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Abstract: Pose estimation is a particularly important link in the task of robotic bin-picking. Its
purpose is to obtain the 6D pose (3D position and 3D posture) of the target object. In real bin-picking
scenarios, noise, overlap, and occlusion affect accuracy of pose estimation and lead to failure in robot
grasping. In this paper, a new point-pair feature (PPF) descriptor is proposed, in which curvature
information of point-pairs is introduced to strengthen feature description, and improves the point
cloud matching rate. The proposed method also introduces an effective point cloud preprocessing,
which extracts candidate targets in complex scenarios, and, thus, improves the overall computational
efficiency. By combining with the curvature distribution, a weighted voting scheme is presented to
further improve the accuracy of pose estimation. The experimental results performed on public data
set and real scenarios show that the accuracy of the proposed method is much higher than that of
the existing PPF method, and it is more efficient than the PPF method. The proposed method can be
used for robotic bin-picking in real industrial scenarios.

Keywords: pose estimation; robotic bin-picking; candidate targets; curvature information;
weighted voting

1. Introduction

Bin-picking is a common scene in the industry, aiming to take out objects placed in
disorder by robotic arms. There are different degrees of overlap and occlusion interference
with the detection and perception of objects, yielding the failure of the robotic grasping
task [1]. Bin-picking is challenging, attracting many domestic and foreign scholars [2–4].
The key of bin-picking is to calculate the pose of the best picking point of the target object [5],
namely, 6D pose estimation. According to the current research on pose estimation, it can be
divided into correspondence method, template-based method, voting-based method, and
deep learning-based method [6].

The method to find the relationship between input data and known point cloud model
is called the correspondence method. According to the type of input data, the method
can be divided into 2D–3D correspondence and 3D–3D correspondence [7]. The 2D–3D
corresponding method is often used for objects with rich textures. The point cloud model
is projected from multiple angles, and the relationship between the template image and the
RGB image of the target object in a single angle, is found through feature points. Then, the
Perspective-n-Point (PnP) algorithm is used to restore the pose of the current perspective.
For example, Hu et al. [8] introduced a segmentation driven network framework for 6D pose
estimation. This method predicts the local pose through the 2D key point position of objects
in the scenario, thereby generating a set of reliable 3D to 2D correspondences, and then uses
the PnP algorithm to calculate the accurate pose of each object. This method can maintain
robustness in the presence of overlap among objects, but it is not suitable for untextured
objects. In the 3D–3D corresponding method, the acquired depth image is converted
into a 3D point cloud, and then the relationship between the two point clouds is solved

Sensors 2022, 22, 1805. https://doi.org/10.3390/s22051805 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051805
https://doi.org/10.3390/s22051805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6383-7663
https://doi.org/10.3390/s22051805
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051805?type=check_update&version=2


Sensors 2022, 22, 1805 2 of 20

through the point cloud descriptor. The common point cloud descriptors include Fast
Point Feature Histogram (FPFH) [9], Signature of Histogram of Orientation (SHOT) [10],
Oriented FAST and Rotated BRIEF (ORB) [11], and so on. For example, Xue et al. [12]
proposed an improved Iterative Closest Point (ICP) [13] for point cloud registration. In this
method, the initial registration point-pairs are selected by FPFH, then Principal Component
Analysis (PCA) algorithm is used for coarse registration, and finally, the improved ICP
algorithm is used for fine registration. This method takes a long time to load the point
cloud, and registration parameters need to be continuously optimized, so that it is not
suitable for industrial pipeline tasks.

Template-based methods are usually used for weakly textured or untextured objects,
which are difficult to extract feature points. The principle of the method is to select the
most similar template with the object in the scene, and regard the template pose as one
of the objects. Usually, the template is the complete point cloud of the object, and the
pose calculation is formulated as a local registration problem, i.e., align the input single-
view point cloud with the complete template point cloud. For example, Sarode et al. [14]
proposed a new point cloud registration network (PCRNet). This method is based on
the prior information of the point cloud shape, and the transformation matrix is obtained
by comparing the global features of the template point cloud with the target point cloud.
This method is robust to point cloud noise and the initial deviation of the pose, but is not
suitable for occlusion scenarios. Hence, this method cannot be used for bin-picking.

Voting-based methods are based on each part of target objects to be able to vote on
the overall output [15]. Local voting usually refers to the vote of each pixel or 3D point
to obtain the final 6D poses of target objects. Such methods are often used in scenarios
where there are no texture and overlapping occlusions among objects, which are suitable
for robotic arms to perform bin-picking tasks. Methods based on voting strategies can
be divided into indirect voting and direct voting. The former is to obtain a predefined
feature point by voting for each pixel or 3D point, and obtain a 6D pose according to the
2D–3D or 3D–3D correspondence. For example, Peng et al. [16] proposed to use Pixel-wise
Voting Network (PVNet) to return unit vectors to key points, then used RANdom SAmple
Consensus (RANSAC) to vote for key points, and finally used PnP algorithm to derive
accurate poses. This method relies on the key points of the 2D target object, and is not
applicable to objects which are self-similar without texture information. Direct voting is to
directly obtain a certain 6D pose by voting between each pixel or 3D point. For example,
Drost et al. [17] defined a new four-dimensional point-pair feature to describe the object.
Through feature matching, the relationship between scene point-pairs and model point-
pairs is modeled. The generated candidate poses are voted to obtain the final result. This
method performs well in scenes with noise, clutter, and partial occlusion, and, accordingly,
is suitable for complex industrial environments.

In recent years, deep learning has made great breakthroughs in artificial intelli-
gence [18]. Applying this method to robotic arms can improve the applicability of grasping.
For example, Wang et al. [19] proposed a new dense fusion network to obtain pixel-level
dense feature, thereby obtaining the pose of the target object. The advantage of this method
is that an iterative fine-tuning process is integrated into the network architecture, which
eliminates the dependence of fine pose on ICP, and is also robust to occlusion situations.
But color and depth information are needed by the network, which adds complexity and
cost. Braun et al. [20] designed a new method for joint target detection and pose prediction
of deep convolutional networks. The disadvantage of this method is that it does not apply
overlap and occlusion, and the estimation accuracy of the pose of small objects is not ideal.

As Drost’s method [17] can well cope with complex scenarios, this method has been
deeply studied in recent years, to make it play the best effect for different scenarios. For
example, Choi et al. [21] improved the method by using color information. Thus, the
four-dimensional point-pair feature is formed into a ten-dimensional point-pair feature of
point cloud, which greatly improves the matching rate of colored objects. Liu et al. [22]
improved the feature description of industrial parts based on the original method. In
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this method, the normal vector in the original feature is changed to a tangent vector
to enhance the feature representation of objects. A multi-edge appearance method of
model description was proposed, to improve the efficiency by reducing useless point-
pairs matching. Vidal et al. [23] presented to estimate 6D poses of free-form objects in
the presence of clutter and occlusions. By considering the judgment value of surface
information, a new viewpoint-dependent re-scoring process and two scene consistency
verification steps were proposed to reduce false-positive cases. Ruel et al. [24] proposed a
3DLASSO system which was designed to perform real-time tracking and 6D pose estimation
of target spacecraft from sparse and noisy 3D data. Different from the PPF method, instead
of point-pairs larger polygons are used in a similar setup, and a faster version of the ICP
algorithm is developed for pose estimation. The algorithm is quite robust to sensor noise
and deviations from the reference model, but poses that do not provide enough geometric
information to the algorithm showed larger errors.

In order to solve the bin-picking problem in industry, we have expanded and im-
proved Drost’s method [17]. The main contributions of the proposed method are: (1) An
effective method for extracting candidate targets point cloud is adopted in preprocessing
step. Specifically, the organized scene point cloud is mapped to the grayscale image, and
the segmented grayscale images are mapped back to the point cloud. After threshold pro-
cessing, only point cloud of unobstructed target objects in the scene are retained; (2) A new
point-pair feature descriptor is proposed, which introduces curvature information based
on the PPF method to effectively enhance the description of point-pair features; (3) In the
pose voting link, a new weighted voting scheme is proposed by combining the curvature
distribution of the model, which gives more weight to high information point-pairs, thereby
further improving the accuracy of pose estimation.

The rest of this paper is organized as follows. The proposed method is presented in
Section 2. Experimental results and discussions are given in Section 3. The conclusion is
provided in Section 4.

2. The Proposed Method

Our work is based on the method proposed by Drost et al. [17]. Through the improve-
ment and optimization of the PPF, 6D poses of target objects can be accurately achieved in
complex industrial scenarios, enabling the robotic arm to complete the bin-picking tasks.
The flow chart of the proposed method is shown in Figure 1, which comprises offline phase
and online phase.
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Figure 1. The full point-pair feature with curvature pipeline. The proposed method can be divided
into offline stage and online stage.

In the offline stage, the CAD model of the object is used to generate point cloud, as
shown in Figure 2. Firstly, the generated model point cloud is preprocessed, which mainly
includes point cloud downsampling, normal calculation, and curvature calculation. Due
to the mass of model point cloud, it causes calculation redundancy. In order to speed
up the processing, downsampling operation is required. The normals and curvatures of
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point cloud are calculated to prepare for PPF [25]. Then the high-curvature part and the
low-curvature part are classified according to curvature distributions of models point cloud,
and the pose weighted voting is performed on point-pairs with high information. Finally,
the six-dimensional features of the model point-pairs are calculated, and features are stored
in the hash table for features matching in the online phase.
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Figure 2. The three-way tube is one of models in our experiments. (a) is the CAD model of the
three-way tube, and (b) is the point cloud model of the three-way tube after sampling.

In the online stage, the main work is to calculate 6D poses of target objects through
PPF matching, to achieve precise grasping. We use a 3D sensor to obtain organized scene
point cloud, which is outlier removed and transformed into gray images through mapping.
Watershed algorithm is used [26] to segment gray images and candidate targets are ex-
tracted. For the segmented point cloud, the same preprocessing and features calculation are
performed as done in the offline stage. By finding PPFs similar to target objects in the hash
table, transformations among model point-pairs and scene point-pairs are derived, and
the weighted votes of poses are completed in the two-dimensional accumulator. Finally,
poses are clustered and the average of the highest clustered poses is used as the output
result. The ICP algorithm is used to refine the pose estimation. In the next section, we will
elaborate on all aspects of the proposed method, especially the differences from the PPF.

2.1. Offline Phase
2.1.1. Preprocessing

The preprocessing includes point cloud downsampling, normal calculation and curvature
calculation. The point cloud downsampling and normal calculation are the same as the method
by Drost et al. [17]. In the following, we focus on the point cloud curvature calculation.

Curvature can reflect the bending degree of geometry [27]. In the three-dimensional
space, the curvature of the point cloud can provide special information for feature matching,
which can effectively reduce matching error [28]. From the geometric description, the types
of curvature can be divided into principal curvature, Gaussian curvature and average
curvature. Principal curvature refers to the normal curvature in the principal direction of
a point on the surface, and it is also the maximum and minimum values of the normal
curvature of the surface in all directions at that point. At any point in the point cloud, there
is a surface z = r(x, y) approaching this point. Assuming that the principal curvature of
this point is kn, the kn calculation formula is:∣∣∣∣ L− knE M− knF

M− kN F N − knG

∣∣∣∣ = 0, (1)

(
EG− F2

)
k2

n − (LG− 2MF + NE)kn +
(

LN −M2
)
= 0. (2)

The principal curvature kn is obtained by solving the quadratic equation. In the for-
mula E = rxrx, F = rxry, G = ryry, L = rxxn, M = rxyn, N = ryyn; where rx, ry, rxx, ryy,
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rxy is the partial differential of the surface z = r(x, y), n is the value of the unit nor-
mal vector of the tangent plane of the surface z = r(x, y) at the point (x0, y0), that is,
n =

(
rx × ry

)
/
∣∣rx × ry

∣∣∣∣∣(x0,y0)
. (E, F, G) is called the first basic invariant of the surface, and

(L, M, N) is called the second basic invariant of the surface. The Gaussian curvature of a
point on the surface is the product of the two principal curvatures, which is used to charac-
terize the overall curvature of the local area, denoted as K, that is, K = k1k2. The average
curvature of a point on the surface is the average of the two principal curvatures, denoted
as H, that is, H = (k1 + k2)/2. Combining the principal curvature calculation Formula (2)
and the Veda theorem, it can be known that the calculation formulas of Gaussian curvature
and average curvature are:

K =
LN −M2

EG− F2 , (3)

H =
LG− 2MF + NE

2(EG− F2)
. (4)

In order to better describe the change of the point cloud, we used the average curvature
to represent curvature characteristics.

2.1.2. Cur-PPF Feature Extraction and Hash Table

The proposed Cur-PPF is a six-dimensional feature vector using the distance infor-
mation of two points and its normal vector and average curvature. Compared with the
original PPF, curvature information is introduced in the proposed method, which enhances
the feature description of point-pairs. Cur-PPF is shown in Figure 3. For any point-pair
(m1, m2), m1 and m2 are two points in the model point cloud, n1 and n2 are the normal
vectors of these two points, q1 and q2 are average curvatures of the two points, vector
d = m2 −m1, feature expression F is:

FCur−PPF(m1, m2) = ( f1, f2, f3, f4, f5, f6)
= (‖d‖2,∠(n1, d),∠(n2, d),∠(n1, n2), q1, q2),

(5)

where ‖d‖2 represents the Euclidean distance between the two points, ∠(a, b) ∈ [0, π]
denotes the angle between two vectors. It should be noted that the feature FCur−PPF is
asymmetric, just as FCur−PPF(m1, m2) and FCur−PPF(m2, m1) are not the same. In the offline
stage, the model point cloud is represented with a set of similar features FCur−PPF. Here
we set the steps of distance, angle and curvature to ddist, dangle, and dcur. Then point-pairs
with similar characteristics are placed in the same slot of the hash table, and the keys of
the hash table are characteristics of point-pairs, as shown in Figure 4. The model features
FCur−PPF

(
mi, mj

)
can be searched in constant time by using FCur−PPF

(
si, sj

)
as the key to

access the hash table.
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Figure 4. The hash table model. For the three point-pairs on the model, because point-pairs (m1, m2)

and (m3, m4) have the same feature description, these two point-pairs are stored in the same slot of
the hash table, and the key of the slot is represented by the feature F1 of these two point-pairs; the
feature description of point (m5, m6) is different from F1, so it is stored in another slot of the hash
table, which is represented by feature F2.

2.2. Online Phase
2.2.1. Point Cloud Segmentation and Candidate Target Selection

Effectively extracting target objects in complex scenarios is very helpful for feature
matching, so scene point cloud segmentation is performed. Point cloud segmentation
can be divided into two categories [29]. The first type of method is the direct method, in
which the point cloud is directly segmented, such as the Euclidean distance segmentation
algorithm [30] integrated in the PCL library [31]. Its principle is to find a certain point
in space, the n points closest to the point are found through KdTree, and the distance to
the point is judged. If the distance is less than the threshold, it is considered to be of the
same kind. This algorithm has to traverse all the points in the space, which is complicated
and takes a long time, so it is not suitable for real-time system. The second is the indirect
method. The point cloud is mapped to a two-dimensional image for segmentation, and
then segmented images are mapped back to the three-dimensional space to achieve point
cloud segmentation. The method is based on two-dimensional image processing, with high
accuracy and less time consumed [32].

Because the point cloud is obtained by the 3D sensor in this system and the order
of the point cloud is known [33], we chose the second method to achieve point cloud
segmentation. Firstly, the ordered point cloud is projected onto the plane composed of
x− axis and y− axis of the coordinate system, and the effective detection range of the depth
value in the z− axis direction is mapped to become the gray value. Then the watershed
segmentation algorithm [26] is used to segment the gray image, so an image is divided into
several disjoint local areas. Finally, gray images are mapped back to the three-dimensional
space to complete the point cloud segmentation. For a more detailed understanding of the
segmentation process, we describe it using pseudocode, which is shown in Algorithm 1.

There are usually overlapping occlusions in the picking scenarios. The candidate
objects grabbed by the robotic arm are the top priority (that is, the ones that are not
occluded or have a large exposed surface), which also conforms to the logical order of
grabbing. Therefore, grayscale images are thresholded after watershed segmentation.
Firstly, the single-sided point cloud of a single object in the scene is obtained by a 3D sensor
and mapped to a grayscale image to obtain the number of pixels of the image. Then, the
number of local pixels after segmentation are compared with the number of pixels on one
side of the object. If the number of surface pixels is similar to the number of surface pixels
on one side of the object, and the number of contour pixels is similar to the number of
contour pixels on one side of the object, we consider the object to be a candidate to be
grasped by the robotic arm. Finally, each pixel is mapped to three-dimensional space to
complete the effective segmentation and the selection of candidate targets. Three-way tube
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is a category in the test data set of this paper, and is demonstrated as a legend, as shown in
Figure 5.

Algorithm 1 Watershed Segmentation Algorithm Based on Distance Transform

1: Input: I, Output: O
2: if I(i, j) = (255, 255, 255)

I(i, j) = (0, 0, 0)
end if

3: L← Laplacian operator(I)
4: S← Sharp(L)
5: G ← Grayscale(S)
6: if G(i, j) > t1

G(i, j) = 255
else

G(i, j) = 0
end if

7: D ← Distance transform(G)
8: N ← Normalized(D), N(i, j) ⊂ [0, 1]
9: if N(i, j) > t2

N(i, j) = 255
else

N(i, j) = 0
end if

10: P← Erode(N)
11: M← Find and draw contours(P)
12: O←Watershed(S, M)
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Figure 5. The process of point cloud segmentation and candidate targets selection. (a) is the point
cloud of the one-sided model; (b) is the grayscale image of the one-sided model; (c) is the point cloud
of the scene; (d) is the grayscale image which is mapped from the depth information of the scene;
(e) is the grayscale image of the scene after segmentation; (f) is the grayscale image of the scene after
target selecting; and (g) is the point cloud which is mapped by (f).

2.2.2. Feature Matching

Feature matching refers to successfully finding PPFs of the model in the hash table,
so that the transformation can be calculated. In this paper, the local coordinate system
is established for solving. Given a point-pair

(
sr, sj

)
in the scene, the Cur-PPF of the

point-pair is calculated and the feature as the key value is used to find the corresponding
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model point-pair
(
mr, mj

)
in the hash table. The two points sr and mr are moved to the

origin of the local coordinate system, and the normals of these two points are aligned with
the x− axis, so that the object can be rotated around the normal to align the model with
the scene, as shown in Figure 6. The transformation from the model to the scene can be
represented by a point and a rotation angle α, which is (mr, α). If the model point-pair(
mr, mj

)
and the scene point-pair

(
sr, sj

)
have similar Cur-PPF, the conversion relationship

between the two point-pairs can be calculated by the Formula (6).

si = T−1
s→gRx(α)Tm→gmi, (6)

where, Tm→g is a transformation with rotation and translation, which translates the ref-
erence point mr in the model point-pair feature (mr, mi) to the origin of the coordinate
system, and at the same time rotates the normal vector nm

r of the reference point mr to the
same direction as the x− axis of the coordinate system. Ts→g is also a transformation with
rotation and translation, which translates the reference point sr in the model point-pair
feature (sr, si) to the origin of the coordinate system, and at the same time rotates the normal
vector ns

r of the reference point sr to the same direction as the x− axis of the coordinate
system. T−1

s→g is the inverse of Ts→g. Rx(α) is the rotation around the x− axis with angle α.
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Figure 6. Transformation between model point-pairs and scene point-pairs. The transformation
relationship Rx(α) is obtained by aligning the point-pair vector and its normal vector.

In order to improve the calculation speed of α angle, α can be divided into two parts,
namely α = αm − αs. Where, αm is the rotation angle at which the model point-pair (mr, mi)
continues to rotate around the x− axis after the transformation of Tm→g, so that the point
mi falls on the plane composed of the x − axis and the positive half-axis of the y− axis;
αs is the rotation angle at which the scene point-pair (sr, si) continues to rotate around the
x− axis after the transformation of Ts→g, so that the point si falls on the plane composed
of the x− axis and the positive half-axis of the y− axis; the direction of rotation of the two
remains the same. The calculation of these two parts is independent of each other, so we
can split Rx(α) = Rx(−αs)Rx(αm) and use R−1

x (−αs) = Rx(αs) to get

t = Rx(αs)Ts→gsi = Rx(αm)Tm→gmi. (7)

i.e., t lies on the half-plane defined by the x− axis and the non-negative part of the y− axis.
For successfully paired point-pairs, αm can be calculated for model point-pairs in the offline
phase and store them in the hash table. In this way, only αs needs to be calculated for scene
point-pairs. The final angle α is the difference between the two angles.
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2.2.3. Weighted Voting System

We search model point-pairs
(
mr, mj

)
with same Cur-PPF features as

(
sr, sj

)
from the

hash table. Formula (6) is used to calculate mapping relationships α from each model point-
pairs

(
mr, mj

)
to scene point-pairs

(
sr, sj

)
. Then we use a method similar to the generalized

Hough transform to vote on the obtained α and select the best mapping relationship to
restore the global pose of the object.

Voting process is completed through a two-dimensional accumulator. The rows Nm of
the accumulator is equivalent to the number of model points M, and the columns Nangle
is equivalent to the step length nangle of the conversion relationship α. Whenever scene
point-pairs

(
sr, sj

)
are successfully paired with model point-pairs

(
mr, mj

)
in the hash table,

the calculated α are voted. The difference from the PPF is that our method combines the
model curvature distribution in the actual voting process, and different α votes are assigned
different weights. When scene point-pairs and model point-pairs are successfully paired,
we will focus on the relationship between the point mr and the point mj in the model
point-pair

(
mr, mj

)
. From Section 2.1.1, the average curvature value of each point in the

model point cloud can be calculated. The curvature distribution of the three-way tube
model is shown in Figure 7a. Different colors represent the average curvature value. It can
be seen from characteristics of curvature that point cloud with similar curvature values
is also similar in bending, and such point cloud is distributed in the same area in space.
And point cloud with large differences in curvature values also has large differences in the
degree of bending, and such point cloud is distributed far apart in space. We believe that
point-pairs with the greater difference in curvature values of the two points contain more
information, and the mapping relationship α is calculated by the pairing is more accurate,
such that α should be given a higher weight when voting, as shown in Formula (8). For
example, in the three-way tube model of this experiment, the high-curvature part and
low-curvature part of the model are divided according to the curvature histogram. The
curvature histogram is shown in Figure 7b. Weighted vote is performed on the calculated
α that has a greater difference in curvature values between the two points in the model
point-pair. The voting process is shown in Figure 8.

Weight =
{
+W when m1∈high−cur&m2∈low−cur ‖ m1∈low−cur&m2∈high−cur
+1 other . (8)
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Figure 7. (a) is the curvature distribution of the three-way tube model. The color from red to blue 
corresponds to the average curvature of the point cloud from large to small. (b) is the curvature 
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Figure 7. (a) is the curvature distribution of the three-way tube model. The color from red to blue
corresponds to the average curvature of the point cloud from large to small. (b) is the curvature
histogram of the three-way tube. According to the curvature histogram, we set 0–0.035 as the
low-curvature range, and greater than 0.1 as the high-curvature range.
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Figure 8. Because the scene point-pair (s3, s4) is matched with two points of the same curvature class
in the model point-pair, the number of pose votes is one by default; when matching (s1, s2), the two
points in the model point-pair are in the set high-curvature and low-curvature ranges respectively, so
the match contains more information and weighted voting is performed on the pose.

2.2.4. Pose Clustering

When reference points are located on the object surface, multiple effective point-pairs
will be generated. Each point-pair will be calculated a pose result after feature matching,
so an object will have a set of pose sets. The pose sets are clustered to ensure that the
translation and rotation errors of all poses in each category are in the set threshold. The
score of each pose is the cumulative sum of votes obtained by that pose during the voting
phase. The category with the highest score is selected, and poses contained in this category
are averaged to obtain the final pose results. This operation not only removes the pose
data with large errors through the threshold, but also improves the accuracy of the final
pose result by the average value. Since there will be multiple objects in the scene, multiple
high-scoring categories will be generated, and the category with the highest number of
votes is selected as the preferred pose.

2.2.5. ICP Optimization

In order to further improve the accuracy of the pose results, we used the ICP algo-
rithm [13] for optimization after the pose obtained by the pose clustering. The clustering
pose is used as the initial value of the ICP algorithm, and the error is further reduced by con-
tinuously reducing the Euclidean distance between the model point and the corresponding
scene point. On basis of whether model points match scenic points successfully by setting
the distance threshold. If the distance between the two points is less than the threshold,
it is considered that the two points match successfully. Finally, the ratio ∂ between the
number of matched points and the number of object points in the scene is taken as the
matching rate, as shown in Formula (9). In real experimental scenario, when the value of
the matching rate can enable the robotic arm to successfully grasp the target object, it is the
minimum matching rate that we can accept.

∂ =
Number of matching success points
Number of object points in the scene

. (9)

3. Experimental Results and Discussions

We used online public data set and real scene data to verify the effectiveness of the
proposed method, and used a robotic arm to perform bin-picking tasks to evaluate the
performance of the method in industrial applications. Our algorithm was implemented
in C++ language under the Visual Studio2019 platform and was run on the NVIDIA
GeForce GTX1060 processor. Through experimental comparison, the advantages of the
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proposed method over the original method are verified in terms of accuracy, efficiency,
and adaptability.

3.1. Public Data Set

We used the online Retrieval [34] data set to verify the advancement of the proposed
method. The data set includes 6 models and 18 scenes, and the model is shown in Figure 9.
Each scene has only one set of point cloud data, which prevents other factors from inter-
fering with the experimental comparison results. For all experiments, the Leaf_size of the
model point cloud and scene point cloud downsampling was set to 5 mm; the hash table
distance step ddist was set to 3 mm; the angle step dangle was set to 12◦; and the 1/5 of the
point cloud number was used as the scene reference point. The matching rate of the point
cloud was calculated by Formula (8) in Section 2.2.5, where the threshold was set to 5 mm.
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the average one between each model and multiple scenes, and the average of matching 
time with multiple scenes is viewed as the final time. The radius of curvature of models 
in the data set was set to 15 mm. Due to the different curvature distributions of each 
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Figure 9. The model point cloud data set. The data set includes six point cloud models, namely,
Bunny, Dragon, Statuette, Chinese_Dragon, Armadillo, and Buddha.

We verified the enhancement effect of curvature on the PPF description in the proposed
method. Each model in the Retrieval data set corresponds to multiple scenes with different
levels of noise. In order to reduce the impact of noise on the matching effect, a scene with a
noise coefficient of 0.1 was selected for matching. The final matching rate is the average one
between each model and multiple scenes, and the average of matching time with multiple
scenes is viewed as the final time. The radius of curvature of models in the data set was set
to 15 mm. Due to the different curvature distributions of each model, the curvature steps
dcur of Bunny, Dragon, Statuette, Chinese_Dragon, Armadillo, and Buddha were set to 0.07,
0.1, 0.13, 0.15, 0.2, and 0.11, respectively. The matching experiments of the PPF algorithm
and the Cur-PPF (unweighted) algorithm were carried out respectively. A set of matching
effects are shown in Figures 10 and 11. Tables 1 and 2 are the data comparison between
the PPF algorithm and the Cur-PPF (unweighted) algorithm in terms of matching rate and
time. The experimental results show that the introduction of curvature information can
strengthen the description of the feature, and it is better than the original PPF algorithm in
terms of matching rate and time.
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Figure 10. The PPF algorithm is used to register the six kinds of point cloud models of the data set.
The pose results are used to convert the point cloud of the models into scene space, and the color is
used for rendering, where white represents the point cloud of the scene, and green represents the
converted model point cloud.
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Cur-PPF algorithm, which proves the role of the weighted operation. 

Figure 11. The Cur-PPF(Unweighted) algorithm is used to register the six kinds of point cloud models
of the data set. The pose results are used to convert the point cloud of the models into scene space,
and the color is used for rendering, where white represents the point cloud of the scene, and green
represents the converted model point cloud.
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Table 1. The matching rate of PPF and Cur-PPF(Unweight) algorithms on public data set.

Models Bunny Dragon Statuette Chinese_Dragon Armadillo Buddha Average

PPF [16] 87.42% 84.71% 84.92% 94.77% 81.40% 93.25% 87.75%
Cur-PPF(Unweight) 93.12% 95.96% 89.91% 95.74% 92.94% 94.25% 93.65%

Table 2. Time using of PPF and Cur-PPF(Unweight) algorithms on public data set (ms/scene).

Models Bunny Dragon Statuette Chinese_Dragon Armadillo Buddha Average

PPF [16] 145 745 1151 893 341 803 679.67
Cur-PPF(Unweight) 85 165 169 233 203 221 179.33

We also verified that the weighted voting in the proposed method has an enhanced
effect on the matching effect. According to curvature histograms of point cloud models, the
high-curvature part and the low-curvature part of models are divided [35]. The curvature
histograms of the models point cloud are shown in Figure 12. Through multiple experi-
ments with different models, we think that setting the weight to 2–8 is a better range. The
setting of the experimental parameters is consistent with the Cur-PPF(Unweight) param-
eters. The matching experiments of the Cur-PPF(unweight) algorithm and the weighted
Cur-PPF algorithm were carried out respectively. The matching effect of a group of the
weighted Cur-PPF algorithm are shown in Figure 13. Tables 3 and 4 are the comparison
of the matching rate and time between the Cur-PPF(Unweight) algorithm and the Cur-
PPF algorithm. The experimental results show that the weighted operation introduced
into the pose voting link further improve the point cloud matching rate, and the time
is basically similar to the unweighted Cur-PPF algorithm, which proves the role of the
weighted operation.

Table 3. The matching rate of Cur-PPF(Unweight) and Cur-PPF algorithms on public data set.

Models Bunny Dragon Statuette Chinese_Dragon Armadillo Buddha Average

Cur-PPF(Unweight) 93.12% 95.96% 89.91% 95.74% 92.94% 94.25% 93.65%
Cur-PPF 94.40% 99.84% 95.44% 97.09% 94.20% 96.80% 96.30%

Table 4. Time using of Cur-PPF(Unweight) and Cur-PPF algorithms on public data set (ms/scene).

Models Bunny Dragon Statuette Chinese_Dragon Armadillo Buddha Average

Cur-PPF(Unweight) 85 165 169 233 203 221 179.33
Cur-PPF 87 195 289 226 241 236 212..33

The method proposed by Drost et al. can recognize different objects in the same scene.
In order to verify that the improved method proposed in this paper based on the original
PPF can also effectively recognize different objects in the same scene, we choose the public
dataset Laser Scanner as an experiment. Since the method in this paper focuses more on
the scene of the same object in bin-picking, this experiment serves as a supplementary
experiment to verify the ability of the proposed method to recognize different objects.
We compared the matching rates of Cur-PPF and Cur-PPF+ICP. The results are shown in
Figure 14, and the average matching rates are shown in Table 5. Experiments show that the
improved method proposed in this paper has similar functions to the original PPF method,
not only can identify different objects in the same scene, but also has a satisfactory coarse
registration effect. After ICP optimization, the average matching rate of fine registration
can reach 93%.
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histogram of the Dragon model. Its high-curvature part is greater than 0.22 and the low-curvature 
part is 0–0.07; (c) is the curvature histogram of the Statuette model. Its high-curvature part is 
greater than 0.2 and the low-curvature part is 0–0.1; (d) is the curvature histogram of the Chi-
nese_dragon model. Its high-curvature part is greater than 0.24 and the low-curvature part is 0–0.1; 
(e) is the curvature histogram of Armadillo model. Its high-curvature part is greater than 0.18 and 
the low-curvature part is 0–0.07; (f) is the curvature histogram of Buddha model. Its high-curvature 
part is greater than 0.18 and the low-curvature part is 0–0.07. 

Figure 12. Curvature histograms of six models. The curvature of each model is divided into high/low
part according to curvature histograms. (a) is the curvature histogram of Bunny model. Its high-
curvature part is greater than 0.2 and the low-curvature part is 0–0.02; (b) is the curvature histogram
of the Dragon model. Its high-curvature part is greater than 0.22 and the low-curvature part is 0–0.07;
(c) is the curvature histogram of the Statuette model. Its high-curvature part is greater than 0.2
and the low-curvature part is 0–0.1; (d) is the curvature histogram of the Chinese_dragon model.
Its high-curvature part is greater than 0.24 and the low-curvature part is 0–0.1; (e) is the curvature
histogram of Armadillo model. Its high-curvature part is greater than 0.18 and the low-curvature
part is 0–0.07; (f) is the curvature histogram of Buddha model. Its high-curvature part is greater than
0.18 and the low-curvature part is 0–0.07.
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chaotic and noisy, and it becomes more difficult for the robot to perform grasping tasks. 
In order to verify that the proposed method also has advantages in complex scenes, we 
built a robotic arm bin-picking scene, and the system is shown in Figure 15. The 
bin-picking scene is also one of the common scenes in the industry. In this scene, there is 
overlap and occlusion among target objects, which cause interference to the matching. In 
order to evaluate the algorithm, we consider the point cloud matching effect and the 
grasping rate of the robotic arm. 

Figure 14. (a) is the result of using our proposed Cur-PPF algorithm to recognize different objects in
the same scene, and (b) is the registration result of Figure (a) after optimization by the traditional
ICP algorithm.
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Table 5. The matching rate of Cur-PPF and Cur-PPF+ICP algorithms on Laser Scanner.

Models Cheff Chicken T-Rex Parasaurolophus Average

Cur-PPF 91.41% 87.60% 90.68% 86.01% 88.93%
Cur-PPF+ICP 95.15% 94.37% 92.86% 90.31% 93.17%

3.2. Real Scene Data

In the previous section, the advantages of the proposed method Cur-PPF without
clutter, overlapping occlusion are verified. However, in real scenes, the environment is
chaotic and noisy, and it becomes more difficult for the robot to perform grasping tasks. In
order to verify that the proposed method also has advantages in complex scenes, we built
a robotic arm bin-picking scene, and the system is shown in Figure 15. The bin-picking
scene is also one of the common scenes in the industry. In this scene, there is overlap
and occlusion among target objects, which cause interference to the matching. In order to
evaluate the algorithm, we consider the point cloud matching effect and the grasping rate
of the robotic arm.
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Figure 15. Bin-picking system diagram. The system is composed of robot, gripper, components, and
3D sensor.

3.2.1. Matching Effect of Real Scenario

In the real scenario matching experiment, we used common objects in the industry
as test objects. The point cloud and image data were acquired by a 3D sensor (a COBOT
COMATRIX-IM camera, consisting of a gray-scale camera and a projector). We randomly
put test objects into the box, and collected 20 sets of test scenarios for each type of object,
and used the PPF algorithm and the algorithm proposed in this paper to perform match
experiments. The experimental parameters were set as follows: the Leaf_size of the model
point cloud and scene point cloud downsampling were set to 3 mm; the hash table distance
step ddist was set to 0.5 mm; the angle step dangle was set to 12◦; the 1/5 of the point cloud
number was used as the scene reference point; the radius of curvature was set to 10 mm,
the curvature step dcur of the first type of object was set to 0.025, and the curvature step
dcur of the second type of object was set to 0.3; the low-curvature range of the first type
of object is 0–0.015, the high-curvature range is greater than 0.06, and the voting weight
was set to 3; the second type of object has low-curvature range of 0–0.015, high-curvature
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range of greater than 0.065, and voting weight was set to 5. In calculating the matching rate
between the model point cloud and the scene point cloud, the distance threshold was set to
5 mm.

We used the PPF algorithm [17] and the Cur-PPF algorithm proposed in this paper to
perform point cloud matching respectively, and the ICP algorithm was used to correct the
matching results. The point cloud matching processes are shown in Figure 16. In order to
effectively compare the two algorithms, we only keep the top five matching results in the
scene for the first type of object. For the second type of objects, the volume of the objects is
larger, and the top layer can only be placed at most five, so only the results of the top three
match rates in the scene are retained. The matching results are rendered in different colors,
and the average of the matching rate is regarded as the final matching rate. Tables 6 and 7
show the comparison of the parameters of the two algorithms in terms of matching rate
and time. It can be seen that the method proposed in this paper has greater advantages
than the original method in the bin-picking scenario.
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Figure 16. The matching process of the PPF algorithm and the Cur-PPF algorithm for two common 
objects in the industry. Among them, (a) is the three-way tube (the first type of objects); (e) is the 
upright column (the second type of objects); (b,f) correspond to the scene point cloud of two types 
of objects, the outer frame of the box is filtered out by setting thresholds on −x axis , −y axis  
respectively; (c,g) are matching results of the PPF algorithm for two types of objects; (d,h) are 
matching effect pictures after ICP correction; (i,o) are mapped from point cloud depth information 
to grayscale images; (j,p) are grayscale images after segmentation; (k,q) are candidate objects that 
are screened out according to the number of pixels in the segmented image; (l) and (r) are point 
clouds of candidate objects; (m,s) are the point cloud matching effect diagrams of the Cur-PPF al-
gorithm; and (n,t) are matching effect pictures after ICP correction. The matching rate from high to 
low is rendered in the order of red, orange, yellow, green, and blue. 

Table 6. The matching rate of PPF and Cur-PPF algorithms on real data sets. 

Models Three-Way Tube Pillar Average 
PPF 83.15% 87.84% 85.50% 

Cur-PPF 95.60% 94.35% 94.98% 
PPF+ICP 96.10% 95.25% 95.68% 

Cur-PPF+ICP 98.90% 97.50% 98.20% 
  

Figure 16. The matching process of the PPF algorithm and the Cur-PPF algorithm for two common
objects in the industry. Among them, (a) is the three-way tube (the first type of objects); (e) is the
upright column (the second type of objects); (b,f) correspond to the scene point cloud of two types of
objects, the outer frame of the box is filtered out by setting thresholds on x− axis, y− axis respectively;
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(c,g) are matching results of the PPF algorithm for two types of objects; (d,h) are matching effect
pictures after ICP correction; (i,o) are mapped from point cloud depth information to grayscale
images; (j,p) are grayscale images after segmentation; (k,q) are candidate objects that are screened
out according to the number of pixels in the segmented image; (l,r) are point clouds of candidate
objects; (m,s) are the point cloud matching effect diagrams of the Cur-PPF algorithm; and (n,t) are
matching effect pictures after ICP correction. The matching rate from high to low is rendered in the
order of red, orange, yellow, green, and blue.

Table 6. The matching rate of PPF and Cur-PPF algorithms on real data sets.

Models Three-Way Tube Pillar Average

PPF 83.15% 87.84% 85.50%
Cur-PPF 95.60% 94.35% 94.98%
PPF+ICP 96.10% 95.25% 95.68%

Cur-PPF+ICP 98.90% 97.50% 98.20%

Table 7. Time using of PPF and Cur-PPF algorithms on real data sets (ms/scene).

Models Three-Way Tube Pillar Average

PPF 7034 8560 7797
Cur-PPF 3256 4236 3746
PPF+ICP 8098 9362 8730

Cur-PPF+ICP 4136 5082 4609

3.2.2. Bin-Picking Performance of Robotic Arm

In order to verify the validity of the method proposed in this article, we used a six-axis
robotic arm to perform bin-picking. In this system, the model of the robotic arm is UR5e
(UNIVERSAL ROBOTS), the model of the gripper is AG-95 (DH ROBOTS), and the model
of the 3D sensor is COMATRIX-IM (COBOT). Our experiment was carried out indoors. The
light source is indoor incandescent lamp, and no specific light source is added.

We randomly placed 25 three-way tubes in the bin, and used the Cur-PPF algorithm to
match the model with the scene. Each three-way tube in the scene will generate a set of pose
results after weighted voting. The pose results after clustering were corrected using the ICP
algorithm. According to our experience, when the matching rate is greater than 85%, the
robotic arm can successfully grasp the target object. If the matching rate is less than 85%, the
robotic arm will grab empty or pose error when grasping, which is considered as a wrong
matching result. We carried out a total of 100 three-way tube grasping experiments, and
the results showed five grasping failures, as shown in Table 8. Three of the failures were
due to the close proximity of the three-way tubes, and the nearby objects were encountered
before grasping, which caused the pose of the target object to change. Because of the low
matching rate, which made the posture accuracy of the points captured by the robotic arm
poor, and eventually led to other failure of the grasping operation.

Table 8. Capture success rate for three-way tubes.

Total Number of Experiments Success Failure Success Rate

100 95 5 95%

4. Conclusions

We propose a 6D pose estimation method based on a new point-pair feature descriptor.
In this method, an effective point cloud preprocessing is introduced, which can accurately
extract candidate target objects and improve the matching efficiency. At the same time, the
curvature information is introduced into the point-pair feature descriptor, which enhances
the feature description and improves the matching accuracy. In addition, a weighted voting
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method is proposed in the pose voting link, which further improves the accuracy of pose
estimation. At the end of this paper, we test the proposed method and the PPF on public
data set and real scenarios. The experimental results show that the average matching rate of
our method on the public data set has increased by 8.55%, and the average time taken has
been shortened by 467.34 ms. In real scenarios, the average matching rate of our method
has increased by 12.7%, and the average time taken has been shortened by 3188 ms, and the
capture rate in the bin-picking scenarios is as high as 95%. It can be seen that the method
proposed in this paper has the advantages of high pose estimation accuracy and short
calculation time, and can be used in actual industrial scenarios.

In the future, we will continue to study the mathematical model of high-curvature
and low-curvature partitioning in the weighting strategy, which will improve the efficiency
of the strategy when applied to new objects. The point cloud matching rate can also be
improved by accurately dividing the model curvature; in addition, there are useless model
point-pairs during matching, and it is worth exploring how to avoid useless point-pairs in
the future, which will further improve the overall efficiency.
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