.1.1. Datasets

To evaluate the experimental performance of our algorithms, we use a real-world
spatio-temporal dataset and a synthetic dataset. (1) ADS-B trajectory dataset. The dataset
contains the 10 million records of automatic dependent surveillance-broadcast (ADS-B)
trajectory data collected by radar services. The ADS-B trajectory messages can provide more
accurate and comprehensive general information, which contain two parts of information:
(1) spatio-temporal information, which includes longitude, latitude, and a timestamp;
and (2) other properties, including f lightId, height, sector information, etc. (2) Synthetic
dataset. The dataset is generated by sampling and copying the trajectory dataset up to
100 million records to test the performance of performing parallel computing. More details
about these datasets can be found in Table 3. Furthermore, the parameters used in the
queries are described in Table 4.
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Table 3. The descriptions of datasets.

Attributes ADS-B Trajectory Data Synthetic Data

Records 10 million 100 million
Raw size 379 MB 10.3 GB

Timespan 1 January 2019–1 July 2019 1 September 2018–1
September 2019

Table 4. The configuration of query parameters.

Parameters Settings

Data size (%) 20, 40, 60, 80, 100
Time window 10 d, 1 m, 2 m, 4 m, 6 m

Spatial window (km2) 10 × 10, 20 × 20, 30 × 30, 40 × 40, 50 × 50
k value 50, 100, 150, 200, 250

Factor of range radius (β) 0.2, 0.4, 0.6, 0.8

5.1.2. Experimental Settings

Server specification. To ensure the high availability of experiments and nonvolatility
of data copies stored on HDFS, all our experiments are carried out on a cluster of six
nodes, including one master node and five slave nodes. Each node is configured as follows:
CentOS-7, 8-core CPU, 16 GB RAM, and 80 GB disk. The block size of each node is 64 MB,
and the replication factor is three.

Testing environment. We choose ST-Hadoop as the comparison system because ST-
Hadoop is also based on SpatialHadoop, which supports both spatio-temporal range query
and spatio-temporal kNN query. To verify the effectiveness of the indexing strategy, we
select four indexes for horizontal comparison, namely str, grid, quad, and kdtree. Corre-
spondingly, we choose three different time-slicing strategies of ST-Hadoop for comparison,
i.e., year, month, and week, based on spatial index named str.

5.2. Experimental Analysis of Spatio-Temporal Polygon Range Query
5.2.1. Performance of Spatio-Temporal Polygon Range Query

The spatio-temporal range parameter as specified in Table 4 is set. The dataset size is
set from 20% to 100% of raw dataset respectively, and the query window is from 10 days
to 6 months. In particular, we define that the spatial query window is restricted by the
MBR of the polygon. For example, spatial window 10 km2 × 10 km2 represents a poly-
gon region with latitude range [0, 500, 1000, 900, 1000, 900, 600, 400] and longitude range
[400, 0, 100, 500, 700, 1000, 900, 1000, 500]. We evaluate the performance of the STPRQ algo-
rithm from three parameters, i.e., data sizes, spatial window, and time window.

Figure 6 performs spatio-temporal polygon range query on different indexes. We can
obtain three insights in this figure: (1) The query time increases rapidly with the expansion
of data sizes, in large part because the more data that meets the queries are scanned and
returned, the more disk IOs are triggered. (2) However, the query performance keeps its
stability as spatial and time windows increase. It can be inferred that due to spatial indexes,
STPRQ can accurately locate the physical block where the data lies without scanning
massive invalid records. (3) Moreover, we can conclude from Figure 6 that the grid index
has the worst performance in comparison with other indexes. This is simply because grid
index is a one-level flat index that partitions the data according to a grid, which may scan
and query more data blocks to some extent.
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Figure 6. Performance of spatio-temporal polygon range query. (a) Data size. (b) Spatial window. (c)
Time window.

5.2.2. Comparison of STPRQ and STRQ

As shown in Figure 7, we describe a performance comparison between the STPRQ
algorithm and the spatio-temporal range query (STRQ) algorithm in ST-Hadoop based on
different indexes. The phenomenon is as follows.
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Figure 7. STPRQ Comparison with STRQ in ST-Hadoop. (a) Data size. (b) Spatial window. (c) Time
window.

Different data sizes. Figure 7a manifests the performance of spatio-temporal polygon
range query compared with spatio-temporal range query in ST-Hadoop. In comparison
with STRQ, STPRQ reduces the response time to query data partitions. This implies that
performance in range query depends on the time overhead of scanning and filtering data
partition, directly related to response time. This conclusion explains why the year-based
ST-Hadoop index takes the least time overhead.

Different spatial windows. From Figure 7b, we observe that the running time in
STPRQ maintains the same level as the spatial interval varies when other parameters are
fixed, such as data sizes and time windows. This occurs because we simplify building
the time index on a spatial index and reduce the partition caused by queries that span a
significant time interval. In the majority of cases, our algorithm outperforms ST-Hadoop
better in most cases. Nevertheless, note that the performance of the STHadoop − year
overwhelms all of the composite indexes. This can be elucidated that the STHadoop-year
index takes fewer partitions than STHadoop−month and STHadoop−week. Consequently,
the querying delay is relatively small.

Different time windows. Figure 7c demonstrates the results of range query processing
under a variety of time intervals. It can be concluded that the increase in the time window
has minimal impact on the performance of STPRQ, while STRQ in ST-Hadoop suffers from
the varying time. This difference may arise from these reasons: (1) the location of the
data partition is first performed, and then relevant records are filtered by time in STPRQ.
Since each scan needs to traverse the same time range of data, the time window slightly
influences its performance; (2) in contrast, the performance of STHadoop depends on time
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intervals. When the time gradually becomes more extensive, ST-Hadoop scans more time
slices based on data blocks.

5.2.3. Performance of Air Traffic Flow Statistic

Timely and efficient air traffic flow statistics play a significant role in improving
the accuracy of air traffic flow management (ATFM), providing assistance to support
future, more intelligent flight scheduling strategies. The statistical information can provide
assistance to reflect the problem of air collision in the air traffic control (ATC). Air traffic flow
statistics aim to calculate the number of aircraft within specific airspace over a certain time
period. The traditional approaches of calculating such tasks show their weakness in two
parts: (1) they fail to capture the features of complicated three-dimensional time-dependent
airspace, and (2) they are not optimized to deal with large-volume spatio-temporal data
covering high-dimensional features. Spatio-temporal range queries have advantages in
calculating the eligible flow records.

Therefore, utilizing the spatio-temporal polygon range query algorithm, we further
propose a traffic flow statistical strategy for civil aviation airspace traffic. We collected
large-volume ADS-B data from September 2018 to March 2019 with storage of 70.6 GB
in total.

Figure 8 shows the distribution of ADS-B tracks of inbound flights in the terminal
area of Guangzhou Baiyun Airport (ZGGG). Diverse colors represent inbound flight track
bundles in different directions, and different tracks bundles correspond to different ap-
proach sectors. Figure 9 presents the flight trajectories of the urban air route from Beijing
(ZBAA) to Shanghai Hongqiao (ZSSS). The flight trajectories pass through regional sectors
which are charged by different regional ATC Bureau, and the aircraft flies according to the
planned path. The corresponding light gray polygon on the way represents the current
airspace sector.

Figure 8. The distribution of ADS-B tracks of inbound flights in the terminal area of Guangzhou
Baiyun Airport (ZGGG).

To make a description and analysis without loss of generality, we select several ar-
bitrary sectors from typical busy air routes, i.e., the Nanjing–Beijing route. Considering
making a comprehensive analysis and reasonable comparisons, we choose three sectors
within the Nanjing–Beijing route. Based on the approximately one million items of ADS-B
data in six months, we carried out a traffic flow statistic for several sectors defined by the
air traffic control department. At first, we store ADS-B trajectory data and physical airspace
sector data on the Hadoop cluster. Then, to utilize an available dataset for our further
experiments, we implement some data preprocessing methods on the huge amounts of
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data obtained. In the end, with the spatio-temporal polygon range query operation built as
above, air traffic flow statistic based on ADS-B messages is provided.

Figure 9. The flight trajectories of the urban air route from Beijing (ZBAA) to Shanghai Hongqiao
(ZSSS).

The statistical hourly number of different sectors inside the Nanjing–Beijing route
is depicted in Figure 10. We also characterize the confidence interval to indicate the
authenticity and volatility of the results. As illustrated in Figure 10, the air traffic volume
of the three airspaces follows a similar periodic law, and the statistical traffic of these
routes all present apparent peaks and valleys. In the early morning hours, the route traffic
is very sparse. It drops to the bottom at 6:00 and peaks at about 12:00 and 18:00. It is
rather remarkable that the area of the green line is relatively moderate. This phenomenon
is because this sector is presumably close to the airport terminal area, where traffic is
comparatively large and stable.
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Figure 10. The air traffic flow results of different sectors within the Nanjing–Beijing route.
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5.3. Experimental Analysis of Spatio-Temporal kNN Query
5.3.1. Performance of Spatio-Temporal kNN Query

Different data sizes. As shown in Figure 11a, with the continual growth of data size, it
takes more time to answer a kNN query because, in each expansion process of the kNN
query, we trigger a spatio-temporal range query, which scans more records.
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Figure 11. Performance of spatio-temporal kNN query. (a) Data size. (b) K-value. (c) Time window.

Different k values. Figure 11b compares kNN query processing performance between
our proposed algorithm and ST-Hadoop algorithm. It is relatively straightforward to
observe the following:

• The varying k makes a slight difference to query performance. We learn that our
proposed algorithm keeps steady performance regardless of the parameter change
from this result.

• Although STkNNQ and ST-Hadoop kNN query are based on the 100% of the dataset,
they achieve a magnitude improvement concerning ST-Hadoop because it is expensive
for ST-Hadoop to start a MapReduce job.

Overall, we conclude that our STkNNQ overwhelms ST-Hadoop on kNN query
processing time due to the efficiency of the range query mentioned before.

Different time windows. Figure 11c depicts that our method takes more time because a
larger time window means more qualified records. However, we do not observe significant
differences in the response time between 10 days and two months. A possible explanation
is that the y-axis is in log scale, and time resolution is in milliseconds. Simultaneously,
the performance gap between STHadoop-month and STHadoop-week is almost negligible.

5.3.2. Performance of AIRO Algorithm

In order to test the effectiveness of the AIRO algorithm, we conduct the following
experiments to verify the influence of the range radius factor β on the number of query data
partitions and the response time of STkNNQ algorithm. It can be observed from Figure 12a
that the number of partitions of the optimized algorithm is significantly less than the
number of original query partitions, which verifies the effectiveness of the AIRO algorithm.
Figure 12b shows that the responding time for all methods increases progressively as the
number of data increases. This is because as the data size grows, so does the number of
queryable partitions. Correspondingly, data records are more widely distributed, and the
iterative range needs to be expanded to be traversed. We can find that the original algorithm
has a higher responding time than other algorithms because it scans redundant data blocks,
which proves the excellent effect of the AIRO algorithm in reducing response time.

In addition, it is observed that the algorithm’s performance is best when β = 0.4.
The explanation for this phenomenon is that β = 0.4 makes a trade-off between data parti-
tions and iteration times, which means reducing the probability of querying unnecessary
data blocks and avoiding the overhead of initializing MapReduce tasks caused by multiple
iterations. However, β = 0.8 denotes that the query algorithm will query a large number
of data blocks at the beginning. It can obtain better performance in the case of small data
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size, but as the number of data increases, the algorithm will gradually degenerate into the
original algorithm to cause poor performance.
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Figure 12. Performance of AIRO algorithm. (a) depicts the comparison of the number of partitions
for the native algorithm and the optimized algorithm as the value of k increases; (b) shows the impact
of the range radius factor β on response time for different dataset sizes; and (c) indicates the influence
of β on response time under different k values. The different values of β reveal how the radius of the
iteration range changes. The larger the value of β, the faster the growth rate of the iteration range
radius. (a) Data size. (b) K-value. (c) Time window.

From Figure 12c we can conclude the following: (1) With the constant increase of the k
value, the response time of the query algorithm tends to be stable. (2) We can also observe
that when β = 0.4, the response time of the algorithm was the shortest, and the query
effect was better than the performance of β = 0.2 and β = 0.8. Of course, different data
distribution and indexing techniques will affect the actual effect of the experiment. (3) It
is worth noting that the performance at β = 0.4 is not always stable but increases rapidly.
When the value of k is small, we can achieve a good query effect with a small number of
data partitions. However, as the value of k increases, it is very likely that the size of the
value of k exceeds the number of records in the existing partition. The smallest granularity
of step size will lead to a slow iteration range; not only does it not increase the number of
new data blocks but it also brings the overhead of loading the job running resources caused
by each iteration, which is intolerable in the query algorithm.

6. Conclusions

In order to solve the multi-dimensional spatio-temporal sensing data query problem in
complex query scenarios and improve the efficiency of spatio-temporal data query, in this
paper, we creatively propose a spatio-temporal polygon range query (STPRQ) algorithm,
which aims to find all records from a polygonal location in a given time interval. Then, we
present a novel STkNNQ algorithm to directly search the k nearest neighbors of a given
object. To optimize the STkNNQ algorithm, we further propose an adaptive iteration
range optimization (AIRO) algorithm. Finally, extensive experiments based on ADS-B
trajectory datasets demonstrate that our query processing algorithms can significantly
reduce response time over baseline algorithms. The STPRQ algorithm proposed in this
paper proved to be reliable for improving the efficiency of air traffic flow statistics. The
limitation of our work is that we consider point data only. There are two main directions
to polish this work. First, a novel data partitioning framework would be performed to
efficiently perform over large spatio-temporal data with any geometry types. Second,
regarding AIRO algorithm, there are still some parameters, i.e., geometry types, or spatio-
temporal distributions of datasets, that can have effects on iteration range. It is not easy
to consider all parameters for every kNN manually. As a result, we can develop an query
optimization cost model to minimize the responding time by reducing the number of
partitions that contain the final answer for each of its operations.
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