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Abstract: Parkinson’s disease is a chronic neurodegenerative disease that affects a large portion
of the population, especially the elderly. It manifests with motor, cognitive and other types of
symptoms, decreasing significantly the patients’ quality of life. The recent advances in the Internet
of Things and Artificial Intelligence fields, including the subdomains of machine learning and deep
learning, can support Parkinson’s disease patients, their caregivers and clinicians at every stage of
the disease, maximizing the treatment effectiveness and minimizing the respective healthcare costs
at the same time. In this review, the considered studies propose machine learning models, trained
on data acquired via smart devices, wearable or non-wearable sensors and other Internet of Things
technologies, to provide predictions or estimations regarding Parkinson’s disease aspects. Seven
hundred and seventy studies have been retrieved from three dominant academic literature databases.
Finally, one hundred and twelve of them have been selected in a systematic way and have been
considered in the state-of-the-art systematic review presented in this paper. These studies propose
various methods, applied on various sensory data to address different Parkinson’s disease-related
problems. The most widely deployed sensors, the most commonly addressed problems and the best
performing algorithms are highlighted. Finally, some challenges are summarized along with some
future considerations and opportunities that arise.

Keywords: Parkinson’s disease; wearable technology; sensors; internet of things; artificial intelligence;
machine learning; deep learning; remote monitoring; smart personalized healthcare

1. Introduction
1.1. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease [1]
and is responsible for a considerable amount of disability-adjusted life years and deaths
globally [2], leading to an extremely high demand for respective health resources. In recent
decades, we have witnessed a dramatic rise in the amount of people suffering from it world-
wide, which is correlated with the ageing of the global population, as well as with other
potential factors, such as air pollution and smoking [1,2]. PD is related to the prominent loss
of dopaminergic neurons, the development of Lewy bodies and neuroinflammation [3]. It
is attributed to a complex combination of genetic and environmental factors [1,3]. However,
the exact cause of PD remains unknown.

PD is manifested with mainly motor symptoms, such as resting tremor, muscular
rigidity, bradykinesia, or even akinesia, postural and gait impairment, but is also related
to non-motor characteristics, such as sleep dysfunction, autonomic dysfunction, includ-
ing orthostatic and postprandial hypotension, fatigue, pain, hyposmia, bladder and gas-
trointestinal disturbances, cognitive deficits, depression, mood disorders, dementia and
hallucinations [1,3–5]. There are also indications that phonation and speech disorders are
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common early signs among PD patients [6,7]. These clinical symptoms may be manifested
differently from patient to patient, as some of them may be absent, while others may be
quite severe. Similarly, the progression of the disease varies across PD patients. This pheno-
typic variability has led to the definition of several PD subtypes. One of the most widely
accepted classifications corresponds to tremor-dominant PD and non-tremor-dominant
PD [8]. Additionally, the manifestations of the disease demonstrate fluctuations in the same
patient, in concordance with the ON and OFF states, which are also related to the impact of
the levodopa treatment [9]. This is one widely proposed treatment for the management
and alleviation of PD symptoms, without however curing the disease.

Non-motor symptoms may be present earlier than the motor ones. However, clin-
ical diagnosis is performed based on the latter, including the presence of bradykinesia,
tremor or rigidity [5], as the former are often not easily detected and are usually attributed
to other health factors and to senescence. Furthermore, there is no specific test for PD
diagnosis. Conventionally, the patient’s medical history, signs, symptoms and medical
examinations are taken into consideration by the doctor, including some simple physical
examinations and exercises and some mental tasks, to finally diagnose PD. Brain images,
such as magnetic resonance images (MRIs), computed tomography (CT) scans, positron
emission tomography (PET) scans and radiographs, or other lab tests may also be exploited
to exclude other medical conditions [10].

The assessment of the PD symptoms is usually accompanied by some scores in com-
mon PD-related motor or non-motor rating scales, such as the Movement Disorders Society
Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), the
Hoehn and Yahr (H&Y) Staging Scale, the Schwab and England Activities of Daily Living
(ADL) Scale, as well as some self-administered questionnaires, such as the Self-Assessment
Parkinson’s Disease Disabilities Scale (SPDDS) [11]. The aforementioned clinical tests and
the respective rating scales are also used to estimate the progression of the disease during
regular follow-up appointments with the neurologist.

The lack of well-established PD biomarkers and the similarity of manifestations among
different neurological disorders complicate and delay successful diagnosis. Furthermore,
the patient may suffer from several fluctuations between two consecutive doctor’s ap-
pointments, which makes diagnosis and monitoring based on clinical examinations more
difficult, especially when patients fail to precisely report their symptoms. Consequently, the
patient’s clinical picture is subsampled, and useful information may vanish. Additionally,
both inter-subject and intra-subject variability concerning PD clinical symptoms highlight
the urgent need for personalized treatment suggestions and complicate the relevant medical
decision-making processes. Provided that the diagnosis is performed early enough and the
clinicians have adequate available information when monitoring a PD patient, the impact
of the tailor-made treatments is expected to be greater.

1.2. Atrificial Intelligence and Internet of Things for Parkinson’s Disease Diagnosis and Management

Artificial intelligence (AI) is the field of computer science which deals with intelligence
attributed to machines. According to Russel and Norvig [12], intelligent agents perceive
their environment and make decisions in order to maximize their chance to achieve their
goals. Conventionally, AI is rule-based and makes use of human experts’ knowledge.
Machine learning (ML) is a more flexible and data-driven subfield of AI, according to which
a computational machine may improve its performance in a specific task through acquiring
experience [13], imitating the way that humans learn. Furthermore, deep learning (DL) is a
subfield of ML which is less dependent on human intervention and is based on artificial
neural networks (ANNs) that consist of multiple neurons stacked in many different layers
and connected with each other, inspired by the structure of the human brain [14]. ML and
DL algorithms and techniques can be applied to data collected from sensors, embedded on
wearable devices or other everyday objects. Nowadays, these data are abundant and easy
to acquire thanks to the Internet of things (IoT) paradigm, which enables various physical
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objects with embedded sensors and unique identifiers to communicate with each other and
transfer data over a network [15].

AI and IoT technologies can contribute to both the early diagnosis of PD and PD
patients’ monitoring, aiming to enable improved personalized treatments and assess the
proposed ones [16], complementing the already established conventional methods. More-
over, by training ML algorithms on sensory data collected from PD patients, evaluation of
suitability of current prescribed medication can be facilitated, as well as the optimization of
surgical treatments, the prediction of the course of the disease and the prevention of unde-
sirable consequences even in real time [16]. These interventions pave the way for precision
medicine in PD, among other chronic diseases, and support transition from clinic-centric
to patient-centric healthcare approaches. Finally, the opportunities that arise from remote
monitoring with the help of wireless sensors, other wearables and telemedicine tools may
cover the respective urgent need in the COVID-19 pandemic era and help PD patients to
continue their care and treatment without putting themselves at risk [17], overcoming at
the same time the spatial and temporal constraints in place.

More specifically, ML and DL techniques have been applied to brain images and
other conventional clinical examinations to implement computer-aided diagnosis (CAD)
tools [18]. These approaches are of utmost importance, as they may extract features that
are not easily detectable by experts. However, the respective published studies will not
be discussed in the current literature review, which is dedicated to IoT interventions
combined with AI methods. Sensors are a valuable source of information that can feed
ML and DL algorithms with rich data, collected during or between doctor’s appointments,
in laboratories, hospitals or in free-living environments, at a reasonable cost. All these
wearable or non-wearable sensors are networked and can transmit data from mobiles,
tablets or other smart devices to remote databases by exploiting the IoT infrastructure
available [19].

The vast majority of the deployed sensors include inertial sensors or inertial measure-
ment units (IMUs), such as accelerometers, gyroscopes and magnetometers [20], as well
as pressure sensors and ground reaction force (GRF) plates measuring features correspon-
dent to PD motor symptoms [21,22]. Moreover, according to Monje et al. [21], there are
several other technologies deployed at various technology readiness levels. For example,
firstly, image and depth sensors, as well as sound or audio sensors have been also used
to capture motor and non-motor PD manifestations. Other deployed sensors that capture
various bio-signals include electroencephalography (EEG), electrocardiography (ECG) and
electromyography (EMG) sensors, pain measurement devices, portable sleep measurement
devices and polysomnography (PSG) sensors, eye tracking systems, heart rate and tem-
perature sensors, among others. Finally, these data sources and the respective ML and DL
models trained are sometimes integrated in mobile applications [23,24], conversational
agents or chatbots [25] and serious games [26] and can be combined with controllers [27] to
improve the patient’s quality of life.

1.3. Aim of the Current Systematic Review

The purpose of the review presented in this paper is to investigate the use of ML
and DL models trained on sensory data, in support of PD patients, their caregivers and
the clinicians in every phase of the disease. Therefore, it summarizes the main findings
of various research articles that propose PD predictive and estimation models based on
novel IoT technologies and optimal sensor deployments. The aim is to shed light on more
novel approaches and present new possibilities that have not been discussed to a sufficient
extent in the previously published reviews, providing neurologists with useful insights that
could potentially revolutionize PD diagnosis and care. For example, there are some review
studies in the current literature that summarize different types of sensors and commercially
available devices, which are deployed to monitor PD patients with respect to various aspects
and motor symptoms, without however emphasizing predictive ML models [20–22,28–31].
There are also others that focus only on one problem, such as rigidity quantification [32],
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impaired gait analysis [33–35], freezing of gait episodes and potential falls detection [36–38],
as well as computer-aided PD diagnosis [39,40]. The current systematic review intends to
fill all these gaps, by presenting a more holistic approach, examining both the sensorial and
the algorithmic side of strictly IoT- and ML-based approaches.

Nevertheless, there are some other preceding reviews that address this topic, following
a similar approach [41–47]. However, the approach adopted herein is more comprehensive
than most of these systematic reviews, as 112 studies are analyzed and considered, com-
pared to 10–48 studies considered in previous approaches. Only Rovini et al. [41] examines
136 papers, but this systematic review was published in 2017 so naturally does not consider
all approaches published in the last four years. Moreover, the review presented in this
paper sheds light on additional questions, such as which the most commonly addressed
problems regarding PD are, which the most deployed sensors are, and which the most
used and best-performing ML algorithms are. Finally, the review of this paper highlights
not only the added value of these interventions, but also the challenges and the potential
pitfalls that they involve, as well as some gaps and open issues, proposing some future
directions for improvement.

2. Methods

The current literature review is conducted in a systematic way that is largely consistent
with the latest PRISMA guidelines [48]. As already stated, the purpose of this review is to
summarize the advances in AI approaches based on data collected through sensors and IoT
technologies that support PD patients and neurologists in every phase of the disease. On
this basis, the authors made the following decisions regarding the identification of search
strategy and data sources, the criteria for the final selection of the studies and the selection
and data extraction processes.

2.1. Literature Search Strategy

Firstly, the most suitable databases and registers of the respective literature were
selected. The authors opted for three popular academic citation databases, which guarantee
the high quality and impact of the considered papers. The first one is PubMed, one of the
most popular databases of biomedical literature. The second one is IEEE Xplore, which is
a well-known database of technical literature and the third one is Scopus, which indexes
academic articles from a wide range of research fields.

Then, the most suitable keywords were selected, to assure the inclusion of studies
that would answer the posed research questions. Indicative such terms are “Parkinson’s
disease”, “artificial intelligence”, “machine learning”, “deep learning”, “sensor”, “internet
of tings” and some specific types of sensors, such as “accelerometer”, “gyroscope”, etc. All
these terms were combined with logical expressions. Additionally, some other keywords
were added, such as “remote”, “portable”, etc., to ensure that clinical equipment which
cannot be deployed for remote diagnosis or monitoring would be excluded. The selection
of the final technical keywords was based on methods and devices discussed in previous
review articles, after several adjustments to ensure the inclusion of all the technologies of
our interest. Finally, the considered studies should be articles published in journals or in
conference proceedings in the last decade (from January of 2012 till August of 2021) and
written in English. During the last decade, the exploitation of AI algorithms and IoT tools
in healthcare was hyped. This period is also long enough to support a comprehensive
review approach with concrete conclusions about the evolution of the respective methods
proposed regarding PD over the years.

After this fine-tuning, the final search query that was submitted to the Scopus database
is the following: TITLE-ABS-KEY (“Parkinson’s disease” AND (“machine learning” OR
“deep learning” OR “artificial intelligence”) AND (sensor OR device OR “internet of things”
OR “accelerometer” OR “gyroscope” OR imu OR “inertial measurement unit” OR “force
platform” OR “force plate” OR video OR camera OR smartphone OR smartwatch OR
((electromyography OR electroencephalography OR polysomnography OR electrocardio-
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graphy) AND (portable OR wearable OR home OR remote)))) AND PUBYEAR > 2011
AND LANGUAGE (English) AND DOCTYPE (ar OR cp). Equivalent, semantically and
syntactically, queries were submitted to the other two databases as well.

2.2. Eligibility Criteria

Some inclusion and exclusion criteria were defined to ensure that the research ques-
tions are answered. These eligibility criteria can be summarized as follows:

• Firstly, the considered studies should be strictly articles or conference papers, pub-
lished between January 2012 and August 2021, as already stated.

• The considered studies should be about any aspect or phase of PD. The hypotheses
should be tested on adult human subjects, under strict ethical guidelines. Some of the
subjects should be PD patients but healthy subjects and other neurological disorders
patients may also be included for, e.g., differential diagnosis. However, articles that
present technologies which can be leveraged for PD diagnosis or management but are
tested only on mixed or healthy populations are excluded. Furthermore, there should
be a concise description of the datasets used and the respective signals should be real
and not simulated.

• Moreover, the signals used should derive directly from wearable or non-wearable
sensors, smart devices, ambient or other technologies that are related to IoT. Studies
that exploit data from other sources, such as conventional medical equipment, inter-
views or medical reports that cannot be adopted for remote monitoring or diagnosis
are excluded.

• At the same time, at least one specific AI algorithm should be proposed to solve the
corresponding PD-related problem. The respective ML models should be trained over
datasets that are in accordance with the previous guidelines and their performance
should be measured with specific evaluation metrics. Studies that present only a statis-
tical analysis and not any AI methods are excluded. Finally, the provided conclusion
should be consistent with the initial research goal.

In addition to the previous guidelines and restrictions, since multiple studies may
repeatedly address the same problems, proposing the same ML methods based on the same
input data, some studies were clustered in groups and only some discrete representatives
of each group were considered to avoid redundancy. More specifically:

• If there are both a conference paper and an extended research article for the same
study, the latter is preferred.

• In the case that the same or similar PD-related problems are addressed by one research
group multiple times, utilizing similar methods or same datasets (e.g., proposing one
or two more algorithms each time), only one is preserved and the rest are excluded.
The most recent or comprehensive and detailed one was preferred.

• Finally, even if the research group is different when there are two or more almost
identical approaches, only one is presented and the rest are excluded. By the term
identical approaches, the paper refers to the exact same PD-related task, same ML/DL
algorithms and the exact same open dataset or similar train and test population.

2.3. Selection and Data Collection Processes

One investigator (K.M.G.) submitted the search queries to the three selected databases.
The studies were retrieved automatically with the help of Zotero (https://www.zotero.org/,
accessed on 17 February 2022). The same investigator proceeded to the removal of duplicate
records, again automatically by the Zotero tool. Then, the investigator (K.M.G.) screened
the title and the abstract of the remaining studies to remove further articles, according
to the inclusion and exclusion criteria set, without clustering similar approaches at this
initial stage. Moreover, the investigator (K.M.G.) identified and excluded a few studies,
for which the full text could not be retrieved. At this point, two investigators (K.M.G.
and I.R.) screened independently the full text of the remaining studies. Each investigator
concluded independently to a set of studies to be considered in the current literature review,

https://www.zotero.org/
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according to the inclusion and exclusion criteria set. Then, the two investigators (K.M.G.
and I.R.) discussed their conclusions. The agreement rate was high and after solving all the
divergences, they reached a consensus about a final set of studies to be considered. The two
investigators also agreed upon the information that should be collected from each report
and the first evaluator (K.M.G.) finally performed the data collection process from each
study individually, according to what has been discussed.

3. Results
3.1. Search Results

The steps of the PRISMA-based methodology discussed in Section 2, along with the
results obtained at the end of each phase are illustrated in the flow diagram depicted in
Figure 1. Initially, 770 articles were retrieved, after submitting the queries to the three
databases (142 articles from PubMed, 192 articles from IEEE Xplore and 436 articles from
Scopus). Next, 269 duplicates were removed, resulting in 501 studies to consider. Then,
other 199 reports were excluded, after screening the title and the abstract of the remaining
studies, according to the inclusion and exclusion criteria. Moreover, the full text of three
studies could not be retrieved via the web, resulting in 299 reports to be assessed for
eligibility. Eventually, 112 studies were selected to be considered in the literature review
presented in this paper, after screening the full text of each study according to the inclusion
and exclusion criteria set.

Figure 1. Flow diagram of the PRISMA methodology followed in the literature review.

The distribution of the initially retrieved studies per academic citation database is
depicted in the pie chart of Figure 2. The vast majority of the studies which were finally
selected to be analyzed in the current review, are listed in more than one of the considered
databases. Thus, the respective pie chart for the finally considered studies is not presented,
as it provides no significant additional information.
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Figure 2. Distribution of (a) studies retrieved per academic citation database and (b) studies consid-
ered per year.

Moreover, it is substantiated that the results obtained are up to date. More specifically,
the distribution of the publication years of the considered papers is depicted in the column
chart of Figure 2. As one can easily observe, less than 20% of the considered studies are
published before 2018, while the rest are published in the last 4 years. It is worth men-
tioning that more than 30% of the studies considered are published in 2020. Additionally,
the respective rate for 2021 is also expected to be higher, as this literature research was
conducted in the August of 2021 and the remaining 4 months of the year are not consid-
ered. To conclude, the results reached by the present study may serve as a complement
of the preceding comprehensive systematic review conducted by Rovini et al. [41] in 2017,
providing additional state-of-the-art information and insights from the last 4 years.

3.2. Results of Individual Studies and Sensor-Wise Synthesis

The selected articles are divided into six major categories according to the types of
sensors and IoT technologies deployed. These technologies span across inertial sensors,
pressure or force sensors, image and depth sensors, audio or voice sensors, other wearable
biosensors or other types of sensors in general that are not considered in the previous
categories and the combination of different types of the aforementioned sensors. For each
category, the studies that address the same or similar PD-related problems are grouped
and the main points of the respective approaches are briefly presented. Furthermore, the
performance of the various AI algorithms deployed are compared with each other and an
attempt is made to identify the methods that outperform the rest with respect to a specific
PD-related task based on one specific type of sensory input data each time.

Finally, the key parts of each study discussed, including the input data, the population
of the dataset, the problem addressed, the deployed algorithms and their performance on
the basis of specific evaluation metrics, are also summarized in six comprehensive tables in
Appendix A of this paper, which are again divided according to the six different categories
of sensors introduced in the current section.

3.2.1. Inertial Sensors

The vast majority of the considered articles are based on wearable inertial sensors
or IMUs, such as accelerometers, gyroscopes, magnetometers and other angular velocity
sensors, which measure several kinematic parameters. The studies considered in this
category provide evidence that these measurements may shed light on various aspects of
PD, mostly related to motor symptoms, supporting PD diagnosis, differential diagnosis
between various neurological disorders, identification of PD different subtypes, detection
of PD symptoms and estimation or prediction of their severity, detection or prediction
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of FoG episodes, detection of symptoms fluctuations, segmentation of gait, rehabilitation
assessment, as well as estimation and prediction of patients’ response to the prescribed medication.

There are 52 studies in this category that make use of inertial sensors solely, out of
which 21 studies correspond to lower-limb analysis, 21 studies refer to upper-limb analysis
and 10 studies correspond to whole-body analysis. Firstly, acceleration and angular velocity
signals collected with IMUs attached to the waist or to the feet at several positions can
provide useful insights regarding impaired gait ability or postural instability due to PD.
Similarly, acceleration and angular velocity signals from hand-mounted inertial sensors can
shed light on PD-related tremor parameters, bradykinesia and dyskinesia symptoms. IMUs
can also be attached to other body parts, such as the sternum to extract more motor-related
features, which are possibly correlated with the course of PD. Finally, these sensors are
sometimes embedded in smartphones, smartwatches or other everyday objects. More
details about the respective review findings for this type of sensorial data exploited are
provided in Table A1 in Appendix A of this paper.

The first problem that will be discussed is PD diagnosis or equivalently the classifica-
tion between PD patients and healthy controls, which is frequently addressed based on
inertial signals. To this end, gait parameters have been extracted either manually via feature
engineering techniques [49–53] or automatically via deep convolutional neural networks
(CNNs) [54], to feed several classification algorithms. The deployed algorithms include
support vector machines (SVMs), decision trees (DTs), random (RFs), bagged, boosted
and fine trees, k-nearest neighbors (kNN), logistic regression (LR), linear discriminant
analysis (LDA) and naïve Bayes (NB) classifiers, as well as multi-layered perceptrons
(MLPs) or other neural networks (NNs). It appears that when IMUs are attached to the
feet, researchers achieve slightly higher performance than when sensors are attached to
the waist or to the lower spine. For example, in [49,51,53], PD diagnosis is performed with
90–99.33% accuracy by a DT, an MLP and an RF classifier, respectively, trained on feet
signals, while 84.5–85.51% accuracy is obtained when kNN algorithms are trained over
waist signals [50,52]. Moreover, the performance does not seem to improve significantly
when deep CNNs are deployed in [54], leading to 0.87 area under the receiver operating
characteristic curve (AUROC).

Similarly, features extracted from upper-limb motor analysis can be leveraged for PD
diagnosis. In concordance with the previous case, various ML classifiers, including NB, LR,
kNN, SVM, adaptive boosting (AdaBoost), DT, RF, gaussian mixture model (GMM) and
deep neural networks (DNN) classifiers, have been proposed in the literature to address
this problem. To elaborate, tremor measurements have been obtained with the help of
inertial sensors embedded in smartphones [55], Wii Remote [56] and spoon handles [57] to
differentiate PD patients from healthy controls by exploiting conventional ML algorithms.
RF and SVM models perform very well, achieving 0.94 and 0.98 AUROC, respectively.
Similarly, signals from wrist-worn inertial sensors have been exploited for this cause.
In [58], a moderate classification accuracy of 89% is achieved with the help of SVMs, while
in [59], gait patterns are extracted from wrist-acceleration signals and detect PD patients
with GMMs, achieving AUROC = 0.85. Finger-mounted sensors have also been used for
recording motor data during finger-tapping or other hand movements for PD diagnosis.
For example, Park et al. [60] exploit finger-mounted IMUs to train DNNs and achieve
AUROC = 0.888–0.95. As one can easily observe, similar performance is obtained for all
these approaches. In [59], the GMMs, which contain an unsupervised learning phase,
perform slightly worse than the rest methods, while the DNN in [60] does not outperform
significantly the conventional ML models.

It can be concluded that there is no significant difference between lower-limb and
upper-limb analysis, regarding the performance of the proposed models for PD diagnosis
based on IMUs. Moreover, it should be highlighted that sensor networks combining
multiple inertial sensors’ signals from various body parts placements have been also
deployed for PD detection. However, their exploitation has not significantly improved the
classification performance of the previously discussed studies. Some indicative approaches
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are [61–64]. In [62], an SVM classifier achieves 95% accuracy, while in [63], an RF classifier
achieves 86–94.6% accuracy. The highest performance (96% accuracy) is obtained in [64],
with the help of a majority voting scheme over several conventional ML algorithms, while
the lowest performance (68.64–73.81% accuracy) is obtained in [61] with an MLP, trained
with features extracted by a convolutional autoencoder (AE), which was pre-trained on
healthy subjects’ data.

Besides binary classification between PD patients and healthy people, differential diag-
nosis between several neurological disorders with similar manifestations can be achieved
with the help of wearable inertial sensors and ML algorithms. For example, in [65,66],
signals from hand-mounted inertial sensors are used to train ML models, such as RFs and
SVMs, to detect PD among other neurological disorders and achieve a moderate accuracy
of 72–79%. Moreover, in [67], PD patients are efficiently differentiated from essential tremor
(ET) patients by an SVM trained on smartphone angular velocity signals, with 77.8% accu-
racy. A bit higher classification performance (89% accuracy) is achieved by Moon et al. [68]
when addressing the same problem with NNs trained over fused signals from sternum-,
lumbar-, wrist- and foot-worn inertial sensors. Similarly, De Vos et al. [69] managed to
differentiate PD patients from progressive supranuclear palsy (PSP) patients by training an
RF with signals from multiple IMUs placed at various body places, achieving 88% accuracy.
Finally, gait features can classify different forms of parkinsonism with 73.33% accuracy, by
deploying deep belief networks (DBNs), as indicated in [51]. As one can easily observe,
SVMs, RFs and NNs are usually chosen as the best option to address differential diagnosis.
Finally, the models detect PD among other diseases with significantly higher accuracy
when multiple IMU signals are combined from various body placements, as seen in [68,69].

Inertial sensors have been also used for the quantification of PD-related symptoms
and the estimation of the respective scores in well-known scales, such as the UPDRS
and the H&Y scale. In [52], walking features are extracted from lower spine signals
with a hidden Markov model (HMM) and train a kNN model to finally estimate 36-Item
Short Form Survey (SF-36) scores with 27.81 mean absolute error (MAE). Similarly, gait
features extracted from smartphone inertial signals can classify MDS-UPDRS severity levels
with AUROC ranging between 0.92 and 0.97, by training ANNs and RF or bagged trees
models [53,70]. It seems that the last two classification tasks are easier to be performed
successfully than the regression one, presented in [52]. Nevertheless, it needs to be taken
into account that the output scales are different in each case and that the used signals
in [53,70] derive directly from the feet and not the lower spine.

Furthermore, signals from hand-mounted inertial sensors have been exploited to
extract features either manually and train conventional ML models [71–74] or automatically
and train DL models, such as CNNs [72], to estimate UPDRS scores. All these approaches
exploit wrist acceleration or angular velocity signals, except for the study [73], where the
authors make use of finger-mounted sensors. In [71], 91% accuracy is achieved with an
MLP; in [72], 85% accuracy is achieved with a CNN; in [73], 96–97.33% accuracy is achieved
with an RF; while in [74], 0.79–0.88 AUROC is achieved with an LR model. Unexpectedly,
the DL approach [72] performs a bit worse than other conventional ML approaches, but
the different placement of the sensors may have influenced the results. Finally, H&Y
scale scores have also been estimated with SVM models based on tremor measurements
from inertial sensors embedded in everyday objects, achieving accuracy up to 77% and
correlation coefficient up to 0.97 [56,57]. Consequently, in the considered studies, PD
patients are classified according to their H&Y scores with slightly lower accuracy than
when they are classified according to their UPDRS scores.

Moreover, sensor networks that capture both upper-limb and lower-limb motion
characteristics have been deployed for PD severity estimation as well. For example, in [75],
a random undersampling boosting (RUSBoost) algorithm based on full-body inertial signals
estimates H&Y scale scores, without however outperforming the previous approaches,
reaching up to 78% accuracy and 0.87 AUROC. Nevertheless, in another approach [64],
SVM models achieve 87.75–94.5% accuracy, which corresponds to the highest performance
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obtained for H&Y scale. Additionally, in [76,77] wrist- and foot-worn IMU signals are
combined to quantify PD severity. In the first case, CNNs and long short-term memory
(LSTM) networks are combined to estimate UPDRS scores, while in the second, the adaptive
neuro-fuzzy inference system (ANFIS) is proposed. Correlation coefficient reaches up to
0.79 and 0.814, respectively. Similarly, failures of PD patients to follow the MDS-UPDRS III
movement protocol have been identified with various ML algorithms and the respective
accuracy reaches up to 78% [78]. In conclusion, it seems that the performance of PD
severity estimation models is independent of the placement of the sensors, as upper-limbs,
lower-limbs and combinational approaches demonstrate similar performance regarding
this task.

Additionally, sometimes the researchers address the detection of PD-related symptoms
and do not proceed to the quantification of their severity. This is the case in the studies that
are presented below, where hand-mounted IMUs are used to train ML models to detect
tremor and bradykinesia. Firstly, in [79] bradykinesia is detected in PD patients with 90.9%
accuracy by training DNNs over hand accelerations. Similarly, Shawen et al. [80] detect
both bradykinesia and tremor with the help of an RF classifier, achieving AUROC up to 0.77
and 0.79, respectively. Tremor detection, accompanied by the estimation of the respective
duration, are also performed by training an MLP classifier with automatically extracted
features from a CNN, obtaining AUROC = 0.887 [81]. The tremor onset can be identified
with an MLP trained over manually extracted features with 92.9% accuracy, as well [82].
Finally, Channa et al. [83] discriminate PD patients with tremor from PD patients with
bradykinesia and from healthy controls, with the help of a kNN model, achieving 91.7%
accuracy. In conclusion, it is observed that the RF classifier in [80] performs poorer than the
MLP, DNN and kNN models in the rest approaches.

On the other hand, lower-limb analysis with inertial sensors can support the detection
of freezing of gait (FoG) episodes. In [84], accelerometer and gyroscope signals feed an
AdaBoost classifier and detect FoG with sensitivity ranging between 81.7% and 86%. For
the same cause, DNNs have been deployed, such as CNNs [85,86], LSTMs [87] or their
combination [88]. The highest accuracy (91.9%) is obtained with the combination of a CNN
and an attention-enhanced LSTM [88], while CNNs and LSTMs alone achieve 89% and
83.38% accuracy, respectively [85–87]. Furthermore, ML algorithms trained with inertial
sensors signals may predict FoG episodes in a short time of period, or equivalently may
classify gait sequence segments in walking, pre-FoG, FoG or post-FoG/walking phases.
This problem is addressed in several studies [89–94] that mainly use the open Daphnet
dataset (https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait, accessed on
17 February 2022). Many algorithms have been deployed to address this task, including
LSTM, SVM, kNN, MLP, extreme gradient boosting (XGBoost), RF, gradient boosting
machine (GBM), LR and LDA models among others. In [89], 85–95% accuracy is obtained
with an LSTM NN; in [90,91,94], 77–86.1% accuracy is obtained with SVMs; in [93], 83%
accuracy is obtained with LDA; while in [92], 98.92% is obtained with a kNN classifier.
Generally, in this case, it can be concluded that DL approaches tend to perform better than
the ones that make use of conventional ML models. Finally, gait features extracted from
feet-worn IMUs can also be leveraged for strides detection or gait segmentation of PD
patients with the help of hierarchical HMMs [95]. The respective f1-score ranges between
95.9% and 100%.

Besides PD symptoms monitoring, inertial sensors can be used for the monitoring of
treatment-related fluctuations and the detection of treatment-induced adverse symptoms.
In [96,97], on and off medication states are detected based on gyroscopic signals from an
ankle-mounted sensor and acceleration signals from a knee-worn sensor, respectively. In
the first case, an LSTM NN is deployed, achieving 73–77% accuracy, while in the second,
an RF classifier is trained, and accuracy reaches up to 96.72%. In addition, in [98], a third
class is added which corresponds to the levodopa-induced dyskinesia. A CNN is trained
with acceleration signals collected from a wrist-worn sensor in a free-living environment
and discriminates the three classes with 65.4% accuracy. The levodopa-induced dyskinesia

https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
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can also be detected, as a binary classification problem, by training SVMs with wrist or
hip acceleration and angular velocity signals, obtaining 65–82% accuracy [99]. In this
case, as one can observe, DL approaches demonstrate moderate performance and do not
outperform the conventional ML ones. As a matter of fact, higher classification accuracy is
obtained with RF and SVM models than with CNN or LSTM networks.

Moreover, the response to the levodopa treatment can be estimated based on ac-
celerometer or gyroscope data from wrist-worn sensors. In [74], a classification approach
is presented which makes use of an LR model, with AUROC ranging between 0.82 and
0.92. On the other hand, in [58], a support vector regressor (SVR) estimates the exact
values of the treatment response index with 0.69 root mean square error (RMSE). Finally,
Watts et al. [100] first cluster with k-means PD patients according to their response to
prescribed medication and then they classify them to these groups based on their motor
characteristics. In this approach, 86.9% accuracy is obtained with an RF classifier. It is
worth mentioning that none of the retrieved studies exploits DNNs to address the treatment
response estimation problem.

3.2.2. Pressure and Force Sensors

Another popular type of sensors for PD diagnosis and monitoring is the one that
measures applied force or pressure. The results of the current literature research indicate
that these sensors have been mainly used for PD diagnosis, differential diagnosis and PD
motor symptoms quantification. A group of seven relative studies that train ML models
over the signals produced by these sensors to address PD-related problems is presented
in Table A2 in Appendix A of this paper. As one can observe, only lower-limb analyses
are considered. Even though pressure sensors can be embedded in everyday objects for
upper-limb motion measurements as well, to the best of the authors knowledge, there has
been no study where these sensors have been used stand-alone to collect the necessary data.
Therefore, the respective studies that combine such sensors with others for upper-limb
observations are presented in Section 3.2.6, which is dedicated to the combinational analysis
of multiple types of sensors.

In concordance with the inertial sensors studies, PD diagnosis and severity estimation
are commonly addressed problems and are discussed in five out of the seven studies
considered [101–105]. In all these approaches, an open dataset [106] that merges three gait
datasets, with vertical GRF signals from eight in-sole sensors in each foot, is exploited.
More specifically, PD diagnosis is performed by training a feed-forward DNN [102], a
1D-CNN [103] and a dual-modal CNN accompanied by an attention-enhanced LSTM [104],
with 99.29–99.52%, 98.7% and 99.07–99.31% accuracy, respectively. In all these cases, DL ap-
proaches achieve almost excellent classification accuracy, outperforming other conventional
ML algorithms tested.

At the same time, these studies estimate the severity of PD-affected gait, with respect
to the H&Y scale, achieving 98.57–99.1% [102], 85.3% [103] and 98.03–99.01% accuracy [104],
respectively. In this case, the feed-forward DNN and the dual-modal CNN with the
attention-enhanced LSTM clearly outperform the CNN approach, maintaining again an ex-
ceptionally high accuracy, greater than 98%. PD patients have been also classified according
to their H&Y scores with the help of a time delay NN trained with Q-backpropagation [101]
and an SVM classifier [105], obtaining 90.91–92.19% and 98.8% accuracy, respectively. Con-
sequently, the SVM classifier demonstrates similar performance with the two previous
DL approaches.

Furthermore, GRF signals have fed ML models for differential diagnosis of several
neurological disorders. Papavasileiou et al. [107] discriminate PD patients from post-stroke
patients and from healthy controls with a multiplicative multi-task feature learning model,
achieving 0.88–0.994 AUROC. Additionally, in [108], kNN, SVM and RF classifiers manage
to discriminate PD patients from Huntington’s disease (HD) and amyotrophic lateral
sclerosis (ALS) patients, as well as from healthy controls with 81.25–90.91% accuracy. The
fact that the classification of PD patients and patients with other neurological disorders
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is a rather harder problem than the binary classification between PD patients and healthy
controls is reflected in the obtained accuracies.

3.2.3. Image and Depth Sensors

Useful information regarding the manifestations and the course of PD can also be
acquired with the help of 2D or 3D video recordings or even images, in more rare occa-
sions, after they are analyzed with computer vision techniques and ML methods. More
specifically, this type of input data has been exploited for PD diagnosis, severity estimation,
FoG and other symptom detection, medication state detection, segmentation of exercises
and rehabilitation assessment. These insights have been extracted from 15 related studies
presented hereafter, out of which 8 studies capture movements of the whole body while
walking or exercising, 1 combines videos from several body parts, 4 focus on hand move-
ments and 2 capture facial expressions. The respective findings are thoroughly presented
in Table A3 in Appendix A of this paper.

Firstly, postural and kinematic features are extracted from videos that are recorded
while PD patients and healthy controls are walking, to discriminate them. In [109,110],
ANNs are trained with signals collected via the Microsoft Kinect (MS Kinect) sensors to
diagnose PD. In [109], the combination of a CNN with an LSTM outperforms the stand-
alone CNN and LSTM classifiers, reaching up to 83.1% accuracy, while in [110], the ANN
classifier outperforms the SVM model, with 89.4% accuracy. In the last study, besides
gait data, features extracted from finger- and foot-tapping activities have been evaluated,
without however improving the classification performance. In the same vein, in [111], raw
video-recorded gait sequences feed a CNN and discriminate PD patients from healthy
controls with 88–90% accuracy. Finally, no studies that propose conventional ML algorithms
as the best option to detect PD based on gait features extracted from videos were identified
among the studies considered in the current systematic review.

Moreover, kinematic parameters from hand motor tasks can be extracted with the help
of Leap Motion sensors and feed conventional ML algorithms to diagnose PD. For example,
in [112], these signals train a bagged tree classifier, achieving 98.62% accuracy, while
in [113], an SVM classifier demonstrates similar performance (98.4% accuracy) regarding
PD diagnosis. Other tested algorithms that did not outperform the previous span across
kNN, DT, LDA and LR models. Additionally, the authors in [114], train, again, an SVM
model with automatically extracted features via CNNs and AEs from video recordings of
hand movements to detect PD, obtaining 91.8% accuracy. They further classify PD patients
with and without medication, obtaining a justified poorer performance (73.5% accuracy).

Furthermore, facial video recordings and images extracted from their frames discrimi-
nate PD patients from healthy controls as well. Firstly, in [115], an SVM classifier detects
PD with f1-score = 99%, outperforming other conventional ML models and DL approaches,
including recurrent neural networks (RNNs) and LSTMs. Additionally, in [116], only
static information is provided to train DTs and RFs among other ML models, decreasing
the obtained classification performance to 60.7–85.92% accuracy. It is obvious that data
extracted from videos and not just static images can be leveraged to address PD-related
problems more efficiently, as expected. Finally, in most cases hand features collected with
the Leap Motion sensors diagnosed PD with higher accuracy than gait and facial features.

In addition, image and depth sensors can support the quantification of PD symptoms.
In [110], PD severity is classified as mild or moderate with ANN or SVM models trained on
gait, finger- or foot-tapping features extracted from MS Kinect. The highest classification
accuracy is achieved with ANNs over gait data and reaches up to 95%. Similarly, a
combination of two parallel LSTMs has classified UPDRS scores with 77.7% accuracy, based
on gait-related MS Kinect signals [117]. On the other hand, Li et al. [118] estimate the exact
values of UPDRS-III scores with an RF regressor based on 2D-videos, which recorded leg
movements and toe tapping activities. The obtained RMSE is 7.765. In the same study,
levodopa-induced dyskinesia severity in the Unified Dyskinesia Rating Scale (UDysRS-III)
has been also estimated, this time based on video-recorded drinking and communication
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activities with RMSE = 2.906. Finally, Liu et al. [119] train SVMs with features extracted
from video recordings of hand movements to classify bradykinesia-related MDS-UPDRS
scores, achieving 89.7% accuracy. Regarding the task of severity estimation, in contrast to
the diagnosis task, upper-limb analysis does not seem to be more insightful than lower-
limb analysis.

In the end, some other PD-related problems that can be addressed with image and
depth sensors are presented in this paragraph. Firstly, Timed Up and Go (TUG) tests have
been video-recorded to shed light on several PD manifestations. In [120], the subtasks of a
TUG test are automatically segmented with the help of an LSTM, obtaining 93.1% accuracy.
Furthermore, in [121] an RNN with gated recurrent units (GRUs) is deployed to detect FoG
episodes based on video-recorded TUG tests. The respective classification performance
reaches up to 82.5% accuracy. Another task addressed based on signals acquired with MS
Kinect sensors is the estimation of the adherence to medication [122]. DTs, RFs and SVMs
achieve that with accuracy greater than 67.7%, when personalized models are built. Finally,
in [123] a virtual physical therapist is developed. In this case, the subtasks of the performed
exercises are automatically segmented with HMMs, the patients’ performance is estimated
with an SVM classifier, which achieves 86.3–94.2% accuracy, and finally, the next steps
regarding the next exercise to perform are recommended again automatically with RFs.

3.2.4. Voice and Audio Sensors

Speech impairment is common among PD patients and could serve as an indicator of
the presence and the degree of severity of the disease. Therefore, speech recordings, which
can be usually collected with the help of smartphones or other portable devices, have been
exploited for PD diagnosis, differential diagnosis and severity estimation, according to the
respective eight studies considered in the current literature review. These studies and their
main findings are presented hereafter and are also summarized in Table A4 in Appendix A
of this paper.

In four of these studies, the detection of PD is discussed. Firstly, the authors in [124,125]
leverage the vocal measurements gathered in the mPower study [126] to discriminate PD
patients from healthy controls. In the first case, features are automatically extracted with
the help of a CNN and the classification is performed with 90.45% accuracy, while in the
second case features are manually extracted in time, frequency and cepstral domain and
train a XGBoost classifier, after least absolute shrinkage and selection operator (LASSO)
was applied, achieving 95.78% accuracy. Similarly, Zhang et al. [127] deploy stacked AEs
to extract features from smartphone speech recordings. These features are forwarded to
several ML algorithms, including SVM, kNN, NB, DT and LDA models. The kNN algorithm
outperforms the others in the PD detection task with accuracy ranging between 94% and
98%. In the same vein, in [128] various types of features, such as phonation, unvoiced
and speech are extracted from signals collected with smartphones and acoustic cardioid
sensors. Again, the kNN model outperforms the others when it is trained with phonation
features, achieving 92.94–94.55%. Consequently, one can observe that simple classifiers,
such as the kNN and boosting algorithms, trained with vocal features usually outperform
other more complex approaches in detecting PD. Finally, differential diagnosis between PD
patients, rapid eye movement sleep behavior disorder (RBD) patients and healthy controls
is performed with an RF classifier based on smartphone speech recordings [129]. Each
health state is detected with a relatively low sensitivity ranging between 59.4% and 74.9%
for each pairwise classification.

In the last study, the exact values of the scores in several PD-related scales are also
estimated with an RF model trained over smartphone speech recordings. Low MAE is
obtained for each one of the included clinical scales, which span across MDS-UPDRS,
Montreal Cognitive Assessment (MoCA), Epworth Sleepiness Scale (ESS), Beck Depression
Inventory (BDI) and Visual Analog Scale (VAS). Moreover, UPDRS scores have been
estimated with approximately 2–3 MAE by a positive transfer learning model which
makes use of speech recordings captured by a portable device [130]. The same data
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source is exploited in [131] for UPDRS score predictions in approximately 6 months. The
XGBoost regressor achieves 5.09 MAE. Similarly, scores in the motor subscale of the UPDRS
(mUPDRS) are estimated with ridge regression in [132] and are predicted in approximately
6 months with XGBoost regression in [131]. The obtained MAE are 5.5 and 6.45, respectively.
As expected, the prediction of the course of the disease is harder than the current estimation
of its severity. This is reflected in the slightly higher error metrics in the first case. However,
in both cases, very low errors are obtained, in most cases with the help of ensemble ML
techniques, such as bagging and boosting.

3.2.5. Other Types of Sensors

Besides the aforementioned types of sensors, there are other smart devices that can
collect signals to support PD patients’ diagnosis and monitoring. These signals may be
related to muscles, brain or heart function, to body temperature or other motor-related
measurements, such as displacement and keyboards dynamics. In this respect, eight related
studies have been considered in this review, the details of which are presented in Table A5
in Appendix A of this paper. These studies are further presented below and address
problems such as PD diagnosis, symptom detection and estimation of their severity levels,
medication response estimation and emotion recognition.

Firstly, several devices that are widely used as conventional medical equipment
can be adopted in free-living environments in portable versions as well. For example,
EEG signals produced by portable headsets have trained feed-forward NNs to detect PD
with 96.5% accuracy [133]. Surface EMG (sEMG) signals collected from wrist-bands have
trained RF regression models that estimate MDS-UPDRS III scores with 0.739 correlation
coefficient [134]. Additionally, Capecci et al. [135] have classified emotions as positive or
negative with the help of SVMs trained over temperature, heart rate and galvanic response
signals, which are acquired via a smartwatch. The respective classification accuracy ranges
between 88.6% and 91.3%.

Furthermore, echo state networks (ESNs) have been trained over finger position se-
quences that were collected with finger-mounted electromagnetic sensors while performing
finger-tapping tests to diagnose PD [136]. The respective AUROC reaches up to 0.802. Sim-
ilarly, Picardi et al. [137] gather flexion measurements from smart gloves and orientation
data from a wrist-worn tracking system and train SVM, ANN and genetic programming
algorithms to classify PD patients and healthy controls with several levels of cognitive
impairment. All the deployed algorithms demonstrate similar performance, with AUROC
ranging between 0.72 and 0.99.

Useful features that shed light on several PD motor aspects can also be extracted from
writing, drawing or typing activities on computer keyboards or tablet devices. In [138], spa-
tiotemporal features are extracted while PD patients are drawing spirals on a touchscreen.
These features train an MLP model that differentiates PD patients with bradykinesia from
PD patients with dyskinesia, reaching up to 84% accuracy. Keystroke logs have also been
exploited for PD diagnosis [139] and estimation of the medication response [140]. In both
cases, DNNs have been deployed. In the first case, an LSTM with fuzzy recurrent plots
outperforms CNNs, achieving 65.14% accuracy, while in the second case, an RNN achieves
76.5% classification accuracy and 0.75 AUROC. In the last study, the authors further predict
the response to the prescribed medication in the future with 0.69–0.75 AUROC. As expected,
the prediction task is harder than the estimation one, obtaining a lower AUROC.

3.2.6. Combination of the Previous Sensors

There are also 22 studies that combine two or more types of sensors to address PD-
related problems. Some commonly encountered combinations span across inertial and
pressure sensors, inertial or pressure sensors with other biosensors, e.g., sEMG, heart
rate and temperature portable devices, inertial or pressure sensors with speech or video
recordings, among others. Some of the problems discussed in these studies are PD diagnosis,
differential diagnosis, symptom detection and estimation of their severity, as well as FoG
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episodes and fall risk detection. More details on these approaches are presented in Table A6
in Appendix A of this paper.

More specifically, in some studies, position, inertial and pressure signals are fused to di-
agnose PD, detect its manifestations and quantify their severity. For example,
Aharanson et al. [141] develop a smart support walker that contains two encoders on
the wheels, two force sensors underneath the hand grips and a tri-axial accelerometer. They
reduce the dimensionality of the derived signals with principal component analysis (PCA)
and feed an LDA model to detect PD with 91–96% sensitivity. Inertial and in-sole pressure
sensors have been also combined for FoG detection and prediction, by identifying the pre-
FoG state [142]. Selected features in time and frequency domain train a RUSBoost classifier
and detect or predict FoG events with 81.4–98.5% and 61.9–78% sensitivity, respectively.
The results confirm that FoG prediction is a harder task than FoG detection. Moreover,
Wu et al. [143] classify PD patients according to their UPDRS-III scores based on displace-
ment and acceleration signals from hand movements. NNs outperform conventional ML
models, such as SVMs and RFs, obtaining 91.18–95.30% accuracy.

Furthermore, there are three studies that combine acceleration and EMG signals to
support PD patients at various aspects of the disease. Firstly, Cole et al. [144] leverage these
signals to detect tremor and dyskinesia with the help of a HMM and a DNN, respectively,
and estimate their severity levels with a Bayesian classifier. The severity of tremor is
estimated with slightly higher sensitivity (95.2–97.2%) than the severity of dyskinesia
(91.9–95%). Secondly, Hossen et al. [145] perform differential diagnosis between PD and
ET patients with an MLP classifier, achieving 91.6% accuracy. Finally, Tahafchi et al. [146]
detect FoG episodes with the help of a fully connected NN, achieving 0.906–0.963 AUROC.
The results indicate that portable EMG devices can support FoG detection as effectively as
pressure sensors when they are combined with IMUs.

Similarly, in [147], force, inertial and mechanomyography (MMG) signals train three
distinct classifiers, kNN, MLP and AdaBoost, to diagnose PD and quantify its symptoms.
More specifically, PD patients are discriminated from healthy controls with 96.6% average
accuracy, PD patients with positive UPDRS scores are discriminated from those with zero
due to DBS with 89% average accuracy and UPDRS scores levels are classified with 85.4%
accuracy. Moreover, skin-mounted sensors with acceleration, gyroscope and thermometer
measurements collect signals during TUG tests, which train CNNs for multi-source mul-
titask learning to detect fall risk and estimate the severity of PD [148]. In the first case, a
94% f1-score is obtained, while in the second, 0.06 RMSE is achieved. In all these studies
that make use of inertial or pressure sensors combined with other biosensors, PD severity
is successfully estimated, with high accuracy in the classification case and low error in
the regression.

Moreover, sometimes, signals from inertial sensors and speech recordings are com-
bined to diagnose PD and quantify its severity. For example, an ensemble learner consisted
of kNN, SVM and NB models detect PD with accuracy 99.8% when it is trained over phona-
tion recordings and acceleration signals collected with a smartphone [149]. In the same
study, MDS-UPDRS levels are classified with a kNN model, achieving 90.5–98.5% accuracy.
Similarly, in [150], accelerometer, gyroscope and magnetometer data are combined with
speech recordings acquired from a headset and train an extreme learning machine (ELM)
that classifies PD patients at several severity levels and healthy controls with accuracy rang-
ing between 92.45% and 95.93%. There is no significant difference between the obtained
accuracies, regarding the severity classification of these two approaches. On the other hand,
Papadopoulos et al. [151] combine accelerometer with typing dynamics data collected
from a smartphone to detect tremor or fine-motor impairment and finally diagnose PD by
training NNs, achieving 0.834–0.868 AUROC.

Moreover, inertial or pressure measurements are usually used together with video
recordings or images to feed ML algorithms and diagnose PD. For example, in [152], acceler-
ation signals and silhouette images are collected during cooking. Convolutional variational
autoencoders (VAEs) are deployed to extract features that will feed NNs to finally differen-
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tiate PD patients from healthy controls with 66% f1-score. Similarly, Wahid et al. [153] diag-
nose PD with the help of an RF classifier trained over spatio-temporal gait features extracted
from videos and GRF signals. The respective AUROC reaches up to 0.96. Albani et al. [154]
exploit videos that record upper-limb movements for pretraining and then lower-limb
motor signals from IMUs to train a kNN that detects PD with 91.5–98.6% accuracy and
estimates its severity according to the UPDRS with 60.7–79.1% accuracy. It is observed that
RF and kNN models detect PD more accurately than NNs, which are deployed in [152].
Visual and audio features can also be extracted from short interview audio-video clips
to train an NN that will estimate facial expressivity of PD patients [155]. A low f1-score
(55%) is obtained in the classification approach, while MAE = 0.48 is obtained in the
regression approach.

Additionally, there are a few studies that take advantage of smart pens equipped with
various types of sensors. All of them differentiate PD patients from healthy controls by
training either conventional ML algorithms or DNNs. In [156], an RF classifier is proposed
which is trained with the most important principal components of pressure, tilt and ac-
celeration signals. In this approach, PD is detected with 88.8–89.4% accuracy. Similarly,
Gallicchio et al. [157] diagnose PD with an ensemble model of deep ESNs trained with pen
position, pressure and grip angle signals, achieving 89.33% accuracy. The aforementioned
signals along with recordings from a microphone embedded in the smart pen have also
been fed to either a pre-trained CNN or an optimum path forest (OPF) classifier and PD is
successfully detected with 77.92–87.14% accuracy [158]. To conclude, all these approaches
demonstrate similar performance in diagnosing PD. Only the OPF model seems to perform
slightly poorer than the rest methods. Finally, data acquired from a smart pen can be
combined with shoe-mounted IMU signals and train an AdaBoost classifier that manages
to detect PD with sensitivity up to 100% [159].

There are also two studies [160,161] that use multiple types of data acquired with the
help of a mobile application in the mPower study [126]. These data include touchscreen
logs from a tapping activity, accelerometer signals from a walking activity, performance
in a memory game and vocal measurements. In both studies, ensemble methods that
combine DL methods, such as CNNs and RNNs, and conventional ML approaches, such
as LR and RF, have been deployed to detect PD with f1-score 82% and 87.1%, respectively.
Finally, in [162], several data have been collected from ambient sensors in a smart house
environment, including infrared motion sensors on the ceiling, light sensors, magnetic
door sensors, temperature sensors and vibration sensors on selected items, along with
signals from two wearable inertial sensors. All these data after dimensionality reduction
with either k-means or random resampling were used to train an AdaBoost classifier that
diagnoses PD with 80–86% accuracy.

4. Collective Comparison and Overall Insights across the Studied Approaches

The literature review presented herein considers 112 research studies that leverage
IoT technologies and ML methods to support neurologists at various decision-making
processes involved in every stage of PD and thus potentially advancing PD patients’ care
and quality of life. The considered approaches are grouped per type of sensor used for
data collection. For each individual study, the problem addressed, the dataset used for
training and evaluation, the input data, the processing techniques and the AI algorithms
deployed, as well as the evaluation metrics and the final performance of the proposed
models are briefly presented. Different approaches within each category of type of sensors
are compared with each other, in terms of performance, to finally infer which ML algorithms
are most suitable to address the discussed problems with respect to the specific type of
input data, each time. After presenting the results, additional pieces of evidence should
be provided related to the obtained average performances in the scope of both intra-
and inter-categories of deployed sensors, to identify ill-addressed problems and further
infer which type of input data may be more insightful to address each of the discussed
PD-related problems.
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4.1. Sensors and Devices Deployed

The types of sensors that are deployed for data collection and their popularity among
the studies considered are depicted in Figure 3. As Figure 3 indicates, inertial sensors
or IMUs, including accelerometers, gyroscopes and magnetometers are by far the most
popular data source among the considered studies. Combination of different types of
sensors follow in popularity, where again most of the times one from the multiple data
sources used corresponds to inertial sensors. Moreover, data collected with image or depth
sensors are another popular type of input data. On the other hand, speech recordings
collected with audio or voice sensors and force signals collected with pressure sensors are
more rarely encountered in the literature. Finally, it is worth mentioning that despite EEG,
EMG and other medical signals are commonly used in the clinical practice for PD diagnosis,
severity estimation and course prediction, there are very few studies considered that make
use of portable biosensors, which monitor brain, heart or muscles functionality. These
types of sensors fall in the less popular category, named as other, which includes besides
portable EEG, sEMG and ECG devices, thermometers, galvanic response sensors, as well as
flexion sensors, position sensors, encoders, tracking devices, time loggers, ambient sensors,
including light, temperature, vibration sensors, etc.

Figure 3. Distribution of the deployed types of sensors over the considered studies.

Additionally, the systematic review presented in this paper is focused on IoT ap-
proaches, which means that all the aforementioned sensors must be embedded in devices
that can transfer the collected patients’ data to other computational machines or remote
databases via Wi-Fi, Bluetooth or any other communication protocol. To this end, the
discussed types of sensors may be embedded in smartwatches, smart bracelets, shoes’
insoles, other wearable devices, smartphones, video cameras, other portable devices and
other everyday objects in general.

As Figure 4 indicates, the most widely encountered type of device in the literature
corresponds to other wearable sensors or sensors that are mounted somehow to the patients’
corpus, e.g., via flexible bands, such as Shimmer3 or Physilog sensors. Mostly IMUs are
embedded to this type of devices, but there are some other types of sensors and one
reference to a pressure sensor that were embedded to these devices among the studies
considered. The second most popular type of devices deployed is the smartphones. The
smartphones are leveraged for their in-built sensors, which include but are not limited to
IMUs, microphones, cameras and others. Stand-alone video cameras follow in popularity,
including the Microsoft Kinect tool and the Leap Motion sensor, which are mainly used
for video recordings but were also used once for speech recordings as well. Moreover, in
18 studies everyday objects that do not fall into other categories were deployed. For the
specific studies considered in this review, these objects span across smart pens, keyboards,
Wii controllers, support walkers and spoon handles. Various types of sensors, including
inertial, pressure, audio and other are embedded to these objects. On the other hand, insole
sensors are deployed solely for collecting gait-related pressure signals from the respective
eight studies presented in Section 3.2.2. Similarly, smartwatches and smart bracelets are
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exploited almost exclusively for collecting inertial signals. Finally, in a few studies some
other portable devices are used for speech recordings and other measurements.

Figure 4. Distribution of different devices deployed over the considered studies.

4.2. Meta-Analysis over Sensor-Specific Results Obtained

For each category of sensors, the problems addressed and the respective average
obtained accuracies are presented. Each subsection dedicated to one type of sensor is
accompanied by one column chart which summarizes which problems are addressed based
on the respective type of sensors and one boxplot that illustrates the performance range
achieved for each problem addressed. Boxplots are selected for the latter cause as they
offer an excellent illustration of the dispersion of the data. More specifically, the mean
of the values is depicted by an ‘x’ and the median by a horizontal line which divides the
data points in a top and a bottom half. The medians of these two halves form a box which
corresponds to the interquartile range. The values outside this range are depicted by two
whiskers (vertical lines), and there may also be some outliers, as distinct data points that
exceed 1.5 times or more the interquartile range.

4.2.1. Inertial Sensors

Based on the results presented in Section 3.2.1, it is evident that inertial sensors
have already been widely used in the literature to address various PD-related problems
with the help of ML and DL algorithms. Diagnosis and differential diagnosis are two
commonly addressed problems of this category. Diagnostic models demonstrate very high
performance, with approximately 88.5% average accuracy and 89.5% median accuracy,
while the performance of differential diagnosis models is a bit poorer, with accuracy ranging
between 72% and 89%. However, if one takes into account that it is much more difficult
to differentiate patients with similar manifestations, the obtained performance can be
considered very satisfactory.

Other popular problems addressed based on the usage of inertial sensors are the detec-
tion and the quantification of PD symptoms. Tremor, bradykinesia and levodopa-induced
dyskinesia detection corresponds to a classification problem, for which approximately 84.5%
average accuracy is obtained from the considered studies. FoG episodes seem a little easier
to be detected, as the average accuracy for this classification task is approximately 90%.
Regarding the severity estimation of PD symptoms, the classification approach is presented
in more studies than the regression and the respective average accuracy (approximately
83.5%) is a bit lower than the accuracies obtained in the two previous problems, which can
be attributed to the increase in targets-classes. Finally, the detection of medication-related
fluctuations and the estimation of the patients’ response to medication are some problems
that are addressed more rarely based on data collected with inertial sensors. The respective
average accuracy is again very satisfactory but remains the lowest achieved (77%) regarding
the detection of fluctuations among all the other problems. Finally, identification of PD
subtypes, gait segmentation and rehabilitation assessment are some problems that are
addressed only once among the studies considered based on inertial signals.
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The occurrences of all the problems tackled with inertial data are summarized in the
column chart of Figure 5, which confirms that PD diagnosis, symptom severity estimation
and FoG detection are the most widely addressed problems based on inertial data. A wide
variety of ML and DL algorithms have been proposed for all these cases. Moreover, the
obtained range of performances for each category of tasks is illustrated in the boxplot
of Figure 5, based on the accuracy metric, which is the simplest and most widely used,
among the considered papers, evaluation metric. Studies that do not apply this metric
in their evaluation stage are not considered in the boxplot of Figure 5. Consequently, the
construction of this boxplot is based on 45 discrete models out of the 52 inertial sensors-
based studies, which are considered in this review and for each one of them only the best
performing proposed method is taken into consideration.

Figure 5. PD problems addressed based on inertial sensors and the respective obtained accuracies.
(a) Number of studies per task; (b) accuracies obtained from the proposed models for each category
of addressed tasks. Number of studies considered in this boxplot per task: n = 12 for diagnosis,
n = 6 for differential diagnosis, n = 8 for severity estimation, n = 3 for fluctuations detection, n = 11
for FoG detection, n = 4 for tremor/bradykinesia/dyskinesia detection and n = 1 for medication
response estimation.

4.2.2. Pressure and Force Sensors

As the column chart of Figure 6 indicates, very few studies that address solely PD
diagnosis, estimation of the respective severity and differential diagnosis based on pressure
sensors have been identified across the considered studies. No force sensors-based studies
that address the problems of FoG detection, PD symptoms and their fluctuations detection,
as well as medication response estimation were identified. Moreover, as the boxplot of
Figure 6 indicates, when pressure or force sensors are deployed, PD diagnosis is performed
with approximately 95% average accuracy and 99% median accuracy, severity estimation
is performed again with approximately 95% average accuracy and 98% median accuracy,
and differential diagnosis is performed with slightly lower accuracy (90%). Again, only the
studies that make use of the accuracy metric for the evaluation of the proposed models are
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taken into consideration for the construction of this boxplot. This time, only one out of the
seven studies discussed in this category is excluded.

Figure 6. PD problems addressed based on pressure sensors and the respective obtained accuracies.
(a) Number of studies per task; (b) accuracies obtained from the proposed models for each category
of addressed tasks. Number of studies considered in this boxplot per task: n = 4 for diagnosis, n = 1
for differential diagnosis and n = 5 for severity estimation.

4.2.3. Image and Depth Sensors

As the column chart in Figure 7 indicates, PD diagnosis is the most commonly ad-
dressed problem among the considered studies, based on input data collected from image
and depth sensors, while estimation of PD symptom severity follows. In more rare cases,
this data source has been used to detect medication state, segment exercises and motor tests
and assess rehabilitation, as well as to detect FoG episodes and other PD-related symptoms.
It is also worth mentioning that no studies addressing the problem of differential diagnosis
based on this type of sensors were identified. Consequently, a reasonable question raised is
whether video recordings can differentiate patients with similar manifestations. Moreover,
although computer vision has been widely used for mood estimation of healthy people, no
studies were identified to address this problem based on PD patients’ data.

Finally, the obtained accuracies for each category of addressed PD-related problems
based on video recordings or imagery input data are depicted in the boxplot of Figure 7. As
2 out of the 15 studies discussed do not measure the performance of the proposed methods
with the accuracy metric, they are excluded from this boxplot. By taking into consideration
the remaining studies, the following observations can be made. The best performance
(96.5% average accuracy) is achieved for the segmentation of exercises and motor clinical
tests in subtasks. Rehabilitation assessment tasks are also effectively performed based
on video recordings, with 89.5% average accuracy. PD diagnosis and severity estimation
follow with average accuracy slightly greater than 87%. Finally, ML algorithms perform a
bit poorer in detecting FoG episodes (82.5% accuracy), dyskinesia (71.4% accuracy), as well
as in estimating medication adherence (71% average accuracy), when images and videos
are used as inputs.
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Figure 7. PD problems addressed based on image and depth sensors and the respective obtained
accuracies. (a) Number of studies per task; (b) accuracies obtained from the proposed models for
each category of addressed tasks. Number of studies considered in this boxplot per task: n = 7
for diagnosis, n = 3 for severity estimation, n = 2 for medication adherence estimation, n = 2 for
subtasks segmentation, n = 1 for rehabilitation assessment, n = 1 for FoG detection and n = 1 for
dyskinesia detection.

4.2.4. Voice and Audio Sensors

Based on the results presented in Section 3.2.4, speech signals have been exploited
for PD diagnosis in four studies, for quantification of symptom severity in four studies
and for differential diagnosis in only one study. No studies that address the problems of
fluctuations detection and medication response estimation were identified. Every study in
this category that addresses the symptoms quantification problem proposes a regression
and not a classification model. Consequently, their performance cannot be compared
with the performance obtained in the diagnosis task, in terms of the obtained accuracy.
Moreover, the accuracy metric is not used in the evaluation of the differential diagnosis
which is performed in [129]. Therefore, only the accuracies of ML algorithms regarding
PD diagnosis from four studies could be compared with each other. In all these cases, the
obtained performance is very high, with accuracy greater than 90% (approximately 94%
average accuracy). Due to the lack of more accuracy data points, the presentation of the
respective boxplot diagram, in alignment with the previous subsections is considered to
be unnecessary.

4.2.5. Other Types of Sensors

Moreover, various PD-related problems, such as diagnosis, detection of symptoms and
estimation of their severity, estimation of patients’ response to the prescribed medication
and emotion recognition, are addressed based on input data provided by a wide variety of
other sensors. Due to this variability, it is considered that there is no reason to proceed to
a grouping of approaches or to a thorough comparison between the different considered
studies. The only common addressed problem is the diagnosis of PD and the highest
accuracy for this task is obtained when EEG signals are used. Approaches based on finger-
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mounted position sensors and hand-mounted flexion sensors follow. Finally, the lowest
accuracy is obtained when keystroke log data are deployed.

4.2.6. Combination of the Previous Sensors

As the column chart of Figure 8 indicates, the combination of more than one different
type of sensor has been exploited mainly for PD diagnosis and symptom severity estima-
tion, and more rarely for FoG and other PD symptom detection, fall risk identification
and differential diagnosis. Moreover, no studies that address the problems of fluctuations
detection and medication response estimation were identified. Additionally, the obtained
accuracies for each category of addressed PD-related problems based on fusion of data
obtained by combinations of various types of sensors are depicted in the boxplot of Figure 8.
The main classification tasks, which are evaluated based on the accuracy metric, are PD
diagnosis, differential diagnosis, severity estimation and cognitive impairment detection.
Therefore, 13 out of the 22 total studies, which address these problems, are considered in
this boxplot. In all these cases, features extracted from multimodal sensory data lead to
very satisfactory results. PD is detected by an average accuracy of approximately 89%. On
the other hand, PD symptoms are quantified with approximately 88% average accuracy and
91% median accuracy. Consequently, despite severity estimation is a hard problem, it can
be addressed with the help of various sensory data to a sufficient extent, with an approxi-
mately equal performance to the one achieved in the diagnosis case. Finally, differential
diagnosis demonstrates 91.6% accuracy, cognitive impairment detection demonstrates 86%
accuracy, and the remaining tasks are evaluated based on other metrics and therefore are
not considered in the boxplot of Figure 8.

Figure 8. PD problems addressed based on data collected via a combination of various types of
sensors and the respective obtained accuracies. (a) Number of studies per task; (b) accuracies obtained
from the proposed models for each category of addressed tasks. Number of studies considered in
this boxplot per task: n = 9 for diagnosis, n = 1 for differential diagnosis, n = 5 for severity estimation
and n = 1 for cognitive impairment detection.
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4.3. Overall Addressed Problems Related to Parkinon’s Disease and Obtained Accuracies
4.3.1. Frequency of Problems Addressed

As Figure 9 indicates, diagnosis is the most widely addressed problem among the
considered studies and corresponds to a binary classification problem between PD patients
and healthy controls. The quantification of PD symptom severity follows, which can be
both a classification and a regression task, most of the time with respect to specific scales,
such as the UPDRS and the H&Y scale. However, most of these approaches estimate the
current patients’ situation and do not make any predictions in the future, which would
be more fruitful for personalized treatment suggestions. The detection of FoG episodes
and other PD symptoms, including tremor, bradykinesia, dyskinesia, cognitive impairment
and deficient facial expressivity, are also quite popular topics in the current literature
search. These are binary classification problems between the presence and the absence
of certain manifestations. Differential diagnosis follows, which corresponds to either a
binary or a multi-class classification problem between PD patients and patients with other
neurological disorders.

Figure 9. Frequency of PD-related problems studied independently of type of input data used.

Despite fluctuations detection, medication state detection, estimation of patients’
response to medication and rehabilitation assessment are problems of utmost importance
to achieve precise medicine, they are encountered more rarely in the literature. Most of
the times, these approaches correspond to classification problems, but they can also be
seen as regression problems, in the terms of, e.g., specific treatment indices estimation.
Additionally, gait and exercises segmentation, which can be addressed by both supervised
and unsupervised learning techniques, is presented in few studies. Finally, some other
classification problems, which are discussed only once across the studies considered in this
paper, include fall risk detection, emotion recognition and PD subtypes identification. All
these findings are summarized in the bar chart of Figure 9.

4.3.2. Overall Performance Comparisons per Task

Firstly, diagnosis, which is the most common addressed problem, is performed based
on input data produced from all the types of sensors discussed. In every case, classification
results are very satisfactory and average accuracy is greater than 87%. The highest average
accuracy is obtained for studies based on pressure signals (approximately 97% accuracy)
and then studies based on voice recordings. Other types of sensors and combinational
analyses follow. Finally, approaches based on inertial, image and depth sensors perform
slightly worse, with approximately 87% average accuracy.
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Additionally, severity levels are again more accurately estimated by pressure signals
(95% average accuracy). Video recordings and combinations of different types of sensors
follow, while approaches based on inertial signals achieve 85% average accuracy. Moreover,
despite severity estimation is performed based on data produced from all the types of
sensors discussed, speech recordings and other types of sensors are solely deployed for
PD symptom severity regression and not classification. Therefore, the performance of the
respective models cannot be compared with the others, in terms of accuracy. Generally, the
classification of PD patients to severity levels-categories, with respect to various motor and
non-motor symptoms, is a more difficult problem than PD detection. This is reflected in the
slightly lower accuracies obtained in the first case, in almost every category of sensory data
and it can be attributed to both the increase in similarity among the classes-targets and the
increase in the number of the classes.

The highest obtained accuracies from all the proposed methods per category of sensors
for these two popular tasks (PD diagnosis and severity estimation) are depicted in Figure 10.
These diagrams confirm that inertial sensors are more widely exploited in the literature
compared to other types of sensors for both diagnosis and severity estimation. Moreover,
one can easily observe that independently of the type of sensors leveraged to collect input
data, there are some ML or DL models that reach almost excellent classification accuracy
(greater than or equal to 95%) with respect to both problems. The respective average
accuracies range between 87% and 97%, demonstrating the predictive power of the hidden
information of all the types of sensory data considered in the current literature review.

Figure 10. Comparison between the best performing proposed models among all the different types
of sensors (a) regarding diagnosis; (b) regarding severity estimation. In both cases, the horizontal
axis refers to the indices of the studies.

Another interesting question is whether the fusion of different types of data improved
the respective performance of models trained on single data sources. Combinational
analyses are mainly proposed for PD diagnosis and severity estimation. In both cases, it is
easily observed that the average accuracy increased slightly when different data sources
were combined to address these problems. However, this is not a statistically significant
increase. Finally, as already mentioned, pressure sensors have led to higher average
accuracies in diagnosis and severity estimation tasks than inertial sensors. However, this
may be misleading, as there are many more inertial sensors-based studies which make use
of many different datasets, while most pressure sensors-based studies leverage the same
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dataset. Therefore, the results obtained by the inertial sensors-based studies may be more
stable and trustworthy.

Continuing with the remaining less frequently addressed problems, FoG episodes and
other PD symptoms are detected almost exclusively by leveraging inertial sensors. In the
first case, 90% average accuracy is obtained with inertial sensors, while there is also one
video-based approach which detects FoG with slightly lower accuracy. In the second case,
PD symptoms are detected with 85% average accuracy with inertial signals, while there
is also a video-based approach which achieves slightly lower accuracy and an approach
based on other types of sensors which demonstrates similar average accuracy. Finally, the
exploitation of more than one types of sensors has been explored in both cases. However,
the respective results are not evaluated with the accuracy metric, thus their performance is
not compared with the inertial-based and video-based approaches.

Moreover, differential diagnosis is performed with every category of sensors pre-
sented, except for video recordings and other types of sensors. Most studies addressing
this problem are based on inertial or pressure sensors. In concordance with the binary
classification problem of diagnosis, the highest average accuracy (approximately 88%)
is obtained when force sensors are deployed. Generally, classification performance for
differential diagnosis is significantly lower than what is obtained for discrimination of PD
patients and healthy controls. This can be attributed to the similarity among manifestations
of different neurological disorders, as well as to the increase in the number of targets-classes,
in some cases.

Finally, some other medication-related problems, such as the estimation of patients’
response to medication, the detection of symptoms fluctuations and whether a patient
is on or off medication, are addressed with the help of inertial, image, depth and other
sensors. No studies based on pressure or voice sensors were identified for this cause. The
performance is slightly higher (88% average accuracy) for medication response estimation,
when inertial sensors are used. Regarding fluctuations and medication detection, all the
types of the deployed sensors demonstrate similar performance, with average accuracy
ranging between 77% and 81%. Consequently, it can be concluded that this is a slightly
harder problem than the ones discussed so far. In contrast, the segmentation of walking
tests and other physical exercises to subtasks and phases, as well as the assessment of
patients’ rehabilitation have been performed with exceptionally high average accuracy (96%
and 90%, respectively), by video recordings. There is also one inertial sensors-based study
which address the problem of gait segmentation, but the accuracy metric is not applied in
the evaluation process.

4.4. Ranking of Machine Learning Algorithms

All the considered approaches take advantage of AI, ML and DL algorithms, to predict,
estimate or infer the desired results in each respective task. In Figure 11, all algorithms
encountered in this systematic literature review are gathered. These algorithms correspond
to classification, regression, clustering or simply automatic feature extraction and modelling
techniques. The considered approaches span across probabilistic methods, such as NB,
probabilistic neural networks (PNNs), ANFIS, HMMs, Bayesian neural networks (BNNs)
and DBNs; simple conventional ML algorithms, such as LR, LDA, quadratic discriminant
analysis (QDA), kNN, OPF, DTs and SVMs; ensemble learning methods, such as RFs,
AdaBoost, RUSBoost, XGBoost, GBMs, bagged trees, boosted trees and extra trees, among
others; and neural networks, such as MLPs, CNNs, LSTMs, RNNs, ESNs, self-organizing
maps (SOMs) and AEs, among others. Many of the previous algorithms are used for both
classification and regression tasks. Some other proposed models are suitable only for
regression, including linear, ridge, LASSO and stepwise regression. Additionally, some
clustering techniques used include k-means, k-medoid algorithms and GMMs. Finally, a
genetic programming approach has also been discussed in one study.
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Figure 11. Distribution of the deployed ML algorithms over the considered studies. The blue bar
depicts how many times each algorithm was tested, while the orange bar depicts how many times
the same algorithm was selected as the best performing model or as a part of the final proposed
solution. For the most widely tested algorithms, the ratio of the two previous values (grey bar) is also
depicted (%).

As the blue bar indicates in Figure 11, the three most commonly evaluated models
are SVMs, RFs and the kNN algorithm. CNNs follow, along with DTs, NB, LR, LDA
models, MLPs, LSTMs, other NNs and other ensemble methods. The rest algorithms are
encountered more rarely in the literature to address PD-related problems. The fact that
these algorithms were discussed in many of the considered approaches does not necessarily
mean that they were considered in the final proposed solutions, as the best performing
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models. The most commonly proposed algorithms (orange bar in Figure 11) are CNNs,
SVMs and RFs, while the kNN algorithm, other NNs, MLPs, LSTMs and other ensemble
methods follow. Indeed, although some simple models, such as DTs, NB, LR and LDA, are
widely tested, they are rarely selected as the best performing solution when other, possibly
more complex, algorithms are also tested in the same study. Regarding the respective
ratio, CNNs, other NNs and ensemble methods demonstrate far better efficiency, as they
are selected as the best performing solution in 85%, 80% and 75%, respectively, of the
occasions that they are evaluated in. LSTMs, MLPs, AdaBooost and RFs follow, while
SVMs and kNN demonstrate lower efficiency ratio. The rest methods either demonstrate
even lower efficiency or are not taken into consideration in the ratio-based sorting, as they
have been tested very few (equal or less than 5) times in the literature and the obtained
results would be misleading and would lack credibility. Finally, it is worth mentioning that
more and more complex DL and ensemble learning approaches are mainly proposed in the
last few years.

4.5. Subjects Enrolled

Another aspect which affects largely the obtained performance of the proposed ML
models is the number and the variability of the subjects enrolled in each study. In the
current review, most of the considered studies enroll a relatively small group of PD patients,
healthy controls and patients with other neurological disorders. As the first column chart
of Figure 12 indicates, the vast majority of the considered approaches enroll 10–100 subjects.
Few studies enroll 100–1000 subjects and less than or equal to 10 subjects and only four
studies enroll more than 1000 subjects. Moreover, in 47 approaches solely PD patients
are enrolled, while in the rest of the approaches both PD patients and healthy controls or
patients with other neurological disorders are enrolled to enable a differentiation between
these groups. As the second column chart of Figure 12 indicates, in most cases, the classes
of PD patients and other subjects are balanced, with PD patients rate ranging between 40%
and 60%. When datasets are unbalanced, PD patients outnumber other groups in slightly
more cases. The opposite is usually observed when large cohorts are exploited with more
than 100 subjects enrolled. It is also worth mentioning that in six approaches, the problem
addressed refers to a multiclass classification, where PD patients’ rate is usually much
lower than 50% of the enrolled subjects, as expected. To conclude, despite the relatively
small population size in most cases and the possible imbalanced classes in some cases, ML
and DL models generalize reasonably well.

Figure 12. Distribution of the number of the enrolled subjects across the studies considered. (a) Total
population size across the studies considered in logarithmic scale-based bins. (b) The rate of PD
patients to total subjects enrolled across the studies considered in 20-width bins.
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5. Discussion and Conclusions

The systematic review presented in this paper considers 112 studies, published in
the last decade, which propose ML models trained with data collected via sensors and
IoT technologies to address various PD-related problems. PD is a neurodegenerative
disease that affects many, mainly elderly, people worldwide. The studies considered in this
review provide evidence that useful knowledge can be extracted from sensory data with
the help of AI methods, regarding motor and non-motor manifestations of PD, enabling
doctors to make evidence-based decisions. This could potentially support personalized
treatment suggestions and ensure high quality PD patients’ care even remotely. Thus,
easing the burden of the healthcare system and moving from a clinic-centric to a patient-
centric approach could be achieved. Therefore, it is crucial to summarize some early
achievements obtained in this domain and identify remaining challenges and steps to be
made in this direction.

Based on the results obtained by the presented review, it is concluded that inertial
sensors have already been studied in depth for PD diagnosis and monitoring, while other
less frequently used include image/depth, voice and pressure sensors, among others, as
well as their combination. Moreover, there are indications that portable medical devices
monitoring brain, heart and muscle functionality or other bio-signals, such as body tem-
perature, have not yet been studied to a sufficient extent. Similarly, ambient sensors were
encountered extremely rarely in the literature. It is very important that more experiments,
exploiting other types of sensors rather than IMUs should be performed to address various
PD-related problems.

Furthermore, the deployed sensors in the majority of the considered studies were not
embedded in everyday objects and portable devices that patients are familiar with. Conse-
quently, the need to explore the deployment of more everyday devices and wearables, such
as smartphones and smartwatches among others is highlighted, to ensure unobtrusiveness
and minimize the risk of PD patients’ stigmatization during the experiments. The wider
deployment of these sensors is also expected to facilitate the execution of experiments
in free-living environments with the help of IoT infrastructures. The vast majority of
the considered studies were performed in laboratories or clinical environments and PD
patients performed instructed movements. Only a handful of approaches examined the
predictive power of sensorial data under free-living conditions. However, moving in this
direction is of utmost importance, as sensors and IoT technologies need to be evaluated
under real-world conditions, to finally achieve PD diagnosis and care revolution.

Additionally, to get more accurate measurements, the optimized position of each
sensor needs to be identified. It is inferred from the considered studies that more accurate
gait features were extracted when inertial sensors were mounted to the feet than when
mounted to the waist. Similarly, the optimized arrangement of multiple sensors needs
to be determined to maximize knowledge extraction and deploy methods for efficient
multimodal data combination. Furthermore, sampling frequency should be fine-tuned in
order to avoid scaling issues and minimize power consumption [163], while at the same
time ensuring there is no significant information loss. Another crucial issue is the fast data
transmission to remote databases and cloud servers, which may need to be performed
even in real time, in some applications. The commercialization of 5G networks and the
development of 6G networks prototypes is expected to solve this problem [164].

Moreover, PD-related problems addressed by the studies considered in this review
include diagnosis, differential diagnosis, severity estimation, detection of FoG and other PD
manifestations, fluctuations detection and medication response estimation, among others.
PD diagnosis and estimation of symptom severity levels are the most in-depth studied
problems, addressed with every type of sensor discussed. However, in the vast majority of
the considered studies the current PD patients’ state was estimated and only in a handful of
them, the course of the disease was predicted in the future. These predictions could actually
revolutionize PD care by offering neurologists useful insights in advance and enabling
them to act proactively, by, e.g., increasing the proposed levodopa daily dosage. Therefore,
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researchers should focus more on conducting such experiments based on various types
of sensors. Additionally, other tasks such as fluctuations detection, medication response
estimation and PD subtypes identification, which are of utmost importance to shed light
on inter- and intra-patient variability and hence proposing personalized treatments, are
addressed extremely rarely based almost exclusively on inertial signals. Consequently, it is
highlighted that more experiments should be conducted in this direction. Finally, across
the studies considered, specific popular tasks were not addressed at all by specific types of
sensors, such as differential diagnosis based on video recordings. In this respect, it would
be interesting to explore various types of sensors in new PD-related problems.

In principle, it can be concluded that very good results have already been achieved for
all the discussed PD-related problems with the proposed AI methods based on each type of
the deployed sensors. Some of these tasks can be addressed more easily and satisfactorily
than others. For example, higher accuracy is obtained for diagnosis rather than differential
diagnosis, prediction of symptom severity and fluctuation detection. Similarly, some
types of sensors tend to lead to more accurate estimations, with respect to specific tasks,
but that is also dependent on the specific datasets used, especially when few studies are
considered in some categories of sensors. It is worth mentioning that in most cases, the
combination of multiple types of sensors did not lead to a statistically significant increase
in the obtained performance.

In any case, the most common best performing ML models correspond to CNNs,
LSTMs, MLPs, other NNs, as well as ensemble learning techniques, such as boosting and
RFs. It is clear that more complex approaches based on ANNs and metaclassifiers usually
outperformed the simpler ones. The simpler approaches that follow are SVMs and the kNN
algorithm. Moreover, the novel technique of transfer learning, which was discussed in a
handful of the studies considered could be further tested to investigate whether it could
support DL approaches and ensemble methods to obtain higher accuracies in PD-related
problems, while at the same time it could potentially decrease training time. Additionally,
in the vast majority of the studies considered, supervised approaches were discussed and
only extremely few of them corresponded to semi-supervised approaches. Since a shift
to collect patients’ data in free-living environments is highly suggested and that would
indispensably lead to a large volume of unlabeled data, it is of utmost importance to
follow more semi-supervised and self-supervised approaches that enable the exploitation
of unlabeled data as well.

Moreover, to enable the exploitation of DNNs and recent advances in the big data era
to address PD-related problems, larger cohorts of PD patients should be enrolled. In this
respect, researchers should be encouraged to share the acquired data with the research
community, to potentially enable the creation of data lakes with respect to PD. Furthermore,
it would be useful to build both generalized and personalized models to support optimized
predictions and estimations for new users-patients and patients who have already provided
abundant data as well. In this direction, special care should be taken to maintain long-term
patients’ databases and to leverage the digitalization of medical records. Finally, during
every stage of the respective pipeline, very strict security guidelines should be followed
to ensure patients’ data privacy and security. The advances in distributed systems and
blockchains could support this cause [165].

To conclude, there is evidence that ML models and IoT technologies can revolutionize
the way that PD and other chronic diseases are diagnosed and treated. As the promising
results of the last decade indicate, the adoption of smart technologies in clinical practice
can support clinicians in several decision-making processes, potentially reducing the
current extremely high healthcare costs and counterpoising the consequences of the medical
resources shortage. Moreover, the continuous remote monitoring of PD patients with
wearable or non-wearable sensors could potentially provide much more useful information
and shed light on PD aspects that otherwise may not be perceived through follow-up
appointments. To achieve that, more sensors could be deployed in larger cohorts to feed
novel ML and DL models with data and achieve more accurate predictions and estimations
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in currently ill-addressed PD-related problems, overcoming the respective challenges. In
this way, AI and IoT interventions may finally support precise medicine and help clinicians
to propose personalized treatment schemes and potentially maximize patients’ responses
to them.
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ANOVA Analysis of Variance
AR Autoregressive
ARMA Autoregressive Moving Average
AU Action Unit
AUC Area Under the Curve
AUPR Area under the Precision-Recall Curve
AUROC Area Under the Receiver-Operating Characteristic Curve
Avg Average
BDI Beck Depression Inventory
BE Backward Elimination
CAD Computer-Aided Diagnosis
CART Classification and Regression Tree
CFS Correlation-based Feature Selection
CNN Convolutional Neural Network
CT Computed Tomography
CWT Continuous Wavelet Transform
DA Discriminant Analysis
DBN Deep Belief Network

DCALSTM
Dual-modal Convolutional Neural Network + Attention Enhanced
Long Short-Term Memory
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DCNN Dual-modal Convolutional Neural Network
DD Other Movement Disorder
DESN Deep Echo State Network
DFT Discrete Fourier Transform
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
DTW Dynamic Time Warping
DWT Discrete Wavelet Transform
ECG Electrocardiography
EEG Electroencephalography
EER Equal Error Rate
ELM Extreme Learning Machine
EMG Electromyography
ESN Echo State Network
ESS Epworth Sleepiness Scale
ET Essential Tremor
EWPT Empirical Wavelet Packet Transform
EWT Empirical Wavelet Transform
FA Factor Analysis
FFT Fast Fourier Transform
FIR Finite Impulse Response
FLDA Fisher Linear Discriminant Analysis
FNR False Negative Rate
FoG Freezing of Gait
FPR False Positive Rate
FRP Fuzzy Recurrent Plot
GBM Gradient Boosting Machine
GD Gradient Descent
GDM Gradient Descent with Momentum
GM Geometric Mean
GMM Gaussian Mixture Model
GP Gaussian Process
GRF Ground Reaction Force
GRU Gated Recurrent Unit
GS Graph Sequence
H&Y Hoehn and Yahr
HBNN Hierarchical Bayesian Neural Network
HD Huntington’s Disease
hHMM Hierarchical Hidden Markov Model
HMCI Healthy People with Mild Cognitive Impairment
HMM Hidden Markov Model
HOA Healthy Older Adult
HOG Histogram of Oriented Gradients
IBk Instance-Based with parameter k
ICC Intraclass Correlation Coefficient
IIR Infinite Impulse Response
IMU Inertial Measurement Unit
IoT Internet of Things
IPD Idiopathic Parkinson’s Disease
JMIM Joint Mutual Information Maximization
KELM Kernel Extreme Learning Machine
KFD Kernel Fisher Discriminant Analysis
kNN k-Nearest Neighbors
LASSO Least Absolute Shrinkage and Selection Operator
LDA Linear Discriminant Analysis
LID Levodopa-Induced Dyskinesia
LOSO Leave One Subject Out
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LR Logistic Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MCC Matthew’s Correlation Coefficient

MDS-UPDRS
Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s
Disease Rating Scale

MFCC Mel-Frequency Cepstral Coefficient
ML Machine Learning
MLP Multilayer Perceptron
MMG Mechanomyography
MML Multi-source Multi-task Learning
MMTFL Multiplicative Multi-Task Feature Learning
MoCA Montreal Cognitive Assessment
MRI Magnetic Resonance Imaging
mRMR Maximum Relevance Minimum Redundancy
MS Kinect Microsoft Kinect
mUPDRS Motor subscale of the Unified Parkinson’s Disease Rating Scale
NB Naïve Bayes
NN Neural Network
OPF Optimum Path Forest
PCA Principal Component Analysis
PD Parkinson’s Disease
PDD Parkinson’s Disease Patients with Dementia
PDMCI Parkinson’s Disease Patients with Mild Cognitive Impairment
PDNC Parkinson’s Disease Patients with Normal Cognition
PET Positron Emission Tomography
PKG Personal KinetiGraph
PNN Probabilistic Neural Network
PPV Positive Predictive Value
PREC Precision
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSD Power Spectral Density
PSG Polysomnography
PSP Progressive Supranuclear Palsy
Q-BTDNN Q-Backpropagation for a Time Delay Neural Network
QDA Quadratic Discriminant Analysis
RBD Rapid Eye Movement Sleep Behavior Disorder
RBF Radial Basis Function
REC Recall
Res-Net Residual Neural Network
RF Random Forest
RGB Red Green Blue
RGB-D Red Green Blue-Depth
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RUSBoost Random UnderSampling Boosting
SBS Sequential Backward Selection
SCG Scaled Conjugate Gradient
SDE Sparse Difference Embedding
SDH Sum and Difference Histogram
sEMG Surface-Electromyography
SENS Sensitivity
SF-36 36-Item Short Form Survey
SFS Sequential Forward Selection
SOM Self-Organizing Map
SPDDS Self-Assessment Parkinson’s Disease Disability Scale
SPEC Specificity
STFT Short-Time Fourier Transform
STL Single Task Learning
SVM Support Vector Machine
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SVR Support Vector Regression
TRIS Treatment Response Index
TUG Timed Up and Go
UDysRS Unified Dyskinesia Rating Scale
UPDRS Unified Parkinson’s Disease Rating Scale
VAE Variational Autoencoder
VaP Vascular Parkinsonism
VAS Visual Analog Scale
XGBoost/XGB Extreme Gradient Boosting

Appendix A

Table A1. Studies based on inertial sensors.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Rastegari et al.
(2020) [49] Diagnosis

10 PD patients and
10 healthy controls

from another
study [166]

Accelerometer and
gyroscope data from

both ankles using
SHIMMER sensors

Segmentation +
bag-of-words

features extraction
based on

sub-sequences
clustering with

k-medoid +
SVM/DT/RF/kNN

Best performing: DT
with ACC = 90%,

PREC = 90%,
REC = 90%

Zhang et al.
(2020) [54] Diagnosis

656 PD patients and
2148 healthy controls

from the mPower
study [126]

Gait features from
smartphone sensors
located at the pocket

Deep CNN AUROC = 0.87

Juutinen et al.
(2021) [50] Diagnosis 29 PD patients and

29 healthy controls

Accelerometer and
gyroscope signals

from a
waist-mounted

smartphone while
performing

walking tests

Interpolation +
low-pass filtering +

smoothening +
segmentation to
strides + feature

extraction + feature
selection with

mRMR/SFS/SBS +
classification of

strides with
DT/Gaussian ker-

nel/LDA/ensemble/
kNN/LR/NB/SVM/
RF + majority voting

for subject
classification

Best performing: SFS
+ kNN with

ACC = 84.5%,
SENS = 88.5%,
SPEC = 81.3%

Fernandes et al.
(2018) [51]

Parkinsonism
diagnosis and

differential diagnosis
between idiopathic

PD (IPD) and
vascular

parkinsonism (VaP)

15 IPD, 15 VaP
patients and

15 healthy controls

Gait signals from
wearable Physilog

motion sensors
placed on both feet
and MOCA scores

Normalization +
feature selection

based on
Kruskal–Wallis and

Mann–Whitney tests
with Bonferroni

correction + features
ranking with RFs +

MLP/DBN

Best performing for
parkinsonism

detection: MLP with
ACC = 99.33%,

SENS = 93.33%; for
IPD-VaP differential
diagnosis: DBN with

ACC = 73.33%,
SENS = 73.33%,
SPEC = 73.33%

Cuzzolin et al.
(2017) [52]

Diagnosis and
severity estimation in

the SF-36
(0–100) scale

156 PD patients and
424 healthy controls

Signals from an IMU
attached to the lower
spine while walking

HMM + kNN

For diagnosis:
ACC = 85.51%,

F1-SCORE = 81.54%;
for severity
estimation:

MAE = 27.81
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Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Borzì et al. (2020) [70]

Severity estimation
(MDS-UPDRS related

to leg agility scores
classification)

93 PD patients

Acceleration, angular
velocity and

orientation data from
a smartphone

application

Low-pass
Butterworth filter +

FFT + feature
selection +

DT/kNN/SVM/ANN

Best performing:
ANN with

ACC = 77.7%,
AUROC = 0.92,

r = 0.92,
RMSE = 0.42,

ICC = 0.82

Hssayeni et al.
(2018) [96]

Fluctuation
identification (on/off

states detection)

12 PD patients (1st
dataset) and 7 PD

patients (2nd dataset)

Signals from an
ankle-mounted

triaxial gyroscope

FIR bandpass filter
+ LSTM

ACC = 73–77%,
SENS = 63–75%,
SPEC = 78–83%

Aich et al. (2020) [97]
Fluctuation

identification (on/off
states detection)

20 PD patients

Statistical and gait
parameter features
from 2 knee-worn

accelerometers

Feature selection +
RF/SVM/kNN/NB

Best performing: RF
with ACC = 96.72%,

PREC = 96.92%,
REC = 97.35%,

F1-SCORE = 0.97,
AUROC = 0.99

Abujrida et al.
(2020) [53]

Diagnosis and
severity estimation
regarding walking

balance
(MDS-UPDRS-2.12),

shaking/tremor
(MDS-UPDRS-2.10)

and FoG

152 PD patients and
304 healthy controls

from the mPower
study [126]

Signals from
smartphone
embedded

accelerometers and
gyroscopes,

demographics and
lifestyle data

Segmentation +
smoothening +

feature extraction in
time, frequency (FFT

+ PSD), wavelet
(DWT) domain +

RF/bagged
trees/boosted

tress/fine tree/cubic
SVM/weighted
kNN/LR/LDA

Best performing for
diagnosis: RF with

ACC = 95%,
PREC = 94%,

AUROC = 0.99; for
walking balance: RF

with ACC = 93%,
PREC = 92%,

AUROC = 0.97; for
tremor: bagged trees

with ACC = 95%,
PREC = 95%,

AUROC = 0.92; for
FoG: bagged trees
with ACC = 98%,

PREC = 96%,
AUROC = 0.98

Kim et al. (2015) [84] FoG detection 15 PD patients

Gyroscopic and
accelerometer data
from smartphones
placed at the waist,
pocket and ankle

AdaBoost SENS = 81.1–86%,
SPEC = 91.5–92.5%

Ashour et al.
(2020) [87] FoG detection 10 PD patients

Accelerometer data
from sensors placed
on the ankles, knees

and hips

Patient-dependent
LSTM/{DWT/FFT +
Patient-dependent

SVM/ANN}

Best performing:
LSTM with

ACC = 68.44–98.89%

Torvi et al. (2016) [89] FoG prediction in 1 s,
3 s and 5 s horizons

10 PD patients from
Daphnet dataset

Accelerometer data
from sensors placed

on the ankles, the
thighs and the trunk

LSTM/RNN with or
without

transfer learning

Best performing:
LSTM + transfer

learning with
ACC = 85–95%

Arami et al.
(2019) [90]

FoG prediction
(2-class classification

FoG/no-FoG and
3-class classification

pre-FoG/FoG/no-FoG)

10 PD patients from
Daphnet dataset

Accelerometer data
from sensors placed

on the ankles, the
thighs and the trunk

Windowing +
filtering + feature

extraction + feature
selection with

mRMR/BE + features
time series prediction

with AR/ARMA +
RBF-SVM/PNN

For 2-class
classification:
ACC = 94%,
SENS = 93%,

SPEC = 87%; for
3-class classification:

ACC = 77%

Kleanthous et al.
(2020) [91]

FoG detection
(FoG/walking/transition

from walking to
FoG classification)

10 PD patients from
Daphnet dataset

Accelerometer data
from sensors placed

on the ankles, the
thighs and the trunk

Low pass
Butterworth filter +
Boruta algorithm +

GBM + XGB for
feature selection +

XGB/RF/GBM/RBF-
SVM/MLP

Best performing:
RBF-SVM with
ACC = 79.85%,

SENS = 72.34–91.49%,
SPEC = 87.36–93.62%
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Li et al. (2020) [88] FoG detection 10 PD patients from
Daphnet dataset

Accelerometer data
from sensors placed

on the ankles, the
thighs and the trunk

Filtering +
segmentation + data

augmentation +
CNN with squeeze-

and-excitation blocks
for feature extraction

+ attention-
enhanced LSTM

ACC = 98.1–99.7%,
SENS = 95.1–99.1%,
SPEC = 98.8–99.8%
for generalized and

personalized models
with 10-fold

cross-validation;
AUC = 0.945,
ACC = 91.9%,

EER = 10.6% with
LOSO validation

Halder et al.
(2021) [92]

FoG states
classification

(pre-FoG, FoG,
pre-post-FoG,

no-FoG)

10 PD patients from
Daphnet dataset

Accelerometer data
from sensors placed

on the ankles, the
thighs and the trunk

Second-order
Butterworth low-pass

filtering + PCA +
kNN/MLP/SVM

Best performing:
kNN with

ACC = 98.92%,
SENS = 94.97%,
SPEC = 99.19%,

F1-SCORE = 95.25%,
PREC = 95.55%

Palmerini et al.
(2017) [93]

Pre-FoG detection
(classification

between gait and
pre-FoG)

11 PD patients

Accelerometer and
gyroscope signals

from sensors placed
at the lower-back and

at the ankles

Windowing + feature
extraction + LDA

SENS = 83%,
SPEC = 67%,

AUROC = 0.76

Borzì et al. (2021) [94] FoG and pre-FoG
detection

11 PD patients on
and off therapy

A single angular
velocity signal from

2 shins-mounted
inertial sensors while
performing TUG tests

Normalization +
segmentation +

wrapper feature
selection +

SVM/kNN/LDA/LR

Best performing:
SVM with

ACC = 85.5–86.1%,
SENS = 84.1–85.5%,
SPEC = 85.9–86.3%,

F-SCORE = 73.4–74.6%

Shi et al. (2020) [85] FoG detection 63 PD patients

Accelerometer,
gyroscope and
magnetometer

signals from IMUs
placed on both ankles
and the spine while

performing TUG tests

Time-series
segmentation with

overlapping
windows + Morlet

CWT/FFT/raw data
+ 1D-CNN/2D-

CNN/LSTM

Best performing:
CWT + 2D-CNN

with ACC = 89.2%,
SENS = 82.1%,
SPEC = 96%,
GM = 88.8%

Camps et al.
(2018) [86] FoG detection 21 PD patients

Signals from a
waist-mounted IMU
with accelerometer,

gyroscope and
magnetometer while
performing several

walking tests
and ADLs

Spectral window
stacking (with FFT) +

RUSBoost/SVM-
RBF/CNN

Best performing:
CNN with

ACC = 89%,
SENS = 91.9%,

SPEC = 89.5% and
geometrical mean of
SENS-SPEC = 90.6%

Ghassemi et al.
(2018) [95]

Gait segmentation
(strides detection)

10 PD patients for the
1st experiment and

34 PD patients for the
2nd experiment

Acceleration and
angular velocity

signals from
foot-worn IMUs
while walking in
straight line (1st
experiment) and

walking, turning or
performing other

movements
(2nd experiment)

Peak detection
algorithm/Euclidean
DTW/Probabilistic

DTW/hierarchical HMM

Best performing for
the 1st experiment:

all with
F-SCORE = 99.8–100%;

For the 2nd
experiment: hHMM
with PREC = 98.5%,

REC = 93.5%,
F-SCORE = 95.9%

Kostikis et al.
(2015) [55] Diagnosis 25 PD patients and

20 healthy controls

Tremor
measurements from
accelerometer and

gyroscope
smartphone sensors

NB/LR/SVM/
AdaBoost/C4.5/RF

Best performing: RF
with SENS = 82%,

SPEC = 90%,
AUROC = 0.94
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Williamson et al.
(2021) [59] Diagnosis

202 PD patients and
178 healthy controls
from the UK Biobank

dataset
(https://www.

ukbiobank.ac.uk/,
accessed on 17
February 2022)

Acceleration signals
from a

wrist-worn sensor

Segmentation +
automatic segments
labelling (gait or low

movement) +
segmentation into
frames + features

extraction + GMM

SENS = 65–75%,
AUROC = 0.85

Park et al. (2021) [60] Diagnosis 25 PD patients and
21 healthy controls

Signals from IMUs
attached to the

thumb and index
fingers while

performing finger
tapping, hand

movements and
rapid altering
movements

Linear regression +
correlation between
motor parameters

and UPDRS scores +
DNN/LR for PD

diagnosis

For motor
parameters-UPDRS
scores correlation:

r = 0.838–0.849; Best
performing for

diagnosis: DNN with
AUROC = 0.888–0.950

Talitckii et al.
(2021) [65]

Differential diagnosis
between PD and

other extrapyramidal
disorders

41 PD patients and
15 patients with other

extrapyramidal
disorders

Accelerometer,
gyroscope and
magnetometer
signals form a

dorsal-mounted
sensor while
performing

UPDRS-related tasks

STFT + feature
extraction +

linear-PCA/RBF-
PCA/poly-

PCA/LDA/FA +
RF/SVM/LR/

LightGBM/stacked
ensemble model

Best performing:
standard classifier

with ACC = 72–85%,
PREC = 72–85%,
REC = 77–100%,

F1-SCORE = 76–88%

Varghese et al.
(2020) [66]

PD or other
movement disorders

(DD) patients and
healthy controls
classification; PD
patients and DD

patients or healthy
controls classification

192 PD patients,
75 DD patients and
51 healthy controls

Accelerometer data
from 2 smartwatches
placed at both hands

and answers from
electronic

questionnaires
distributed via
smartphones

FFT + PCA +
RBF-SVM/RF/ANN

Best performing for
PD/DD detection:

ANN with
ACC = 89%,
PREC = 94%,
REC = 92%,

F1-SCORE = 93%; for
PD detection:

RBF-SVM with
ACC = 79%,
PREC = 81%,
REC = 89%,

F1-SCORE = 85%

Loaiza Duque et al.
(2020) [67]

Healthy and
trembling subjects

classification; PD-ET
differential diagnosis

19 PD patients, 20 ET
patients and

12 healthy controls

Angular velocity
signals from

smartphone built-in
triaxial gyroscope
with the help of a

smartphone
application

Kinematic features
extraction + feature
selection based on

chi-square and
unbiased tree + linear-
SVM/LR/DA/NB/DT/

ensemble
subspace kNN

Best performing for
trembling patients

detection: ensemble
subspace kNN with

ACC = 97.2%,
SENS = 98.5%,

SPEC = 93.3%; for
PD-ET differential

diagnosis:
linear-SVM with

ACC = 77.8%,
SENS = 75.7%,
SPEC = 80%

Channa et al.
(2021) [83]

Classification
between PD patients
with tremor and PD

patients with
bradykinesia and
healthy controls

10 PD patients with
tremor, 10 PD
patients with

bradykinesia and
20 healthy controls

Accelerometer and
gyroscope signals

from a smart bracelet

Butterworth
bandpass IIR filter +
FFT to extract both
time and frequency
domain features +
feature selection

based on ANOVA
test + NN-SOMs
clustering/kNN

Best performing:
kNN with

ACC = 91.7%,
SENS = 83–100%,
SPEC = 89–100%

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
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Li et al. (2019) [57]
Diagnosis and

severity (H&Y scores)
estimation

13 PD patients and
12 healthy controls

Acceleration and
angular velocity
signals from a

prototype handle for
spoons with
embedded

inertial sensors

IIR filtering +
windowing + feature

extraction +
normalization +

kNN/Adaboost/RF/
linear-SVM for
diagnosis; RF
regression for

severity estimation

Best performing for
diagnosis:

linear-SVM with
ACC = 92%,

SENS = 92.31%,
SPEC = 91.67%,

AUROC = 0.98; for
severity estimation:

MAE = 0.166, r = 0.97

Koçer et al.
(2016) [56]

Diagnosis and
severity (H&Y scores)

estimation

35 PD patients and
20 healthy controls

Resting tremor
acceleration signals
from the Nintendo

Wii Remote
(Wiimote)

Windowing + feature
extraction (with FFT)

+ SVM

For diagnosis:
ACC = 89%,
PREC = 91%,

REC = 94%; for
severity estimation:

ACC = 33–77%

Bazgir et al.
(2015) [71]

Severity estimation
(UPDRS scores
classification)

52 PD patients

Accelerometer and
gyroscope data from
a smartphone placed

at the wrist

Filtering + STFT +
MLP trained with the

back propagation
algorithm

ACC = 91%,
SENS = 89.6%,
SPEC = 90.64%

Kim et al. (2018) [72]
Severity estimation

(UPDRS scores
classification)

92 PD patients

Accelerometer and
gyroscope signals

from a
wrist-worn device

High pass filter + FFT
+ RF/NB/linear

regression/
DT/MLP/SVM/CNN

Best performing:
CNN with

ACC = 85%,
kappa = 0.85,

r = 0.93, RMSE = 0.35

Dai et al. (2021) [73]
Severity estimation

(MDS-UPDRS
scores classification)

42 PD patients and
30 healthy controls

Accelerometer,
gyroscope and

geomagnetic data
from a

finger-mounted
sensor while

measuring rest and
postural tremor and

during finger tapping

Denoising with an
IIR bandpass filter +

FFT +
SVM/RF/kNN

Best performing:
SVM with

ACC = 96–97.33%,
SENS = 96.36–100%,
SPEC = 95–96.67%

Khodakarami et al.
(2019) [74]

Severity estimation
(UPDRS scores

classification) and
prediction of

response to levodopa
(absolute value
and percentage)

151 PD patients and
174 healthy controls

Signals from the
wrist-worn

smartwatch of the
Parkinson’s

Kinectigraph system

Feature extraction +
JMIM-based feature
selection + (+PCA)

LR/RBF-
SVM/gradient
boosting DTs

Best performing for
severity estimation:

LR with
AUROC = 0.79–0.88,
AUPR = 0.65–0.88;

for absolute levodopa
response estimation
AUROC = 0.92 and

AUPR = 0.87; for
levodopa response

percentage
estimation

AUROC = 0.82,
AUPR = 0.73

Javed et al.
(2018) [58]

Diagnosis and
treatment response

index
(TRIS) estimation

19 PD patients and
22 healthy controls

Accelerometer and
gyroscope data from

both wrists using
SHIMMER3 sensors

while performing
hand rotation tests
before and after the
dose administration

PCA/stepwise
regression/LASSO

regression +
SVM/linear

regression/DT/RF

Best performing for
diagnosis: stepwise
regression + SVM

with ACC = 89%; for
TRIS estimation:

RMSE = 0.69, r = 0.84

Watts et al.
(2021) [100]

PD patients
classification

according to their
levodopa regimens

and response

26 PD patients

Bradykinesia and
dyskinesia-related

signals from Personal
KinetiGraph (PKG),
demographics and

MDS-UPDRS-
III scores

k-means for
clustering based on
regimen features +

RF for classification
based on PKG

features,
demographics and

MDS-UPDRS-
III scores

ACC = 86.9%,
SENS = 86.5%,
SPEC = 87.7%,
PPV = 95.3%,

F1-SCORE = 90.7%,
AUROC = 0.871
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Pfister et al.
(2020) [98]

On/Off/Dyskinesia
motor states
classification

30 PD patients

Data from a
wrist-worn

accelerometer in a
free-living

environment

Data augmentation +
CNN/SVM/kNN/

RF/MLP

Best performing:
CNN with

ACC = 65.4%,
Kohen’s Kappa = 0.47,
SENS = 64.45–66.68%,
SPEC = 66.72–89.48%,

F1-SCORE =
62.4–69.01%, 1vsALL
ACC = 66.7–82.56%

Eskofier et al.
(2016) [79]

Bradykinesia
detection 10 PD patients

Accelerometer data
from IMUs mounted

on both hands

Timeseries
segmentation +

AdaBoost/PART/
kNN/SVM/CNN-

DNN

Best performing:
DNN

ACC = 90.9%

Shawen et al.
(2020) [80]

Tremor and
bradykinesia

detection; severity
estimation (UPDRS
scores classification)

13 PD patients

Accelerometer and
gyroscope signals

from a flexible
skin-mounted
sensors and

accelerometer signals
from a wrist-worn

smartwatch

Cubic spline
interpolation +
segmentation +

high-pass filtering +
time, frequency,

entropy, correlation
and derivative-based

feature extraction
+ RF

For tremor detection:
AUROC = 0.68–0.79;

for bradykinesia
detection:

AUROC = 0.61–0.69;
for tremor severity

estimation:
AUROC = 0.67–0.77;

for bradykinesia
severity estimation:
AUROC = 0.59–0.66

San-Segundo et al.
(2020) [81]

Tremor detection;
tremor

duration estimation

12 PD patients for
laboratory set and
6 PD patients for
in-the-wild set

Accelerometer
signals from

wrist-worn sensors

Downsampling +
FFT + unsupervised
non-negative tremor

factorization +
feature extraction
manually/with a
CNN + RF/MLP

Best performing for
tremor detection:
CNN + MLP with
AUC = 0.887; for
tremor duration

estimation:
MAE = 4.1–9.1%

Ibrahim et al.
(2020) [82]

Tremor onset
detection 13 PD patients

Signals from
hand-mounted IMUs

while performing
6 different rest,
postural and
motor tasks

Butterworth filtering
+ zero-phase shifting

+ Hilbert-Huang
Transform + MLP

ACC = 92.9%,
PREC = 98.7%,
REC = 86.7%,
SPEC = 98.9%,

F1-SCORE = 0.923

Som et al. (2020) [61] Diagnosis

152 healthy subjects
for pre-training and

18 PD patients and 16
healthy controls for

the final classification

Accelerometers
signals from a

wrist-worn sensor
while performing

various ADL for the
pre-training +

accelerometer signals
from 6 sensors
located at the

sternum, the lumbar,
both ankles and

wrists while walking

Zero-centering +
normalization +
segmentation +

feature extraction
with pre-trained

convolutional AE +
PCA/global-average-

pool layer
+ SVM/MLP

Best performing:
MLP with

ACC = 68.64–73.81%,
PREC = 69.27–76.53%,
REC = 68.64–73.81%,

F1-SCORE =
67.65–73.89%

Ricci et al. (2020) [62] Diagnosis

30 newly diagnosed
untreated PD
patients and

30 healthy controls

Acceleration, angular
velocity and

orientation signals
from a network of

14 IMUs distributed
in the whole body

Feature selection
with ReliefF ranking
and Kruskal–Wallis +

NB/kNN/SVM

Best performing:
SVM with

ACC = 95%,
PREC = 95.1%,
AUROC = 0.95

De Vos et al.
(2020) [69]

PD and PSP
differential diagnosis

20 PD patients and
21 PSP patients

Accelerometer,
gyroscope and
magnetometer

signals from 6 IMUs
placed on the lumbar

spine, the sternum,
both wrists and feet

ANOVA + LASSO
+ LR/RF

Best performing: RF
with ACC = 88%,

SENS = 86%,
SPEC = 90%
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Table A1. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Moon et al.
(2020) [68]

PD and ET
differential diagnosis

524 PD patients and
34 ET patients

Balance and gait
characteristics from 6
IMUs placed on the
lumbar spine, the

sternum, both wrists
and feet

NN/SVM/kNN/
DT/RF/LR

Best performing: NN
with ACC = 89%,

PREC = 61%,
REC = 61%,

F1-SCORE = 61%

Kuhner et al.
(2017) [63]

Diagnosis;
correlation with
severity metrics

14 PD patients and
26 healthy controls

Fusion of
accelerometer,
gyroscope and
magnetometer

signals from XSens
motion capture suit
while performing
several motor tests

RF with probability
distributions for

classification
PCA for correlation

For diagnosis:
ACC = 86–94.6%,
SENS up to 91.5%
and SPEC up to

97.2%; for correlation
between the 1st pc

and the UPDRS
scores: r = 0.79

Caramia et al.
(2018) [64]

Diagnosis and
severity estimation

(H&Y scores
classification)

25 PD patients and
25 healthy controls

Accelerometer,
gyroscope and
magnetometer

signals from 8 IMUs
attached to both feet

dorsum, thighs,
shanks and to the
chest and lumbar

Extraction of range of
motion

parameters/spatio-
temporal parameters

(+PCA) +
LDA/NB/kNN/linear-
SVM/RBF-SVM/DT

+ majority voting
with equal

weights/weights
analogue to the

individual accuracies

Best performing for
diagnosis: majority
voting with weights

analogue to the
individual accuracies
with ACC = 96%; for
severity estimation:

RBF-SVM with
ACC = 87.75–94.5%

Hssayeni et al.
(2021) [76]

Severity (UPDRS-III
scores) estimation 24 PD patients

Angular velocity
from one

wrist-mounted and
one ankle-mounted

inertial sensor

Gradient tree
boosting/dual-

channel LSTM with
hand-crafted features
and with or without
transfer learning/1D-
CNN-LSTM for raw

signals/2D-CNN-
LSTM for

time-frequency data
+ ensemble learning

Best performing:
ensemble of

dual-channel LSTM
with hand-crafted

features and transfer
learning,

1D-CNN-LSTM for
raw signals and

2D-CNN-LSTM for
time-frequency data

with r = 0.79,
MAE = 5.95

Butt et al. (2020) [77]
Severity

(MDS-UPDRS III
scores) estimation

64 PD patients and
50 healthy controls

Gyroscope and
geomagnetic data

from
4 wrist-mounted

IMUs and
1 foot-mounted IMU

Kolmogorov–
Smirnov test +

Mann–Whitney
U-test +

normalization +
CFS/PCA

ranker/correlation
attribute

evaluation/chi-
square attribute

evaluation/wrapper
subset evaluation +

SVR/RF/LR/ANFIS

Best performing: CFS
+ ANFIS with

r = 0.814,
RMSE = 0.101

Mirelman et al.
(2021) [75]

Severity estimation
(H&Y stages
classification)

332 PD patients and
100 healthy controls

Accelerometer and
gyroscope signals

from sensors placed
on the ankles, the

wrists and the lower
back while

performing various
walking tests +

demographic data

Low-pass
Butterworth filter +

feature selection
based on RF

permutation impor-
tance/neighborhood

component
analysis/mRMR +

RUSBoost +
DT/QDA for
weak learner

SENS = 72–84%,
SPEC = 69–80%,

AUROC = 0.76–0.90
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Table A1. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Stamate et al.
(2018) [78]

Identification of
failures to follow the

UPDRS-III
movement protocol

12 PD patients

Motor signals from
smartphone sensors

with the
cloudUPDRS
application

Filtering + frequency
transformations +

extra tree/Bernoulli
NB/Gaussian

NB/MLP/RF/Gradient
Boosting/Bagging/
AdaBoost/RCNN

ACC = 78%,
F1-SCORE = 82%,

AUROC = 0.87

Belgiovine et al.
(2018) [99]

L-dopa induced
dyskinesia detection 18 PD patients

Accelerometer and
angular velocity data

from smartphone
placed on the wrist

(for upper-limb
experiment) or on the

hip (for lower-
limb experiment)

z-score normalization
+ DT/Gaussian-

SVM/linear-SVM

Best performing:
SVM (with both

kernels) with
ACC = 65.0–82.0%,

MACRO F1-SCORE
= 0.65–0.82

Table A2. Studies based on pressure and force sensors.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Aversano et al.
(2020) [102]

Diagnosis and
severity estimation

(H&Y scores
classification)

93 PD patients and
73 healthy controls

from 3 merged
datasets [106]

Vertical GRF signals
from 8 sensors

located underneath
each foot

Feed-forward DNN

For diagnosis:
ACC = 99.29–99.52%;

for severity
estimation:

ACC = 98.57–99.1%

El Maachi et al.
(2020) [103]

Diagnosis and
severity estimation

(H&Y scores
classification)

93 PD patients and
73 healthy controls

from 3 merged
datasets [106]

Vertical GRF signals
from 8 sensors

located underneath
each foot

Gait segmentation +
1D-CNN/DNN/

MLP/NB/RF

Best performing for
diagnosis: 1D-CNN
with ACC = 98.7%,

SENS = 98.1%,
SPEC = 100%; for

severity estimation:
ACC = 85.3%,
PREC = 87.3%,
REC = 85.3%,

F1-SCORE = 85.3%

Xia et al. (2020) [104]

Diagnosis and
severity estimation

(H&Y scores
classification)

93 PD patients and
73 healthy controls

from 3 merged
datasets [106]

Vertical GRF signals
from 8 sensors

located underneath
each foot

Dual-modal CNN +
attention-enhanced

LSTM (DCAL-
STM)/baseline DL

models removing one
of the previous stages
(DCNN/DALSTM/

DCLSTM/CNN-
LSTM)/

feature-based models

Best performing for
diagnosis:

DCALSTM with
ACC = 99.07–99.31%,
SENS = 99.10–99.35%,
SPEC = 98.98–99.35%;

for severity
estimation:

ACC = 98.03–99.01%

Nancy Jane et al.
(2016) [101]

Severity estimation
(H&Y scores
classification)

93 PD patients and
73 healthy controls

from 3 merged
datasets [106]

Vertical GRF signals
from 8 sensors

located underneath
each foot

Q-backpropagation/
Levenberg–

Marquardt/GD/
GDM/SCG for a time

delay NN

Best performing:
Q-BTDNN with

ACC = 90.91–92.19%

Balaji et al.
(2021) [105]

Severity estimation
(H&Y scores
classification)

93 PD patients and
73 healthy controls

from 3 merged
datasets [106]

Vertical GRF signals
from 8 sensors

located underneath
each foot

Normalization +
spatiotemporal

feature extraction +
Shapiro–Wilk test +
feature selection +

kNN/NB/Bagging
classifier/SVM

Best performing:
SVM with

ACC = 98.8%,
SENS = 96.6%,
SPEC = 99.6%,
PPV = 99.1%,
FPR = 3.4%,

PREC = 99.1%,
F-SCORE = 97.8%,

MCC = 0.98
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Table A2. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Papavasileiou et al.
(2017) [107]

Differential diagnosis
between PD,

post-stroke patients
and healthy controls

5 PD patients,
3 post-stroke patients

and 3 healthy
controls

Ground contact force
data from barometric

pressure sensors
placed on both feet

Multiplicative
multi-task feature

learning
(MMTFL)/single task

learning (STL)

Best performing:
MMTFL

AUROC = 0.880–0.994

Khoury et al.
(2019) [108]

Diagnosis and
differential diagnosis

between PD, HD,
ALS and

healthy controls

93 PD patients and
73 healthy controls

from 3 merged
datasets [106] for
diagnosis; 15 PD
patients, 20 HD
patients, 13 ALS

patients and
16 healthy controls

for differential
diagnosis

Vertical GRF signals
from 8 sensors

located underneath
each foot

Feature selection
with RF-based

wrapper method +
kNN/DT/RF/NB/

SVM/k-
means/GMM

Best performing
for diagnosis:

kNN/RF/SVM with
ACC = 81.25–90.91%,
PREC = 81.43–89.41%,
REC = 71.48–88.35%,

F-SCORE =
79.45–86.83%; for PD
vs. ALL differential

diagnosis: kNN with
ACC = 90%,

PREC = 90.18%,
REC = 90%,

F-SCORE = 90.09%

Table A3. Studies based on image and depth sensors.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Guayacán et al.
(2020) [111] Diagnosis 11 PD patients and

11 healthy controls
Video recordings

while walking
3D spatio-temporal

CNN ACC = 88–90%

Reyes et al. (2019)
[109] Diagnosis 88 PD patients and

94 healthy controls
Gait samples from

MS Kinect

Cropping noisy parts
+ LSTM/1D-

CNN/CNN-LSTM

Best performing:
CNN-LSTM with

ACC = 83.1%, PREC
= 83.5%, REC =

83.4%, F1-SCORE =
81%, Kappa = 64%

Buongiorno
(2019) [110]

Diagnosis and
severity estimation
(mild vs. moderate)

16 PD patients and
14 healthy controls

Postural and
kinematics features
from MS Kinect v2

sensor while
performing 3 motor
exercises (gait, finger

and foot tapping)

Feature selection
+ SVM/ANN

Best performing for
diagnosis: gait-based

ANN with
ACC = 89.4%,
SENS = 87.0%,

SPEC = 91.8%; for
severity estimation:

ACC = 95.0%,
SENS = 90.0%,
SPEC = 99.0%

Grammatikopoulou
et al. (2019) [117]

Severity estimation
(UPDRS scores
classification)

12 advanced PD
patients and 6 PD

patients in
initial stage

Skeletal features from
MS Kinect v2 RGB

videos while playing
an exergame

Transformation to
local coordinate

system + two parallel
LSTMs (the 1st

trained with raw
joint coordinates and

the 2nd with joint
line distances)

ACC = 77.7%

Tucker et al.
(2015) [122]

Medication
adherence estimation
(on/off medication

classification)

7 PD patients

Skeletal joints 3D
position, velocity and

acceleration from
MS Kinect

C4.5 DT for
generalized model;
C4.5 DT, RF, SVM,

IBk for
personalized models

for generalized
model:

ACC = 36.2–77.9%;
for personalized

models:
ACC = 67.7–100%
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Table A3. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Li et al. (2018) [120]

TUG subtasks
segmentation and
time estimation for

each subtask

24 PD patients
Video recordings
while performing

TUG tests

Pose estimation with
OpenPose/Iterator
Error Feedback +

SVM/LSTM

Best performing:
OpenPose + LSTM
with ACC = 93.1%,
PREC = 80.8–97.5%,

REC = 86.3–97%,
F1-SCORE =

83.5–97.3% for
subtasks

segmentation and
MAE = 0.32–1.07 for

time estimation

Wei et al. (2019) [123]

Development of a
virtual physical

therapist: movement
recognition

(repetitions and
sub-actions

detection), patient’s
errors identification
(satisfactory/non-

satisfactory
performance), task
recommendation

(regress/repeat/progress)

35 PD patients

Motion data recorded
by MS Kinect v2

sensor while
performing 3

balance/agility tasks

HMM for repetitions
and sub-actions

detection +
linear-SVM for

movement errors
identification +

{majority undersam-
pling/minority

oversam-
pling/decision

threshold
adjustment/hybrid
oversampling with

feature
standardization and
interpolation + RF}

for task
recommendation

For repetitions
detection:

ACC = 97.1–99.4%;
for sub-actions
segmentation:

SENS = 88.4–96.9%,
SPEC = 97.2–98.8%;

for errors
identification:

ACC = 86.3–94.2%;
best performing for

tasks
recommendation:

hybrid oversampling
+ RF with

ACC = 81.8–95.7%,
FPR = 2.8–5.4%

Hu et al. (2019) [121] FoG detection 45 PD patients
Videos collected

while performing
TUG tests

Graph representation
of videos +

pretrained features
(Res-Net 50 vertex,

C3D vertex and
context features) +

graph sequence-RNN
(Bi-directional GS-

GRU/Bi-directional
GS-LSTM/forward
GS-GRU/forward

GS-LSTM) + fusion

Best performing:
linear fusion of
Bi-directional

GS-GRU with context
model with
AUC = 0.90,

SENS = 83.8%,
SPEC = 82.3%,
ACC = 82.5%,

Youden’s J = 0.66,
FPR = 17.7%,
FNR = 16.2%

Li et al. (2018) [118]

Binary classification
between pathological

(PD/LID) and
normal motion;

multiclass
classification (PD

with LID, PD without
LID and normal);

levodopa-induced
dyskinesia severity
(UDysRS-III scores)

estimation;
parkinsonism

severity (UPDRS-III
scores) estimation

9 PD patients

2D-Video recordings
while performing

communication and
drinking tasks (for

dyskinesia detection)
and while

performing leg agility
and toe tapping tasks

(for parkinsonism
detection)

Convolutional pose
estimators + RF

For binary
classification:

AUC = 0.634–0.930,
F1-SCORE =
50–90.6%; for

multiclass
classification:
ACC = 71.4%,

SENS = 83.5–96.2%,
SPEC = 68.4–95.7%;

for UDysRS-III
estimation:

RMSE = 2.906,
r = 0.741; for
UPDRS-III
estimation:

RMSE = 7.765,
r = 0.53

Vivar-Estudillo et al.
(2018) [112] Diagnosis 18 PD patients and

22 healthy controls

Position, velocity and
rotation data

regarding hand
movements from

leap motion sensor

Texture features
extraction with SDH
+ kNN/SVM/DT/

LDA/LR/ensembles

Best performing:
bagged tree with
ACC = 98.62%,
SENS = 98.43%,
SPEC = 98.80%,
PREC = 98.80%
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Table A3. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Moshkova et al.
(2020) [113] Diagnosis 16 PD patients and

16 healthy controls

Signals from leap
motion sensor while

performing hand
motor tasks

according to the
MDS-UPDRS-III

Features extraction +
kNN/SVM/DT/RF

Best performing:
SVM with

ACC = 98.4% when
features are extracted

from all the tasks

Ali et al. (2020) [114]

Diagnosis;
classification

between PD patients
with medication,

without medication
and healthy controls

87 PD patients with
medication, 119 PD

patients without
medication and

139 healthy controls

Videos while
performing hand

motor tasks

Segmentation to
frames + temporal
segmentation with

CNN + spatial
segmentation with
CNN-AE + FFT for
feature extraction

+ SVM

Best performance
when combining

2 tasks for diagnosis:
ACC = 91.8%; for

3-class classification:
ACC = 73.5%

Liu et al. (2019) [119]

Severity estimation
(Bradykinesia-

related MDS-UPDRS
scores classification)

60 PD patients
Video recordings
while performing
hand motor tests

Pose estimator NN +
feature extraction +

kNN/RF/linear-
SVM/RBF-SVM

Best performing:
RBF-SVM with
ACC = 89.7%,

PREC = 20–100%,
REC = 60–100%,

F1-SCORE =
33.3–100%

Rajnoha et al.
(2018) [116] Diagnosis

50 PD patients and
50 age-matched
healthy controls

Face images
extracted from video

recordings

HOG for face
detection + CNN for

embeddings
generation +

kNN/DT/RF/
XGBoost/SVM

Best performing:
DT:ACC = 67.33%
with leave-one-out
cross validation, RF:
ACC = 60.7–85.92%
with train-test split

Jin et al. (2020) [115] Diagnosis
33 PD patients and

31 elderly
healthy subjects

Short videos while
imitating images of

smiley people

Splitting videos to
frames + coordinate

points extraction
with Face++ +

transformation from
absolute to relative

coordinates +
features extraction +

LASSO +
LR/SVM/DT/RF/

LSTM/RNN

Best performing:
SVM with

PREC = 99%,
REC = 99%,

F1-SCORE = 99%

Table A4. Studies based on voice or audio sensors.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Zhang et al.
(2017) [127] Diagnosis

23 PD patients and
4 healthy controls
from the Oxford’s

dataset (https:
//archive.ics.uci.
edu/ml/datasets/

parkinsons+
telemonitoring,
accessed on 17
February 2022);

20 PD patients and
20 healthy controls

from the
Istanbul dataset

(https://archive.ics.
uci.edu/ml/

datasets/Parkinson%
27s+Disease+
Classification,
accessed on 17
February 2022)

Vocal measurements
from a smartphone

application

Stacked AEs +
KELM/linear-

SVM/MLP-
SVM/RBF-

SVM/kNN/NB/
CART/LDA

Best performing:
kNN with

ACC = 94–98%

https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
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Table A4. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Zhang et al.
(2018) [124] Diagnosis

500 PD patients and
500 healthy controls

from the mPower
study [126]

Vocal measurements
from a smartphone

application

DT-STFT +
LSTM/CNN

Best performing:
CNN with

ACC = 90.45%

Tougui et al.
(2020) [125] Diagnosis

453 PD patients and
1037 healthy controls

from the mPower
study [126]

Vocal measurements
from a smartphone

application

Time, frequency and
cepstral domain

(with DFT) features +
feature selection with

ANOVA/LASSO +
linear-

SVM/kNN/RF/
XGBoost

Best performing:
LASSO + XGBoost

with ACC = 95.78%,
SENS = 95.32%,
SPEC = 96.23%,

F1-SCORE = 95.74%

Almeida et al.
(2019) [128] Diagnosis 64 PD patients and

35 healthy controls

Audio recordings
from acoustic
cardioid and
smartphone

Phonation/speech/
unvoiced/voiced

features +
kNN/MLP/OPF/SVM

Best performing:
kNN based on

phonation features
with

ACC = 92.94–94.55%,
SENS = 92.94–94.55%,
SPEC = 89.21–94.26%,
AUROC = 0.87–0.92

Arora et al.
(2021) [129]

Differential diagnosis
between PD patients,

patients with RBD
and healthy controls;

severity
(MDS-UPDRS,

MoCA, ESS, BDI and
VAS scores)
estimation

335 PD patients,
112 patients with

RBD and 92 healthy
controls

Speech recording
from smartphones

Segmentation +
feature extraction +

feature selection + RF

For all the pairwise
classifications:

SENS = 59.4–74.9%,
SPEC = 67.4–73.2%;

for severity
estimation: MAE =
1–8 (MDS-UPDRS),

MAE = 1–14
(MDS-UPDRS I-III),
MAE = 1–2 (MoCA),

MAE = 2–3 (ESS),
MAE = 1–5 (BDI),

MAE = 6.5–10 (VAS)

Bayestehtashk et al.
(2015) [132]

Severity (mUPDRS
0–108 scores)

estimation
168 PD patients

Speech recordings
from a

portable device

Feature extraction
with harmonic model

+ Ridge/LASSO
regression/linear-SVR

Best performing:
ridge regression with
MAE = 5.5, explained

variance = 61%

Yoon et al.
(2019) [130]

Severity (UPDRS
0–176 scores)

estimation
42 PD patients

Phonation and
speech recordings
from an at-home

testing device

Standardization +
feature extraction +
{one-model-fits-all
approaches with
DT/GP/linear

regression/SVR/
ensemble}/{single

learning approaches
with DT/GP/linear

regres-
sion/SVR/ensemble}/

positive transfer
learning based on

Bayesian parameter
transfer model

Best performing:
positive transfer

learning with
MAE = 2–3

approximately

Raza et al.
(2021) [131]

Severity (UPDRS and
mUPDRS scores)

prediction in
6 months

42 PD patients

Phonation and
speech recordings
from an at-home

testing device

Feature extraction
+ XGBoost

MAE = 6.45 (UPDRS),
MAE = 5.09
(mUPDRS)
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Table A5. Studies based on other types of sensors.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Rahman et al.
(2020) [133] Diagnosis 5 PD patients and

5 healthy controls

EEG signals from a
portable headset with
sensors placed at the

forehead while
watching 4 videos

which provoke
4 different emotions

Feed-forward NN
trained with Adam

optimization
algorithm

ACC = 96.5%,
PREC = 95.5%,

REC = 97%,
F1-SCORE = 97.6%

Kleinholdermann
et al. (2021) [134]

Severity
(MDS-UPDRS III
scores) estimation

45 PD patients

sEMG signals from a
wrist-worn band

while performing a
simple

tapping activity

Windowing + feature
extraction + linear
regression/poly-
SVM/kNN/RF

Best performing: RF
regression with

r = 0.739

Capecci et al.
(2019) [135]

Emotion
(positive/negative)

recognition
36 PD patients

Body temperature,
heart rate and

galvanic response
from

smartwatch sensors

Linear-SVM/poly-
SVM/RBF-SVM

Best performing:
RBF-SVM with

ACC = 88.6–91.3%

Lacy et al.
(2018) [136] Diagnosis

49 PD patients and
41 healthy controls
(1st dataset); 58 PD

patients and
29 healthy controls

(2nd dataset)

Position measures
from

2 electromagnetic
sensors located at the

thumb and index
finger while
performing

finger-tapping tests

Low-pass
Butterworth filtering

+ velocity and
acceleration features

extraction from
derivatives + ESN

AUROC = 0.802

Picardi et al.
(2017) [137]

Diagnosis;
classification

between different
cognition levels (PD
patients with normal
cognition-PDNC, PD

patients with mild
cognitive

impairment-PDMCI
and PD patients with

dementia-PDD)

22 PDNC, 23 PDMCI,
10 PDD and

30 age-matched
healthy controls

Flexion signals from
a glove with

finger-mounted
sensors and position

and orientation
information from a

wrist-worn
tracking system

Feature extraction +
Cartesian Genetic

Program-
ming/SVM/ANN

Similar performance
for all the algorithms:
AUROC = 0.72–0.99
for all the pair-wise

classifications

Memedi et al.
(2015) [138]

Symptom detection
(bradykine-

sia/dyskinesia)

65 advanced
PD patients

Spatiotemporal
features from spiral
drawings, produced
with a touchscreen

telemetry device

PCA +
MLP/RF/RBF-

SVM/linear-
SVM/LR

Best performing:
MLP with

ACC = 84.0%,
SENS = 75.7%,
SPEC = 88.9%,
AUROC = 0.86,

weighted
Kappa = 0.65

Pham et al.
(2019) [139] Diagnosis

42 PD patients and
43 healthy controls
from newQWERTY

MIT-CSXPD database
(https:

//www.physionet.
org/content/

nqmitcsxpd/1.0.0/,
accessed on 17
February 2022)

keystroke logs
time series

CNN/LSTM/CNN-
GoogleNet/CNN-
AlexNet/LSTM-
fuzzy recurrent

plots (FRP)

Best performing:
LSTM-FRP (m = 3)

with
ACC = 65.14–81.90%,
SENS = 66.67–95%,

SPEC = 63.33–66.67%

Matarazzo et al.
(2019) [140]

Medication response
detection

(improved/not
changed) and

medication response
prediction in

21 weeks

29 PD patients and
30 age-matched
healthy controls

Keystroke logs with
the help of

neuroQWERTY
software

RNN

For medication
response detection:

ACC = 76.5%,
AUROC = 0.75,

kappa = 0.47; for
medication response

prediction:
AUROC = 0.69–0.75

https://www.physionet.org/content/nqmitcsxpd/1.0.0/
https://www.physionet.org/content/nqmitcsxpd/1.0.0/
https://www.physionet.org/content/nqmitcsxpd/1.0.0/
https://www.physionet.org/content/nqmitcsxpd/1.0.0/
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Table A6. Studies based on the combination of previous types of sensors.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Aharonson et al.
(2018) [141] Diagnosis 22 PD patients and

20 healthy controls

Signals from sensors
mounted on a

support walker
(2 encoders on the

wheels, 2 force
sensors underneath
the hand grips and

a tri-axial
accelerometer) while

performing two
walking tests

Filtering + wavelet
denoising for

accelerometer signals
+ differentiation for

encoder signals +
ranked feature

selection/PCA +
k-means/FLDA

Best performing:
PCA + FLDA with

SENS = 91–96%,
SPEC = 95–100%

Pardoel et al.
(2021) [142]

FoG detection
(pre-fog, transition,

FoG, total-FoG,
no-FoG events
classification)

11 PD patients

Accelerometer and
gyroscope signals

from 4 foot-mounted
sensors and plantar

pressure distribution
data from

in-sole sensors

Data windowing +
feature extraction in
time and frequency

domain with FFT and
DWT + feature
selection with

mRMR/Relief-f
+ RUSBoost

For
total-FoG/no-FoG

classification:
SENS = 61.9–78%,

SPEC = 83.2–91.6%;
for FoG/no-FoG

classification:
SENS = 81.4–98.5%,
SPEC = 83.2–91.6%

Wu et al. (2020) [143]
Severity estimation
(UPDRS-III scores

classification)
17 PD patients

Acceleration signals
from hand-mounted

sensors and
displacement signals

from
detection devices

Detrending +
Wavelet transform +
PCA + linear regres-
sion/SVM/NN/RF

Best performing: NN
with

ACC = 91.18–95.30%

Cole et al.
(2014) [144]

Tremor and
dyskinesia detection;
severity estimation

for tremor and
dyskinesia

8 PD patients and
4 healthy controls

Acceleration and
electromyography

signals

Dynamical
DNN/SVM/HMM

for tremor and
dyskinesia detection;
Bayesian maximum
likelihood classifier

for severity
estimation

Best performing for
tremor detection:

HMM with global
error = 6.1%; for

dyskinesia detection:
DNN with global
error = 8.8%; for
tremor severity

estimation:
SENS = 95.2–97.2%,
SPEC = 97.1–99.3%;

for dyskinesia
severity estimation:
SENS = 91.9–95%,

SPEC = 94.6–98.6%

Hossen et al.
(2012) [145]

Differential diagnosis
between PD and

ET patients

39 PD patients and
41 ET patients

Signals from a
hand-mounted

accelerometer and
2 sEMG sensors

placed at the forearm
flexors and extensors

Filtering + feature
extraction with SDE

based on wavelet
decomposition +

MLP trained with the
back-propagation

algorithm

ACC = 91.6%,
SENS = 95%,

SPEC = 88.2%

Tahafchi et al.
(2019) [146] FoG detection 4 PD patients

Accelerometer and
gyroscope signals

from 2 foot-mounted
IMUs and EMG

signals from
2 Shimmer modules

Fully connected NN AUC = 0.906–0.963

Huo et al.
(2020) [147]

Diagnosis; Severity
(UPDRS scores)
estimation; PD

patients with UPDRS
> 0 and PD patients

with UPDRS = 0 (due
to DBS) classification

23 PD patients and
10 healthy controls

Bio-signals from
hand-placed force
sensor, 3 IMUs and

4 MMG sensors
during different

symptoms
measurements

(elbow rigidity, wrist
rigidity, bradykinesia,

kinetic tremor,
postural tremor,

rest tremor)

Voting classifier of
3 best performing

basic classifiers (kNN,
MLP and AdaBoost)

For severity
estimation:

ACC = 80.1–91.8%
(avg = 85.4%); for

diagnosis:
ACC = 95.0–98.9%

(avg = 96.6%); for PD
patients with UPDRS
> 0 and UPDRS = 0

classification:
ACC = 85.2–91.1%

(avg = 89.0%)
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Table A6. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Yu et al. (2018) [148] Severity estimation;
Fall risk detection 22 PD patients

Signals from
accelerometers,
gyroscopes and
thermometers
embedded in

5 sensors attached to
the chest, both thighs

and feet while
performing TUG tests

CNN for
multi-source

multi-task
learning/single
feature-based
assessment +

kNN/SVM/NB

Best performing for
severity estimation:
CNN for MML with

RMSE = 0.060; for fall
risk detection:
PREC = 92.5%,
REC = 95.8%,

F-SCORE = 94%

Sajal et al.
(2020) [149]

Diagnosis and
severity estimation

(voice and rest
tremor MDS-UPDRS
scores classification)

52 PD patients for
tremor

measurements; 23 PD
patients and

8 healthy subjects for
voice measurements
(https://archive.ics.

uci.edu/ml/
datasets/parkinsons,

accessed on 17
February 2022)

Rest tremor data
from a smartphone

built-in accelerometer
and vowel phonation

recordings from a
smartphone

For tremor data:
detrending + wavelet

filtering
For vocal data:

bandpass filter +
down-sampling
+ mRMR feature

selection algorithm +
kNN/SVM/NB

+ majority voting

Best performing for
severity estimation:

kNN with
ACC = 93.7%,
SENS = 94.6%,

SPEC = 93.7% (vocal
features),

ACC = 90.5–98.5%,
SENS = 87.5–94%,
SPEC = 96–100%

(tremor features); for
diagnosis: kNN +

SVM + NB ensemble
averaging with
ACC = 99.8%

Oung et al.
(2018) [150]

Severity estimation
(healthy/mild/

moderate/severe
classification)

15 healthy controls,
20 PD patients with
mild severity, 20 PD

patients with
moderate severity,

15 PD patients with
severe symptoms

Accelerometer,
gyroscope and

magnetometer data
from 4 wrist- and

limb-mounted IMUs
and speech signals

recorded with
a headset

Segmentation + EWT
for motor

signals/EWPT for
speech signals +

Hilbert
transformations +

wavelet energy and
entropy-based

feature extraction +
kNN/PNN/ELM

Best performing:
ELM with

ACC = 92.45–95.93%

Papadopoulos et al.
(2020) [151]

Diagnosis;
tremor/fine-motor

impairment detection

14 PD patients and
8 healthy controls

(1st dataset), 26 PD
patients and

131 healthy controls
(2nd dataset)

Accelerometer data
from a smartphone

sensor; typing
dynamics from a

smartphone
virtual keyboard

Filtering + feature
extraction with

1D-CNN for
accelerometer data
and fully connected

NN for keystroke
data + attention

pooling module +
NN classifiers

For
tremor/fine-motor

impairment detection
on the 1st dataset:

SENS = 85.4–92.8%,
SPEC = 84.2–93.6%,

PREC = 92.1–93%; for
diagnosis on the 2nd
dataset: ensemble of

10 models with
AUROC = 0.834–0.868,
SENS/SPEC = 60%/

91.7–92%/68.9%

Heidarivincheh et al.
(2021) [152] Diagnosis

5 PD patients (on
medication) and

5 healthy controls

Acceleration signals
from a wrist-worn

sensor and silhouette
images from an
RGB-D camera
while cooking

{Convolutional VAEs
+ dense layers

(MCPD-
Net)}/CNN/unimodal
VAE/RF/LSTM/other
multimodal models

Best performing:
MCPD-Net with

PREC = 71%,
REC = 77%,

F1-SCORE = 66%

Wahid et al.
(2015) [153] Diagnosis 23 PD patients and

26 healthy controls

Spatial-temporal gait
features captured by
a video-camera and

GRF from
force platforms

Filtering +
Normalization

through multiple
regression +

KFD/NB/kNN/
SVM/RF

Best performing: RF
with AUROC = 0.96,

ACC = 92.6%,
SENS = 96%,
SPEC = 90%

https://archive.ics.uci.edu/ml/datasets/parkinsons
https://archive.ics.uci.edu/ml/datasets/parkinsons
https://archive.ics.uci.edu/ml/datasets/parkinsons
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Table A6. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Albani et al.
(2019) [154]

Diagnosis and
severity estimation

(UPDRS scores
classification)

25 PD patients and
15 healthy controls

for the final testing of
the pre-trained

models

Video recordings of
upper-limbs from an
RGB-D camera and

accelerometer,
gyroscope and
magnetometer
signals from

3 wearable sensors
attached to the thighs

and the chest

NB/LDA/MNR/kNN/
poly-SVM for

upper-limb
classification (1st

pretrained model);
(PCA) + kNN/SVM

for lower-limb
classification (2nd
pretrained model)

Best performing for
diagnosis: SVM

(1st model) + kNN
(2nd model) with

ACC = 91.5–98.6%;
for severity
estimation:

ACC = 60.7–79.1%

Joshi et al.
(2018) [155]

Facial expressivity
estimation

(classification and
regression)

117 PD patients Short interview
audio-video clips

Audio features
extraction (MFCC) +

visual features
extraction (AU

statistics) + HBNN
classifica-

tion/regression +
contextual

information
(gender/sentiment)

Best performing for
classification:

HBNN-sentiment
with

F1-SCORE = 0.55; for
regression:

MAE = 0.48

Barth et al.
(2012) [159] Diagnosis 18 PD patients and

17 healthy controls

Signals form a smart
pen (acceleration,

grip force, refill force,
vibration sound);

gyroscope and
accelerometer data

from a
shoe-mounted IMU

Chebyshev low pass
filter + linear forward
feature selection with

CFS/backtracking
facility + LDA/linear-

SVM/AdaBoost

Best performing:
linear forward

feature selection with
CFS + AdaBoost with

classification
rate = 97%,

SENS = 100%,
SPEC = 94%

Xu et al. (2020) [156] Diagnosis

31 PD patients and
35 healthy controls
from an extended
HandPD dataset

(http:
//wwwp.fc.unesp.

br/~papa/pub/
datasets/Handpd/,

accessed on 17
February 2022)

Pressure, tilt and
acceleration signals

from a smart pen
while performing

6 different
handwriting tasks

PCA + RF +
voting scheme

ACC = 88.8–89.4%,
SENS = 83.7–84.5%,
SPEC = 93.4–93.7%,

F1-SCORE =
87.2–87.7%

Gallicchio et al.
(2018) [157] Diagnosis

61 PD patients and
15 healthy controls
from a UCI dataset

(https:
//archive.ics.uci.
edu/ml/datasets/

Parkinson+Disease+
Spiral+Drawings+
Using+Digitized+
Graphics+Tablet,
accessed on 17
February 2022)

Pen position,
pressure and grip

angle while sketching
spirals on a tablet

Deep ESN/shallow
ESN + ensemble
learning or not

Best performing:
ensemble of DESNs
with ACC = 89.33%,

SENS = 90%,
SPEC = 80%

Pereira et al.
(2016) [158] Diagnosis

14 PD patients and
21 healthy controls
from an extended
HandPD dataset

(http:
//wwwp.fc.unesp.

br/~papa/pub/
datasets/Handpd/,

accessed on 17
February 2022)

Various signals from
a smart pen

(microphone, finger
grip, axial pressure of

ink refill, tilt and
acceleration) while

drawing spirals
and meanders

CNN architectures
(ImageNet/CIFAR-

10/LeNet)/OPF

Best performing for
meander dataset:
ImageNet with

ACC = 84.74–87.14%;
for spiral dataset:

OPF with
ACC = 77.92–83.77%

http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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Table A6. Cont.

Study Problem Dataset Population Input Data Analysis/Algorithms Evaluation

Schwab et al.
(2019) [160] Diagnosis

1853 subjects (PD
patients and healthy

subjects) from the
mPower study [126]

Touchscreen data
from a tapping

activity,
accelerometer data

from a walking
activity, performance
in a memory game,

vocal measurements
and demographics

from a mobile
application

RF/CNN/RNN for
each test + evidence
aggregation model

combining evidence
from all the

different tests

AUROC = 0.85,
AUPR = 0.87,

F1-SCORE = 82%

Prince et al.
(2019) [161] Diagnosis

1513 subjects (PD
patients and

healthy subjects)

Touchscreen data
from a tapping

activity,
accelerometer data

from a walking
activity, performance

in a memory game
and vocal

measurements from a
mobile app

LR/RF/DNN/CNN
for each test +

ensemble learning
combining the

previous classifiers

ACC = 82.0%,
F1-SCORE = 87.1%

Cook et al.
(2015) [162]

Diagnosis;
classification between
healthy older adults
and PD patients with

and without mild
cognitive impairment

(HOA/PDNC/
HMCI/PDMCI)

50 HOA and 25 PD
patients for diagnosis;
18 HOA, 16 PDNC, 9
PDMCI, 9 HMCI for
their classification

Signals from ambient
sensors in a smart

house environment
(infrared motion

sensors on the ceiling,
light sensors,

magnetic door
sensors, temperature
sensors and vibration

sensors on selected
items); accelerometer,

gyroscope and
magnetometer data

from hand- and
ankle- mounted

sensors

No dimensionality
reduction

technique/PCA/k-
means

clustering/random
resampling +

DT/NB/RF/SVM/
Ada-DT/Ada-RF

Best performing for
diagnosis: k-means

clustering + Ada-DT
with ACC = 80%,

AUC = 0.84; for the
multiclass

classification:
random resampling +

Ada-DT with
ACC = 86%,
AUC = 0.97
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Assessment of Parkinson’s Disease—A Review. Clin. Neurol. Neurosurg. 2019, 184, 105442. [CrossRef] [PubMed]

45. Zhang, H.; Song, C.; Rathore, A.S.; Huang, M.-C.; Zhang, Y.; Xu, W. MHealth Technologies Towards Parkinson’s Disease Detection
and Monitoring in Daily Life: A Comprehensive Review. IEEE Rev. Biomed. Eng. 2021, 14, 71–81. [CrossRef]

46. Sica, M.; Tedesco, S.; Crowe, C.; Kenny, L.; Moore, K.; Timmons, S.; Barton, J.; O’Flynn, B.; Komaris, D.-S. Continuous Home
Monitoring of Parkinson’s Disease Using Inertial Sensors: A Systematic Review. PLoS ONE 2021, 16, e0246528. [CrossRef]

47. Barrachina-Fernández, M.; Maitín, A.M.; Sánchez-Ávila, C.; Romero, J.P. Wearable Technology to Detect Motor Fluctuations in
Parkinson’s Disease Patients: Current State and Challenges. Sensors 2021, 21, 4188. [CrossRef]

48. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71.
[CrossRef]

49. Rastegari, E.; Ali, H. A Bag-of-Words Feature Engineering Approach for Assessing Health Conditions Using Accelerometer Data.
Smart Health 2020, 16, 100116. [CrossRef]

50. Juutinen, M.; Wang, C.; Zhu, J.; Haladjian, J.; Ruokolainen, J.; Puustinen, J.; Vehkaoja, A. Parkinson’s Disease Detection from 20-
Step Walking Tests Using Inertial Sensors of a Smartphone: Machine Learning Approach Based on an Observational Case-Control
Study. PLoS ONE 2020, 15, e0236258. [CrossRef]

51. Fernandes, C.; Fonseca, L.; Ferreira, F.; Gago, M.; Costa, L.; Sousa, N.; Ferreira, C.; Gama, J.; Erlhagen, W.; Bicho, E. Artificial
Neural Networks Classification of Patients with Parkinsonism Based on Gait. In Proceedings of the 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2024–2030.

52. Cuzzolin, F.; Sapienza, M.; Esser, P.; Saha, S.; Franssen, M.M.; Collett, J.; Dawes, H. Metric Learning for Parkinsonian Identification
from IMU Gait Measurements. Gait Posture 2017, 54, 127–132. [CrossRef]

53. Abujrida, H.; Agu, E.; Pahlavan, K. Machine Learning-Based Motor Assessment of Parkinson’s Disease Using Postural Sway, Gait
and Lifestyle Features on Crowdsourced Smartphone Data. Biomed. Phys. Eng. Express 2020, 6, 035005. [CrossRef] [PubMed]

54. Zhang, H.; Deng, K.; Li, H.; Albin, R.L.; Guan, Y. Deep Learning Identifies Digital Biomarkers for Self-Reported Parkinson’s
Disease. Patterns 2020, 1, 100042. [CrossRef]

55. Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.; Kotsavasiloglou, C. A Smartphone-Based Tool for Assessing Parkinsonian
Hand Tremor. IEEE J. Biomed. Health Inform. 2015, 19, 1835–1842. [CrossRef] [PubMed]

56. Koçer, A.; Oktay, A.B. Nintendo Wii Assessment of Hoehn and Yahr Score with Parkinson’s Disease Tremor. Technol. Health Care
2016, 24, 185–191. [CrossRef]

57. Li, N.; Tian, F.; Fan, X.; Zhu, Y.; Wang, H.; Dai, G. Monitoring Motor Symptoms in Parkinson’s Disease via Instrumenting Daily
Artifacts with Inertia Sensors. CCF Trans. Pervasive Comput. Interact. 2019, 1, 100–113. [CrossRef]

58. Javed, F.; Thomas, I.; Memedi, M. A Comparison of Feature Selection Methods When Using Motion Sensors Data: A Case Study
in Parkinson’s Disease. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5426–5429.

59. Williamson, J.R.; Telfer, B.; Mullany, R.; Friedl, K.E. Detecting Parkinson’s Disease from Wrist-Worn Accelerometry in the U.K.
Biobank. Sensors 2021, 21, 2047. [CrossRef] [PubMed]

60. Park, D.J.; Lee, J.W.; Lee, M.J.; Ahn, S.J.; Kim, J.; Kim, G.L.; Ra, Y.J.; Cho, Y.N.; Jeong, W.B. Evaluation for Parkinsonian
Bradykinesia by Deep Learning Modeling of Kinematic Parameters. J. Neural Transm. 2021, 128, 181–189. [CrossRef]

61. Som, A.; Krishnamurthi, N.; Buman, M.; Turaga, P. Unsupervised Pre-Trained Models from Healthy ADLs Improve Parkinson’s
Disease Classification of Gait Patterns. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering
in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 784–788.

62. Ricci, M.; Di Lazzaro, G.; Pisani, A.; Mercuri, N.B.; Giannini, F.; Saggio, G. Assessment of Motor Impairments in Early Untreated
Parkinson’s Disease Patients: The Wearable Electronics Impact. IEEE J. Biomed. Health Inform. 2020, 24, 120–130. [CrossRef]
[PubMed]

63. Kuhner, A.; Schubert, T.; Cenciarini, M.; Wiesmeier, I.K.; Coenen, V.A.; Burgard, W.; Weiller, C.; Maurer, C. Correlations between
Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease.
Front. Neurol. 2017, 8, 607. [CrossRef] [PubMed]

64. Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification
of Parkinson’s Disease from Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform.
2018, 22, 1765–1774. [CrossRef]

http://doi.org/10.3389/fnagi.2021.633752
http://doi.org/10.3389/fnins.2017.00555
http://doi.org/10.3389/fneur.2018.01036
http://www.ncbi.nlm.nih.gov/pubmed/30619024
http://doi.org/10.3389/fncom.2018.00072
http://doi.org/10.1016/j.clineuro.2019.105442
http://www.ncbi.nlm.nih.gov/pubmed/31351213
http://doi.org/10.1109/RBME.2020.2991813
http://doi.org/10.1371/journal.pone.0246528
http://doi.org/10.3390/s21124188
http://doi.org/10.1136/bmj.n71
http://doi.org/10.1016/j.smhl.2020.100116
http://doi.org/10.1371/journal.pone.0236258
http://doi.org/10.1016/j.gaitpost.2017.02.012
http://doi.org/10.1088/2057-1976/ab39a8
http://www.ncbi.nlm.nih.gov/pubmed/33438650
http://doi.org/10.1016/j.patter.2020.100042
http://doi.org/10.1109/JBHI.2015.2471093
http://www.ncbi.nlm.nih.gov/pubmed/26302523
http://doi.org/10.3233/THC-151124
http://doi.org/10.1007/s42486-019-00008-z
http://doi.org/10.3390/s21062047
http://www.ncbi.nlm.nih.gov/pubmed/33799420
http://doi.org/10.1007/s00702-021-02301-7
http://doi.org/10.1109/JBHI.2019.2903627
http://www.ncbi.nlm.nih.gov/pubmed/30843855
http://doi.org/10.3389/fneur.2017.00607
http://www.ncbi.nlm.nih.gov/pubmed/29184533
http://doi.org/10.1109/JBHI.2018.2865218


Sensors 2022, 22, 1799 52 of 56

65. Talitckii, A.; Kovalenko, E.; Anikina, A.; Zimniakova, O.; Semenov, M.; Bril, E.; Shcherbak, A.; Dylov, D.V.; Somov, A. Avoiding
Misdiagnosis of Parkinson’s Disease with the Use of Wearable Sensors and Artificial Intelligence. IEEE Sens. J. 2021, 21, 3738–3747.
[CrossRef]

66. Varghese, J.; Fujarski, M.; Hahn, T.; Dugas, M.; Warnecke, T. The Smart Device System for Movement Disorders: Preliminary
Evaluation of Diagnostic Accuracy in a Prospective Study. In Digital Personalized Health and Medicine; Series of Studies in Health
Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2020; Volume 270, pp. 889–893. [CrossRef]

67. Duque, J.D.L.; Egea, A.J.S.; Reeb, T.; Rojas, H.A.G.; González-Vargas, A.M. Angular Velocity Analysis Boosted by Machine
Learning for Helping in the Differential Diagnosis of Parkinson’s Disease and Essential Tremor. IEEE Access 2020, 8, 88866–88875.
[CrossRef]

68. Moon, S.; Song, H.-J.; Sharma, V.D.; Lyons, K.E.; Pahwa, R.; Akinwuntan, A.E.; Devos, H. Classification of Parkinson’s Disease
and Essential Tremor Based on Balance and Gait Characteristics from Wearable Motion Sensors via Machine Learning Techniques:
A Data-Driven Approach. J. Neuroeng. Rehabil. 2020, 17, 125. [CrossRef]

69. De Vos, M.; Prince, J.; Buchanan, T.; FitzGerald, J.J.; Antoniades, C.A. Discriminating Progressive Supranuclear Palsy from
Parkinson’s Disease Using Wearable Technology and Machine Learning. Gait Posture 2020, 77, 257–263. [CrossRef]

70. Borzì, L.; Varrecchia, M.; Sibille, S.; Olmo, G.; Artusi, C.A.; Fabbri, M.; Rizzone, M.G.; Romagnolo, A.; Zibetti, M.; Lopiano, L.
Smartphone-Based Estimation of Item 3.8 of the MDS-UPDRS-III for Assessing Leg Agility in People with Parkinson’s Disease.
IEEE Open J. Eng. Med. Biol. 2020, 1, 140–147. [CrossRef]

71. Bazgir, O.; Frounchi, J.; Habibi, S.A.H.; Palma, L.; Pierleoni, P. A Neural Network System for Diagnosis and Assessment of Tremor
in Parkinson Disease Patients. In Proceedings of the 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), Tehran,
Iran, 25–27 November 2015; pp. 1–5.

72. Kim, H.B.; Lee, W.W.; Kim, A.; Lee, H.J.; Park, H.Y.; Jeon, H.S.; Kim, S.K.; Jeon, B.; Park, K.S. Wrist Sensor-Based Tremor Severity
Quantification in Parkinson’s Disease Using Convolutional Neural Network. Comput. Biol. Med. 2018, 95, 140–146. [CrossRef]
[PubMed]

73. Dai, H.; Cai, G.; Lin, Z.; Wang, Z.; Ye, Q. Validation of Inertial Sensing-Based Wearable Device for Tremor and Bradykinesia
Quantification. IEEE J. Biomed. Health Inform. 2021, 25, 997–1005. [CrossRef] [PubMed]

74. Khodakarami, H.; Ricciardi, L.; Contarino, M.F.; Pahwa, R.; Lyons, K.E.; Geraedts, V.J.; Morgante, F.; Leake, A.; Paviour, D.;
De Angelis, A.; et al. Prediction of the Levodopa Challenge Test in Parkinson’s Disease Using Data from a Wrist-Worn Sensor.
Sensors 2019, 19, 5153. [CrossRef]

75. Mirelman, A.; Ben or Frank, M.; Melamed, M.; Granovsky, L.; Nieuwboer, A.; Rochester, L.; Del Din, S.; Avanzino, L.; Pelosin, E.;
Bloem, B.R.; et al. Detecting Sensitive Mobility Features for Parkinson’s Disease Stages Via Machine Learning. Mov. Disord. 2021,
36, 2144–2155. [CrossRef]

76. Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; Ghoraani, B. Ensemble Deep Model for Continuous Estimation of Unified
Parkinson’s Disease Rating Scale III. Biomed. Eng. Online 2021, 20, 32. [CrossRef]

77. Butt, A.H.; Rovini, E.; Fujita, H.; Maremmani, C.; Cavallo, F. Data-Driven Models for Objective Grading Improvement of
Parkinson’s Disease. Ann. Biomed. Eng. 2020, 48, 2976–2987. [CrossRef]

78. Stamate, C.; Magoulas, G.D.; Kueppers, S.; Nomikou, E.; Daskalopoulos, I.; Jha, A.; Pons, J.S.; Rothwell, J.; Luchini, M.U.;
Moussouri, T.; et al. The CloudUPDRS App: A Medical Device for the Clinical Assessment of Parkinson’s Disease. Pervasive Mob.
Comput. 2018, 43, 146–166. [CrossRef]

79. Eskofier, B.M.; Lee, S.I.; Daneault, J.-F.; Golabchi, F.N.; Ferreira-Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.;
Klucken, J.; Kautz, T.; et al. Recent Machine Learning Advancements in Sensor-Based Mobility Analysis: Deep Learning for
Parkinson’s Disease Assessment. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 655–658.

80. Shawen, N.; O’Brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Role
of Data Measurement Characteristics in the Accurate Detection of Parkinson’s Disease Symptoms Using Wearable Sensors. J.
Neuroeng. Rehabil. 2020, 17, 52. [CrossRef]

81. San-Segundo, R.; Zhang, A.; Cebulla, A.; Panev, S.; Tabor, G.; Stebbins, K.; Massa, R.E.; Whitford, A.; de la Torre, F.; Hodgins, J.
Parkinson’s Disease Tremor Detection in the Wild Using Wearable Accelerometers. Sensors 2020, 20, 5817. [CrossRef]

82. Ibrahim, A.; Zhou, Y.; Jenkins, M.E.; Naish, M.D.; Trejos, A.L. Parkinson’s Tremor Onset Detection and Active Tremor Classification
Using a Multilayer Perceptron. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), London, ON, Canada, 30 August–2 September 2020; pp. 1–4.

83. Channa, A.; Ifrim, R.-C.; Popescu, D.; Popescu, N. A-WEAR Bracelet for Detection of Hand Tremor and Bradykinesia in
Parkinson’s Patients. Sensors 2021, 21, 981. [CrossRef] [PubMed]

84. Kim, H.; Lee, H.J.; Lee, W.; Kwon, S.; Kim, S.K.; Jeon, H.S.; Park, H.; Shin, C.W.; Yi, W.J.; Jeon, B.S.; et al. Unconstrained Detection
of Freezing of Gait in Parkinson’s Disease Patients Using Smartphone. In Proceedings of the 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3751–3754.

85. Shi, B.; Yen, S.C.; Tay, A.; Tan, D.M.L.; Chia, N.S.Y.; Au, W.L. Convolutional Neural Network for Freezing of Gait Detection
Leveraging the Continuous Wavelet Transform on Lower Extremities Wearable Sensors Data. In Proceedings of the 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July
2020; pp. 5410–5415.

http://doi.org/10.1109/JSEN.2020.3027564
http://doi.org/10.3233/SHTI200289
http://doi.org/10.1109/ACCESS.2020.2993647
http://doi.org/10.1186/s12984-020-00756-5
http://doi.org/10.1016/j.gaitpost.2020.02.007
http://doi.org/10.1109/OJEMB.2020.2993463
http://doi.org/10.1016/j.compbiomed.2018.02.007
http://www.ncbi.nlm.nih.gov/pubmed/29500984
http://doi.org/10.1109/JBHI.2020.3009319
http://www.ncbi.nlm.nih.gov/pubmed/32750961
http://doi.org/10.3390/s19235153
http://doi.org/10.1002/mds.28631
http://doi.org/10.1186/s12938-021-00872-w
http://doi.org/10.1007/s10439-020-02628-4
http://doi.org/10.1016/j.pmcj.2017.12.005
http://doi.org/10.1186/s12984-020-00684-4
http://doi.org/10.3390/s20205817
http://doi.org/10.3390/s21030981
http://www.ncbi.nlm.nih.gov/pubmed/33540570


Sensors 2022, 22, 1799 53 of 56

86. Camps, J.; Samà, A.; Martín, M.; Rodríguez-Martín, D.; Pérez-López, C.; Moreno Arostegui, J.M.; Cabestany, J.; Català, A.;
Alcaine, S.; Mestre, B.; et al. Deep Learning for Freezing of Gait Detection in Parkinson’s Disease Patients in Their Homes Using a
Waist-Worn Inertial Measurement Unit. Knowl.-Based Syst. 2018, 139, 119–131. [CrossRef]

87. Ashour, A.S.; El-Attar, A.; Dey, N.; El-Kader, H.A.; Abd El-Naby, M.M. Long short term Memory Based Patient-Dependent Model
for FOG Detection in Parkinson’s Disease. Pattern Recognit. Lett. 2020, 131, 23–29. [CrossRef]

88. Li, B.; Sun, Y.; Yao, Z.; Wang, J.; Wang, S.; Yang, X. Improved Deep Learning Technique to Detect Freezing of Gait in Parkinson’s
Disease Based on Wearable Sensors. Electronics 2020, 9, 1919. [CrossRef]

89. Torvi, V.G.; Bhattacharya, A.; Chakraborty, S. Deep Domain Adaptation to Predict Freezing of Gait in Patients with Parkinson’s
Disease. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando,
FL, USA, 17–20 December 2018; pp. 1001–1006.

90. Arami, A.; Poulakakis-Daktylidis, A.; Tai, Y.F.; Burdet, E. Prediction of Gait Freezing in Parkinsonian Patients: A Binary
Classification Augmented with Time Series Prediction. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1909–1919. [CrossRef]

91. Kleanthous, N.; Hussain, A.J.; Khan, W.; Liatsis, P. A New Machine Learning Based Approach to Predict Freezing of Gait. Pattern
Recognit. Lett. 2020, 140, 119–126. [CrossRef]

92. Halder, A.; Singh, R.; Suri, A.; Joshi, D. Predicting State Transition in Freezing of Gait via Acceleration Measurements for
Controlled Cueing in Parkinson’s Disease. IEEE Trans. Instrum. Meas. 2021, 70, 1–16. [CrossRef]

93. Palmerini, L.; Rocchi, L.; Mazilu, S.; Gazit, E.; Hausdorff, J.M.; Chiari, L. Identification of Characteristic Motor Patterns Preceding
Freezing of Gait in Parkinson’s Disease Using Wearable Sensors. Front. Neurol. 2017, 8, 394. [CrossRef]

94. Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Olmo, G.; Irrera, F. Prediction of Freezing of Gait in Parkinson’s Disease Using
Wearables and Machine Learning. Sensors 2021, 21, 614. [CrossRef]

95. Haji Ghassemi, N.; Hannink, J.; Martindale, C.F.; Gaßner, H.; Müller, M.; Klucken, J.; Eskofier, B.M. Segmentation of Gait
Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease. Sensors 2018, 18, 145.
[CrossRef]

96. Hssayeni, M.D.; Adams, J.L.; Ghoraani, B. Deep Learning for Medication Assessment of Individuals with Parkinson’s Disease
Using Wearable Sensors. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1–4.

97. Aich, S.; Youn, J.; Chakraborty, S.; Pradhan, P.M.; Park, J.-H.; Park, S.; Park, J. A Supervised Machine Learning Approach to Detect
the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals. Diagnostics 2020, 10, 421. [CrossRef]

98. Pfister, F.M.J.; Um, T.T.; Pichler, D.C.; Goschenhofer, J.; Abedinpour, K.; Lang, M.; Endo, S.; Ceballos-Baumann, A.O.; Hirche, S.;
Bischl, B.; et al. High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Sci. Rep.
2020, 10, 5860. [CrossRef]

99. Belgiovine, G.; Capecci, M.; Ciabattoni, L.; Fiorentino, M.C.; Foresi, G.; Monteriù, A.; Pepa, L. Upper and Lower Limbs Dyskinesia
Detection for Patients with Parkinson’s Disease. In Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics
(GCCE), Nara, Japan, 9–12 October 2018; pp. 704–705.

100. Watts, J.; Khojandi, A.; Vasudevan, R.; Nahab, F.B.; Ramdhani, R.A. Improving Medication Regimen Recommendation for
Parkinson’s Disease Using Sensor Technology. Sensors 2021, 21, 3553. [CrossRef] [PubMed]

101. Nancy Jane, Y.; Khanna Nehemiah, H.; Arputharaj, K. A Q-Backpropagated Time Delay Neural Network for Diagnosing Severity
of Gait Disturbances in Parkinson’s Disease. J. Biomed. Inform. 2016, 60, 169–176. [CrossRef]

102. Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R. Early Detection of Parkinson Disease Using Deep Neural Networks on Gait
Dynamics. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July
2020; pp. 1–8.

103. El Maachi, I.; Bilodeau, G.-A.; Bouachir, W. Deep 1D-Convnet for Accurate Parkinson Disease Detection and Severity Prediction
from Gait. Expert Syst. Appl. 2020, 143, 113075. [CrossRef]

104. Xia, Y.; Yao, Z.; Ye, Q.; Cheng, N. A Dual-Modal Attention-Enhanced Deep Learning Network for Quantification of Parkinson’s
Disease Characteristics. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 42–51. [CrossRef] [PubMed]

105. Balaji, E.; Brindha, D.; Vinodh Kumar, E.; Umesh, K. Data-Driven Gait Analysis for Diagnosis and Severity Rating of Parkinson’s
Disease. Med. Eng. Phys. 2021, 91, 54–64. [CrossRef]

106. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, e215–e220. [CrossRef]

107. Papavasileiou, I.; Zhang, W.; Wang, X.; Bi, J.; Zhang, L.; Han, S. Classification of Neurological Gait Disorders Using Multi-Task
Feature Learning. In Proceedings of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems
and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17–19 July 2017; pp. 195–204.

108. Khoury, N.; Attal, F.; Amirat, Y.; Oukhellou, L.; Mohammed, S. Data-Driven Based Approach to Aid Parkinson’s Disease
Diagnosis. Sensors 2019, 19, 242. [CrossRef] [PubMed]

109. Reyes, J.F.; Steven Montealegre, J.; Castano, Y.J.; Urcuqui, C.; Navarro, A. LSTM and Convolution Networks Exploration for
Parkinson’s Diagnosis. In Proceedings of the 2019 IEEE Colombian Conference on Communications and Computing (COLCOM),
Barranquilla, Colombia, 5–7 June 2019; pp. 1–4.

http://doi.org/10.1016/j.knosys.2017.10.017
http://doi.org/10.1016/j.patrec.2019.11.036
http://doi.org/10.3390/electronics9111919
http://doi.org/10.1109/TNSRE.2019.2933626
http://doi.org/10.1016/j.patrec.2020.09.011
http://doi.org/10.1109/TIM.2021.3090153
http://doi.org/10.3389/fneur.2017.00394
http://doi.org/10.3390/s21020614
http://doi.org/10.3390/s18010145
http://doi.org/10.3390/diagnostics10060421
http://doi.org/10.1038/s41598-020-61789-3
http://doi.org/10.3390/s21103553
http://www.ncbi.nlm.nih.gov/pubmed/34065245
http://doi.org/10.1016/j.jbi.2016.01.014
http://doi.org/10.1016/j.eswa.2019.113075
http://doi.org/10.1109/TNSRE.2019.2946194
http://www.ncbi.nlm.nih.gov/pubmed/31603824
http://doi.org/10.1016/j.medengphy.2021.03.005
http://doi.org/10.1161/01.CIR.101.23.e215
http://doi.org/10.3390/s19020242
http://www.ncbi.nlm.nih.gov/pubmed/30634600


Sensors 2022, 22, 1799 54 of 56

110. Buongiorno, D.; Bortone, I.; Cascarano, G.D.; Trotta, G.F.; Brunetti, A.; Bevilacqua, V. A Low-Cost Vision System Based on the
Analysis of Motor Features for Recognition and Severity Rating of Parkinson’s Disease. BMC Med. Inform. Decis. Mak. 2019, 19,
243. [CrossRef]

111. Guayacán, L.C.; Rangel, E.; Martínez, F. Towards Understanding Spatio-Temporal Parkinsonian Patterns from Salient Regions
of a 3D Convolutional Network. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in
Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3688–3691.

112. Vivar-Estudillo, G.; Ibarra-Manzano, M.-A.; Almanza-Ojeda, D.-L. Tremor Signal Analysis for Parkinson’s Disease Detection
Using Leap Motion Device. In Advances in Soft Computing; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2018; Volume 11288, p. 353.

113. Moshkova, A.; Samorodov, A.; Voinova, N.; Volkov, A.; Ivanova, E.; Fedotova, E. Parkinson’s Disease Detection by Using Machine
Learning Algorithms and Hand Movement Signal from LeapMotion Sensor. In Proceedings of the 2020 26th Conference of Open
Innovations Association (FRUCT), Yaroslavl, Russia, 20–24 April 2020; pp. 321–327.

114. Ali, M.R.; Hernandez, J.; Dorsey, E.R.; Hoque, E.; McDuff, D. Spatio-Temporal Attention and Magnification for Classification of
Parkinson’s Disease from Videos Collected via the Internet. In Proceedings of the 2020 15th IEEE International Conference on
Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 207–214.

115. Jin, B.; Qu, Y.; Zhang, L.; Gao, Z. Diagnosing Parkinson Disease through Facial Expression Recognition: Video Analysis. J. Med.
Internet Res. 2020, 22, e18697. [CrossRef] [PubMed]

116. Rajnoha, M.; Mekyska, J.; Burget, R.; Eliasova, I.; Kostalova, M.; Rektorova, I. Towards Identification of Hypomimia in Parkin-
son’s Disease Based on Face Recognition Methods. In Proceedings of the 2018 10th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–4.

117. Grammatikopoulou, A.; Dimitropoulos, K.; Bostantjopoulou, S.; Katsarou, Z.; Grammalidis, N. Motion Analysis of Parkinson
Diseased Patients Using a Video Game Approach. In Proceedings of the 12th ACM International Conference on PErvasive
Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 523–527.

118. Li, M.H.; Mestre, T.A.; Fox, S.H.; Taati, B. Vision-Based Assessment of Parkinsonism and Levodopa-Induced Dyskinesia with
Pose Estimation. J. Neuroeng. Rehabil. 2018, 15, 97. [CrossRef]

119. Liu, Y.; Chen, J.; Hu, C.; Ma, Y.; Ge, D.; Miao, S.; Xue, Y.; Li, L. Vision-Based Method for Automatic Quantification of Parkinsonian
Bradykinesia. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1952–1961. [CrossRef] [PubMed]

120. Li, T.; Chen, J.; Hu, C.; Ma, Y.; Wu, Z.; Wan, W.; Huang, Y.; Jia, F.; Gong, C.; Wan, S.; et al. Automatic Timed Up-and-Go Sub-Task
Segmentation for Parkinson’s Disease Patients Using Video-Based Activity Classification. IEEE Trans. Neural Syst. Rehabil. Eng.
2018, 26, 2189–2199. [CrossRef] [PubMed]

121. Hu, K.; Wang, Z.; Wang, W.; Ehgoetz Martens, K.A.; Wang, L.; Tan, T.; Lewis, S.J.G.; Feng, D.D. Graph Sequence Recurrent Neural
Network for Vision-Based Freezing of Gait Detection. IEEE Trans. Image Process. 2020, 29, 1890–1901. [CrossRef] [PubMed]

122. Tucker, C.S.; Behoora, I.; Nembhard, H.B.; Lewis, M.; Sterling, N.W.; Huang, X. Machine Learning Classification of Medication
Adherence in Patients with Movement Disorders Using Non-Wearable Sensors. Comput. Biol. Med. 2015, 66, 120–134. [CrossRef]

123. Wei, W.; McElroy, C.; Dey, S. Towards On-Demand Virtual Physical Therapist: Machine Learning-Based Patient Action Under-
standing, Assessment and Task Recommendation. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1824–1835. [CrossRef]

124. Zhang, H.; Wang, A.; Li, D.; Xu, W. DeepVoice: A Voiceprint-Based Mobile Health Framework for Parkinson’s Disease Identifica-
tion. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Las Vegas, NV,
USA, 4–7 March 2018; pp. 214–217.

125. Tougui, I.; Jilbab, A.; Mhamdi, J.E. Analysis of Smartphone Recordings in Time, Frequency, and Cepstral Domains to Classify
Parkinson’s Disease. Healthc. Inform. Res. 2020, 26, 274–283. [CrossRef] [PubMed]

126. Bot, B.M.; Suver, C.; Neto, E.C.; Kellen, M.; Klein, A.; Bare, C.; Doerr, M.; Pratap, A.; Wilbanks, J.; Dorsey, E.R.; et al. The MPower
Study, Parkinson Disease Mobile Data Collected Using ResearchKit. Sci. Data 2016, 3, 160011. [CrossRef]

127. Zhang, Y.N. Can a Smartphone Diagnose Parkinson Disease? A Deep Neural Network Method and Telediagnosis System
Implementation. Park. Dis. 2017, 2017, 6209703. [CrossRef]

128. Almeida, J.S.; Rebouças Filho, P.P.; Carneiro, T.; Wei, W.; Damaševičius, R.; Maskeliūnas, R.; de Albuquerque, V.H.C. Detecting
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