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Abstract: Epileptic focal seizures can be localized in the brain using tracer injections during or imme-
diately after the incidence of a seizure. A real-time automated seizure detection system with minimal
latency can help time the injection properly to find the seizure origin accurately. Reliable real-time
seizure detection systems have not been clinically reported yet. We developed an anomaly detection-
based automated seizure detection system, using scalp-electroencephalogram (EEG) data, which can
be trained using a few seizure sessions, and implemented it on commercially available hardware with
parallel, neuromorphic architecture—the NeuroStack. We extracted nonlinear, statistical, and discrete
wavelet decomposition features, and we developed a graphical user interface and traditional feature
selection methods to select the most discriminative features. We investigated Reduced Coulomb
Energy (RCE) networks and K-Nearest Neighbors (k-NN) for its several advantages, such as fast
learning no local minima problem. We obtained a maximum sensitivity of 91.14%± 1.77% and a
specificity of 98.77%± 0.57% with 5 s epoch duration. The system’s latency was 12 s, which is within
most seizure event windows, which last for an average duration of 60 s. Our results showed that the
CD feature consumes large computation resources and excluding it can reduce the latency to 3.6 s
but at the cost of lower performance 80% sensitivity and 97% specificity. We demonstrated that the
proposed methodology achieves a high specificity and an acceptable sensitivity within a short delay.
Our results indicated also that individual-based RCE are superior to population-based RCE. The
proposed RCE networks has been compared to SVM and ANN as a baseline for comparison as they
are the most common machine learning seizure detection methods. SVM and ANN-based systems
were trained on the same data as RCE and K-NN with features optimized specifically for them. RCE
nets are superior to SVM and ANN. The proposed model also achieves comparable performance
to the state-of-the-art deep learning techniques while not requiring a sizeable database, which is
often expensive to build. These numbers indicate that the system is viable as a trigger mechanism for
tracer injection.

Keywords: seizure detection; electroencephalogram; anomaly detection; neuromorphic computing;
machine learning; sample entropy; correlation dimension; discrete wavelet-decomposition

1. Introduction

Epilepsy is one of the most common neurological disorders, affecting up to one percent
of the population worldwide and almost two million people in the United States alone [1].
Up to 30% of epilepsy patients experience medically refractory recurrent seizures [2] that
do not respond to anti-seizure medication. In patients presenting with medically intractable
seizures, complete surgical resection of the epileptic zone may be curative, offering the best
long-term prognosis, with either complete absence of seizures or partial response to surgery
with decreased seizure frequency and/or decreased use of anti-epileptic medication.
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Presurgical evaluation entails extensive workup, including clinical workup, interictal
(between seizures) scalp EEG, ictal (during seizures) video EEG monitoring, and neuropsy-
chological testing; in addition, patients undergo morphologic (MRI, CT) and functional
(interictal PET and ictal single photon emission computed tomography (ictal-SPECT)) mul-
timodality imaging [3]. Usually, patients are offered neurosurgical options if the clinical
presentation, ictal-interictal EEG, and imaging features are concordant for localization of
the seizure focus. Often, despite extensive presurgical workup and imaging, either the data
is discordant or inconclusive; in this large subset of patients, ictal-SPECT is often helpful for
localizing seizures [3] and phases, which demonstrates areas of acute ictal hyperperfusion
(enhanced perfusion during seizures). Ictal-SPECT imaging is instrumental in identifying
non-lesional intractable seizures and in pediatric patients.

Seizures are known to propagate rapidly to the ipsilateral and contralateral cortex,
especially in extratemporal foci compared to temporal foci. This propagation is very rapid
and often diffuse. Since blood flow follows electrical activity [4], it is imperative to inject
the perfusion tracers as soon as the onset of seizures on EEG and/or video monitoring is
observed. Hence, to obtain an accurate ictal-SPECT scan, the elapsed time from seizure
onset to tracer injection is critical and must be as short as possible [5]. The reliability of tracer
injection for seizure localization significantly improves the elapsed period from seizure
onset to tracer injection; Early radio tracer injection has been considered the most critical
factor for seizure localization. Pastor et al. [6] and Setoain et al. [7] reported improved
seizure localization using automated tracer injection (average of 33 s; range: 19–63 s;
p < 0.05) compared to manual injections (average of 41 s; range: 14–103 s; p = 0.14)
and a successful localization seizure focus in 21 of the 27 patients (78%) by automated
technique as opposed to 19 of the 29 patients (65%) by manual technique. Ho et al. [8] have
documented the different cerebral perfusion patterns in temporal lobe seizures during ictal
and periictal phases. Delayed injections lead to diffuse/multiple-foci of hyper-perfusion
on ictal-SPECT, thus invalidating the procedure.

Automated seizure detection on ictal EEG has been attempted for more than four
decades. After preprocessing the EEG signal for noise and artifact removal, different tech-
niques have been used for the detection task, including rule-based wavelet and spectral
analysis, artificial neural networks (ANN), and support vector machines (SVM) [9–11]
(Table 1). Research in neurostimulation and automated drug delivery systems has fur-
ther grown this field, and ANN and SVM are emerging as the front runner classifiers in
automated systems [12–14]. Though the reported detection accuracies of various tech-
niques have been impressive, reaching as high as 90% or more, these results are based on
well-defined and cleansed samples and are often obtained off-field in the laboratory [9].
When deployed in a real-world clinical setting, the accuracies can plummet significantly.
Currently, neural networks are software emulations and are computationally intensive. So,
a finite time is elapsed for processing the input data streams; the temporal delay is well
known to exponentially increase with increasing volumes and the complexity of the incom-
ing data streams. It has also been noted in several studies [15–19] that individual-based
systems perform better than a generalized system because of the significant inter-individual
variance of epileptic signals and their general random nature. When deployed in real-
world settings, these systems generally tend to have a minimal amount of patient-specific
ictal/seizure EEG data than the interictal/normal data.

The traditional methods for seizure detection such as ANN, need large amounts of
training data for acceptable performance. Also, it has been shown that ANN requires
4 fold more computational power than SVM. Wang et al. [20] proposed a random forest
with grid search optimization. In addition, most studies reporting the classification results
with these machine learning (ML) models use a large database, such as the CHB-MIT
scalp EEG Database, for training and reporting the model metrics [10,21]. Typically, if
we take a few EEG sessions for training and aim to perform the SPECT injection in the
subsequent few sessions, we would have a substantial amount of normal data but very little
seizure data. In our clinical recordings, a session contained 4 h of normal data and 71 s of
seizure data on average. Many adaptive pattern classifiers have been developed to provide
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high-performance and real-time responses with real-world data. Much recent emphasis has
been placed on deep learning, but numerous other classifiers have been developed. These
include decision trees, Boltzmann machines, RCE networks, feature-map, LVQ, high-order
networks, radial basis function classifiers, and modified nearest neighbor approaches, to
name a few. These classifiers provide trade-offs in memory and computation requirements,
training complexity, and ease of implementation and adaptation. K-NN methods allow
reduced error rates. For instance, several studies have demonstrated that k-NN, which train
rapidly but require large amounts of memory and computation, sometimes perform as well
as back-propagation classifiers, which are more complex to train but require less memory.
Decision trees, which have small memory and computation requirements, often perform as
well as more complex back-propagation classifiers but are more prone to over-fitting. Radial
basis function classifiers require intermediate amounts of memory and training time. RCE
networks require less memory than k-nearest neighbor classifiers but adapt its structure
over time using simple adaptation rules that recruit new nodes to match the complexity of
the classifier to that of the training data. It was reported, in [22], that RCE networks adapt
faster and require fewer exemplar nodes than the nearest neighbor classifiers as more nodes,
if needed, are recruited to generate more complex decision regions, and the size of hyper-
spheres formed by existing nodes is modified during adaptation. It has been demonstrated,
both theoretically and experimentally, that RCE forms complex decision regions rapidly.
They can be trained to solve many problems more than an order of magnitude faster than
back-propagation classifiers. RCE networks are currently being applied to many real-world
problems for real-time execution, due to their fast learning and the absence of local minima.

Recent advances in machine learning science and deep learning techniques have
shown their superiority for learning very robust seizure representation features. For exam-
ple, artificial neural networks (ANNs) were used to detect seizures after using traditional
feature extraction techniques. Some researchers have used semi-supervised deep learning
strategies for epileptic EEG classification. The most widely used method involves training
a neural network in an unsupervised way using unlabeled data and then training it again
in a supervised way using labeled data.

Several deep learning-based systems have been proposed to address the limitation of
the classification schemes mentioned above [23–26]. For instance, Abdelhameed et al. [23]
proposed a 2D supervised deep convolutional autoencoder (SDCAE) to detect epileptic
seizures in multichannel EEG signals recordings automatically. They showed that deep
learning could achieve 98% detection accuracy with high sensitivity. The computational
training and testing times of these models were not reported. Although deep learning
approaches seem to be attractive, it requires a sizeable database, which is not always
available. Furthermore, deep learning requires specific hardware for faster training, yet
building large comprehensive datasets is tedious and expensive. Additionally, the large
volumes of continuous EEG recordings required for deep learning algorithms are limited
and remain a significant limitation. Finally, in order to elucidate the optimal network
structure for a deep neural network, substantial labor may be required. To the best of the
authors’ knowledge, few to no studies have examined the use of machine learning for
automatic seizure detection with experimental implementation on hardware. The choice of
hardware implementation over software implementation is because dedicated hardware
provides real-time and faster processing compared with general software [27].

We identified k-Nearest Neighbors (k-NN) and Reduced Coulomb Energy (RCE)
networks for this task [28]. Wang et al. [11,29] reported high accuracies using k-NN and
SVM, respectively. Shoka et al. [30] developed an automatic seizure diagnosis based
on channel selection. Shoka et al. tested several machine learning techniques such as
SVM, Ensemble decision trees, k-NN, LDA, Logistic Regression, decision trees, and Naive
Bayes. These algorithms showed 80% accuracy on unfiltered data. They showed also that
filtered data improved the detection by 1% to 2%. Rivero et al. [31] also reported high
accuracy using k-NN. The choice of these algorithms was also motivated by the commercial
availability of specialized hardware tailored for implementing these algorithms. Based on
neuromorphic architecture [32], this hardware has been engineered to improve the accuracy
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of pattern recognition and, more importantly, decrease the elapsed time between signal
input and the output of results, and has been used recently by many researchers [33]. We use
NeuroStack [34] board from General Vision (Petaluma, CA, USA) for our application, which
has multiple neuromorphic chips and enables multiple such boards to be daisy-chained,
significantly increasing its ability for pattern learning. The NeuroStack has an onboard
FPGA for digital signal processing operations. The FPGA has parallel architecture and has
multiple processing elements, which can be used to implement a high-throughput map-
reduce framework to speed up the preprocessing operations on multiple EEG channels.

Table 1. State-of-the-art seizure detection techniques.

Seizure Detection
Approach Model Structure Metrics Comments

Support Vector
Machine [11,35]

Selective Search
Algorithm + SVM/

Genetic algorithm + SVM

Achieves an accuracy
of 99%

Method explored
double-density discrete

wavelet transform
(DD-DWT); designing
GA objective function

can be difficult

Random Forest [20] Random Forest + grid
search

Achieves true
probability of serious

epilepsy 98%

Grid search takes a large
amount of training time
to traverse all the grid

parameters

Machine Learning

K-Neighrest
Neighbor and

Genetic
Algorithms [31,36]

Hilbert transform

The average accuracy
of our proposed

scheme is as high
as 91.33%

No latency reported

Neural Networks [14]

multilayer perceptron
neural network with

single hidden layer of
10 neurons

Yields sensitivity,
specificity, and a false

detection rate of
97.1%, 97.8%, and
1 h−1, respectively

The method is not
fully automated

ANN+SVM [37]

5-level Db4 discrete
wavelet transform,
GA-based feature

selection and
ANN/SVM classifiers

Achieves No latency reported

Unsupervised ML XGBoost [38]
4597 EEG files train,

1013 EEGs validation,
and 1026 EEG files test

XGBoost-based
method achieved

sensitivity and false
alarm/24 h of 20.00%

and 15.59,
respectively, in the

test set

XGBoost has the
potential of

improvement, but
requires adding more

training data

2D-CNN [24] 2D deep CNN
architecture Specificity of 90%

VGGNet [25] Lightweight VGGNet
trained on Global MIC

Achieves a sensitivity
and Specificity of 90% Require a sizable dataset

Deep Learning Deep Learning
+LSTM [23] CNN Achieves sensitivity

and specificity of 98%

CNN [26] CNN
Achieves sensitivity

and specificity
of 64.96%

Accuracies of time
domain signals are

significantly decreased
compared to frequency

domain signals
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Table 1. Cont.

Seizure Detection
Approach Model Structure Metrics Comments

Wavelet-Based Method

Wavelet-based [39] Wavelet Transform
+ SVM

Achieves a sensitivity
of 94.46% and a

specificity of 95.26%
with a false detection

rate of 0.58/h

None

Wavelet + SVM [40] Wavelet + SVM

A specificity of 100%,
sensitivity of 97.2%
and an accuracy of

98.6% were obtained.

None

Non-ML methods ICON Method [41]

Inferring connection
networks used with

CHB-MIT scalp
EEG database

(https://physionet.org/
content/chbmit/1.0.0/,
accessed on 22 February

2022)

Sensitivity of 93.6%
and false positive rate

of 0.16 per hour

Method is hard to
generalize

The major contributions of this study are summarized as follows:

• We developed a clinical dataset that consists of 205 recordings with an average of
7 h and 35 min for normal brain activity and 5 min 11 s for seizure. The 205 EEG
recordings has been collected from 45 patients;

• We demonstrated that traditional k-NN and RCN could achieve high seizure identi-
fication accuracy with high sensitivity (91.14%) and acceptable specificity (98.77%),
achieving comparable performance to support vector machine, ANN, and deep learn-
ing. We did not directly compare the proposed technique to deep learning on the same
datasets because the hardware used in this study does not support deep learning,
but we could obtain results from recent studies and surveys. The results show that
machine learning can be used in limited data and computing resources cases, which is
often the case. Another advantage of traditional machine learning over deep learning
is eliminating longer labeling tasks;

• We investigated several types of features such as nonlinear features (sample entropy
and correlation dimension) and first and second-order feature extraction. We also
explored several feature selections such as mutual information-based feature selection,
Chi-square score-based feature selection, ANOVA F1-Value, and Recursive Feature
Elimination. We showed that well-engineered features could help machine learning
achieve high accuracy while supporting real-time seizure detection. We showed that a
latency as small as 3.6 s can be achieved;

• In comparing the proposed method to other state-of-the-art machine learning, we
showed that the proposed methodology is superior to SVM and ANN. They are the
most widely used algorithms in seizure detection. Because of the limited training
dataset, we only employed a 4-layer neural network. Increasing the depth of the
network requires more training data, which we did not have;

• We developed a graphical user interface that can assist epileptologists to apply their
expertise in the field and facilitate the labeling jobs as they can spend less time with
this task.

The remaining sections of this paper are outlined as follows: Section 2 describes
data collection, feature extraction, and feature selection as well as the ML methods used
for classification. Section 3 describes the experimental setup, experiments, training, and
evaluation metrics. It also describes examples of results as well as their analysis. Section 4

https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/chbmit/1.0.0/
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discusses the results in the context of related and state-of-the-art-techniques. Section 5
summarizes the main findings of this study and concludes the paper.

2. Materials and Methods
2.1. Data Collection

We used archived scalp-EEG data collected over two years at the King Fahad Medical
City (KFMC), Riyadh, Saudi Arabia. This study utilized archived clinical data that was
approved as an exempt study by the institutional review board (IRB) of KFMC.

Inclusion criteria: all adult patients with suspected focal intractable seizures admitted
to the video-EEG monitoring suite for seizure localization.

Exclusion criteria: all pediatric patients with suspected focal intractable seizures.
Recordings: all EEG recordings were made in the video-EEG monitoring suite.
The EEG signals had 21 channels per recording, which were captured using a

10–20 electrode system [42] at a sampling rate of 500 Hz. The dataset comprised 205 EEG
recordings from 45 unique individuals. The data was annotated by the epileptologists
at KFMC. Figure 1 gives a graphical overview of seizure data distribution among all the
individuals. Over the 205 cases, the average seizure duration was 1 min 11 s, and the
average normal activity (up to the seizure onset) duration was 1 h 35 min. The onset of
seizures from the start of EEG recording was short, since some patients had a history of
persistent seizures and presented with seizure activity immediately after the recording’s
start. Over the 45 subjects who make up the 205 recordings, the average seizure duration
was 5 min 11 s, and the median duration was 2 min. The average interictal duration was
7 h and 35 min, and the median duration was 1 h 33 min.
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Figure 1. Distribution of (top) EEG sessions and (bottom) seizure duration (in tens of seconds) per
session among all individuals.
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2.2. Preprocessing

EEG signals are often contaminated with artifacts. For instance, eye-blinks and the
movement of eyeballs generate electrical signals, which are collectively known as ocular
artifacts (OA) [43]. Other artifacts include muscle artifacts, cardiac artifacts, and extrinsic
artifacts [44]. A variety of techniques has been proposed in the literature to remove these
artifacts, which can be broadly classified mainly into two categories. The first category
estimates the artifactual signals using a reference channel, whereas the second decomposes
EEG signals into other domains. Techniques of the latter category include regression,
blind source separation (BSS), empirical-mode decomposition (EMD), DWD [43,45–47],
and hybrid methods. A complete review on these methods can be found in [44]. In this
paper, EEG signals went through preprocessing before feature extraction. We focused
on wavelet decomposition, which has many advantages over other alternatives in that it
supports automatic processing, can be performed on a single channel and has versatility to
attenuation artifacts [44]). After decomposition of EEG data using wavelet transformation,
thresholding was applied to discard the signal that contained artifacts. In this preprocessing,
windowing was applied, and the applied window equaled the epoch length (Figure 2). The
EEG signals were windowed into fixed-length epochs. The epoch length varied from 1 s to
7 s. The preprocessing removed low-frequency artifacts. The mathematical model of the
DWD is described in detail in the following subsections.

EEG Data

Pre-Processing

Windowing

Epoch duration

Feature Extraction

Nonlinear features

6-Scale
DWD

1 and 2nd statistical 
features

Feature
vectorization

Post-processingTraining

Evaluation

Sensitivity (%)
Specificity (%)

Latency (s)

100%
70%

30%

SVM ANN K-NN RCE

Testing
SVM ANN K-NN RCE

Figure 2. Training and testing pipeline.

2.2.1. Feature Extraction

We used traditional machine learning methods for this real-time application instead of
deep learning methods since the traditional methods have simple hardware and compu-
tational requirements. Hence, there was a need for low-level feature extraction. The raw
data was windowed into fixed-length epochs, and features were extracted from each epoch.
Since the raw data had 21 channels, each epoch has 21 channels as well. We extracted
nonlinear dynamical features and statistical features from the EEG data.

Nonlinear features: We extracted nonlinear features based on chaos theory, which
have been proven to represent brain activity well [1,21,48,49]. These nonlinear features
were sample entropy (SampEn) and correlation dimension (CD).

The sample entropy of a time-series is the negative natural logarithm of the conditional
probability that two sequences similar to ‘m’ points remain similar at the next point, where
self matches are not included in calculating the probability. SampEn [50] can be computed as:

SampEn(m, r, n) = −ln(
A
B
) (1)



Sensors 2022, 22, 1852 8 of 21

where ‘m’ is the embedding dimension (length of vectors to compare). We used an embed-
ding dimension of 2, which has been shown to be appropriate for small datasets [51], r is
the tolerance value, n is the original data length, and A and B are given as,

A = { (n−m− 1)(n−m)

2
}Am(r), and B = { (n−m− 1)(n−m)

(2)
}Bm(r), (2)

where, Am(r) denotes the probability that the two sequences match for m + 1 points, and
Bm(r) denotes the probability that the two sequences match for m points [50].

Entropy is a concept handling predictability and randomness, with higher values of
entropy always related to less system order and more randomness [52]. In the event of a
seizure, the EEG signal on certain channels shows more randomness, suggesting a high
value of SampEn for the seizure epochs compared to epochs with normal brain activity.
SampEn is calculated using the algorithm proposed by Richman et al. [51].

The CD of a set of points measures the space dimensionality occupied by these points.
It determines if a seemingly random time-series signal was truly random or generated by a
nonlinear dynamical deterministic system. A truly random signal cannot be embedded
in a smaller dimension than the embedding dimension, while a signal generated by a
nonlinear dynamical system can be embedded within a smaller dimension space. It has
been observed that seizure data has smaller CD compared to normal data. As a result, one
can conclude that any discernible randomness in normal data is likely due to random noise,
whereas the randomness in seizure data is due to seizure generating mechanisms in the
brain. The CD is calculated using the Grassberger-Procaccia algorithm [53].

For a time series given by ts = (x1, x2, ..., xn), the CD can be computed as [54],

CD = lim
r−→0

log(Cr)

log(r)
, (3)

where Cr is given by [54],

Cr = lim
r−→0

log(C(r))
N2 , (4)

and
C(r) = ∑ Θ(r− ||xi − xj||), (5)

where Θ denotes the Heaviside function.
Statistical features: Statistical features were extracted from the sub-signals obtained

from discrete wavelet decomposition (DWD) of each channel of the EEG signal. DWD has
been successfully used for extracting features in multiple studies with EEG data [10,55,56].
DWD provides a high-resolution signal at each analysis scale while not compromising the
temporal resolution.

DWD is based on discrete wavelet transform. A wavelet is an oscillating function that
is rapidly diminishing. The signal is split into scaled and translated versions (ψa,b(t)) of a
single function ψ, termed mother wavelet, in continuous wavelet analysis [57]:

ψa,b(t) =
1√
a

ψ(
t− b

a
), (6)

where a and b are the scale and translation parameters, respectively. DWD was obtained by
discretizing the scale and translation parameters. Several mother wavelet functions can be
used [45–47] Each epoch was decomposed into seven sub-signals using a six-level DWD.
Six-level DWD has been shown to be appropriate for feature representation in time and
frequency domain [58,59]. In addition, we conducted wavelet decomposition of EEG with
five scales, and selected few frequency bands of them for subsequent processing inspired by
the work done by Liu et al. [39]. Table 2 gives the frequency composition of each sub-signal
represented by corresponding detail or approximation coefficients.
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Table 2. Coefficients of signals obtained from six levels of discrete wavelet decomposition and the
frequency range represented by each set of coefficients.

Coefficients Frequency Range (Hz)

1st level detail (D1) [125, 250]
2nd level detail (D2) [62.5, 125]
3rd level detail (D3) [31.25, 62.5]
4th level detail (D4) [15.625, 31.25]
5th level detail (D5) [7.8125, 15.625]
6th level detail (D6) [3.90625, 7.8125]

6th level approximation (A6) [0, 3.90625]

First and second-order statistical estimates—absolute value of the mean (AM), mean
of the absolute values (MA), and root mean square (RMS) value—were computed for each
channel of each sub-signal. This resulted in 21 features per epoch per channel. There were
23 total features per epoch per channel—2 nonlinear features and 21 features from the
DWD. Feature selection methods were used to select the most important features before
training the ML classifiers.

2.2.2. Feature Selection

We developed a simple graphical user interface (GUI) using Python programming
language, which helped us visualize the seizure, non-seizure data, and the corresponding
features. The initial features were selected such that there was a visible distinction in the
features corresponding to normal and seizure data. The feature selection experiments were
performed with epoch durations of 3 s, 5 s, and 7 s, which are commonly used sub-sample
durations [56,60].

Features with low discriminative power—RMS, MA, and AM corresponding to the
[0, 3.90625] Hz band—could be easily identified using the tool. This apparent visual distinc-
tion can be attributed to the DC content in this frequency band, which does not appear to
change much between seizure and normal activity. We started with 23 features per channel
and arrived at 20 using the visualization tool depicted in Figure 3.

Figure 3. Features as visualized by epoch viewer tool. The plots in the top row correspond to seizures
and the bottom row plots correspond to normal data. It can be seen that the second feature does not
vary much between seizures and normal data. The behavior persisted across different session and
individuals, and therefore the second feature was removed from consideration.

The following filter and wrapper feature selection methods were applied on this
reduced set, each method resulting in a distinct optimal feature set.

• Mutual information-based feature selection: The features are ranked based on the
mutual information between them and the target output. The mutual information is
calculated using entropy estimation from k-Nearest Neighbor distances [61,62];
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• Chi-squared score-based feature selection: The features are ranked based on the chi-
squared value [63] between them and the target output. Since chi-squared statistic
measures the dependence between stochastic variables, it helps to remove the non-
discriminative features, which are most likely independent of the target class;

• ANOVA F-Value: This method selects the features with the highest one-way analysis
of variance (ANOVA) [64,65] score between the target output and each feature;

• Recursive Feature Elimination (RFE): This is a wrapper method where features are
recursively eliminated until the performance of a classifier stops improving [66].

2.2.3. Machine Learning

Since our goal was to develop a real-time seizure detection system, the selected ML
algorithms had to be simple in terms of hardware and power requirements [22]. Owing to
the preponderance of normal data and disproportionately small amount of seizure data, ML
algorithms from the anomaly detection class of algorithms were used. The term anomaly
detection is used here because the seizure does not last for a long duration compared with
the session recording. For this specific medical application, i.e., seizure focus localization,
the true positive rate (rate of correct identification of seizure activity) should be as high
as possible with the lowest-possible false positive rate (rate of misclassification of normal
activity as seizure activity). We used k-Nearest Neighbors (k-NN) and Reduced Coulomb
Energy (RCE) networks for this task. Similar template-based classifiers were used by
Qu et al. [16]. We compared the results of classifiers based on these algorithms to the
baseline results obtained from the classifiers based on traditional ML algorithms SVM
and ANN.

k-NN: K-NN is a non-parametric, memory-based classification algorithm. It commits
all the training examples to memory and uses them as templates for classification. When
a test example is presented, the algorithm computes the L2 distance to each of the saved
templates. The k closest examples are then selected, and the test example is assigned to the
class represented by the majority of the k examples. The algorithm has one hyperparameter—
the number of nearest neighbors, k. As seen in Figure 4, a binary k-NN divides the feature
space into two distinct regions corresponding to the two classes.

Figure 4. Evolution of the decision space for k-NN network with k = 1. All the input examples are
saved in memory and the decision space is determined by the k-nearest neighbors.

RCE: RCE improve the accuracy of K-NN by adding a distance threshold. In this
way, RCE addresses one of the main deficiencies of K-NN. As it can be seen in Figure 4,
an input example still has neighbors and is attributed to one class even when it is very
distant from any saved example. Adding a distance threshold (Figure 5) allows for saving
only examples who are close to neighbors and find correct classes for new input examples.
Another advantage of RCE is that not all examples are committed to memory. The shape of
the IF around a vector is defined by the distance metric used for the network—e. If a new
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training vector falls in the IF of a vector belonging to the other class, the IF of the existing
vector is shrunk so as not to include the new vector and the new vector is assigned an IF so
as not to include the other vector in its IF. A binary RCE network, in contrast to a k-NN, can
output three classes: class 1, class 2, or Unknown class . When deployed for classification,
if the vector falls within the influence field of either or both of the classes, it is classified
into the closest class in terms of the network distance metric. This can happen frequently
with seizures, owing to their random nature—seizure patterns can vary significantly from
one session to the other for the same individual [67].

Figure 5. Evolution of the decision space for an RCE network with L1 distance measure in 2-D space.
Note how the decision space is divide into three regions and how it is modified with the presence of
a different class nearby.

SVM: SVM is a two-class classifier, which builds a nonlinear boundary between the
two classes of interest in a multidimensional feature space [68]. We tested several kernel
functions—radial basis function, polynomial, and linear kernels—and selected linear kernel
with automatic class weighting for this task. SVM was implemented using scikit-learn [69].

ANN: ANN, also known as multi-layer perceptron, produces a mapping from the
input space to the target space by optimizing the parameters of the network—the weights
and biases connecting nodes in successive layers [70,71]. The ANN architecture was guided
by the input size and the number of output classes. The LBFGS solver [72], which is suited
for small ANNs trained on datasets, was used for optimizing the log-loss function by
adjusting the weights and biases. Rectified Linear Unit (ReLU) activation function was
used for all the nodes. The input layer has 210 nodes, followed by two hidden layers with
70 and 4 nodes, respectively, which are followed by the output layer with 2 nodes. ANN
was also implemented using the scikit-learn python library [69].

3. Experimental Setup

As depicted in Figure 2, the raw EEG data was converted into a series of feature vectors
through preprocessing and feature extraction. In the preprocessing stage, the raw EEG
data was windowed into 5 s long epochs with no overlap between successive epochs. In
the feature extraction stage, CD and SampEn were calculated on the preprocessed data per
epoch for each of the 21 channels. The remaining features were computed from the DWD
coefficients. For each session, we had a set of seizure vectors and a set of normal vectors.
Since there was an overwhelming amount of normal data, we randomly chose a subset
of normal vectors, which was three times the size of the seizure set, for our experiments.
Since we have hundreds of hours of data, and 21 channels per epoch, we implemented a
map-reduce framework using Python’s Multiprocessing module to make use of multiple
processors and speed up the feature extraction by a factor of 10. This framework can be
translated into hardware for real-time implementation using an FPGA. For our work, the
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feature vectors were stored in hdf5 format [73], which optimized memory utilization and
execution speed.

We used the NeuroStack hardware for implementing the k-NN and RCE networks.
The hardware has the following constraint: each board can commit a maximum of 4096 ex-
amples to memory. Hence, a k-NN network on this hardware can store only the first
4096 training vectors. The RCE network stores the first 4096 vectors that do not fall into
each other’s influence field. The training order for k-NN was seizure vectors followed by
normal vectors. This was done to make sure the k-NN saved sufficient seizure examples in
memory. In case of RCE, since the decision space changes with the order of the training
vectors, we performed iterative training until two successive iterations resulted in the same
decision space.

As mentioned, NeuroStack uses parallel neuromorphic architecture. The basic op-
eration, which is computing the distance between an input example and all the saved
examples, takes a constant amount of time, irrespective of the number of saved examples.
This is possible because each example is saved in a separate uniquely addressable memory
location. This results in a small training time and a quick response while testing. A conse-
quence of this memory setting is that there is a maximum limit on the size of an example.
In NeuroStack, each example can be 256 bytes long. To conform to the 256-byte memory
limit, every feature was normalized to 255 so that each feature takes up at most 1 byte of
memory. This allowed for a maximum of 12 features per channel, which is equivalent to a
maximum of 252 bytes per epoch.

4. Experiments

The following experiments were performed:

• Feature selection: Filter and wrapper feature selection methods were used to select
optimal feature sets. The performance of classifiers was compared for all feature sets;

• Resolution strategy: Different resolution strategies were compared for examples
classified as “Unknown” by RCE;

• Number of nearest neighbors: k-NN and RCE networks with varying number of
nearest neighbors were compared;

• Number of EEG sessions used for training: Performance of different classifiers was
compared for different training-set sizes;

• Varying epoch duration: Performance of a classifier was tracked as the epoch duration
was changed;

• Individual vs. population-based systems: Performance of a general classifier trained
with data from all individuals was compared to specific classifiers trained with data
from each individual.

Training and test set used in the experiments For all the individual-based classifiers,
Ni−1 sessions were used for training and the one remaining session was used for testing,
where Ni is the number of EEG sessions for individual i. For experiments with varying
number of sessions used for training, Ni − m sessions were used for training and the
remaining m sessions were used for testing, for m ∈ [1, 2, . . . , Ni−1]. The experiment with a
certain value of m was repeated until every session of an individual was tested at least once.

For population-based classifiers, the training set included session data from all the
individuals but one, and all the sessions belonging to the one individual were used for
testing. This experiment was repeated for all individuals.

In all the classification experiments, seizure and normal data were respectively des-
ignated as the positive and negative classes. The notion of True Positives (TP), False
Negatives (FN), True Negatives (TN), and False Positives (FP) pertaining to a classifier were
defined as:

• TP: Number of seizure examples classified as seizure;
• FN: Number of seizure examples classified as normal;
• TN: Number of normal examples classified as normal;
• FP: Number of normal examples classified as seizure.
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The following are the metrics used for evaluating and comparing the performance of
the classifiers:

Sensitivity: Also known as the true positive rate, is the fraction of the seizure examples
classified as a seizure.

Sensitivity =
TP

TP + TN
× 100%, (7)

Specificity: Also known as the true negative rate, it is the fraction of normal examples
classified as normal.

Speci f icity =
TN

TN + FP
× 100%, (8)

F1-score: This combines the sensitivity and specificity into a single metric, making it easy
to compare the performance of classifiers with different sensitivity and specificity values.

F1-score = 2× Precision× Recall
Precision + Recall

× 100%, (9)

where the precision is given by:

Precision =
TP

TP + FP
× 100%, (10)

and the recall is given by:

Recall =
TP

TP + FN
× 100%, (11)

5. Results
5.1. Feature Selection

Each filter-based feature selection system outputs a feature importance list for each
individual. It was observed that the optimal feature set differs among individuals, as can be
seen in Figure 6. We averaged the importance scores over all individuals for each method
and compared the performance of the classifiers with these feature sets.

Patients

Average

Chi-squared Mutual information ANOVA F-Value

Percentage score

Figure 6. Feature importance calculated using chi-squared, mutual information, and ANOVA F-Value
from left to right. The columns represent the relative importance of features for each patient. The
importance is represented on a scale from green to red, green being the most important and red
the least important.

It can be seen that the top 10 features selected by ANOVA-F and mutual information-
based methods are the same, while the Chi-squared based method yields a different set
of features. Recursive feature elimination (RFE) was performed for SVM, k-NN, and RCE.
It was not performed for ANN since the architecture of ANN would have to change for
every different input size. For RCE, the examples classified as Unknown were assigned
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to normal class. For both RCE and k-NN, one nearest neighbor was used. Table 3 lists the
feature sets obtained from the feature selection experiments.

Table 3. Composition of different feature sets.

Feature Set Composition

ANOVA-F CD, SampEn, RMS (D4, D3, D2, D1)
Chi-squared RMS (D4, D3, D2), MA (D4, D3, D2, D1)

SVM RFE SampEn, RMS (D4, D2, D1), MA (D1), AM (D2, D1)
k-NN RFE CD, SampEn, RMS (D6, D5, D4, D3, D2, D1)
RCE RFE CD, SampEn, RMS (D2, D1), AM (D6, D5, D4, D3, D2, D1)

5.2. Resolution Strategy

As mentioned in the machine learning section, the examples classified as Unknown by
RCE can be resolved via various strategies. The results of using three different strategies
with individual-based RCE and RCE RFE feature sets are shown in Table 4. Note that the
results are presented for the entire data. Each individual-based RCE results in a pair of
sensitivity and specificity values (one for each patient). The variance in the sensitivity and
specificity metrics shown in the table is the statistical variance of sensitivity and specificity
values across all the patients. It has been observed that using a population-based k-NN
on examples classified as Unknown by individual-based RCE results in the best classifier
system. One nearest neighbor is used in this case.

Table 4. Performance of RCE network with different “Unknown” resolution strategies.

Resolution Strategy Sensitivity (%) Specificity (%)

Assign to Seizure class 88.59 ± 7.23 69.18 ± 15.78
Assign to Normal class 66.23 ± 17.09 91.51 ± 9.47
Use population k-NN 80.16 ±4.50 97.17 ± 1.02

5.3. Number of Nearest Neighbors

Table 5 shows the performance of individual-based k-NN and RCE networks with a
different number of nearest neighbors. We extended the strategy of using a general classifier
on Unknown examples in case of RCE to SVM and ANN. For this task, we set a threshold
on the predict probability of the class output by SVM/ANN. We observed that most of
the non-seizure examples which were classified as seizure had a predicted probability of
<0.8. Since the tracer injection is most effective when administered at the actual onset of
seizure, we would want a high specificity. To rectify such misclassifications, we decided to
input all the examples with predict-probability of <0.8 to a subsequent (population-based)
classifier—this resulted in a lower sensitivity but a higher specificity. The improvement
observed using this strategy is shown in Table 6, and all the experiments with SVM and
ANN presented here use this two-stage approach.

Once the architectures of all the classifiers were set, we compared the performance
of the classifiers with different feature sets for individual-based scenario, as presented in
Table 7. Following this experiment, the optimal feature set for each classifier was selected.
The rest of the experiments were performed in an individual-based scenario using these
optimal features, unless otherwise mentioned.

As illustrated in Figure 7, we had optimal performance for RCE with 10 features
obtained through RFE.
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Figure 7. Performance of the RCE system with incremental feature vector sizes, starting with the
most important features. Only 16 channels were used so the feature vector did not exceed 256 bytes.

Table 5. Performance (sensitivity/specificity) of k-NN and RCE networks for a different number of
nearest neighbors (k).

# Nearest Neighbors (k) k-NN RCE

1 57.56/84.65 80.16/97.17
2 57.56/84.65 80.16/97.17
3 45.46/91.06 77.91/97.20
4 47.60/90.95 80.44/97.43
5 37.86/92.13 80.15/96.99
6 40.12/91.81 81.61/97.22
7 31.85/94.58 79.59/97.30

Table 6. Comparison of single and two-stage SVM and ANN classifiers with the SVM RFE feature set.

Type Sensitivity (%) Specificity (%)

Single-stage SVM 90.90 ± 8.09 78.03 ± 12.82
Two-stage SVM 80.17 ± 10.91 93.03 ± 2.91

Single-stage ANN 60.60 ± 20.78 85.90 ± 18.08
Two-stage ANN 88.62 ± 10.90 81.41 ± 16.78
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Table 7. Comparison of single and two-stage SVM and ANN classifiers with SVM RFE feature set
(metric format: Sensitivity (%)/Specificity (%)).

Feature Set SVM ANN k-NN RCE

ANOVA 78.56/93.28 90.97/78.90 54.81/72.27 74.32/98.38
Chi-sq 85.68/81.64 90.18/80.75 48.15/77.74 76.14/95.16

SVM RFE 80.17/93.03 88.62/81.47 54.05/73.79 75.47/96.03
k-NN RFE 85.44/81.93 76.77/82.20 57.56/84.65 74.20/88.32
RCE RFE 87.94/82.36 85.22/75.51 55.47/70.36 80.16/97.17

5.4. Number of EEG Sessions Used for Training

The effect of a small amount of training data on the classifier performance is shown in
Table 8. For training with multiple sessions, say m out of a total of N sessions available per
individual, we performed (N

m )C experiments, with every combination of m sessions used
for training and the rest used for testing, and averaged the results.

Table 8. Performance (sensitivity/specificity rounded to the nearest integer) of different classifiers
with varying number of EEG sessions used for training.

# Training Sessions SVM ANN k-NN RCE

1 52/93 45/79 55/71 75/89
2 70/88 72/77 53/80 77/93

N − 1 80/93 89/81 58/85 80/97

The results for epoch length selection can be found in Table 9. It can be seen also that
the specificity remains almost the same as we increase the epoch duration from 1 to 7 s. For
sensitivity, as we increased the epoch duration from 1 s to 5 s, the sensitivity increased to
reach its maximum at 5 s. For an epoch duration of 6 s and 7 s, the sensitivity decreased. In
short, we obtained the best performance with 5 s epoch duration (91.14% and 98.77%).

Table 9. Performance of individual-based RCE classifier system (over a subset of individuals) for
different epoch durations.

Epoch Duration (s) Sensitivity (%) Specificity (%)

1 79.78 ± 1.05 97.16 ± 0.30
2 80.44 ± 1.34 97.32 ± 0.38
3 81.32 ± 1.83 97.25 ± 0.47
4 83.11 ± 1.97 97.62 ± 0.57
5 91.14 ± 1.77 98.77 ± 0.57
6 87.34 ± 2.61 98.08 ± 0.64
7 86.25 ± 1.90 97.33 ± 0.81

5.5. Individual vs. Population-Based Systems

Table 10 summarizes the final experimental results, in terms of sensitivity and speci-
ficity. As can be seen from the table, the RCE network trained on each individual has the
best performance with a sensitivity of 80.16% and a specificity of 97.17%, followed by SVM.
SVM has the best performance among population-based methods, but it is far from optimal.
RCN still has the highest specificity (86.70%) but its sensitivity drops to 42.89%. ANN has
the highest specificity for population based method with 81.42%.
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Table 10. Optimal performance of different classifiers with individual- and population-based training.

System Sensitivity (%) Specificity (%)

Individual-based RCE 80.16 ± 4.50 97.17 ± 1.02
Individual-based k-NN 57.56 ± 16.46 84.65 ± 14.60
Individual-based ANN 88.62 ± 10.90 81.41 ± 16.78
Individual-based SVM 80.17 ± 10.91 93.03 ± 2.91
Population-based RCE 42.89 ± 38.80 86.70 ± 12.55

Population-based k-NN 61.73 ± 23.09 67.44 ± 23.52
Population-based ANN 81.42 ± 6.69 32.57 ± 19.49
Population-based SVM 66.27 ± 32.44 72.70 ± 22.18

5.6. Latency for NeuroStack

For epoch duration of 5 s, the feature extraction process, when parallelized with
four threads, took 11.6± 0.1 s. The majority of the time (∼8 s) was taken to calculate the
Correlation Dimension. If CD was not calculated, the latency for 5 s epoch duration was
3.6± 0.2 s. Exclusion of CD from the feature set resulted in a 3% drop in sensitivity and 1%
drop in specificity. The classification process took 1.2 µs on an average. The latency can be
reduced with smaller epoch duration, but with a small drop in sensitivity. Latency has a
dependency on epoch size. For example, using 2 s epoch duration yields a latency of ∼5 s
(including computation of CD).

6. Discussion

The experiments conducted in this work and the results provide relevant information
for deciding the architecture of the classifier and the overall real-time seizure detection
system. It can be observed that RCE has better performance than SVM, ANN, and k-NN
when trained with data from a single session, and this performance is comparable to the
one obtained using all sessions for training. In the case of SVM and ANN, we see that the
performance gradually improves with data size, and they need numerous EEG sessions for
training to reach the performance obtained by RCE with a training set composed of a single
EEG session. This performance disparity can be attributed to the ability of RCE networks
to identify anomalies with confidence, even with a small amount of seizure data. Having
a secondary population-based classifier to classify the Unknown examples (or examples
with predict probability <0.8 in case of ANN and SVM) also improved the performance of
the classification systems. All the examples which could not be classified by the primary
model with a high probability were input to a secondary classifier for a second opinion and
classified accordingly. It can be seen from Table 10 that individual-based seizure detection
systems work better than population-based systems. This can be attributed to the high
variability in the seizure patterns from person to person, which cannot be captured by a
single general model. In this study, the seizure and normal data was labeled and we knew
the start and end of each type of data. Hence, non-overlapping epochs were used without
any performance degradation. When deployed in a clinical workflow, the system will be
working with continuous streams of EEG data. Overlapping epochs can be used in such a
scenario to further reduce the chance of missing a seizure since there will be more seizure
epochs. The present system can be further improved by pre-processing the data to remove
artifacts using combined Blind source separation and independent component analysis [74],
which has proven more useful for separating linearly mixed independent sources in EEG
signals, including artifacts [75,76]. The influence of such pre-processing can improve the
presented results and can be investigated in future studies.

This improved system can be used to trigger tracer injection for ictal-SPECT. In the
future, our system can also be used to trigger deep brain stimulation (electro-stimulation)
for suppressing ictal discharges and their propagation, and to inject drugs intracranially
for more effective seizure control.

Table 11 presents a summary of the main results presented in this study in comparison
between the proposed techniques and the state of the art techniques. We did not implement
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the techniques using the hardware as some of the techniques are not applicable to our
study. However, we cite the results obtained by several papers recently published for the
sake of the comparison. It can be seen from Table 11, that the proposed method is able to
achieve over 90% plus sensitivity, specificity, and accuracy, all while keeping the delay of
the seizure detection within 12 s.

Table 11. Performance comparison between the state of the art techniques and proposed methods.

Methods Approach Sensitivity (%) Specificity(%) Accuracy (%) Delay (s)

[29] ML NA NA 93.82 N/A
[23] DL + LSTM 98.72 98.86 98.79 N/A
[24] 2D CNN 90.0 91.05 98.05 N/A

Proposed
Method 1

RCE with
multi-features 91.14 98.77 - 11 s

Proposed
Method 2 RCE-without CD 80.116 97.17 - 3.6 s

7. Conclusions

This study presents an approach for automatic seizure detection based on RCN net-
works. These networks are data efficient. This study is the first of its kind in terms of
hardware implementation and validation of the theoretical approach. The proposed meth-
ods are comparable to recent deep learning techniques that can achieve state of the art
detection accuracy. The proposed technique has the advantage of being trained on fewer
training samples instead of large database required by deep learning, which entails tedious
labeling work. It can be concluded that a 5 s epoch duration resulted in the highest sensi-
tivity and specificity. It can be concluded that the latency of RCE is highly dependent on
the CD feature. Including the CD feature improves the system accuracy but at the cost of
increased latency. Also, individual-based RCN has better performance than population-
based RCE. It can be concluded also that increasing the number of EEG sessions resulted
in better performance for all the studied algorithms. Increasing the number of neighbors
results in an increase of specificity of K-NN but not the sensitivity.
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Abbreviations

The following abbreviations are used in this manuscript:
RCE Reduced Columb Energy
k-NN k-Nearest Neighbors
SVM Support Vector Machines
ANN Artificial Neural Networks
RFE Recursive Feature Elimination
EEG Electroencephalogram
DWD Discrete Wavelet Decomposition
CD Correlation Dimension
FPGA Field Programmable Gate Arrays
NN Neural Network
TP True Positive
FN False Negative
TN True Negative
FP False Positive
ictal-SPECT ictal Single Photon Emission Computed Tomography
CNN Convolutional Neural Network
LSTM Long short-term memory
RMS Root mean square
MA Mean of the absolute values
AM Absolute value of the mean
GUI Graphical user interface
Hz Hertz
SampEn Sample entropy
IF Influence field
DL Deep Learning
ML Machine Learning
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