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Abstract: Diabetes mellitus (DM) can lead to plantar ulcers, amputation and death. Plantar foot
thermogram images acquired using an infrared camera have been shown to detect changes in tem-
perature distribution associated with a higher risk of foot ulceration. Machine learning approaches
applied to such infrared images may have utility in the early diagnosis of diabetic foot complications.
In this work, a publicly available dataset was categorized into different classes, which were corrobo-
rated by domain experts, based on a temperature distribution parameter—the thermal change index
(TCI). We then explored different machine-learning approaches for classifying thermograms of the
TCI-labeled dataset. Classical machine learning algorithms with feature engineering and the convo-
lutional neural network (CNN) with image enhancement techniques were extensively investigated
to identify the best performing network for classifying thermograms. The multilayer perceptron
(MLP) classifier along with the features extracted from thermogram images showed an accuracy of
90.1% in multi-class classification, which outperformed the literature-reported performance metrics
on this dataset.

Keywords: diabetic foot; thermogram; thermal change index; machine learning; deep learning

1. Introduction

Diabetes mellitus (DM) is characterized by hyperglycemia which can lead to pathology
in the brain, heart, eyes, kidney’s and lower limbs [1]. DM leads to diabetic foot ulceration
(DFU), which may not heal adequately due to poor microvascular and macrovascular tissue
perfusion and infection and may eventually lead to lower limb amputation [2,3]. Early
detection and better classification of foot complications may enable timely intervention and
effective treatment to either heal foot ulcers or prevent progression to amputation. Early
monitoring by self-diagnosis at home could be useful in preventing the development and
progression of DFU. However, the easiest monitoring technique, visual inspection, has
its limitations, for example, people with obesity or visual impairment cannot adequately
detect early changes. According to recent studies, a home temperature monitoring system
could detect 97% of diabetic foot ulcers (DFUs) well in advance [4–7]. Patients undergoing
continuous temperature monitoring of their feet have a lower risk of foot complications [8].

Sensors 2022, 22, 1793. https://doi.org/10.3390/s22051793 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051793
https://doi.org/10.3390/s22051793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7068-9112
https://orcid.org/0000-0003-0744-8206
https://orcid.org/0000-0002-4819-863X
https://orcid.org/0000-0002-8425-4029
https://orcid.org/0000-0001-7033-3693
https://orcid.org/0000-0002-8663-886X
https://orcid.org/0000-0002-9060-0346
https://orcid.org/0000-0002-7188-8903
https://doi.org/10.3390/s22051793
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051793?type=check_update&version=2


Sensors 2022, 22, 1793 2 of 18

Non-invasive thermographic imaging using an infrared (IR) camera are popular
techniques to examine for thermal changes in images [9] and have been used to detect
thermal changes in the diabetic foot [10]. The analysis is based on the intensity of the
infrared light emitted or reflected by the tissue based on the controllable excitation used
during the imaging of infrared rays. Thermal infrared imaging-based machine vision
(IRMV) can be categorized into passive thermography and active thermography [9]. Passive
thermography is used for the human body, which is self-heating unlike active thermography,
which is used in non-self-heating objects. Several studies have proposed thermogram-
based techniques for the study of the diabetic foot, where they reported that the control
group showed a specific butterfly pattern, while the DM group showed a large variety
of spatial patterns [11]. One can calculate and estimate thermal changes comparing the
contralateral foot as a reference comparison for temperature [12–15]. However, if both feet
have temperature changes, but none have the butterfly pattern, one foot cannot act as a
reference [16–18]. Thus, self-diagnosis at home will require a medical experts’ opinion.

Machine learning (ML) techniques are gaining popularity in biomedical applications
to assist the medical expert in early diagnosis [19–21]. Several studies [17,22–24] have
attempted to extract features that can be used to identify the hot region in the plantar
thermogram, which could be a sign of tissue damage or inflammation (details are provided
later). We have previously trained an AdaBoost classifier, which achieved an F1-score
of 97% in classifying diabetic and healthy patients using thermogram images [23]. The
features used in our previous study [23] are provided in detail in a later section of this
paper. Hernandez et al. [17] proposed a quantitative index called the thermal change
index (TCI) for measuring the thermal change in the plantar region of diabetic patients in
comparison to the reference control group and then use the TCI to automatically classify the
patients. Hernandez et al. [17,22] shared a public database called the “Plantar Thermogram
Database” of foot thermogram images from control and diabetic patients and used the
TCI to classify the subjects into five classes (Class 1 to Class 5) depending on the spatial
temperature distribution and the range of temperatures. Cruz-Vega et al. [24] proposed
a deep learning technique to classify the images of that database in a non-conventional
classification scheme, where the results were shown by taking two classes at a time and
then averaging the results after ten-fold cross-validation of a different combination of
2 set classes. A new diabetic foot thermogram network (DFTNet) was proposed for the
classification of Class 3 and Class 4 with a sensitivity and accuracy of 0.9167 and 0.853,
respectively [24].

Despite this earlier work, there is still a need to improve the level of machine learning
performance for the early detection of diabetic foot ulceration. This has motivated this
detailed investigation. The manuscript is organized into five sections: Section 1 is the
introduction and related works; Section 2 discusses the research significance and highlights
the key contributions; Section 3 discusses the detailed methodology, and Sections 4 and 5
present the results and discussion. Finally, Section 6 presents the conclusions.

2. Research Significance

The importance of the early detection of diabetic foot problems and the gaps in terms
of machine learning performance accuracy were the major research questions of this paper.
The non-conventional classification scheme used in recent work [23] and the moderate per-
formance of existing machine-learning models [24] motivated us to investigate and propose
a generic framework for the multi-class (n = 5) classification of thermogram images while
enhancing the classification performance further. We investigated classical ML techniques
with feature engineering and convolutional neural network (CNN)-based models with
image enhancement techniques to identify the best performing classification model. To the
best of our knowledge, this is the best reported performance for the classification of foot
thermograms into different classes (based on TCI). The major contributions of this paper
are highlighted below:
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• Extraction and ranking of the relevant features from the temperature pixels for classi-
fying the thermogram images into TCI-based classes.

• Explores the effect of various image enhancement techniques on thermogram images
in improving the performance of 2D CNN models in TCI-based classes.

• Investigation of different ML classifiers with feature engineering for enhanced classifi-
cation performance.

• Proposes a machine-learning framework that outperforms the DFTNet by a significant
margin in classifying thermograms into TCI-based classes.

3. Methodology

Figure 1 summarizes the overall methodology adopted for this study, where the
thermogram is applied as input to the different 2D CNN models using different image
enhancement techniques [25] and classical ML algorithms on the extracted features from
the thermograms [23]. The section below discusses in detail the dataset used for the
study and the details of the investigation done using (i) thermogram images by the 2D
CNN models along with different image enhancement techniques and (ii) classical ML
algorithms with feature engineering (feature extraction, and feature reduction). This section
also provides details of the performance metrics used for identifying the best-performing
machine-learning algorithm.

Figure 1. Illustration of the computational workflow for this study.

3.1. Dataset Description

In this study, 122 foot-pair thermograms of DM patients obtained from a public
thermogram database [22] were used. The dataset contained demographic information
such as age, gender, height, and weight of the patients/participants. The dataset was
grouped into five different classes (Class 1, Class 2, Class 3, Class 4, and Class 5) based on
the thermal change index (TCI) which is defined as

Thermal Change Index (TCI) =
CGang − DMang

4
(1)

where CGang and DMang are the temperature values of the angiosome for the control and
subjects with diabetes, respectively. The TCI values for different classes can be seen in
Table 1. Examples of thermogram images classified into five classes are shown in Figure 2a.
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Table 1. Details of the dataset used for training (with and without augmentation), validation,
and testing.

Dataset
Count of Diabetic

Thermograms/Cluster
Identified in the Paper

Training Dataset Details

Training (60% of
the Data)

Thermogram/Fold

Augmented Train
Thermogram/Fold

Validation (20% of
the Data)

Thermogram/Fold

Test (20% of the Data)
Image/Fold

Contreras et al. [22]
Class 1 (TCI < 2) 34 1020 11 11

Class 2 (2 < TCI < 3) 22 1100 07 07
Class 3 (3 < TCI < 4) 17 1020 05 06
Class 4 (4 < TCI < 5) 22 1100 07 08

Class 5 (5 < TCI) 52 1044 17 18

Figure 2. (a) Sample of thermograms from different classes [22] and (b) sample of MPA, LPA, MCA,
and LCA angiosomes of the foot for the control and diabetic Group [23].

The dataset also provided the segmented thermograms of four angiosomes: the medial
plantar artery (MPA), lateral plantar artery (LPA), medial calcaneal artery (MCA), and
lateral calcaneal artery (LCA) (Figure 2b). The concept of four angiosomes was proposed
by Taylor and Palmer [26] and they provide valuable information related to the damage
generated by DM in arteries as well as the associated ulceration risk since it is used to
compute the local temperature distribution. The dataset provided the pixelated temperature
readings for the full foot and the four angiosomes for both feet. The emissivity settings
in the acquiring camera were set to 0.98, which is the emissivity of human skin [27];
objects with emissivities higher than 0.5 do not usually suffer from inaccurate temperature
measurements when using an IR camera [28].
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3.2. Image Pre-Processing

Image enhancement techniques such as adaptive histogram equalization (AHE) [29]
and Gamma correction [25] may help improve the classification of thermograms [23]. Thus,
for the original images, we also generated AHE and Gamma-enhanced thermogram images.
Some examples of the image enhancement on the thermograms can be seen in Figure 3.

Figure 3. Original thermogram versus enhanced thermogram using AHE and Gamma correction for
diabetic patient’s thermogram [23].

D CNN-Based Classification

The application of 2D CNN in biomedical image-domain applications is very popular
for automatic and early detection of abnormalities such as COVID-19 pneumonia [25,30,31],
tuberculosis [32], community-acquired pneumonia [33], and many others [34]. A labeled
dataset can be divided into training and testing datasets, where the training dataset is used
to train the network and its performance is verified by the unseen test set. A part of the
training dataset is used for validation during the training process, which is used to avoid
overfitting [25,30–33]. In this study, five-fold cross-validation was used, i.e., the dataset
was divided into five-folds, and the confusion matrices for the test set of each fold were
combined to calculate the performance metrics of the entire dataset. The overall accuracy
and weighted metrics such as the precision, recall, specificity, and F1-score were calculated.
As a large dataset is required to train a deep learning model to avoid a model over-fitting
problem, popular augmentation techniques (i.e., rotation and translation) were used to
increase the training data size [25,30–33]. The details of the training, validation, and testing
sets for the 5-class image dataset labeled using TCI [22], are shown in Table 1.

As we had a limited number of images in the dataset (Table 1), we used pre-trained
models that were already pre-trained on a large ImageNet database [35]. These pre-trained
networks have a good performance on the ImageNet database and can be further trained for
our problem by fine-tuning the deep learning models using our dataset. Based on an exten-
sive literature review and previous performances [25,30–33], in this study, six well-known
pre-trained deep CNN models were used for the thermograms’ classification: ResNet18,
ResNet50 [36], DenseNet201 [36], InceptionV3 [37], VGG19 [38] and MobileNetV2 [39].
All the above-mentioned six CNN-based models were trained, validated, and tested on
the original, AHE, and Gamma-enhanced thermogram images and performance metrics
were calculated after five-fold cross-validation to identify the best network and image
enhancement technique combination.
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3.3. Classical Machine Learning Approach

This section discusses the features extracted from the thermograms, feature reduc-
tion techniques, feature ranking techniques, classical ML models, and details of our
extensive investigations.

3.3.1. Feature Extraction and Reduction:

We carefully reviewed the literature to summarize the features that have been used in
clinical practice and ML approaches to analyze foot thermograms for the diagnosis of the
diabetic foot. The details of the final list of features identified can be found in our previous
work [23] and are discussed briefly below:

Estimated Temperature (ET) =
aj−1Cj−1 + ajCj + aj+1Cj+1

aj−1 + aj + aj+1
(2)

Estimated Temperature Di f f erence (ETD) =

| ETle f t Angiosome − ETright angiosome |
(3)

Hot Spot Estimator (HSE) =| cl − ET | (4)

The term Cj and aj denote the classmark temperature and the corresponding percentage
of pixels in that region, respectively. The values aj−1 and aj+1 are the percentage of pixels
in the neighboring classmark temperatures, Cj−1 and Cj+1, respectively. To equate the
parameters in Equations (2)–(4), a histogram was generated for the percentage of pixels in
the thermogram (either full foot or angiosomes) for the different classmark temperatures
(C0 = 26.5 ◦C, C1 = 28.5 ◦C, C2 = 29.5 ◦C, C3 = 30.5 ◦C, C4 = 31 ◦C, C5 = 32.5 ◦C, C6 = 33.5 ◦C,
C7 = 34.5 ◦C).

Statistical parameters such as the mean, standard deviation, and median are very
important features in various ML approaches for biomedical applications [40–43]; these
were calculated as well. In addition to these parameters, we formulated several parameters
that are visually very important to distinguish the variation in the plantar temperature
distribution, such as the normalized range temperature for class j (NRTclass j), which were
also reported in our previous work [23]. The variable NRTclass j is the number of pixels in
class j temperature range over the total number of non-zero pixels, where class j can be class
1 to 5. For the temperature ranges in the class, we have used the same temperature range
as reported in [22].

Finally, we summarized a total of 39 features that can be used for the early detection
of the diabetic foot, which are Age, Gender, TCI, Highest Temperature value, NRT (Class
1–5), HSE, ET, ETD, Mean, Median, SD of temperature for the different angiosomes LPA,
LCA, MPA, MCA and for Full Foot. We have previously reported the statistics for the data
along with the source code [22] in our previous work [23].

The final list of features was optimized by removing redundant features based on the
correlation between different features. Features with more than a 95% correlation were
removed, which improves the overall performance by reducing the number of redundant
features by avoiding overfitting [41–44].

3.3.2. Feature Ranking

Providing the ML classifier with a large number of features could lead to overfitting
and lower performance as the excess information might provide contradictory details
and confuse the classifier [23,45–48]. With the help of feature ranking techniques, the
classifiers can be provided with the important features and their performance can be
checked accordingly. This process can help to finalize the features to be used as input
to the ML classifiers. In this paper, we used state-of-the-art and popular feature ranking
techniques based on ML algorithms—XGBoost [49], Random Forest [50], and Extra Tree [51].
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These feature ranking techniques have proven to be very useful for different biomedical
applications [47,48,52,53].

3.3.3. Classical Machine Learning Models

After the feature extraction, feature reduction, and feature ranking, different classical
ML models were investigated to compare the performances. Data in different classes were
imbalanced, and therefore, to avoid imbalanced training datasets and biased results, the
popular synthetic minority oversampling technique (SMOTE) [54] was used to make them
balance. The ten popular ML classifiers used in the study were multilayer perceptron
(MLP) [55], Support Vector Machine(SVM) [56], Random Forest [50], Extra Tree [51], Gra-
dientBoost [57], Logistic regression [58], K Nearest Neighbor (KNN) [59], XGBoost [49],
AdaBoost [60], and Linear Discriminant Analysis (LDA) [61]. Amongst the state of the
art and popular machine learning models, the XGBoost, Random Forest, and Extra Tree
machine learning networks have been popular in recent clinical applications.

Multi-Tree Extreme Gradient Boosting (XGBoost) has been frequently applied for
feature selection because of its speed, efficiency, and scalability [62]. The importance of
each feature in XGBoost is determined by its accumulated use in each decision step in
trees. This computes a metric that characterizes the relative importance of each feature,
which is particularly valuable to estimate features that are the most discriminative of model
outcomes, especially when they are related to meaningful clinical parameters.

Random Forests are often used for feature selection in machine learning because the
tree-based strategies used by random forests naturally rank by how well they improve the
purity of the node. Nodes with the greatest decrease in impurity happen at the start of
the trees, while nodes with the least decrease in impurity occur at the end of trees. Thus,
by pruning trees below a particular node, we can create a subset of the most important
features [50].

Moreover, Extra Tree is a model-based approach for selecting the features using the
tree-based supervised models to make decisions on the importance of the features. The
Extra Tree classifier or the Extremely Random Tree Classifier is an ensemble algorithm that
seeds multiple tree models constructed randomly from the training dataset and sorts out
the features that have been most voted for. It fits each decision tree on the whole dataset
rather than a bootstrap replica and picks out a split point at random to split the nodes. The
splitting of nodes that occurs at every level of the constituent decision trees is based on the
measure of randomness or entropy in the sub-nodes. The nodes are split on all variables
available in the dataset, and the split that results in the most homogenous sub-child is
selected in the constituent tree models. This lowers the variance and makes the model less
prone to overfitting [51].

3.4. Performance Evaluation

In all of our experiments, we reported the sensitivity, specificity, precision, accuracy,
F1-score, and area under the curve (AUC) for five-folds as our evaluation metrics. It is well
known that in multi-class classification applications, sensitivity and specificity are relevant
metrics to evaluate a classifier’s performance [63]:

Accuracyclass_i =
TPclass_i + TNclass_i

TPclass_i + TNclass_i + FPclass_i + FNclass_i
(5)

Precisionclass_i =
TPclass_i

TPclass_i + FPclass_i
(6)

Sensitivityclassi
=

TPclassi

TPclassi + FNclassi

(7)

F1_scoreclassi = 2
Precisionclassi × Sensitivityclassi

Precisionclassi + Sensitivityclassi

(8)
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Specificityclass_i =
TNclass_i

TNclass_i + FPclass_i
(9)

where classi = Class 1, Class 2, Class 3, Class 4 and Class 5.
Here, TP, FP, TN, and FN are true positive, false positive, true negative, and false

negative, respectively. Here, TP is the number of correctly identified thermograms in
a particular classi, TN is the number of correctly identified thermograms of the other
classes, FP is the number of thermograms misclassified to classi and FN is the number of
thermograms of classi incorrectly classified to other classes. The weighted performance
metrics, with a 95% confidence interval, for sensitivity, specificity, precision, and F1-score,
were reported and for the accuracy, the overall accuracy, with a 95% confidence interval,
was reported.

All the experiments were done with a computer with Intel i7–10750H @2.6 GHz CPU,
NVIDIA GeForce RTX 2070 Super GPU, 32 GB RAM. Python, Matlab, and Stata/MP 13.0
software were used for the study.

4. Experimental Results

This section provides the results of the various experiments in this study.

4.1. D CNN-Based Classification

As discussed earlier, the authors investigated six pre-trained networks (ResNet18,
ResNet50, VGG19, DenseNet201, InceptionV3, and MobileNetV2), along with popular
image enhancement techniques. AHE did not improve the performance for different
networks compared to the original whereas GAMMA correction helped in sharpening
the distinguishing features. Independent foot images were used to check if the different
pre-trained networks could classify them into different classes or not. Table 2 reports the
five best performing combinations of network and enhancement type and it shows that
the performance was not that promising after an extensive investigation using popular 2D
CNN networks and popular image enhancement techniques. The results can be further
analyzed using the AUCs for the original, AHE, and GAMMA correction thermogram as
shown in Figure 4.

4.2. Classical Machine Learning-Based Classification

Since the above investigation showed that the different 2D CNN models and image
enhancement techniques did not adequately distinguish different image classes, particularly
Classes 2–4, the authors investigated the classical ML models using feature engineering to
assess their performance. Thirty-eight features were extracted as discussed earlier from the
thermograms images from different classes. These 38 features were optimized to remove
redundant features by finding the correlation between the different features. Features with
more than 95% correlation were removed, resulting in 28 features. The heat maps of the
correlation matrix with all features and after removing the highly correlated features are
shown in Supplementary Materials, Figure S1. The resultant 28 features were Gender;
Age; NRT (Class 1); NRT (Class 2); NRT (Class 3); NRT (Class 4); NRT (Class 5); Highest
Temperature; HSE, ETD, and STD of MPA; HSE, ET, ETD, Mean, STD of LPA; HSE, ET,
ETD, Mean, STD of LCA; HSE, ET, ETD, STD of MCA; HSE, ETD, STD of Full foot.

In this experiment, three feature selection techniques (Extra Tree, XGBoost, and Ran-
dom Forest) with 10 machine-learning models were investigated with 28 optimized features
to identify the best combination using 810 different investigations. The top-ranked 10 fea-
tures using the three different feature-ranking techniques can be seen in Figure 5.
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Table 2. Performance metrics and inference time for five-fold cross-validation using 2D CNNs.

Enhancement Network
95% Confidence Interval Results

Class Accuracy Precision Sensitivity F1-Score Specificity Inference Time

Original ResNet50

Class 1 92.62 ± 06.85 81.67 ± 10.13 87.50 ± 08.66 84.48 ± 09.48 94.15 ± 06.15

6.247

Class 2 88.93 ± 10.25 60.98 ± 15.93 69.44 ± 15.05 64.40 ± 15.64 92.31 ± 08.70

Class 3 90.98 ± 10.61 66.67 ± 17.46 42.86 ± 18.33 52.18 ± 18.50 97.22 ± 06.09

Class 4 86.89 ± 10.88 55.56 ± 16.01 67.57 ± 15.08 60.98 ± 15.72 90.34 ± 09.52

Class 5 93.85 ± 05.05 95.00 ± 04.58 87.36 ± 06.98 91.02 ± 06.01 97.45 ± 03.31

Overall 91.46 ± 03.51 77.69 ± 05.22 76.64 ± 05.31 76.66 ± 05.31 94.83 ± 02.78

AHE MobileNetv2

Class 1 94.26 ± 6.09 88.89 ± 08.23 85.71 ± 09.17 87.27 ± 08.73 96.81 ± 04.60

5.412

Class 2 91.39 ± 09.16 70.27 ± 14.93 72.22 ± 14.63 71.23 ± 14.79 94.71 ± 07.31

Class 3 88.11 ± 11.99 47.06 ± 18.49 28.57 ± 16.73 35.55 ± 17.73 95.83 ± 07.40

Class 4 84.43 ± 11.68 48.94 ± 16.11 62.16 ± 15.63 54.76 ± 16.04 88.41 ± 10.31

Class 5 94.26 ± 04.89 91.01 ± 06.01 93.10 ± 05.33 92.04 ± 05.69 94.90 ± 04.62

Overall 91.64 ± 03.47 76.04 ± 05.36 76.23 ± 05.34 75.74 ± 05.38 94.43 ± 02.88

Original ResNet18

Class 1 92.21 ± 07.02 83.64 ± 09.69 82.14 ± 10.03 82.88 ± 09.87 95.21 ± 05.59

2.536

Class 2 88.11 ± 10.57 58.14 ± 16.12 69.44 ± 15.05 63.29 ± 15.75 91.35 ± 09.18

Class 3 90.98 ± 10.61 63.64 ± 17.82 50.00 ± 18.52 56.00 ± 18.39 96.30 ± 06.99

Class 4 86.89 ± 10.88 56.10 ± 15.99 62.16 ± 15.63 58.97 ± 15.85 91.30 ± 09.08

Class 5 92.62 ± 05.49 91.57 ± 05.84 87.36 ± 06.98 89.42 ± 06.46 95.54 ± 04.34

Overall 90.80 ± 03.63 76.23 ± 05.34 75.41 ± 05.40 75.61 ± 05.39 94.29 ± 02.91

Gamma
Correction

ResNet18

Class 1 93.03 ± 06.67 88.24 ± 08.44 80.36 ± 10.41 84.12 ± 09.57 96.81 ± 04.60

3.347

Class 2 89.75 ± 09.91 63.41 ± 15.73 72.22 ± 14.63 67.53 ± 15.30 92.79 ± 08.45

Class 3 90.16 ± 11.03 59.09 ± 18.21 46.43 ± 18.47 52.00 ± 18.51 95.83 ± 07.40

Class 4 82.79 ± 12.16 44.90 ± 16.03 59.46 ± 15.82 51.16 ± 16.11 86.96 ± 10.85

Class 5 91.80 ± 05.77 91.36 ± 05.90 85.06 ± 07.49 88.10 ± 06.80 95.54 ± 04.34

Overall 90.23 ± 03.73 75.77 ± 05.38 73.77 ± 05.52 74.41 ± 05.48 94.16 ± 02.94
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Table 2. Cont.

Enhancement Network
95% Confidence Interval Results

Class Accuracy Precision Sensitivity F1-Score Specificity Inference Time

Gamma
Correction

ResNet50

Class 1 92.21 ± 07.02 80.33 ± 10.41 87.50 ± 08.66 83.76 ± 09.66 93.62 ± 06.40

7.764

Class 2 88.93 ± 10.25 63.64 ± 15.71 58.33 ± 16.11 60.87 ± 15.94 94.23 ± 07.62

Class 3 87.30 ± 12.33 44.00 ± 18.39 39.29 ± 18.09 41.51 ± 18.25 93.52 ± 09.12

Class 4 87.70 ± 10.58 59.46 ± 15.82 59.46 ± 15.82 59.46 ± 15.82 92.75 ± 08.36

Class 5 93.03 ± 05.35 89.77 ± 06.37 90.80 ± 06.07 90.28 ± 06.22 94.27 ± 04.88

Overall 90.77 ± 03.63 73.90 ± 05.51 74.59 ± 05.46 74.17 ± 05.49 93.80 ± 03.03
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Figure 4. AUC for the (A) original, (B) AHE-enhanced, and (C) Gamma-enhanced thermograms in
TCI-based classification.

The overall performance for the top-performing combination (feature ranking and
features) using ten classical ML classifiers and the detailed class-wise summary of the
top-performing combination amongst them is presented in Tables 3 and 4, respectively. It
can be seen that the MLP classifier with the XGboost feature selection technique and the
top two features (mean of LPA and LCA) shows the best performance of 91.18% (weighted
F1-score) in the stratification of the thermogram into different classes (1 to 5) using the TCI.
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Figure 5. Top ranked 10 features from the reduced 28 features using feature selection techniques
(A) XGBoost, (B) Random Forest, and (C) Extra Tree.

Table 3. Performance metrics for the best-performing combinations (feature selection technique and
number of features) for the 10 ML Classifiers.

Classifier Feature
Selection

# of
Feature

95% Confidence Interval Results Inference
Time (ms)Accuracy Precision Sensitivity F1-Score Specificity

MLP XGBoost 2 0.91 ± 01.19 0.91 ± 01.19 0.91 ± 01.19 0.91 ± 01.19 0.91 ± 01.19 0.592

Extra Tree Random Forest 5 0.88 ± 01.17 0.88 ± 01.17 0.88 ± 01.17 0.88 ± 01.17 0.88 ± 01.17 0.406

Random Forest XGBoost 2 0.87 ± 01.17 0.87 ± 01.17 0.87 ± 01.17 0.87 ± 01.17 0.87 ± 01.17 0.412

KNN XGBoost 2 0.87 ± 01.17 0.87 ± 01.17 0.87 ± 01.17 0.87 ± 01.17 0.87 ± 01.17 0.464

SVM XGBoost 2 0.86 ± 01.16 0.86 ± 01.16 0.86 ± 01.16 0.86 ± 01.16 0.86 ± 01.16 0.456

Gradient Boost XGBoost 2 0.84 ± 01.15 0.84 ± 01.15 0.84 ± 01.15 0.85 ± 01.15 0.84 ± 01.15 0.492

XGBoost Random Forest 5 0.84 ± 01.15 0.84 ± 01.15 0.84 ± 01.15 0.84 ± 01.15 0.84 ± 01.15 0.426

Logistic
Regression Random Forest 2 0.81 ± 01.13 0.81 ± 01.13 0.81 ± 01.13 0.81 ± 01.13 0.81 ± 01.13 0.532

LDA Random Forest 9 0.78 ± 01.11 0.78 ± 01.11 0.78 ± 01.11 0.78 ± 01.11 0.78 ± 01.11 0.406

AdaBoost Random Forest 3 0.68 ± 01.03 0.68 ± 01.03 0.68 ± 01.03 0.70 ± 01.05 0.68 ± 01.03 0.492
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Table 4. A detailed summary of the performance metric for the best performing combination.

Top Combination of Classifier,
Feature Selection,

# of Feature
Class Accuracy Precision Sensitivity F1-Score Specificity Inference time

(ms)

MLP Classifier
XGBoost Feature Selection

Technique
Top 2 Features

Class 1 0.91 ± 02.49 0.96 ± 02.56 0.95 ± 02.54 0.95 ± 02.55 0.90 ± 02.47

0.592

Class 2 0.91 ± 03.10 0.86 ± 03.02 0.89 ± 03.07 0.88 ± 03.05 0.91 ± 03.11
Class 3 0.91 ± 03.52 0.83 ± 03.36 0.86 ± 03.41 0.84 ± 03.38 0.92 ± 03.53
Class 4 0.91 ± 03.06 0.80 ± 02.87 0.86 ± 02.98 0.83 ± 02.93 0.92 ± 03.07
Class 5 0.91 ± 01.99 0.98 ± 02.07 0.93 ± 02.02 0.95 ± 02.04 0.90 ± 01.98
Overall 0.91 ± 01.19 0.91 ± 01.19 0.91 ± 01.19 0.91 ± 1.19 0.91 ± 01.19

5. Discussion

To the best of our knowledge, no previous study has investigated TCI-based diabetic
foot classification for five-class stratification using 2D CNNs and using the original and
enhanced thermogram images. Different pre-trained networks were investigated and we
found that the image enhancement techniques did not help much in the classification
performance. The ROC curves in Figure 5 confirm that the vanilla CNN architecture
(such as VGG-19) performed worse in the classification, even with the image enhance-
ment techniques. Other complex networks such as networks with residual connections
(ResNet18, ResNet50), networks with concatenations (DenseNet201), networks with incep-
tion blocks (InceptionV3), and networks with inverted residual and linear bottleneck layers
(MobileNetV2) performed relatively better than VGG 19, but the individual class-wise
performance was not acceptable. Image enhancement techniques such as AHE degraded
the performance but Gamma correction provided a performance similar to the original
thermograms. Gamma correction helped in making the distinguishable features more
evident, which was also evident in similar other studies [23]. A better understanding
of the machine-learning performance can be analyzed using the F1-score, which is cal-
culated using precision and sensitivity, especially for multiclass problems [64]. The best
performing combination was the ResNet50 network using the original thermogram images
with a weighted F1-score of 76.66%, followed by the MobileNetv2 network (75.74%) us-
ing the AHE-enhanced thermogram, ResNet18 using the original thermogram (75.61%),
and ResNet18 and ResNet50 using the Gamma-enhanced thermogram provided scores of
74.41%, and 74.17%, respectively. It can be further seen in Table 2 that the weighted F1-score
for the top-performing combination, ResNet50 using original thermogram was reasonable
for extreme classes (84.48% and 91.02% for the extreme Class 1 and Class 5 categories,
respectively, but it was poor for the remaining classes (64.40%, 52.18%, and 60.98% for
Class 2, Class 3, and Class 4, respectively). It can be assumed that the middle categories
are very similar and thus cannot be easily distinguished by 2D CNN models from the
thermogram images.

This prompted further investigation using the classical ML approach. Interestingly, the
novel features extracted by the authors helped to produce better image class stratification
compared to the 2D CNN-based deep learning models. The top ten features were identified
from the reduced features (28 features after reduction) using different feature selection
techniques (XGBoost, Random Forest, and Extra Tree) and are shown in Figure 5. The
best-performing feature selection techniques were XGBoost and Random Forest (Table 3)
and they identified almost the same top eight features (Mean, ET of LPA, LCA, and ET
of MCA, Highest Temperature, NRT (Class 1), and NRT (Class 5). The demographic
features are not included in the top 10 features, which means the user demography is
independent and the decisions are based only on the temperature information from the foot
thermograms. The top 10 features also confirm the importance of LPA and the statistical
information (ET, HSE, and Mean) in the classification of diabetic thermograms. The feature
proposed by the authors, i.e., NRT, which was developed to find the normalized number
of pixels in the distinguishable temperature range of the different classes, can also be
useful for classification by the classical ML models. As can be seen in Table 4, the MLP
classifier achieved around 88%, 84%, and 83% of F1-score for Class 2, Class 3, and Class 4,
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respectively, in addition to providing an F1-score of more than 95% for the extreme classes
(Class 1 and Class 5).

Figure 6 shows the ROC curves for the top-performing combination of features and
feature-ranking techniques for 10 classifiers, where the MLP outperformed the other ML
classifiers. The ROC plot for the individual top 10 features using the MLP classifier can
be seen in Figure 7 and the combination of the top two features (mean of LPA and LCA)
provided the best results. It seems that they are enough to distinguish the temperature
range in the thermogram, which is what the TCI-based classification is based on (Equation
(1)). The LPA and LCA are very important angiosomes and have also helped to distinguish
control and diabetic patients previously [23].

Figure 6. ROC plot for the top-performing feature combination from 10 classical ML classifiers.

Figure 7. ROC plot for 10 individual features using MLP classifier (best performing model).



Sensors 2022, 22, 1793 15 of 18

To the best of the authors’ knowledge, the proposed machine-learning framework
is the best performing solution compared to the studies reported in the literature, as
summarized in Table 5.

Table 5. Comparison with similar studies.

Studies Reported Approach Approach Results

Cruz et al. in [24]
A shallow CNN model named DFTNet

was developed to classify using
thermogram images

94.57% F1-score for 10 folds with an unconventional
approach of taking 2 different classes in each fold and

reporting the average of the 10 folds
The authors have computed the 5-fold cross-validation

results using DFTNet for the original thermogram (68.96%
F1-score), Gamma-enhanced thermogram (68.57%

F1-score), AHE-enhanced thermogram (67.69% F1-score)

Khandakar et al. [23]
Transfer learning using MobileNetV2 and

image enhancement to classify
thermograms into control and diabetic

A comparatively shallow CNN model, MobilenetV2
achieved an F1 score of ∼95% for a two-feet thermogram
image-based classification, and the AdaBoost Classifier

used 10 features and achieved an F1 score of 97%

This study MLP classifier using 2 features extracted
from the thermogram

91.18% F1-score for 5-fold cross-validation for 5
class-classification

6. Conclusions

Diabetic foot is a critical health issue with major ramifications in relation to amputation
and mortality. Thus, early detection and severity classification may help to prevent such
complications. The deployment of the proposed ML model can help in preparing easy-to-
use solutions for early detection; thus, saving the time of medical experts and providing
solutions that could be useful for patients in their home settings. Patients can use it at home
especially during pandemic situations, when visits to the hospital are limited, avoiding
stress on the healthcare system.

The conclusions drawn from the results in this paper are as follows:

• The relevant features were extracted and ranked from the temperature pixels to
classify the thermogram images into TCI-based classes. This is the best reported
performance for a machine learning-based foot thermogram classification into different
TCI-based classes.

• We explored the effect of various image enhancement techniques on thermogram im-
ages to improve the performance of 2D CNN models in TCI-based classes. It was found
that the image enhancement techniques did not help to improve the performance,
even for the state-of-the-art DFTNet proposed in [24].

• The classical ML classifier’s performance with carefully selected and refined fea-
tures was exceptionally good compared to the performance of the 2D CNN models
with/without image enhancement.

• The proposed machine-learning framework outperforms the DFTNet by a significant
margin in classifying thermograms into TCI-based classes. The trained classical ML
models can help in the classification using foot thermograms, which can be captured
using infrared cameras.

In conclusion, such a system could be easily deployed, and patients could get the
benefits of remote healthcare just by using an infrared camera and a mobile application,
a future direction of our research. Though the results are promising, it is important to
acknowledge some limitations:

• The performance reported uses a publicly available dataset, which has to be further
validated for robustness with the help of a new dataset. The authors have already
applied to the IRB to collect a new dataset.

• The dataset was collected using two different IR cameras (FLIR E60 and FLIR E6)
with different resolutions [22]. However, the trained network is still able to find the
distinguishing pattern, which confirms the robustness of different IR cameras, but



Sensors 2022, 22, 1793 16 of 18

this needs to be further validated with other IR cameras along with low-resolution IR
cameras that are usable with mobile phones.

Nonetheless, the results of this study may facilitate remote health monitoring of
diabetic patients from the convenience of their homes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22051793/s1, Figure S1: Heat map of the correlation using
38 features (A), and 28 features after removing features with more than 95% correlation (B).
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