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Abstract: The application of agricultural robots can liberate labor. The improvement of robot sensing
systems is the premise of making it work. At present, more research is being conducted on weeding
and harvesting systems of field robot, but less research is being conducted on crop disease and
insect pest perception, nutritional element diagnosis and precision fertilizer spraying systems. In this
study, the effects of the nitrogen application rate on the absorption and accumulation of nitrogen,
phosphorus and potassium in sweet maize were determined. Firstly, linear, parabolic, exponential
and logarithmic diagnostic models of nitrogen, phosphorus and potassium contents were constructed
by spectral characteristic variables. Secondly, the partial least squares regression and neural network
nonlinear diagnosis model of nitrogen, phosphorus and potassium contents were constructed by the
high-frequency wavelet sensitivity coefficient of binary wavelet decomposition. The results show
that the neural network nonlinear diagnosis model of nitrogen, phosphorus and potassium content
based on the high-frequency wavelet sensitivity coefficient of binary wavelet decomposition is better.
The R2, MRE and NRMSE of nn of nitrogen, phosphorus and potassium were 0.974, 1.65% and 0.0198;
0.969, 9.02% and 0.1041; and 0.821, 2.16% and 0.0301, respectively. The model can provide growth
monitoring for sweet corn and a perception model for the nutrient element perception system of
an agricultural robot, while making preliminary preparations for the realization of intelligent and
accurate field fertilization.

Keywords: agricultural robotics; diagnosis model; hyperspectral image; binary wavelet algorithm

1. Introduction

With the rapid development of robot technology, it has been increasingly applied in
the agricultural field [1]. Due to the high intensity of field operations and complex road
conditions, research on robot path planning, road recognition and perception, automatic
and optimized navigation and robot arm control are all prerequisites for realizing robot
field work [2–10]. The weeding and harvesting function systems of field robots have been
the most studied, while there is little research on crop disease and insect pest perception, nu-
trient element content diagnosis and precision fertilizer spraying function systems [10–12].
The diagnosis of the nutrient elements content can provide a basis for field robots to per-
ceive the crop growth status. Sweet corn is a widely cultivated food crop because it is rich
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in vitamins, amino acids and so on, making it more and more popular [13,14]. Nitrogen,
phosphorus and potassium in sweet corn are important nutrients for its growth, which have
great influence on its growth, yield and quality [15–17]. Because the traditional diagnosis
of maize nutrient elements adopts chemical methods, a large number of corn samples need
to be picked, and complicated chemical testing is required, which takes a long time and
will cause damage to the plant [18]. Hyperspectral imaging technology is a simple, rapid
and non-destructive method for the detection of crop nutrient elements. This method has
become an important means to obtain field information in the field of digital agriculture
and has been widely used in the detection of nutrient information of crops such as corn,
wheat, tea and so on [19–23]. In recent years, through spectral technology, researchers have
used stepwise regression, principal component analysis, support vector basis, random
forest algorithm, continuous wavelet transform and other methods to estimate the crop
chlorophyll content, nutrient element content, water content and other indicators quickly
and in a nondestructive manner [24–31].

Wei et al. conducted inverse analysis on the soil organic matter content and improved
its diagnostic efficiency by using hyperspectral indicators [32]. Wang et al. conducted
quantitative inversion of salt ion content by using the spectral characteristics of salt ions,
which were extracted from reciprocal logarithm of reflectance (Log(1/R)), providing an
effective tool for the diagnosis of soil salinity [33]. Based on hyperspectral imaging tech-
nology, Wu et al. established a multiple linear regression inversion model of soil moisture
content (SMC), which can quickly and efficiently predict soil moisture content [34]. Han
et al. constructed a prediction model of soil AS content by extracting the spectral second-
derivative characteristic variables, providing scientific basis and technical reference for soil
pollution monitoring [35]. Yu et al. processed hyperspectral rice data by discrete wavelet
decomposition, successive projection and principal component analysis. On this basis, the
characteristic variables of the nitrogen content were extracted, and an inversion model of
the nitrogen content in japonica rice was established. Among the results, the inversion
model based on discrete wavelet decomposition is the best [36]. Fan et al. comprehensively
compared and analyzed the performance of different types of spectral variables in esti-
mating maize leaf nitrogen content (LNC) through partial least squares regression and a
random forest algorithm. The results show that the PLS model with optimal multispectral
variables has a better fitting effect and is a more effective model to evaluate maize LNC [37].
The first and second derivative processing of spectral reflectance and the construction of
normalized spectral vegetation index can improve the correlation between characteristic
variables and detection target content. However, due to different absorption or reflection
conditions of different detection targets and the large variation in feature bands, most of the
spectral information cannot be characterized. Therefore, more different feature extraction
methods need to be introduced to improve the signal-to-noise ratio of spectral data and
increase the stability and accuracy of the model.

Wavelet analysis is a new signal processing tool, which can reduce the dimension of
spectral data, separate the high and low frequency information and facilitate the detection
of singular points. Chen et al. processed hyperspectral reflectance data of soil samples by
combining continuous media removal and wavelet packet decomposition, which improved
the correlation between spectral reflectance and petroleum hydrocarbons in soil [38]. Gu
decomposed hyperspectral datauses by wavelet transform algorithm. Then, the high-
frequency information decomposed by wavelet technology is coupled with a random
forest algorithm, which can effectively improve the prediction accuracy of soil organic
matter content [39]. Li et al. preprocessed spectral data by mathematical transformation,
a continuous wavelet transform algorithm and a correlation analysis algorithm. After
the characteristic bands were extracted and selected, the estimation model of chlorophyll
content in the stems and branches of Pitaya fruit was established. The R2 value based on
continuous wavelet transform is 0.678 and the root mean square error RMSE = 0.037 [40].
Zhang et al. reduced the hyperspectral noise and improved the performance of the hy-
perspectral estimation model of soil organic matter content by using the wavelet energy
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characteristic method. The wavelet energy feature method could not only improve the
estimation accuracy of the SNR (Signal–Noise Ratio) and soil organic matter content but
could also realize the reduction in the dimensions of hyperspectral soil data and reduce
the model’s complexity [41]. Wang et al. separated soil spectral data into five scales of
high-frequency and low-frequency data by binary wavelet technology, then extracted the
best band combination to build a diagnostic model of organic matter content, which has
good stability [42]. Huang et al. decomposed canopy reflectance and its first derivative into
wavelet coefficients by using the continuous wavelet transform method. The corresponding
wavelet sensitivity coefficients were extracted, and the canopy LAI estimation model of
late ripening wheat was established. Compared with models based on different types
of hyperspectral vegetation indices, the accuracy of the late ripening wheat canopy LAI
estimation model based on continuous wavelet coefficient was significantly improved [43].
Yang et al. decomposed spectral data by multi-scale wavelet. After extracting wavelet
coefficients, partial least squares regression and support vector regression were used to
construct the estimation model of tea polyphenol content. Compared with the model built
by single feature variable, the multi-feature fusion method can improve the accuracy of
estimating tea polyphenol content [44]. In conclusion, the pretreatment of hyperspectral
reflectance data by wavelet analysis method can improve the correlation between feature
bands and detection targets and improve the stability and accuracy of the model. How-
ever, the wavelet analysis method is rarely applied in the field of plant nutrient elements
detection, and the research on sweet corn mostly focuses on nitrogen content, without
comprehensive analysis of the main nutrient elements of corn nitrogen, phosphorus and
potassium content.

In this paper, the comprehensive effects of different nitrogen application levels on
the accumulation and absorption of nitrogen, phosphorus and potassium contents in
maize were studied. The correlation between spectral characteristic variables and nitrogen,
phosphorus and potassium contents of sweet corn was analyzed; then, the estimation model
of nutrient elements was established by linear, parabolic, logarithmic and exponential
functions. Then, the hyperspectral data of sweet corn are decomposed by binary wavelet.
After analyzing the correlation between nitrogen, phosphorus and potassium contents
and the frequency wavelet coefficients, the partial least squares regression and neural
network nonlinear diagnosis model of nitrogen, phosphorus and potassium contents were
established by extracting the wavelet sensitivity coefficients. Meanwhile, the stability,
accuracy and precision of the model were evaluated by R2, MRE and NRMSE. AHP
(Analytic Hierarchy Process) is used to assign the weight of the three evaluation factors,
which is convenient to calculate the score of each model and compare the comprehensive
performance of each model. The neural network model based on the binary wavelet
high-frequency sensitivity coefficient has better comprehensive performance. It is of great
significance to establish a diagnostic model for the rapid, accurate and nondestructive
detection of nitrogen, phosphorus and potassium contents in maize leaves, which can not
only make preliminary preparations for field operation robots to perceive the growth status
of maize but can also provide a basis for the dynamic management of precise fertilization
and topdressing.

2. Materials and Methods
2.1. Method of Obtaining Sweet Corn Samples

In the farm maize mono-cropping plot without fertilization, the soil in the tillage layer
was dried and mixed with 2 cm sieve as the standby test soil. After mixing, the basic
physical and chemical properties of the test soil were determined as urea during the test
period, and nitrogen content was 46%. Nitrogen treatment during the whole growth period
was as follows: no nitrogen application: 0 kg N·hm−2 (N0); Low-nitrogen: 100 kg N·hm−2

(N1); High-nitrogen: 300 kg N·hm−2 (N2). When maize grew to coniferous stage, nitrogen
fertilizer treatment was 30% of the whole growth period, that is: no nitrogen: 0 kg N·hm−2

(N0); Low-nitrogen: 30 kg N·hm−2 (N1); High-nitrogen: 90 kg N·hm−2 (N2). After maize
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was grown for a week, two or three leaves were taken as samples to measure the following
indices: nitrogen, phosphorus and potassium contents and corresponding hyperspectral
data.

2.2. Determination of Nutrient Elements and Acquisition of Hyperspectral Data

In this experiment, the contents of total nitrogen, total phosphorus and total potassium
in corn leaves were determined by distillation, vanadium molybdenum yellow colorimetric
method and flame photometric method after H2SO4-H2O2 discooking [45]. Figure 1 shows
the nutritional element diagnostic test system of an agricultural robot. The hardware
includes a hyperspectral camera, a mobile platform, a supplementary light and a camera
obscura. The software platform includes SpecView collection software and ENVI (Envi-
ronment for Visualizing Imagesdata processing software. The spectral data curve of corn
leaves determined by this system is shown in Figure 2. Four points at the same position
of each leaf were selected to collect data, and their average value was used as the spectral
reflectance of the sample. The hyperspectral data were corrected by Formula (1):

I0 = lg [
(I − ID)

(IW − ID)
] (1)

where I0 is the corrected hyperspectral data, I is the original hyperspectral data, IW is the
white board average hyperspectral data and ID is the blackboard average hyperspectral
data.
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Figure 2. Spectral graphs of 6 samples.

2.3. Extraction of Hyperspectral Characteristic Variables

The original hyperspectral data have a low SNR, and the band information is redun-
dant. At the same time, there is a certain correlation between the reflectance data of various
bands. The accuracy of diagnostic models based on raw data is low [46,47]. Extracting spec-
tral characteristic variables to establish a diagnostic model of nutrient element content can
reduce the computational cost. In this paper, hyperspectral location variables, hyperspec-
tral area variables and vegetation index variables were adopted to analyze the correlation
between nitrogen, phosphorus and potassium contents. The meanings and calculation
methods of each hyperspectral characteristic variable are shown in Table 1 [48–51].

Table 1. Hyperspectral characteristic parameters and description.

Types of Spectral
Characteristic Variables Spectral Characteristic Variables Parameter Description

Spectral position variable

Amplitude of blue edge Db Maximum first-order differential spectral values at 490–530 nm

Location of blue edge λb/nm The wavelength position corresponding to the blue amplitude

Amplitude of yellow edge Dy Maximum first-order differential spectral values at 560–640 nm

Location of yellow edge λy/nm The wavelength position corresponding to the yellow amplitude

Amplitude of red edge Dr
Maximum first-order differential spectral value within

680–760 nm

Location of red edge λr/nm The wavelength position corresponding to the amplitude of the
red side

Green peak reflectance Rg Maximum first-order differential spectral value at 510–560 nm

Green peak position λg/nm Wavelength position corresponding to the green peak reflectivity

Red valley reflectance Rr
Minimum first order differential spectral value within

650–690 nm

Red valley location λo/nm Wavelength position corresponding to red Valley reflectivity
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Table 1. Cont.

Types of Spectral
Characteristic Variables Spectral Characteristic Variables Parameter Description

Spectral area variable

Blue edge area SDb
The area enclosed by the original light spectrum curve at

490–530 nm

Yellow edge area SDy 560–640 nm spectrum curves surround the area of original light

Red edge area SDr
The area enclosed by the original spectral curve within

680–760 nm

Green peak area SDg
The area enclosed by the original light spectrum curve in

510–560 nm

Vegetation index variable

VI1 = Rg/Rr Ratio of green peak reflectance to red valley reflectance

VI2 = (Rg − Rr)/(Rg + Rr)
Normalized values of green peak reflectance and red

valley reflectance

VI3 = SDr/SDb Ratio of the area of the red side to the area of the blue side

VI4 = SDr/SDy Ratio of the area of the red side to the area of the yellow side

VI5 = (SDr − SDb)/(SDr + SDb) The normalized value of the red-side area and the blue-side area

VI6 = (SDr − SDy)/(SDr + SDy) The normalized value of the area of the red and yellow sides

VI7 = R800/R680 Simple ratio index SRI

VI8 = (R750/R720) − 1 Red edge model REM

VI9 = (R750 − R445)/(R705 − R445) Correction of simple ratio index mSR705

VI10 = (R750 − R445)/(R750 + R705
− 2 × R445) Revised normalized difference index mND705

2.4. Binary Wavelet Analysis

As a signal processing tool emerging in recent years, wavelet analysis has the char-
acteristic of being multi-scale, which can gradually observe the signal from coarse to fine,
and has the function of describing the local features of the signal, which is beneficial to
the detection of singular points. The binary wavelet is the semi-discretization result of
continuous wavelet transform [52]. Let the scale parameter a = 2j, j∈z, and the translation
parameter b still take the continuous value, as shown in Formula (2). In this case, the binary
wavelet transform definition of f (t) is shown in Formula (3):

ψ2j ,b(t) = 2−j/2 × ψ
[
2−j(t− b)

]
(2)

WTf (2
j, b) = 2−j/2

∫ +∞

−∞
f (t)×ψ

[
2−j(t− b)

]
dt (3)

Binary wavelet can effectively separate low-frequency information from high-frequency
information and retain all information of the original signal f (t). The high-frequency signal
is the detail information in the original information and the low-frequency signal is the
macro information in the original information, which provides a new idea for spectral
signal processing and analysis [53]. Since the changes in nutrient element contents in sweet
corn in hyperspectral reflectance were relatively weak, binary wavelet based on db2, db3,
db4 and db5 wavelet bases was adopted to analyze the spectral data. Five decomposition
layers were used to process and analyze spectral data and extract characteristic information
in the spectrum.

2.5. Modeling Method and Accuracy Verification

The correlation between spectral characteristic variables and nitrogen, phosphorus
and potassium contents was analyzed and calculated by using Excel, SPSS, Origin and
Matlab software; then, the correlation coefficient was adopted for evaluation. The spectral
characteristic variables with high correlation coefficients were selected as independent
variables to construct four diagnostic models of high nitrogen, phosphorus and potassium
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contents, which were linear, parabolic, exponential and logarithmic. After binary wavelet
decomposition, correlation analysis was conducted between high- and low-frequency
wavelet coefficients and nitrogen, phosphorus and potassium contents of sweet corn, and
corresponding wavelet sensitivity coefficients were extracted. Then, partial least squares
regression (PLS) and an artificial neural network were used to construct the diagnostic
models of nitrogen, phosphorus and potassium contents in sweet corn.

In order to objectively reflect the modeling accuracy, two—thirds of the samples were
selected for modeling and one-third for verification. Moreover, the modeling determina-
tion coefficient R2, Mean Relative Error (MRE) and Normalized Root Mean Square Error
(NRMSE) were used to comprehensively analyze the stability, accuracy and accuracy of the
model. The formulae are as follows:

MRE =

100%
n
∑

i=1

∣∣yi − y′i
∣∣/yi

n
(4)

RMSE =

√
n

∑
i=1

(yi − y′i)
2/n (5)

NRMSE =
RMSE
n
∑

i=1
yi/n

(6)

where yi denotes the measured value of nutrient element content; yi
′ represents the pre-

dicted value calculated by the inversion model; I is the number of sweet corn sample; and
n is the number of verified sample 24.

The larger the determination coefficient R2 is, the better the fitting degree of the model
is, while the smaller the MRE and NRMSE values are, the higher the inversion model
accuracy is. In order to better reflect the synthesis of various models, AHP was adopted in
this study, and the opinions of 7 experts in the field of nondestructive crop testing were
consulted. The weight of evaluation factors R2, MRE and NRMSE were 46.48%, 29.58%
and 23.94%, respectively. As R2 is larger and closer to 1, the stability is better. Finally, the
reciprocal of R2, MRE and NRMSE multiplied by the corresponding weights were taken as
the final score. The lower the score, the better the model performance. The comprehensive
score is called T, as shown in Formula (7):

T =
1

R2 × 46.48% + MRE× 29.58% + NRMSE× 23.94% (7)

3. Results and Discussion
3.1. Changes of Nitrogen, Phosphorus and Potassium Contents under Different Nitrogen
Application Treatments

As shown in Figure 3a, with the increase in the nitrogen application rate, the nitrogen
content in maize leaves increased first and then decreased, and there were significant
differences in the nitrogen content between the nitrogen application levels of N0, N1 and
N2 (p < 0.05). Compared with the N1 and N2 treatments, the nitrogen content of leaves
under the N1 and N2 treatments increased, and the nitrogen content under the N1 and
N2 treatments was 1.28 times and 1.13 times higher than that under N0, respectively. The
nitrogen content of leaves at the N1 level was reduced compared with that at the N2 level,
and the nitrogen content at the N1 level was 1.12 times that at N2 level. The results showed
that an appropriate increase in the nitrogen application rate could promote the absorption
and accumulation of nitrogen in maize leaves, while a high nitrogen application rate
inhibited the accumulation of nitrogen in maize leaves, which significantly decreased the
nitrogen accumulation rate and reduced the utilization rate of nitrogen fertilizer. As shown
in Figure 3b, with the increase in the nitrogen application rate, the phosphorus content of
maize decreased, and there were significant differences in phosphorus content between
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the N0 and the N1 and N2 levels (p < 0.05). Compared with N1 and N2, the phosphorus
content of maize under the N0 treatment decreased, and the phosphorus content under
the N0 treatment was 1.47 times of that under N1 and 1.93 times of that under N2. The
phosphorus content at the N1 level was 1.31 times higher than that at the N2 level, and the
phosphorus content at the N1 level was lower than that at the N2 level. The results showed
that with the increase in the nitrogen application rate, the accumulation of phosphorus in
maize decreased rapidly at first and then at a decreasing rate. As shown in Figure 3c, with
the increase in the nitrogen application rate, the potassium content of maize decreased,
and there were significant differences in potassium content between nitrogen application
levels N0 and N1 and N2, respectively (p < 0.05); the potassium content under nitrogen
application treatments N0 and N1 were 1.40 times of that under N2 and 1.37 times of that
under N1. The results showed that applying a small amount of nitrogen fertilizer had
little effect on the uptake and accumulation of potassium in maize, but the application of
high amounts of nitrogen inhibited the uptake of potassium and made the accumulation
decrease rapidly.
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Figure 3. Significant analysis chart of nitrogen, phosphorus and potassium contents in maize un-
der different nitrogen application treatments: (a) Significance results of nitrogen content in maize;
(b) Significance results of phosphorus content in maize; (c) Significance results of potassium content
in maize. Note: In the bar chart, “a, b, c” indicates that p < 0.05, they are arranged from large to small.
Different letters indicate significant, and the same letters indicate insignificant.

3.2. Correlation Analysis and Diagnostic Model of Nitrogen, Phosphorus and Potassium Contents
and Spectral Characteristic Variables in Sweet Maize

The calculated correlation coefficient values and significance test results of each spec-
tral characteristic variable and nutrient element content are shown in Table 2.

According to the correlation coefficient calculation results in Table 2, nitrogen content
was significantly correlated with Db, λb, Dy, λy, Dr, λr, Rg, λg, Rr, λr, SDb, SDy, SDr, SDg,
VI1, VI2, VI4, VI5 and VI6, among which the correlation coefficient with Rr, λr and VI2 was
higher. The absolute values were all above 0.74. P content was significantly correlated with
characteristic variables except for VI3 and VI7, and the correlation coefficients with Dr, Rg
and SDb were higher than 0.9. Potassium content was significantly correlated with other
characteristic variables except for VI1, VI3, VI4 and VI7, and the correlation coefficient with
SDb, SDy and VI6 was higher than 0.56.
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Table 2. Correlation coefficients of spectral characteristic variables with nitrogen, phosphorus and
potassium contents.

Types of Variables Nitrogen Content Phosphorus Content Potassium Content

Db 0.725 ** 0.905 ** −0.543 **
λb 0.732 ** −0.882 ** −0.507 **
Dy 0.722 ** −0.908 ** −0.546 **
λy −0.713 ** 0.863 ** 0.485 **
Dr 0.735 ** −0.908 ** −0.528 **
λr 0.753 ** −0.826 ** −0.371 **
Rg 0.722 ** −0.908 ** −0.546 **
λg 0.735 ** −0.880 ** −0.495 **
Rr 0.742 ** −0.899 ** −0.521 **
λr 0.442 ** −0.569 ** −0.349 **

SDb 0.696 ** −0.913 ** −0.577 **
SDy −0.654 ** 0.896 ** 0.579 **
SDr 0.734 ** −0.901 ** −0.519 **
SDg 0.697 ** −0.903 ** −0.558 **
VI1 0.343 ** −0.410 ** −0.171
VI2 −0.742 ** 0.881 ** 0.506 **
VI3 0.210 −0.228 −0.125
VI4 −0.406 ** 0.545 ** 0.291
VI5 −0.725 ** 0.899 ** 0.529 **
VI6 0.674 ** −0.899 ** −0.568 **
VI7 −0.009 0.016 0.014
VI8 −0.139 0.468 ** 0.427 **
VI9 −0.219 0.504 ** 0.409 **
VI10 −0.223 0.508 ** 0.413 **

Note: ** means significant at 0.01 level.

The 72-sample data after removing abnormal data were randomly divided into
2 groups, among which 48 samples were used for modeling and 24 samples were used
for verifying the model accuracy. According to the correlation coefficient between the
spectral index and nutrient element content, Rr, λr and VI2 were selected as independent
variables of the diagnostic model to construct the diagnostic model of nitrogen content.
Dr, Rg and SDb were selected as independent variables to construct a diagnostic model of
phosphorus content. SDb, SDy and VI6 were selected as independent variables to construct
a diagnostic model of potassium content. Four common regression models, a linear model,
a parabola model, an exponential model and a logarithmic model, were used to construct
the diagnostic model. The MRE, R2 and NRMSE were used to evaluate the comprehensive
stability, accuracy and accuracy of the diagnostic models, respectively, and the T value was
used to compare the comprehensive performance of each model.

Table 3 shows the accuracy and verification results of the model. The following can be
seen: (1) Among the diagnostic models constructed by nitrogen content and hyperspectral
characteristic variables, the parabolic model with Rr as the independent variable had the
lowest T value, with its modeling R2 of 0.672, MSE of 5.39% and NRMSE of 0.093. It can
estimate nitrogen content effectively. (2) Among the diagnostic models constructed by
phosphorus content and hyperspectral characteristic variables, the linear model fitted with
SDb as the independent variable had the lowest T value, with its modeling R2 of 0.835, MSE
of 11.97% and NRMSE of 0.120. It can estimate phosphorus content stably and accurately.
(3) Among the diagnostic models constructed by potassium content and hyperspectral
characteristic variables, the parabolic model fitted with SDb as the independent variable
had the lowest T value, with its modeling R2 of 0.432, MSE of 10.22% and NRMSE of 0.112.
As the modeling R2 was less than 0.5, potassium content could not be estimated stably.
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Table 3. Results of nitrogen, phosphorus and potassium content diagnostic models.

Index to Be
Predicted

Spectral
Characteristic

Variables
Model

Coefficient of
Determination of

Modeling R2 (n = 48)

Validation (n = 24)

MRE NRMSE T

Nitrogen content

Rr

Linear 0.606 5.18% 0.090 0.8038
Parabolic 0.672 5.39% 0.093 0.7298

Index 0.639 5.18% 0.090 0.7643
Logarithmic 0.631 5.08% 0.090 0.7731

λr

Linear 0.641 5.59% 0.091 0.7634
Parabolic 0.667 9.32% 0.132 0.7559

Index 0.667 6.05% 0.093 0.7369
Logarithmic 0.644 5.58% 0.090 0.7599

VI2

Linear 0.622 5.35% 0.092 0.7851
Parabolic 0.665 5.23% 0.090 0.7359

Index 0.650 5.20% 0.092 0.7524
Logarithmic 0.657 4.71% 0.088 0.7424

Phosphorus
content

Dr

Linear 0.820 11.78% 0.119 0.6301
Parabolic 0.821 11.83% 0.118 0.6294

Index 0.755 11.55% 0.119 0.6784
Logarithmic 0.812 18.46% 0.186 0.6715

Rg

Linear 0.820 11.70% 0.119 0.6299
Parabolic 0.820 11.70% 0.119 0.6299

Index 0.755 11.39% 0.118 0.6777
Logarithmic 0.813 11.80% 0.126 0.6367

SDb

Linear 0.835 11.97% 0.120 0.6208
Parabolic 0.835 12.01% 0.121 0.6210

Index 0.777 11.55% 0.118 0.6606
Logarithmic 0.829 11.89% 0.120 0.6247

Potassium content

SDb

Linear 0.310 12.11% 0.132 1.5667
Parabolic 0.432 10.22% 0.112 1.1329

Index 0.307 39.00% 0.414 1.7285
Logarithmic 0.282 12.32% 0.148 1.7200

SDy

Linear 0.296 11.68% 0.129 1.6356
Parabolic 0.324 11.05% 0.121 1.4962

Index 0.293 11.39% 0.127 1.6504
Logarithmic 0.315 11.31% 0.125 1.5389

VI6

Linear 0.278 12.83% 0.138 1.7430
Parabolic 0.279 12.88% 0.139 1.7372

Index 0.272 12.47% 0.136 1.7784
Logarithmic 0.279 12.90% 0.139 1.7373

3.3. Binary Wavelet Modeling

Spectral curves were reconstructed based on the low-frequency (high-frequency) data
of different scales. The decomposition results of db5 were shown in Figure 4, where
Figure 4a was the low-frequency wavelet coefficient curve and Figure 4b was the high-
frequency wavelet coefficient curve. It can be seen from Figure 4a that the low-frequency
wavelet coefficient curve preserves the morphological characteristics of the original spec-
trum. However, with the increase in the scale, the absorption characteristics of the spectral
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curve gradually weaken in the bands of 560−580 nm, 600−700 nm and 780–840 nm. The
degree of separation of high-frequency information in original spectral data by binary
wavelet is gradually deepened. Figure 4b shows that the spectral curve fluctuates strongly
around 480, 610, 670 and 820 nm, indicating that the original spectral data are sensitive
to the fluctuation of nitrogen, phosphorus and potassium contents in sweet corn near the
corresponding band. It can be seen from the above that binary wavelet can effectively
separate the high-frequency information in the original spectral data and highlight the
absorption and reflection characteristics in the sweet corn spectrum.
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Figure 5 shows the correlation curves between the A5 low-frequency wavelet coef-
ficient and the D5 high-frequency wavelet coefficient of the db5 wavelet decomposition
and nutrient element content, respectively. It can be seen from Figure 5 that the fluctuation
range of the correlation curve between low-frequency wavelet coefficient and nitrogen,
phosphorus and potassium content is small, and the correlation coefficient is smaller than
the high-frequency wavelet coefficient. The correlation between the high-frequency wavelet
coefficients and the contents of nitrogen, phosphorus and potassium in sweet corn was
wide, and the correlation coefficients were basically significant. The contents of nitrogen,
phosphorus and potassium in sweet corn leaves are low, and the response to the spec-
trum is weak, which is mainly reflected in details. Furthermore, the sensitivity of the
high-frequency wavelet coefficient to the content of each element is better than that of the
low-frequency wavelet coefficient.

The high-frequency wavelet coefficients were significantly correlated with the nitro-
gen, phosphorus and potassium contents of sweet corn leaves. The wavelet sensitivity
coefficients of nitrogen, phosphorus and potassium were extracted from the high-frequency
wavelet coefficients, then the diagnostic models of nitrogen, phosphorus and potassium
contents in sweet corn were constructed by partial least squares regression and neural net-
work. The stability, accuracy and precision of the models were evaluated comprehensively
by modeling the R2, MRE and NRMSE, respectively. The T values of each model were
calculated to comprehensively compare the performance of the diagnostic models.
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Figure 5. Correlation analysis of nitrogen, phosphorus and potassium contents with db5 low-
frequency wavelet coefficients (A5) and high frequency wavelet coefficients (D5). (a) Correlation
curve between nitrogen content and low frequency A5 wavelet coefficients. (b) Correlation curve
between nitrogen content and D5 high frequency wavelet coefficient. (c) Correlation curve between
phosphorus content and low frequency A5 wavelet coefficients. (d) Correlation curve between
phosphorus content and high frequency D5 wavelet coefficients. (e) Correlation curve between
potassium content and low frequency information A5. (f) Correlation curve between potassium
content and high frequency information D5.
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The partial least squares regression model and the neural network nonlinear model
select three wavelet sensitivity coefficients with high correlation coefficients as independent
variables. The neural network framework adopts a feedforward neural network with each
sample characteristic variable as input. The hidden layer is set to 1 and the number of
neurons is set to 10. Finally, the corresponding nutrient element content is output. The
nonlinear model of neural network is shown in Table 4.The diagnostic model of nitrogen
content took wavelet coefficients 448 and 450 in the D4 high-frequency band of db3 and 367
in the D5 high-frequency band of db2 as independent variables. The correlation coefficients
between the 3 variables and nitrogen content were 0.916, 0.958 and 0.918, respectively,
denoted as Xdb3-D4−448, Xdb3-D4−450 and Xdb2-D5−367, respectively. The diagnostic model
of the phosphorus content takes wavelet coefficients at 527, 486 and 482 of the D5 high-
frequency band of wavelet db3 as independent variables. The correlation coefficients
with phosphorus content were 0.929, 0.930 and 0.952, respectively, denoted as Xdb3-D5−527,
Xdb3-D5−486 and Xdb3-D5−482, respectively. The diagnostic model of the potassium content
takes wavelet coefficients at 455, 608 and 706 of the D5 high-frequency band of db2 as
independent variables. The correlation coefficients with potassium content were 0.828, 0.916
and 0.792, respectively, denoted as Xdb2-D5−455, Xdb2-D5−608 and Xdb2-D5−706, respectively.

Table 4. Results of the partial least squares diagnostic model for nitrogen, phosphorus and potassium
contents of sweet corn based on binary wavelet sensitivity coefficient.

Index to Be
Predicted

Partial Least Squares Regression Model
Coefficient of

Determination of
Modeling R2

(n = 48)

Validation (n = 24)

MRE NRMSE T

Nitrogen content
Y = 760.852 × Xdb3-D4–448 + 579.046 ×
Xdb3-D4–450 + 555.147 × Xdb2-D5−367 +

7.325
0.906 2.01% 0.0228 0.5244

Phosphorus content Y = −55.083 × Xdb3-D5–527 + 39.259 ×
Xdb3-D5–486 + 20.589 × Xdb3-D5–482 + 9.124 0.919 7.04% 0.0835 0.5466

Potassium content
Y = 239.24 × Xdb2-D5–455 + 545.218 ×
Xdb2-D5–608 + 611.15 × Xdb2-D5–706 +

43.260
0.807 3.92% 0.0454 0.5712

3.4. Comparison between Spectral Characteristic Variable Modeling Results and Binary Wavelet
Modeling Results

Table 5 shows that using the traditional spectrum characteristic of the variable con-
struction of the nitrogen, phosphorus and potassium content of the diagnosis model, the
correlation coefficient is relatively small; the model of the comprehensive stability, accu-
racy and precision is low; and the sensitivity based on the binary wavelet decomposition
of the wavelet coefficient of nitrogen, phosphorus and potassium content of the partial
least-squares regression diagnostic model and the neural network nonlinear model as cor-
relation coefficient increased significantly. The comprehensive performance of the model
was significantly improved.

Table 5. Results of neural network diagnosis model based on binary wavelet sensitivity coefficient
for sweet corn nitrogen, phosphorus and potassium contents.

Index to Be
Predicted

Coefficient of
Determination of

Modeling R2 (n = 48)

Validation (n = 24)

MRE NRMSE T

Nitrogen content 0.974 1.65% 0.0198 0.4868
Phosphorus content 0.969 9.02% 0.1041 0.5313
Potassium content 0.821 2.16% 0.0301 0.5412
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Table 6 shows the comparison between the optimal diagnostic model with spectral
characteristic variables as independent variables, the partial least squares diagnosis model
and the neural network nonlinear diagnosis model.Compared with the parabolic model
based on Rr as independent variable, the R2, MRE and NRMSE of the partial least squares
regression model based on the sensitivity coefficient of binary wavelet and high-frequency
wavelet improved by 34.8%, 62.7%, 75.48% and 28.14%, respectively. The R2, MRE and
NRMSE of the neural network nonlinear model are increased by 44.94%, 69.39% and 78.70%,
respectively, and their comprehensive performance is improved by 28.14%. Compared with
partial least squares regression model, the neural network model R2 improved by 7.51%,
the MRE decreased by 17.91%, the NRMSE decreased by 13.16% and the comprehensive
performance improved by 7.71%. Compared with the linear model based on SDb as
independent variable, the R2, MRE and NRMSE of the partial least squares regression
model based on the high-frequency wavelet sensitivity coefficient of the binary wavelet
were improved by 10.06%, 41.19%, 30.42% and 11.95%, respectively. The R2, MRE and
NRMSE of the neural network nonlinear model are increased by 16.05%, 24.64% and 13.25%,
respectively, and the comprehensive performance is improved by 14.42%. Compared with
the partial least square regression model, the neural network model increased R2 by 5.44%,
MRE by 2.81% and NRMSE by 24.67%, but the comprehensive performance of the neural
network model increased by 2.80%.

Table 6. Comparison of spectral characteristic model, partial least squares model and neural network
model results.

Index to Be
Predicted Model Type

Coefficient of
Determination of

Modeling R2 (n = 48)
MRE NRMSE T

Nitrogen content
Rr parabolic model 0.672 5.39% 0.093 0.7298

Partial least squares regression model 0.906 2.01% 0.0228 0.5244
Neural network nonlinear model 0.974 1.65% 0.0198 0.4868

Phosphorus content
SDb Linear model 0.835 11.97% 0.120 0.6208

Partial least squares regression model 0.919 7.04% 0.0835 0.5466
Neural network nonlinear model 0.969 9.02% 0.1041 0.5313

Potassium content
SDb Parabolic model 0.432 10.22% 0.112 1.1330

Partial least squares regression model 0.807 3.92% 0.0454 0.5984
Neural network nonlinear model 0.821 2.16% 0.0301 0.5797

Compared with the parabolic model for potassium content diagnosis constructed with
SDb as the independent variable, the R2, MRE, NRMSE and comprehensive performance of
the partial least squares regression model constructed based on the high-frequency wavelet
sensitivity coefficient of binary wavelet are improved by 86.80%, 61.64%, 59.46% and
47.18%, respectively. The R2, MRE and NRMSE of the neural network nonlinear model are
increased by 90.05%, 78.86% and 73.13%, respectively, and the comprehensive performance
of the neural network nonlinear model is improved by 48.84%. Compared with the partial
least squares regression model, the neural network model improved R2 by 1.73%, MRE
by 44.90% and NRMSE by 33.7%, but the comprehensive performance of neural network
model improved by 3.13%. The results show that the high-frequency wavelet coefficients
separated by binary wavelet can effectively suppress the interference of noise information,
improve the signal-to-noise ratio of spectral data and improve the correlation between
wavelet coefficients and nitrogen, phosphorus and potassium content, and improve the
stability, accuracy and accuracy of the diagnostic model.

4. Conclusions

In this study, the specific conclusions are as follows:
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(1) With the increase in the nitrogen application rate, the nitrogen content in maize leaves
increased first and then decreased, indicating that an appropriate increase in the
nitrogen application rate could promote the absorption and accumulation of nitrogen
in maize leaves, while a high nitrogen application rate could inhibit the accumulation
of nitrogen in maize leaves, which significantly decreased the nitrogen accumulation
rate and reduced the utilization rate of nitrogen. The decrease in the phosphorus
content in maize indicated that with the increase in the nitrogen application rate,
the accumulation of phosphorus in maize decreased rapidly at first and then at a
decreasing rate. The decrease in the potassium content in maize indicated that the
application of a small amount of nitrogen fertilizer had little effect on the absorption
and accumulation of potassium in maize, and the application of a high amount of
nitrogen would inhibit the absorption of potassium and make the accumulation
decrease rapidly.

(2) Binary wavelet can effectively improve the sensitivity of the spectrum to nitrogen,
phosphorus and potassium contents of sweet corn and then improve the comprehen-
sive performance of the model. Compared with the method of constructing spectral
characteristic variables and vegetation incidices, it can effectively integrate the benefi-
cial weak information in spectral data and suppress the influence of high-frequency
noise. Compared with the parabola model based on Rr and the partial least squares
regression model based on the binary wavelet high-frequency sensitivity coefficient,
the comprehensive performance of the neural network nonlinear model based on
the binary wavelet high-frequency sensitivity coefficient improved by 28.14% and
7.71%, respectively. Compared with the linear and partial least squares regression
diagnosis models based on the high frequency sensitivity coefficient of binary wavelet,
the comprehensive performance of the neural network nonlinear model based on the
high frequency sensitivity coefficient of the binary wavelet improved by 14.42% and
2.80%, respectively. Compared with the parabola based on SDB as the independent
variable and the partial least squares regression potassium content diagnosis model
based on the binary wavelet high-frequency sensitivity coefficient, the comprehensive
performance of the neural network nonlinear model based on the binary wavelet high
frequency sensitivity coefficient is improved by 48.84% and 3.13%, respectively.

(3) The chemical measurement method by using traditional destructive sampling of
sweet corn nitrogen, phosphorus and potassium content and is sensitive to the high-
frequency wavelet coefficient of building a neural network nonlinear sweet corn
nitrogen, phosphorus and potassium content of the diagnosis model has good com-
prehensive performance, which can realize the rapid and nondestructive testing of
sweet corn nitrogen, phosphorus and potassium content.

The diagnostic accuracy of nutrient element contents in this study can be further
studied in order to improve the accuracy of agricultural robots to perceive nutrient element
content in crops. The next step is to improve the SNR of the spectral data and improve the
accuracy of the diagnostic model by using artificial neural network algorithm. Finally, the
method can be applied to the nutrient element content sensing system of agricultural robot.
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