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Abstract: COVID-19 has evolved into one of the most severe and acute illnesses. The number of
deaths continues to climb despite the development of vaccines and new strains of the virus have
appeared. The early and precise recognition of COVID-19 are key in viably treating patients and
containing the pandemic on the whole. Deep learning technology has been shown to be a significant
tool in diagnosing COVID-19 and in assisting radiologists to detect anomalies and numerous diseases
during this epidemic. This research seeks to provide an overview of novel deep learning-based
applications for medical imaging modalities, computer tomography (CT) and chest X-rays (CXR), for
the detection and classification COVID-19. First, we give an overview of the taxonomy of medical
imaging and present a summary of types of deep learning (DL) methods. Then, utilizing deep learning
techniques, we present an overview of systems created for COVID-19 detection and classification.
We also give a rundown of the most well-known databases used to train these networks. Finally,
we explore the challenges of using deep learning algorithms to detect COVID-19, as well as future
research prospects in this field.

Keywords: COVID-19; deep learning; diagnostic; computer tomography (CT); chest X-rays (CXR);
classification

1. Introduction

The Wuhan Municipal Health Commission initially reported a substantial concentra-
tion of pneumonia patients in Wuhan City, Hubei Province, China (World Health Organiza-
tion (WHO), 2020) on 31 December 2019.The virus, known as SARS-CoV-2 (severe acute
respiratory syndrome coronavirus 2), can cause severe pneumonia and has been shown to
spread from person to person [1].

In order to deal with the spread of COVID-19, effective screening and early medical
care for affected people are critical requirements. The most commonly utilized clinical
screening approach for COVID-19 patients is reverse transcription polymerase chain reac-
tion (RT-PCR), which employs respiratory materials for testing. However, RT-PCR has a
poor diagnostic sensitivity, often necessitates multiple tests to confirm infection, and is very
time-consuming [2]. To address this problem, an alternative diagnostic approach, based
on screening chest radiography images (CRIs), such as X-ray or computed tomography
(CT) images, is being developed, as COVID-19 patients frequently exhibit aberrant lung
infection characteristics on CRIs [3].

Clinical symptom analyses, epidemiological history, positive radiographic imaging
(computed tomography (CT)/chest radiograph (CXR)), and positive pathogenic tests are
among the COVID-19′s other diagnostic procedures [4].
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1.1. COVID-19

COVID-19 was declared a global pandemic by the World Health Organization (WHO)
in March, 2020 [5]. COVID-19, often known as SARS-CoV-2, is a novel virus in the severe
acute respiratory syndrome coronavirus (SARS-CoV) family. Over time, viruses continue
to change due to mutations and new virus variants will appear. Sometimes new variants
appear and then disappear. Other times, new variations appear and continue to exist. In
recent months, several new strains of SARS-CoV-2 have emerged. In the fall of 2020, the
United Kingdom (UK) discovered a variant named B.1.1.7 with a substantial number of
mutations [6]. Apart from B.1.1.7, another version known as 501Y.V2 or B.1.351 arose in
South Africa [7]. B.1.351 and B.1.1.7 have certain mutations in common. In early January,
a new strain known as P.1 was discovered in Brazilian travelers who were tested during
standard screening at a Japanese airport [8].

In India, a new COVID variant called B.1.617 was first detected in December 2020.
B.1.617 is a variation that has had a major impact on the second influx of contaminations in
India, and has spread to numerous different nations, including the UK. Between the end
of 2020 and the time of writing this paper, several other strains have been identified [9].
SARS-CoV-2 mutations are causing concern all over the world. Indeed, some variants are
more contagious and have a higher transmission rate than prior ones [10,11], resulting
in an increase of COVID-19 patients. In general, almost all coronavirus variants can be
distinguished only by sequencing the genome of the virus. Moreover, despite the discovery
of vaccinations against SARS-CoV-2/COVID-19 worldwide, this virus is likely to continue
to evolve, which makes controlling it more difficult [12]. The rising number of cases
will put more strain on medical services, potentially leading to more hospitalizations
and fatalities. It is thus critical to recognize those who are infected. The introduction
of automatic detection systems based on AI has shown an encouraging effectiveness of
artificial intelligence (AI) in detecting numerous types of malignancies during the large
expansion of the COVID-19 outbreak, as these can lead to a quick diagnosis of infected cases
and assist in their rapid isolation [13]. Several AI-based solutions have been developed
to make COVID-19 detection and decision making in medical image screening faster and
more accurate. The use of a deep learning algorithm to perform image classification is
an essential element of study disciplines. The implementation of deep learning in the
COVID-19 pandemic has resulted in improved disease diagnosis and classification based
on both X-ray and CT imaging.

1.2. Taxonomy of Medical Imaging

Clinical studies have shown that the majority of COVID-19 patients, during the current
coronavirus epidemic, suffer from lung contamination. Early COVID-19 illness detection
was achieved using imaging techniques, such as chest X-rays (CXR) and computed tomogra-
phy (CT). Despite the fact that chest CTs have been shown to be a powerful imaging method
for diagnosing lung-related illnesses, chest X-rays are more widely available because the
diagnostic process is relatively quick [14].

1.2.1. X-ray Radiography

X-rays, discovered in 1895 [15], are a sort of electromagnetic radiation. Medical X-rays
are used to provide images of internal organs and tissues. These images depict body parts
in various shades of black and white. CXR can be used for diagnosing bone fractures, some
tumors, and diseases, such as COVID-19 [16]. Specifically, in COVID-19 detection, X-rays
are thought to be one of the most effective methods.

1.2.2. Computed Tomography

Another medical imaging technique, invented by South African scientist Allan Cor-
mack, is computed tomography (CT), and is sometimes referred to as a CT scan [17]. CT is
used in medical diagnosis to slice the imaging of different parts of the body and tissues,
such as lungs, bones, veins, etc. Computed tomography plays an important role in the di-
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agnosis of cancer [18], cardiovascular pathologies [19], trauma, and, more recently, COVID
pneumonia [20].

1.3. Paper Structure

This paper provides a summary of various deep learning algorithms utilized in COVID-
19 detection and classification using CT and X-ray radiography. The remainder of this
review is organized in the following manner: in Section 2, basic and background informa-
tion of deep learning techniques are presented. Deep learning systems for different image
taxonomies are discussed in Section 3. Section 4 presents future directions and challenges.
Finally, Section 5 provides the conclusion of this paper.

2. Basic and Background

Many studies have proposed different methods for separating COVID-19 pneumonia
patients from healthy people. As of late, deep learning, a subset of machine learning [21],
has exploded in popularity in the context of medical imaging analysis [22]. COVID-19
detection methods based on deep learning (DL) are being developed using CT and X-ray
images [14,23–25]. Thus, DL techniques are regularly utilized to automatically extract
features to classify cases infected with COVID-19. Components of these systems are
built using a pre-trained model that incorporates transfer learning [26–28], and a few are
introduced through personalized networks [29–31].

2.1. Deep Learning

Deep learning, a machine learning subfield [32], is based on a network of artificial
neurons inspired by the human brain [33]. The network is composed of several layers
of neurons; each layer receives and interprets information from the previous layer. Deep
learning models have had success in diagnosing system diseases. The convolutional
neural network (CNN), recurrent neural network (RNN), deep belief network (DBN), and
reinforcement learning are the four most used deep learning architectures (Figure 1).
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Figure 1. Deep learning-based COVID-19 diagnosis systems.

2.2. Deep Learning Architectures
2.2.1. Convolutional Neural Networks

Convolutional neural networks (CNN) are a particular type of multilayer percep-
tron [34], and have demonstrated outstanding performance in computer vision applications,
such as image classification. The convolutional neural networks architecture is composed
of a convolutional layer, pooling layer, and fully connected layer (see Figure 2). The con-
volutional layer plays a significant role in the CNN model. Using different types of filters
(kernels), convolution extracts different features from an image, such as edges, textures,
objects, and greater numbers of filters are used for the convolution process; an activation
map is then generated to be fed as the input to the next layer of the CNN [35].
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A pooling layer is incorporated between two convolutional layers and is used to
reduce the size of images after they have been convoluted. There are three functions of
pooling: max pooling, sum pooling, and average pooling. When applying a fully connected
layer after two subsequent convolutional layers, without using average, max, or sum
pooling, the calculations and parameter amounts are quite large [36,37].

The fully connected layer is also known as a dense layer and is used to identify
an image with a probability value. After flattening, the output of the final pooling or
convolutional layer becomes the input for the fully connected layer.

2.2.2. Recurrent Neural Network

A sort of neural network known as a recurrent neural network (RNN) is a type of
neural network with recurrent connections that uses sequential data or time-series data. It
is used for pattern recognition of stream or sequential data, such as speech, handwriting,
and text [38].

2.2.3. Deep Belief Networks

Deep belief networks (DBNs) are probabilistic generative models with numerous
layers of hidden variables. They are an effective method to resolve problems from neural
network with deep layers, such as a low velocity and over fitting in learning. A DBN
can be considered as the combination of a stack of restricted Boltzmann machines [39].
The layers of the RBMs are connected with previous and subsequent layers. Deep belief
networks have two major characteristics: (1) learning top–down, and there is an effective
layer-by-layer technique. The generative weights govern how variables in one layer interact
with variables in another layer. (2) After learning, a single bottom–up run that starts with
an observed data vector in the bottom layer and reverses the generating weights can infer
the values of the latent variables in each layer [40].

2.2.4. Reinforcement Learning

Reinforcement learning is a type of machine learning that recognizes and solves goal-
oriented learning and decision-making problems automatically. Reinforcement learning is
the set of methods that allows an agent to learn to choose, in an autonomous way, which
action to take. It has been used in a variety of industries in recent years, with impressive
results [41].

2.3. Transfer Learning

Transfer learning is a technique for reusing weights from a model that has been
pre-trained on a larger dataset. Only the last few layers of the pre-trained model are
replaced and retrained. Transfer learning is the process of leveraging a pre-trained model’s
expertise to learn a new set of data [22]. This involves training CNNs using a large dataset
to extract significant characteristics, and transferring this knowledge to re-train another
CNN. There are several pre-trained models utilized in transfer learning, such as ResNet,
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AlexNet, GoogleNet, Visual Geometry Group (VGG), SqueezeNet, Inception, Xception,
U-Net, MobileNet, DenseNet, etc.

2.4. Datasets

In Table 1, a summary of the publicly available datasets is presented. In deep learn-
ing applications, result accuracy depends on high-quality datasets. Several studies have
integrated multiple datasets and used them with DL models to achieve enhanced perfor-
mances in the detection of COVID-19. Both X-ray and CT images were obtained from
public repositories, such as Kaggle and GitHub. Generally, two techniques are used for
data partitioning: cross validation and splitting data into training, validation, and testing
sets. COVID-19-detection systems based on deep learning have been created to serve as
an accurate diagnosis for binary and multi classifications. Binary classification is a type of
classification with a Boolean outcome (COVID or normal). Multi classification is a kind of
classification where the output can be more than two values (COVID, normal, non-COVID
viral pneumonia, non-COVID bacterial pneumonia, etc.).

Table 1. Summary of publicly available datasets used in the relevant publications and corresponding
URLs (accessed on 17 December 2021).

Databases Sources (URL)

COVID-19 Image Data Collection https://github.com/ieee8023/COVID-chestxray-dataset

COVID-19 Chest X-ray https://github.com/agchung/Figure1-COVID-chestxray-dataset

ActualMed COVID-19 Chest X-ray dataset https://github.com/agchung/Actualmed-COVID-chestxray-dataset

COVID-19 Radiography Database https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database

RSNA Pneumonia Detection Challenge dataset https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

COVID-19 X-ray images https://www.kaggle.com/bachrr/COVID-chest-xray

COVID-19 detection X-ray dataset https://kaggle.com/darshan1504/COVID19-detection-xray-dataset

NIH chest X-ray dataset https://www.kaggle.com/nih-chest-xrays/data

COVID-CT https://github.com/UCSD-AI4H/COVID-CT

Chest X-ray images (pneumonia) https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/version/1

SARS-CoV-2 CT-scan dataset https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset

COVID-19 X-ray dataset (training and testing sets) https://www.kaggle.com/khoongweihao/COVID19-xray-dataset-train-test-sets

COVID-CTset https://github.com/mr7495/COVID-CTset

Chest X-ray (COVID-19 and pneumonia)
COVID-19

COVID-19 CT Lung and Infection Segmentation dataset
Labeled COVID-19 CT scans

https://www.kaggle.com/prashant268/chest-xray-COVID19-pneumonia
https://mosmed.ai/en/

http://medicalsegmentation.com/COVID19/
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark

2.5. Metrics

The assessment measures that are used to assess the performance of DL models are
outlined in this section. Several benchmark metrics are utilized to evaluate the classification
results. A number of metrics, including accuracy, sensitivity, specificity, recall, positive
predictive value (PPV), precision, F1 measure (F1), area under the receiver operating
characteristic curve (AUC), kappa criteria (Kappa), error, IoU, false positive rate, TNR,
NPV, FPR, NPR, LRP, and LRN, are based on a confusion matrix (Table 2).

Table 2. Confusion matrix.

Predicted Class

Actual class
True Positive (TP) False Positive (FP)

False Negative (FN) True Negative (TN)

Table 3 summarizes a number of metrics used to evaluate the performance of deep
learning systems developed for the detection and classification of COVID-19.

https://github.com/ieee8023/COVID-chestxray-dataset
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/bachrr/COVID-chest-xray
https://kaggle.com/darshan1504/COVID19-detection-xray-dataset
https://www.kaggle.com/nih-chest-xrays/data
https://github.com/UCSD-AI4H/COVID-CT
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/version/1
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/khoongweihao/COVID19-xray-dataset-train-test-sets
https://github.com/mr7495/COVID-CTset
https://www.kaggle.com/prashant268/chest-xray-COVID19-pneumonia
https://mosmed.ai/en/
http://medicalsegmentation.com/COVID19/
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
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Table 3. Summary of benchmarks metrics used in the relevant publications in this review.

Metrics Definition

Accuracy Measure indicates the percentage of correct predictions, Accuracy = (TP + TN)
(TP + TN + FP + FN)

.

Precision/PPV Measure indicates the percentage of correct positive predictions, Precision = TP
(TP + FP) .

Recall
/Sensitivity/TPR

Measure indicates the percentage of positive labeled samples that were predicted as positive,
Recall = TP

(TP + FN)
.

F1 score Measure indicates the harmonic mean of precision and recall, F1 score = 2∗Precision∗Recall
Precision + Recall .

Specificity/TNR Measure indicates the percentage of the correct negative predictions, Speci f icity = TN
(TN + FN)

.

AUC The area under the curve (AUC) is a total measure of a binary classifier’s performance over all
potential threshold settings.

MCC Matthews correlation coefficient shows the true positive rate (TPR) against the false positive
rate (FPR) for various threshold values. MCC = TP∗TN−FP∗FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

IoU Intersection over union (IoU) is an object detection metric that finds the difference between ground
truth annotations and predicted bounding boxes.

Error Error is a measure that indicates the percentage of incorrect predictions, Error = 1 − Accuracy.

Kappa Kappa is an interesting metric used to measure classification performance.

ROC AUC/ROC The receiver operating characteristic curve is a plot that shows the true positive rate (TPR) against the
false positive rate (FPR) for various threshold values.

PR AUC/Average
Precision PR AUC is the average of precision scores calculated for each recall threshold.

NPV Negative predictive value measures how many predictions out of all negative predictions were
correct. NPV = TN

TN + FN .

FPR False positive rate, FPR = FP
(FP + TN)

.

FNR False negative rate, FNR = FN
TP + FN .

NPR False positive rate measures among truly negative cases to determine what percentage of them are
actually false positive.

LRP Localization recall precision is an error metric used to evaluate all visual detection tasks.

3. Deep Learning Techniques for Different Image Modalities

In this paper, we present 50 papers covering COVID-19 classification methods. Twenty-
one techniques (42% of the total number of reviewed systems) deal with binary classification
and 29 (68% of the total reviewed number of systems) deal with multi-class classification.

Before proceeding with the classification step, the preprocessing phase needs to be
underlined. In fact, for AI-based COVID-19 image processing and analysis, segmentation
is a crucial stage. It delineates regions of interest (ROIs) in chest X-rays or CT images, such
as the lung, lobes, bronchopulmonary segments, and infected regions or lesions, for further
assessment and quantification.

We summarize the literature-based information on COVID-19 infection segmentation
processes presented in the most recent studies (Table 4).
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Table 4. Summary of deep learning segmentation methods used in the relevant publications in this
review.

References Data Set Modalities No. of Images Partitioning Classifiers Performances (%)

[42]

Italian Society
of Medical and
Interventional

Radiology

CT 1001 lung CT
images

Training (72%)
Validation (10%)

Testing (18%)

SegNet
U-NET

SegNet Sensitivity
0.956 Specificity

0.9542
U-NET

Sensitivity 0.964
Specificity 0.948

(Paluru, N.,
Dayal, A.,

Jenssen, H.B.,
Sakinis, T.,

Cenkeramaddi,
L.R., Prakash, J.
and Yalavarthy,
P.K, 2021) [43]

Italian Society
of Medical and
Interventional
Radiology and

Radiopedia

CT 929 lung CT
images

Training (70%)
Testing (30%) Anam Net

Sensitivity 0.927
Specificity 0.998
Accuracy 0.985

(Yin, 2022)
[44]

The Italian
Society of

Medical and
Interactive
Radiology

CT 1963 lung CT
images

Training (1376 CT
images)

Validation (196
CT images)

Testing (391 CT
images

SD-Unet
Sensitivity 0.8988
Specificity 0.9932
Accuracy 0.9906

(Shan, et al., 2021)
[45]

Shanghai
Public Health

Clinical Center
and other

centers outside
of Shanghai

CT scan
images 249 images Training (75%)

Testing (25%)

DL-based
segmentation

system
(VB-Net)

Accuracy 0.916

[46]

Integrative
Resource of

Lung CT
Images and

Clinical
Features
(ICTCF)
Med-Seg
(medical

segmentation)
COVID-19

dataset

CT 7586 lung CT
images

Training (698 CT
images)

Validation (6654
CT images)

Testing (117 CT
images)

SSInfNet
F1 score 0.63
Recall 0.71

Precision 0.68

[47] Private dataset CT 5000 CT images Training (40%)
Testing (60%)

COVLIAS 1.0
(SegNet,

VGG-SegNet
and ResNet-

SegNet)

AUC:
SegNet 0.96

VGG-SegNet. 0.97
ResNet-SegNet 0.98

[48]
Multiple

sources of
datasets

CT 4449 CT images

Training (4000 CT
images)

Testing (449 CT
images)

ResUnet Dice metric 72.81

For image tissue classification, the authors of [42] proposed using two well-known
deep learning networks, SegNet and U-NET. U-NET is a medical segmentation tool, while
SegNet is a scene segmentation network. Both networks were used as binary segmentors
to distinguish infected from healthy lung tissues, as well as multi-class segmentors to
learn the type of infection in the lung. The obtained results demonstrated that SegNet
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outperformed the other approaches in classifying infected/non-infected tissues (with a
0.95 mean accuracy), while U-NET outperformed the others as a multi-class segmentor
(with a 0.91 mean accuracy).

Using 929 lung CT images, the authors of [43] proposed a novel segmentation approach
named AnamNet. Compared to the state-of-the-art UNet, the proposed Anam-Net had
7.8 times fewer parameters (or variants). The results demonstrated that the suggested
method provided good Dice similarity scores for diseased and normal lung regions, with
an accuracy of 98%. In [44], the authors designed an encoder–decoder segmentation
approach called SD-UNet. The metrics of sensitivity, accuracy, specificity, and similarity
were 0.8988, 0.8696, 0.9906, and 0.7702, respectively.

Shan et al. suggested a DL-based segmentation method (VB-Net) for segmenting
COVID-19 infection areas in CT scans, which was tested on a dataset of 249 images [45].
It took the form of a 3D convolutional neural network with a bottleneck structure that
combines V-Net and a bottleneck structure. VB-Net has two methods to extract global
image features: the first approach is to contract a path that includes down-sampling and
convolution procedures. The second path is a broad one, which incorporates fine-grained
image features through up-sampling and convolution processes.

In [46], it was suggested that a CNN model could be used for COVID-19 lung CT
segmentation (SSInfNet). The self-supervised InfNet incorporated various techniques, such
as generative adversarial image inpainting, lookahead optimizer, and focal loss. The used
dataset consisted of 7586 CT samples, 698 that were used for training, 6654 for validation,
and 117 that were used for testing the system. SInfNet achieved an F1 score, recall, and
precision of 63%, 71%, and 68% respectively.

COVLIAS 1.0 is a COVID lung image analysis system that was proposed in [47]. The
system is composed of three methods SegNet, VGG-SegNet, and ResNet-SegNet. Using a
dataset of 5000 lung CT images, COVLIAS 1.0 was benchmarked against the NIH (National
Institute of Health) and was founded on a conventional segmentation model using fuzzy-
connectedness. The obtained results demonstrated that the three models were better than
the conventional NIH model.

Based on the encoder–decoder architecture, a novel segmentation technique was
proposed in [48], built on combining multi-scale feature maps of multiple levels. The
suggested schemes were validated using four different COVID-19 CT datasets. The results
revealed that all three of the proposed modules, the edge supervised module (ESM),
semantic supervised module (ASSM), and attention fusion module (AFM) with ResUnet
improved the Dice metric by 3.97%.

Segmentors are also considered to be classifiers. As mentioned above, we studied 50
works on deep learning using different images modalities. For each type of classification,
the deep learning methods were divided into two categories: pre-trained models with deep
transfer learning and personalized deep learning techniques.

3.1. Binary Classification

The binary classification is the sort of classification where the output is two classes:
COVID-19 or normal, COVID-19 or non-COVID-19, and COVID-19 or pneumonia.

3.1.1. Pre-Trained Model with Deep Transfer Learning

In [49], the authors suggested a deep learning architecture for detecting COVID-19
illnesses using X-ray and CT scan pictures of the chest. For diagnoses, the system utilized
VGG16, VGG19, Xception, ResNet50V2, MobileNetV2, NasNetMobile, ResNet101V2, and
InceptionV3 CNN architectural versions. A total of 1000 X-ray and CT scans were used
in the investigation, with 805 images from healthy people and the rest from COVID-19
patients. The dataset was divided into two parts, with 80% of the data used for training
and 20% used for testing. The VGG-19 model had the best accuracy, with a score of 99%.

In [50], two in-depth learning techniques, SegNet and U-NET, were proposed to
semantically segment infected tissue regions in CT lung images. Both networks were
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utilized as binary segmentors to distinguish between healthy and infected lung tissues, and
multi-class segmentors were used to determine what type of lung infection is present. The
experimental findings reveal that SegNet performed comparatively better than the other
method in classifying infected/non-infected tissues (with 95% mean accuracy). U-NET
obtained better results as a multi-class segmentor (with 91% mean accuracy).

In [50], a method based on deep learning networks was introduced to diagnose
COVID-19 based on X-ray images using a pre-trained model (ResNet50). The dataset
contained 50 X-ray images for lungs, where 25 X-ray images were for patients with COVID-
19 and 25 X-ray images were for healthy patients. For the experiment, 5- and 10-fold cross
validation used to split the dataset. The model achieved an accuracy of 97.28% in 5-fold
cross-validation experiments and 95.99% in 10-fold cross validation experiments.

In [51], a deep learning-based system for detecting, localizing, and quantifying COVID-
19 manifestation severity from chest CT scans was suggested. Using 1865 CT images, the
model was trained and tested. The system had an AUC of 99.4%, a sensitivity of 94%, and
a specificity of 98%, according to the results of the trial.

Table 5 summarizes deep learning models for binary classification of COVID-19
utilizing a pre-trained model and deep transfer learning. Different medical imaging modal-
ities were used in the DL techniques, including computer tomography (CT) and chest
X-rays (CXR).

Table 5. COVID-19 binary classification using a deep learning-based pre-trained model and deep
transfer learning.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[49] [52,53]

1000 chest X-ray
and CT images
(normal = 805,

COVID-19 = 195
(23 lung CT, 172

chest X-ray)

COVID-19,
Normal

Training = 80%
Test = 20%

VGG16, VGG19,
Xception,

ResNet50V2,
MobileNetV2,

NASNetMobile,
ResNet101V2,

and InceptionV3

Accuracy = 99%
Sensitivity = 97.4%
Specificity = 99.4%.

[42] [54] 100 CT images Infected,
non-infected

Training = 70%
Validation = 10%

Test = 20%
5-fold cross
validation

SegNet,
U-NET

Accuracy = 95%
Sensitivity = 95.6%
Specificity = 95.42%

Dice = 74.9%
G-mean = 95.5%

F2 = 86.1%

[50] X-ray COVID-19
dataset [55]

50 X-ray images
(COVID = 25,
Normal = 25)

COVID,
Normal

Training = 80%
Test = 20%

5- and 10-fold
cross validation.

ResNet50

5-folds cross
validation:

Accuracy = 97.28%.
Precision = 96%

Sensitivity = 96%
F-measure = 96%

10-folds cross
validation:

Accuracy = 95.99%
Precision = 95.83%
Sensitivity =92%

F-measure = 93.87%

[51]

Development
dataset [56],

Testing dataset:
Zhejiang Province,

China,
lung segmentation

development:
El-Camino Hospital

(CA),
lung segmentation

development:
University Hospitals

of Geneva (HUG).

1865 CT
(normal = 1036,
abnormal = 829)

Normal,
COVID-19

Training = 1725
Validation = 320

Test = 270
ResNet-50-2D

AUC = 99.4%
Sensitivity = 94%
Specificity = 98%
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3.1.2. Custom Deep Learning Techniques

In [57], a deep learning model with stochastic pooling for COVID-19 detection was
proposed. The system considered 640 CT images from two classes, where 320 samples
were COVID-19 cases and 320 were healthy samples. To obtain a better performance, the
collected dataset was divided using the 10-fold cross-validation method. The proposed
system found a sensitivity of 93.28% ± 1.50%, specificity of 94.00% ± 1.56%, and an
accuracy of 93.64% ±1.42%. In another study, the authors of [58] presented a custom-
designed architecture with optimized parameters of variants of a convolutional neural
network (CNN). In this work, the system used 753 X-ray images, in which 253 were tagged
as COVID-19 and 500 were tagged as normal. Five-fold cross validation was used to test
the suggested model. The dataset was split into two sections: training (653 X-ray images)
and hold out (653 X-ray images) (100 X-ray). The training set was divided 5-fold, while the
hold out part was aimed at testing the model at the end. The experimental results achieved
a precision of 99%, recall of 99%, F1 score of 99%, AUC of 99%, and MCC of 99%.

In another research work [59], a diagnosis prototype system based on ResNet50
architecture was proposed. The used COVID-19 CT dataset of the study was obtained from
Huangpi Hospital of Traditional Chinese Medicine, Wuhan, China. In this experiment,
1867 CT samples were used for training, 1400 CT samples were used for validation, and
510 samples were used for testing. The experimental results showed that the system
obtained an accuracy of 93%, sensitivity of 93%, specificity of 92%, F1 score of 92%, IoU
of 85%, and AUC of 93%. In [60], an intelligent decision support system for COVID-19
powered by deep learning (ID2S-COVID19-DL) using X-ray and CT-scan images was
presented. The dataset was collected from different sources, such as cameras, X-rays, and
CT-scan machines through the Internet of Medical Things (IoMT). The dataset was divided
into two sets: training and validation, with each set accounting for 80% and 20% of the
total, respectively. The created system had a 95.5% accuracy rate.

Recently, in [61], a new neural network was built for detecting COVID-19 from CXR
images that blends topological and deep characteristics (TDA-Net). TDA-Net has two
branches: a deep branch that accepts a raw image and a topological branch that accepts a
topological feature vector. Both branch outputs are then combined and used to perform a
classification. The data were collected from two open-source datasets of chest X-ray and CT
images [53–62]. The first dataset consisted of 351 chest X-ray and CT images, which were
positive or suspected of COVID-19. The second dataset from Kaggle contained 112,120
X-ray images (287 samples of chest X-ray images of viral and bacterial pneumonia were
selected). The data were divided into two parts. The test set comprised 20% of the overall
dataset, with 116 samples being evenly distributed between the positive and negative
classes. The suggested that the network had a 93% accuracy rate.

The authors in [63] introduced a deep learning algorithm based on a modified CNN.
In the experiment, a total of 1065 CT images were used for the training set, 455 images
were used for the internal validation, and the rest were used for external validation. The
external testing dataset achieved a total accuracy of 79.3%. The authors of [64] defined
a fully automated system for COVID-19 detection from CT scans. The proposed system
made use of the ResNet50V2 model, which is a popular pre-trained model with a feature
pyramid network (FPN). In the study, they introduced a new dataset named COVID-CTset.
Among the 63,849 images, 15,589 were confirmed COVID-19 cases and 48,260 were normal
cases. The scheme used 5-fold cross validation for data partitioning. The system obtained
an accuracy of 98.49%. In [65], pre-trained CNN and J48 models were used to construct a
system for detecting COVID-19. To extract the features, the algorithm used eleven different
architectures of pre-trained models (AlexNet, VGG16, VGG19, GoogleNet, ResNet18,
ResNet50, ResNet101, InceptionV3, InceptionResNetV2, DenseNet201, and XceptionNet),
as well as J48 for COVID-19 chest X-ray image classification into normal and COVID-19
cases. With accuracy, recall, specificity, precision, and F1 scores of 100 percent, 100 percent,
98.89%, 100%, and 100%, respectively, the Resnet101 and J48-based CNN methods were
superior for the detection of COVID-19.
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To detect pneumonia, the authors of [66] created the CGNet framework, a novel
deep learning model. The dataset was collected from two public datasets. The proposed
system achieved an accuracy of 98.72% on a public pneumonia dataset, which included
5856 chest X-ray images. The proposed technique was evaluated on a public COVID-19
CT dataset for the detection of COVID-19 pneumonia. The system achieved an accuracy
of 99%, specificity of 100% and sensitivity of 98%, respectively. In [67], an ensemble
of convolutional neural networks was developed to detect COVID-19 and was named
DeepCOVID-XR. The proposed algorithm was trained and validated on 13,156 CXR images
and then tested on 1879 CXR images. For the entire test, DeepCOVID-XR obtained an
accuracy of 83%, and an AUC of 90%. For 300 random test images, the system achieved
an accuracy of 82%. The authors of [68] described a powerful deep learning strategy for
detecting coronavirus infection. Convolutional neural networks (CNN) and convolutional
long short-term memory (CLSM) were used in the suggested system (ConvLSTM). The
network was tested on both CT and X-ray images, and on a combined dataset (X-ray and
CT). To achieve a better result, the dataset was divided into 70% training and 30% testing
sets. In other circumstances, the proposed CNN modality obtained a 100% accuracy and a
100% F1 score.

The authors of Saha [69] advocated using X-ray images to identify COVID-19 patients
using an automated detection system called EMCNet. EMCNet uses CNN to extract
features from images and an ensemble of four different ML classifiers to classify COVID-19
(random forest, support vector machine, decision tree, and AdaBoost). The dataset was
divided into three parts: training, validation, and testing. The training, validation, and
testing sets each received 70%, 20%, and 10% of the total set of images. EMCNet obtained
accuracy, precision, recall, and F1 score of 98.91%, 100%, 97.82%, and 98.89%, respectively.

In [70], pre-trained CNN models were used to construct an autonomous approach for
diagnosing coronavirus from CT images. The proposed system combined two variants of
CNNs (ResNet5 and ResNet-101). ResNet50 was utilized to distinguish virally induced
pneumonia from bacterially induced pneumonia and normal cases in this investigation,
while ResNet-101 was used to detect the presence of COVID-19 in positive viral-induced
pneumonia patients using X-ray images. The data were collected from two open-source
image databases, Cohen and Kaggle. Among the 1365 chest X-ray images, 250 were
confirmed as COVID-19. To obtain better performance, two evaluations were used: training–
validation–testing and 5-fold cross validation procedures. The developed system obtained
a high classification accuracy of 97.77%. Further, the proposed model achieved an averaged
accuracy with 5-fold cross validation.

In [71], the authors described a COVID MTNet system for COVID-19 identification
and contaminated region localization using two medical imaging modalities (X-ray and
CT images). The inception recurrent residual neural network (IRRCNN) and NABLA-3
network models were used in the study for the classification and segmentation tasks. There
were a total of 5216 samples, with only 1341 samples for normal cases and 3875 samples for
pneumonia. The created system had an X-ray image testing accuracy of 84.67% and a CT
image testing accuracy of 98.78%. In a different project [72], 3D CT volumes were used to
construct a weakly-supervised deep learning-based software solution to detect COVID-19
(DeCoVNet). A pre-trained UNet was used to segment the lung region, and the segmented
3D lung region was then fed into a 3D deep neural network to predict the likelihood of
COVID-19 being infectious. The data were split into two parts: training (499 CT volumes)
and testing (499 CT volumes) (131 CT volumes). The proposed system had a ROC AUC of
95.9% and a PR AUC of 97.6%, respectively.

In [73], a system for diagnosing coronavirus from CT images was suggested, based on
a deep learning algorithm called CTnet-10, which is a variation of CNN. This study used
738 CT scan pictures, 349 of which were obtained from COVID-19-infected patients and 463
were from non-COVID-19-infected patients. The data were divided into three sets: training,
validation, and test, in a ratio of 80:10:10. The designed system achieved an accuracy of
82.1% in the test case.
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Table 6 presents a summary of the deep learning models used for binary classification
of COVID-19 using custom deep learning techniques. The DL methods employed different
medical imaging modalities: computer tomography (CT) and chest X-rays (CXR).

Table 6. Summary of deep learning based COVID-19 binary classification using custom models.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[57] Local hospitals

640 CT (COVID-19
= 320, healthy
controls (HCs)

= 320

COVID-19,
HC

10-fold cross
validation 5LDCNN-SP-C

Sensitivity = 93.28%
± 1.50%

Specificity = 94.00%
± 1.56%

Accuracy = 93.64%
± 1.42%

[58]

data collection from
Mendeley [52],

The Cancer Imaging
Archive (TCIA) [74],
collection of X-rays
and CT images that

are COVID-19
positive [75]

753 X-ray images
(COVID-19 = 253,

normal = 500)

COVID-19,
Normal

Train = 653:
5-fold cross
validation

Hold out = 100
CNN

Hold out test:
Precision = 99%

Recall = 99%
F1 score = 99%

AUC = 99%
MCC = 99%

[59]

COVID-ct-
dataset [76],

Guangxi Medical
University hospitals

2592 CT images
(COVID-19 = 1357,

non-infected
= 1235)

COVID-19,
non-infected

Training = 1867
Validation = 1400

Test = 510

Modified
ResNet50

Specificity = 92%
Sensitivity = 93%
Accuracy = 93%

IoU = 0.85
F1 score = 92%

AUC = 93%

[60] IOT COVID,
non-COVID

Training = 70%
Validation = 30%

ID2S-COVID19-
DL

Accuracy = 95.5%
Sensitivity = 94.38%
Specificity =97.06%

Miss rate =1.89%
PPV = 98.51%
NPV = 97.62%
FPR = 54.46%
NPR = 0.02%
LRP = 97.61%
LRN = 98.51%

[61]

Open-source
dataset [53],
dataset from
Kaggle [62]

574 CXR images
(COVID = 287,

viral and bacterial
pneumonia = 287)

COVID,
non-COVID

Training = 80%
leave-Out = 20% TDA-Net

Accuracy = 93%
Precision = 88%

Recall = 95%
F1 score = 92%
AUC = 100%
TNR = 91%

[63]

Dataset collected
from 3 centers:
Xi’an Jiaotong

University First
Affiliated Hospital

(center 1),
Nanchang

University First
Hospital (center 2),
Xi’an No.8 Hospital

of Xi’an Medical
College (center 3)

1065 CT images
(COVID-19, typical

pneumonia)

COVID-19,
typical

pneumonia

Training = 320
Internal Validation

= 455
External validation

= 290.

Modified
Inception

Accuracy = 79.3%
Specificity = 83%
Sensitivity = 67%

[64] COVID-CTset [77]

63,849 CT scan
images (normal

= 48,260,
COVID-19
= 15,589)

COVID-19,
normal

5-fold cross
validation

ResNet50V2 +
FPN Accuracy = 98.49%
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Table 6. Cont.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[65]
Open source

repository provided
by [53,78]

100 patients (50
COVID-19,
50 normal)

COVID-19,
normal

k-fold cross
validation (k = 5
and k = 10-fold)

ResNet101 + J48

k = 5-fold cross
validation:

Accuracy = 97.18%
Recall = 98.64%

Specificity = 95.86%
Precision = 98.64%
F1 score = 97.05%
k = 10-fold cross

validation:
Accuracy = 100%

Recall = 100%
Specificity = 98.89%

Precision = 100%
F1 score = 100%

[66]

public COVID-19 CT
dataset [76],

Public pneumonia
dataset [78],

public pneumonia
dataset:

5856 X-ray images
(normal and
pneumonia)

public COVID-19
CT dataset:

746 CT images
(normal and
pneumonia)

Pneumonia,
normal

Public pneumonia
dataset:

Training = 5216
Validation = 16
Testing = 624

public pneumonia
dataset:

Training = 425
Validation = 118

Testing = 203

CGNet

Public pneumonia
dataset:

Accuracy = 98.72%
Sensitivity = 100%

Specificity = 97.95%
Public COVID-19 CT

dataset:
Accuracy = 99%

Sensitivity = 100%
Specificity = 98%

[67]
Sites the

Northwestern
Memorial Health

Care System

15,035 CXR images
(COVID-19

positive = 4750,
COVID-19

Negative = 10,285)

COVID-
positive,
COVID-
negative

Training = 10,470
validation = 2686

Testing = 1879
DeepCOVID-XR

For the entire test set:
Accuracy = 83%

AUC = 90%
For 300 random test

images:
Accuracy = 82%

[68]

Dataset includes CT
images [79],

dataset includes
X-ray images [80],

COVID-19
radiography
dataset [81]

6130 images
(COVID-19 = 3065,

non-COVID-19
= 3065)

COVID-19,
viral

pneumonia
Training = 70%

Test = 30%
CNN +

ConvLSTM Accuracy = 100%

[69] Multiple
sources [53,54,62,80,82]

4600 X-ray images
(COVID-19 = 2300,

Normal = 2300)

COVID-19,
normal

Training = 70%
Validation = 20%

Test = 10%
EMCNet

Accuracy = 98.91%
Precision = 100%
Recall = 97.82%

F1 score = 98.89%

[70]
Two open-source

image
databases [53,78]

1365 chest X-ray
images

(COVID-19 = 250,
normal = 315, Viral
Pneumonia = 350,

bacterial
pneumonia = 300,

Other = 150)

COVID-19,
other

Training = 70%
Validation = 20%

Test = 10%
5-fold cross
validation

ResNet50 +
ResNet-101

Accuracy = 97.77%
Recall = 97.14%

Precision = 97.14%
With cCross
validation:

Accuracy = 98.93%
Sensitivity = 98.93%
Specificity = 98.66%
Precision = 96.39%
F1 score = 98.15%

[71]

Joseph Paul Cohen
dataset [53], Publicly

available
dataset [78],

5216 chest X-ray
and CT images
(normal = 1341,

pneumonia = 3875)

COVID-19,
normal

Training = 80%
Test = 20% IRRCNN

X-ray images:
Accuracy = 84.67%

CT images:
Accuracy = 98.78%

[72]

Archiving and
communication

system (PACS) of the
radiology

department (Union
Hospital, Tongji
Medical College,

Huazhong
University of Science

and Tech)

540 CT images
(COVID-

positive = 313,
COVID-

negative = 229)

COVID-
positive,
COVID-
negative

Training = 499
Test =131 DeCoVNet

ROC AUC = 95.9%
PR AUC = 97.6%

Sensitivity = 90.7%
Specificity = 91.1%

[73] COVID-19 CT
dataset [76]

738 CT images
(COVID = 349,

non-COVID = 463)

COVID,
non COVID

Training = 80%
Validation = 10%

Test = 10%
CTnet-10 Accuracy = 82.1%
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3.2. Multi-Classification
3.2.1. Pre-Trained Model with Deep Transfer Learning

The authors of [83] developed a COVID-19 detection framework that used the notion
of a pre-trained model to automatically classify positive COVID-19 chest X-rays and CT
scans into three severity classes: normal, mild/moderate, and severe. The suggested
approach combined transfer learning with three prominent pre-trained CNN models:
AlexNet, GoogleNet, and Resnet50. The system considered 1491 chest X-rays and CT scans,
including 1335 normal, 106 mild/moderate, and 50 severe cases for experiments. The
dataset was divided into three parts, 70% for training, 15% for validation and 15% for
testing. ResNet50 outperformed the other models used and obtained an overall accuracy
of 87.8%.

The authors of [84] suggested a three-label classification framework with an ensemble
of convolutional neural network (DenseNet161) models concentrating on both global and
local pathological variables from CXR lung images to detect COVID-19. In this system,
11,197 CXR images were considered, 1056 samples were COVID-19, 5451 were pneumonia,
931 were viral pneumonia, and 7217 were control (normal and other pulmonary diseases).
The split of the dataset was 70%, 15%, and 15% for training, validation, and testing,
respectively. In a multi-label classification framework that included COVID-19, pneumonia,
and control classes, the suggested system achieved an average balanced accuracy of 91.2%,
average precision of 92.4%, and F1 score of 91.9%.

In another research project [85], DenseNet-121 was used to construct a deep learning-
based strategy for detecting COVID-19 patients. The suggested system was trained and
tested using the COVIDx dataset, which included 13,800 chest radiography pictures
from 13,725 patients. To get a better result, the obtained dataset was divided using the
10-fold cross-validation approach. The model was put to the test for two-class classi-
fication (COVID-19 and non-COVID-19) and three-class classification (COVID-19 and
non-COVID-19) (COVID-19, pneumonia, and normal). The proposed network achieved
a 96.49% accuracy for the two-class classification and 93.71% accuracy for the three-
class classification. In [86], a framework of cascaded deep learning classifiers for au-
tomated diagnosis of COVID-19 and pneumonia diseases using chest X-rays was proposed.
VGG16, VGG19, Xception, dense convolutional network (DenseNet-121), DenseNet169,
DenseNet201, residual neural network (ResNet-50V2), ResNet101V2, ResNet169V2, Mo-
bileNet, and MobileNetV2 are some of the deep learning models used in this architecture.
VGG16, ResNet50V2, and dense neural network (DenseNet169) were the top fine-tuning
models in terms of detection accuracy (99.9 percent). For identifying COVID-19 chest X-ray
images, the authors of [87] used a light-weight convolutional network architecture with
three backbones (VGG-16, ResNet50, and EfficientNetB0). In this research, the dataset
was collected from two available chest X-ray datasets. The datasets maintained a ratio of
80% and 20% for training and testing sets, respectively. The proposed models achieved
an overall accuracy of 90%, 94.3%, and 96.8% for VGG16, ResNet50, and EfficientNetB0
backbones, respectively.

In [88], CXR images were used to build a technique for detecting COVID-19 pneumo-
nia, non-COVID-19 viral pneumonia, bacterial pneumonia, and healthy patients. AlexNet
was the pre-trained model in this system. The datasets were separated into two categories:
70% for training and 30% for testing. The network was trained to perform two-way classifi-
cation, three-way classification, and four-way classification (COVID-19 vs. normal, bacterial
pneumonia vs. normal, non-COVID-19 viral pneumonia vs. normal, and COVID-19 vs.
bacterial pneumonia). The model achieved a 99.62% testing accuracy, 90.63% sensitivity,
and 99.89% specificity for the classification of COVID-19 pneumonia and non-COVID-19
viral pneumonia.

In [89], a COVID-19 detection model based on Inception V3, Xception, and ResNeXt
architectures was suggested. A total of 6432 CXR scan samples were acquired from a
Kaggle library for the research. A total of 5467 samples were utilized for training, while
965 samples were used for validation. In comparison to other models, the Xception model
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fared better. For detecting chest X-ray pictures, Xception had an overall accuracy of 97.97%.
The authors [90], also described a method that uses transfer learning and model integration
to detect COVID-19. The information was gathered from two different datasets: the RSNA
pneumonia dataset and the chest X-Ray dataset. The dataset was split into two sections:
training (16,714 X-ray images) and testing (16,714 X-ray images) (1862 X-ray). On the testing
set, the suggested model correctly identified 96.1% of the types of chest X-ray images.

In [91], a method for detecting coronavirus illness based on deep transfer learning
and several pre-trained models was proposed. VGG16, VGG19, DenseNet201, Inception
ResNet V2, Inception V3, Resnet50, and MobileNet V2 are the seven most common pre-
trained models. For the experiments, 6087 chest X-ray images and CT images were used
(2780 images of bacterial pneumonia, 1493 images of coronavirus, 231 images of COVID-19,
and 1583 normal images). In this system, the training and validation data partitions were
kept at an 80:20 ratio. Densnet201 and Inception Resnet V2 performed better than the
other models employed in the study (92.18% accuracy for Inception-ResNetV2 and 88.09%
accuracy for Densnet201).

Table 7 summarizes the deep learning models for multi-class classification utilizing a
pre-trained model with deep transfer learning for the COVID-19 dataset. Different medical
imaging modalities were used in the DL techniques (computer tomography (CT) and chest
X-rays (CXR)).

Table 7. Summary of deep learning based COVID-19 multi-classification using pre-trained model
with deep transfer learning.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[83]

Two Kaggle
datasets [4,92],

COVID-19
image data

collection [53]

1491 chest X–rays
and CT scans

(normal = 1335,
mild/moderate

= 106, severe = 50)

Normal,
mild/moderate,

Severe

Training = 70%
Validation
= 15% Test

= 15%

AlexNet
GoogleNet
Resnet50

Average accuracy
(non-augmented)
AlexNet 81.48%

GoogleNet 78.71%
Resnet50 82.10%

Average accuracy
(augmented)

AlexNet 83.70%
GoogleNet 81.60%
Resnet50 87.80%

[84]

BIMCV
COVID-19

dataset [93],
PadChest

dataset [94]

11,197 CXR
(Control = 7217,

pneumonia = 5451,
COVID-19 = 1056)

Control,
pneumonia,
COVID-19

Training = 70%
Validation

= 15%
Test = 15%

DenseNet161

Average balanced
accuracy = 91.2%,
Average precision

= 92.4%
F1 score = 91.9%

[85] COVIDx
dataset [95]

15,177 Chest X-ray
images (COVID-19
= 238, pneumonia

= 6045, Normal
= 8851)

COVID-19,
non-COVID-
COVID-19,
pneumonia,

normal

Training = 80%
Validation

= 10%
Test = 10%

10-fold cross
validation

DenseNet-121

Two-class:
Accuracy = 96%
Precision = 96%

Recall = 96%
F-score = 96%
Three-class:

Accuracy = 93%
Precision = 92%

Recall = 92%
F-score = 92%
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Table 7. Cont.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[86]

Public dataset
of X-ray
images

collected
by [53]

306 X-ray images
(normal = 79,

COVID-19 = 69,
viral pneumonia

= 79, bacterial
pneumonia = 79)

Normal,
COVID-19,

viral
pneumonia,

bacterial
pneumonia

Training = 85%
Test = 15%

Cascaded deep
learning

classifiers
(VGG16,

ResNet50V2,
DenseNet169)

Accuracy = 99.9%

[87] [53,78]

673 X-ray and CT
images (COVID-19
= 202, normal = 300,
pneumonia = 300)

COVID-19,
pneumonia,

normal

Training = 80%
Test = 20%

VGG-16,
ResNet50,

EfficientNetB0
Accuracy = 96.8%

[88]
Multiple
sources

[52,53,81,96]

11568 X-ray images
(COVID-19 = 371,

non-COVID-19
viral pneumonia
= 4237, bacterial

pneumonia = 4078,
normal = 2882)

COVID-19,
viral

pneumonia,
bacterial

pneumonia,
normal

Training = 70%
Test = 30% AlexNet

Accuracy = 99.62%
Sensitivity = 90.63%
Specificity = 99.89%.

[89] Kaggle reposi-
tory [97]

6432 (COVID-19
= 576, pneumonia

= 4273, normal
= 1583)

COVID-19,
pneumonia,

normal

Training = 5467
Validation = 965

CNN models:
Inception V3

Xception
ResNeXt

Accuracy = 97.97%

[90]

chest X-ray
dataset [53],

RSNA
pneumonia
dataset [98]

18,567 (COVID-19
= 140, viral

pneumonia = 9576,
normal = 8851)

COVID-19,
viral

pneumonia,
normal

Training
= 16714

Test = 1862

ResNet101
ResNet152 Accuracy = 96.1%

[91]

Publicly
available

image
datasets

(chest X-ray
and CT

dataset) [52,53]

6087 chest X-ray
and CT images

(bacterial
pneumonia = 2780,
coronavirus = 1493,

COVID19 = 231,
normal = 1583)

Normal,
bacteria,

coronavirus

Training = 80%
Validation

= 20%

VGG16,
VGG19,

DenseNet201,
Incep-

tion_ResNet_V2,
Inception_V3,

Resnet50,
MobileNet_V2

Accuracy = 92.18%

3.2.2. Custom Deep Learning Techniques

The work in [99] introduced an ensemble deep learning model for novel COVID-
19 detection from CT images. The ensemble classifier, EDL-COVID, is based on three
deep convolutional neural network models: AlexNet, GoogleNet, and ResNet. The used
dataset consisted of 2500 CT images of lung tumors and 2500 normal lungs. The proposed
model was evaluated using 5-fold cross validation. EDL-COVID obtained an accuracy,
sensitivity, specificity, F-measure, and MCC of 99.054%, 99.05%, 99.6%, 98.59%, and 97.89%,
respectively.

Authors of another study suggested a deep learning diagnostic assistance system for
COVID-19 detection using chest radiographs [100]. The system employed a modified and
expanded version of COVID-deep net’s learning algorithm. Five open-access databases
were used to compile the data. Following data harmonization, the training set included
7966 normal cases, 5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia,
where each group was represented by 100 cases in the testing dataset. The overall diagnostic
accuracy for the suggested approach was 94.3%.

To distinguish the infected cases from the normal or pneumonia cases, other au-
thors [13] used the modified ResNet18-based convolution neural networks with chest X-ray
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images. In this system, 15,085 X-ray images were used for the diagnosis. The dataset was
split using 3-fold cross validation. The proposed model obtained an accuracy of 96.73%,
recall of 94%, and specificity of 100% for the three classes (normal, pneumonia, and COVID-
19). In another study [101], a computer aided diagnostic (CAD) framework comprised of
two deep learning models (discrimination-DL and localization-DL) were proposed. The
used dataset consisted in 3545 chest X-ray samples where 204 samples were COVID-19
cases, 2004 samples were CAP cases, and 1314 samples were healthy people. To obtain a
better performance, the dataset was divided into a 80% for training and 20% for validation,
and 61 images were collected from 21 COVID-19 patients, 20 CAP patients, and 20 controls,
which were used in the testing phase to prove the model generalization. The final CAD
scheme achieved a test accuracy of 93.65%, sensitivity of 90.92%, and specificity of 92.62%.

The authors of [102] introduced a deep learning approach (CNN with five convolu-
tional layers) for COVID-19 and viral pneumonia screening using X-ray images. In the
study, X-ray images were collected from Kaggle [53,92]. The used dataset contained 1389
images. The proposed deep learning model produced an average classification accuracy of
90.64% and an F1 score of 89.8% after performing 5-fold cross validation on a multi-class
dataset consisting of COVID-19, viral pneumonia, and normal X-ray images.

The authors of [103] described two deep learning architectures for automatically de-
tecting COVID-19-positive patients using chest CT X-ray pictures. The modified AlexNet
(mAlexNet) architecture was the first proposed architecture. AlexNet is made up of 25 lay-
ers, one of which is a convolution layer. Bidirectional long short-term memories (BiLSTM)
is the second architecture. A total of 2905 chest X-ray images were used in the study. The
authors employed a variety of indicators to assess their proposed models. With a 98.70%
accuracy, BiLSTM outperformed AlexNet.

The authors of [104] suggested an integrated stacked deep convolution network,
InstaCovNet-19. To compensate for the small size of training dataset, the created system
utilized different pre-trained models, ResNet101, Xception, InceptionV3, MobileNet, and
NASNet. The suggested approach used X-ray images of a sick person’s chest to detect
COVID-19 and pneumonia. There were 361 verified COVID-19 instances, 1341 pneumonia
cases, and 1345 normal cases among the 3047 chest X-rays. The dataset was partitioned
into a training and testing set a a ratio of 80% and 20%, respectively. The proposed
model achieved an accuracy of 99.08% for the three classes (COVID-19, pneumonia, and
normal), while achieving an accuracy of 99.53% for two classes (COVID-19, healthy). The
proposed system achieved an average recall, F1 score, and precision of 99%, 99%, and 99%,
respectively, for multi classification, while achieving a 100% precision and a recall of 99%
for the binary classification.

The authors of [105] used shuffled residual CNN to determine different filters for
COVID-19 detection from chest X-rays. The proposed work included two CNN architec-
tures: channel-shuffled dual-branched (CSDB) CNN and CSDB CNN with a distinctive
filter learning (DFL) paradigm. In the study, a total of 3047 chest X-ray images were taken,
where 10,434 were from healthy people (normal), 558 were COVID-19 cases, 2780 were
bacterial pneumonia cases, and 1493 cases were viral pneumonia diseases. In this scheme,
the dataset was partitioned using a 5-fold cross-validation technique. The proposed system
(customized CNN with a distinctive filter learning module) obtained an F1 score of 97.20%
and an accuracy of 99.80% for the COVID-19 X-ray set.

The authors of [106] proposed binary and multi-classification deep learning models.
The acquired data were divided into two sets: training and testing, at 80% and 20%
respectively. The binary model had a precision of 98.7%, while the three-class model had
an accuracy of 98.3%.

The author of [107] described an MH-COVIDNet system that used deep neural net-
works and meta-heuristic-based feature selection on X-ray images to diagnose COVID-19.
A dataset of 364 X-ray images of COVID-19, normal, and pneumonia, was constructed for
this investigation, with each class having 364 images. The 5-fold cross-validation approach
was used to partition the dataset. The accuracy of MH-COVIDNet was 99.38%.
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In another research work [108], a novel CNN model called CoroDet was introduced for
the automatic detection of COVID-19 using raw chest X-ray and CT scan images. CoroDet
was developed to serve as an accurate diagnostic for binary and multi-classes. A total of
7390 images were considered for the experiment. The dataset was divided using the 5-fold
cross-validation method. The twenty-two-layer CNN model achieved an accuracy of 99.1%
for binary classification, 94.2% for three classes, and 91.2% for four classes.

In [24], COVIDCTNet, an open-source deep learning technique for diagnosing COVID-
19 based on a small cohort of CT images was suggested. In the CNN evaluation, the dataset
was split at 95% for the training the algorithm and 5% for validating the model in the
hold-out. During the validation phase, the suggested system achieved a detection accuracy
of 93.33% of COVID-19 versus non-COVID-19 (two classes) and a multi-classification accu-
racy of 86.66% was achieved. To test the classification quality of the model, an independent
dataset consisting of 20 mixed cases of control, COVID-19, and CAP was used. COVIDCT-
Net achieved an accuracy of 95% for two classes (COVID-19 cases, non- COVID-19) and an
accuracy of 85% for three classes.

In another work [109] a novel COVID-19-assisted diagnosis schema, based on a
convolution neural network, was proposed. The COVID-19 dataset was composed of
1184 X-ray images of COVID-19, MERS SARS, ARDS illnesses, and normal cases. All of the
data were divided into two categories: training (757 images) and testing (427 images). The
network obtained an accuracy, precision, recall, and F1 score of 98%, 99%, 98%, and 98%,
respectively.

In [110], the Convid-Net deep convolutional neural network (CNN) framework for
detecting COVID-19 from chest X-ray pictures, which was based on a combination of
a residual network and parallel convolution. In the work, the dataset was retrieved
from different publicly available sources, consisting of a total of 1440 COVID-19 images,
2470 normal images, and 2407 chest X-ray images of viral and bacterial pneumonia. Convid-
Net achieved an accuracy of 97.99%. The authors of [111] suggested a lightweight deep
convolutional neural network for chest X-rays. The proposed architecture was inspired
by InceptionV3, InceptionResNetV2, and MobileNetV2. The dataset was collected from
three different open access datasets. The used data were partitioned into 20,907 training
samples and 231 testing samples. The proposed model achieved a 95% accuracy for multi-
classification.

DeepCoroNet, a method based on a deep LSTM model for automatically identifying
COVID-19 instances from X-ray pictures, was introduced in [112]. To execute the experi-
ment, different ratios of training and testing datasets (60:40%, 70:30%, and 80:20%) were
used. The best results were obtained with an 80% training rate and a 20% testing rate.
All performance criteria were met by the network, which included accuracy, sensitivity,
specificity, and F score.

In another study, the authors of [113] established a deep learning framework for
detecting COVID-19 in X-ray and computed tomography images. ResBlock-A, ResBlock-B,
and Control Gate Block made up a modular CNN-based classification system. The data for
the study were gathered from a variety of sources. The suggested system used 9830 images
for training and 547 images for testing from the total dataset. The trial results yielded an F1
score of 98.90% and a specificity of 100%.

In [114], COVID-19 infected cases from four other classes, normal, tuberculosis (TB),
bacterial pneumonia (BP), and viral pneumonia (VP), were classified using a deep learning
technique CNN named MANet. The proposed system contained a two-stage segmenta-
tion using the UNet model with a ResNet backbone and classification was performed by
including four classic CNNs (ResNet34, ResNet50, VGG16, and Inceptionv3). The datasets
were collected from three public CXR data repositories, and consisted of CXR images from
five classes, normal, COVID-19, TB, BP, and VP with 1840, 433, 394, 2780, and 1345 images,
respectively. ResNet50 with MA scored the highest average test accuracy of 96.32% in three
runs, and the highest one was 97.06%, among the tested classification models.
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The authors of [115] presented COVID-19 detection utilizing deep learning models
and structured chest X-ray images using fuzzy color and stacking algorithms to exploit
social mimic optimization. In the study, the dataset consisted of three classes; namely,
coronavirus, pneumonia, and normal X-ray imagery. In preprocessing, the dataset was
reconstructed using the fuzzy technique and the stacking technique. The MobileNetV2 and
SqueezeNet deep learning models were trained using the stacked dataset. The obtained
feature sets were classified using the SVM method. The dataset was split up into 70% and
30% for the training and testing sets, respectively. For the experimentation related to the
stacked dataset, the k-fold cross-validation method was used. The proposed approach
achieved an overall accuracy of 99.27%.

Using chest X-rays, in [116], a confidence-aware anomaly detection (CAAD) model
was developed to differentiate viral pneumonia cases from non-viral pneumonia cases and
healthy controls. The X-VIRAL and XCOVID X-ray image collections were used in this
work. There were 5977 instances of viral pneumonia, 18,619 cases of non-viral pneumonia,
and 18,774 healthy controls in the X-VIRAL dataset (5977 positive and 37,393 negative
cases). A total of 106 verified COVID-19 cases and 107 healthy controls made up the
X-COVID set. For external validation, a public COVID-19 dataset called Open-COVID was
employed. The X-ray images of 493 confirmed COVID-19 patients, 16 confirmed SARS
cases, and 10 confirmed MERS cases were included in the dataset. During testing, the
proposed design achieved an AUC of 83.61% and had a sensitivity of 71.70%.

CVDNet is a unique deep learning architecture created by the authors of [117] for
identification of coronavirus (COVID-19) from chest X-ray images. The convolutional
neural network (CNN) model was trained on a dataset that included 219 COVID-19,
1341 normal, and 1345 viral pneumonia chest X-ray images, and which is publicly available.
The dataset was separated into three classes using the 5-fold cross-validation procedure.
To classify COVID-19, normal, and viral pneumonia, the proposed model had an average
accuracy of 97.20%.

Table 8 summarizes the deep learning models for multi-class classification utilizing a
pre-trained model with deep transfer learning for the COVID-19 dataset. Different medical
imaging modalities were used in the DL techniques (computer tomography (CT) and chest
X-rays (CXR)).

Table 8. Summary of deep learning based COVID-19 multi-classification using custom models.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[99]

Journals: Science
direct, Nature,

Springer Link, and
China CNKI,

Thoritative media
reports: New York
Times, Daily Mail
(United Kingdom),
The Times (United

Kingdom),
CNN, etc.

2933 lung CT
images

COVID,
lung tumor,
normal lung

Training
= 6000

Test =1500
5-fold cross
validation.

EDL-COVID

Accuracy
= 99.054%.

Sensitivity = 99.05%
Specificity = 99.6%
F measure = 98.59%

MCC = 97.89%

[100] Multiple sources
[4,53,81,98,118]

13,975 CXR
images (normal

= 7966,
pneumonia
= 5451, and
COVID-19

pneumonia = 258)

Healthy,
pneumonia,
COVID-19

Training
= 13,675

Test = 300

Modified
COVID-net

Accuracy = 94.3%
Sensitivity = 94.3%

± 4.5%
Specificity = 97.2%

± 1.9%
PPV = 94.5%
± 3.3%

F score = 94.3%
± 2.0%
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Table 8. Cont.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[13] Two open-source
datasets [52,53]

15,085 X-ray
(normal = 8851,

COVID-19 = 180,
pneumonia

= 6054)

Normal,
COVID-19,
pneumonia

cross entropy
3-fold cross
validation

Modified
ResNet18

Accuracy = 96.73%
Recall = 94%

Specificity = 100%

[101]

COVID-19 CXR
dataset [53],

Xiangya Hospital
RSNA pneumonia

detection
challenge [98]

3545 chest X-ray
images

(COVID-19 = 204,
healthy = 1314,

CAP = 2004)

COVID-19,
Healthy, CAP

Training = 80%
Validation

= 20%
Test = 61
images

ResNet50 +
FPN

Accuracy = 93.65%
Sensitivity = 90.92%
Specificity = 92.62%

[102] Two Kaggle
datasets [53,92]

1389 X-ray
images

(COVID-19 = 289,
viral pneumonia

= 550, normal
= 550)

COVID-19,
viral

pneumonia,
normal

5-fold cross
validation CNN Accuracy = 90.64%

F1 score = 89.8%

[103] Open-access
database [4]

2905 CXR images
(COVID-19 = 219,
viral pneumonia
= 1345, normal

= 1341)

COVID-19,
viral

pneumonia,
normal

mAlexNet

Accuracy = 98.70%
Error = 0.0130

Recall = 98.76%
Specificity = 99.33%
Precision = 98.77%
False positive rate

= 0.0067
F1 score = 98.76%

AUC = 99.00%
MCC = 98.09%

Kappa = 97.07%

[104]

COVID-19
Radiography
Database [4],
Chest X-ray
dataset [119]

3047 chest X-ray
images

(COVID-19 = 361,
pneumonia

= 1341, normal
= 1345)

COVID,
non-COVID
COVID-19,
pneumonia,

normal

Training = 80%
Test = 20% InstaCovNet-19

Two class:
Accuracy = 99.53%
Precision = 100%

Recall = 99%
Three class:

Accuracy = 99.08%
Recall = 99%

F1 score = 99%
Precision = 99%

[105]
Multiple sources

[53,54,78,82,98,118,
120]

15,265 chest X-ray
images

(COVID-19 = 558,
normal = 10,434,

bacterial
pneumonia
= 2780, Viral
pneumonia

= 1493)

COVID-19,
normal, viral
pneumonia,

bacterial
pneumonia

5-fold cross
validation CSDB CNN

Precision = 96.34
Recall = 97.54%

F1 score = 96.90%
Accuracy = 97.94%
Specificity = 99.25%

AUC = 98.39%

[106]

COVID-19
dataset [53],
chest-X-ray
images [78]

CXR (COVID-19
= 145, Bacterial

Pneumonia = 145,
normal = 145)

COVID,
non-COVID

COVID,
non-COVID,

bacterial
pneumonia

Training = 80%
Test = 20%

deep learning
conditional
generative
adversarial
networks

Two class:
Accuracy = 98.7%
Sensitivity = 100%
Specificity = 98.3%

Three class:
Accuracy = 98.3%
Sensitivity = 99.3%
Specificity = 98.1%
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Table 8. Cont.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[107] Multiple
sources [4,52,53]

1092 X-ray
images

(COVID-19 = 364,
normal 364,

pneumonia = 364)

COVID-19,
normal

COVID-19,
normal,

pneumonia

Training = 70%
Test = 30%
5-fold cross
validation

MH-
COVIDNet Accuracy = 99.38%

[108]
Multiple

sources [4,53,79,92,
118,120–122]

7390 X-ray and
CT images
(COVID-19

= 2843, normal
= 3108, viral
pneumonia +

bacterial
pneumonia

= 1439)

COVID,
normal
COVID,
normal,

pneumonia
COVID,

normal, viral
pneumonia,

bacterial
pneumonia

5-fold cross
validation CoroDet

Two class:
Accuracy = 99.1%

Sensitivity = 95.36%
Specificity = 97.36%
Precision = 97.64%

Recall = 95.3%
F1 score = 96.88%

Three class:
Accuracy = 94.2%

Sensitivity = 92.76%
Specificity = 94.56%
Precision = 94.04%

Recall = 92.5%
F1 score = 91.32%

Four class:
Accuracy = 91.2%

Sensitivity = 91.76%
Specificity = 93.48%
Precision = 92.04%

Recall = 91.9%
F1 score = 90.04

[24]

LUNGx Challenge
for computerized

lung nodule
classification [123]

16,750 CT images
(COVID-19
= 5550, CAP

= 5750, control
= 5450)

COVID-19,
Non-COVID
COVID-19,

CAP,
control

Training
= 15,000

Validation
= 750

Test = 1000

COVIDCTNet

Sensitivity = 93%
Specificity = 100%

Two class:
Accuracy = 95%

Three class:
Accuracy = 85%

[109] COVID-19
dataset [53]

1184 chest X-ray
images

(COVID-19 = 336,
MERS = 185
SARS = 141,
ARDS = 130,

Normal = 392)

COVID-19,
MERS, SARS,

ARDS, normal

Training = 757
Test = 427 CNN

Accuracy = 98%
Precision = 99%

Recall = 98%
F1 score = 98%

[110]
Multiple

sources [53,81,92,
118,122,124,125]

6317 chest X-ray
images

(COVID-19
= 1440, normal

= 2470 viral and
bacterial

pneumonia
= 2407)

COVID-19,
normal,

pneumonia

Training = 70%
Test = 30% Convid-Net Accuracy = 97.99%
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Table 8. Cont.

Authors Data Sources No. of Images Name of
Classes Partitioning Techniques Performances (%)

[111]

COVID-19 Image
Data

Collection [53],
RSNA Pneumonia

Detection
Challenge

dataset [98],
COVID-19 Chest

X-ray Dataset
Initiative [120]

13,862 chest X-ray
samples

(COVID-19 = 245,
pneumonia

= 5551, normal
= 8066)

COVID-19,
pneumonia,

normal

Training
= 20,907

Test = 231
Corona-Nidaan

For three-class
classification:

Accuracy = 95%
For COVID-19

cases:
Precision = 94%

Recall = 94%

[112] [78,126,127]

1061 CX images
(COVID-19 = 361,

normal = 200,
pneumonia = 500)

COVID-19,
pneumonia,

normal

Training = 80%
Testing = 20% DeepCoroNet

Accuracy = 100%
Sensitivity = 100%
Specificity = 100%

F score = 100%

[113] Multiple sources
[53,74,98,128]

10,377 X-ray and
CT images

(normal,
pneumonia,
COVID-19,
influenza)

COVID-19,
pneumonia,

normal

Training
= 9830

Test = 547
CNNRF F1 score = 98.90%

Specificity = 100%

[114] Multiple sources
[52,53,129,130]

6792 CXR images
(normal = 1840,

COVID-19 = 433,
TB = 394, BP
= 2780, VP

= 1345)

COVID-19,
normal,

tuberculosis
(TB), bacterial

pneumonia
(BP),
viral

pneumonia
(VP)

Training = 80%
Validation

= 10%
Test = 10%

MANet Accuracy = 96.32%

[115]

COVID-19
dataset [4], Joseph

Paul Cohen
dataset [53]

458 X-ray images
(COVID-19 = 295,
pneumonia = 98,

normal = 65)

COVID-19,
pneumonia,

normal

Training = 70%
Test = 30%
5-fold cross
validation

MobileNetV2 +
SqueezeNet Accuracy = 99.27%

[116]

X-VIRAL dataset
collected from 390
township hospitals

through a
telemedicine

platform of JF
Healthcare,

X-COVID dataset
collected from 6

institutions,
COVID-19
dataset [53]

Chest X-ray
images (positive
viral pneumonia
= 5977, non-viral

pneumonia or
healthy = 37,393,
COVID-19 = 106,
normal controls

= 107)

COVID,
non-COVID

COVID, SARS,
MERS

5-fold cross
validation CAAD

X-COVID dataset:
Two class

AUC = 83.61%
Sensitivity = 71.70%

Open-COVID
dataset: Three class
Accuracy = 94.93%

for COVID-19
detection

Accuracy = 100%
for SARS and

MERS detection

[117]
COVID-19

Radiography
Database [4]

2905 chest X-ray
images

(COVID-19 = 219,
viral pneumonia
= 1341, normal

= 1345)

COVID,
viral

pneumonia,
normal

5-fold cross
validation

Training = 70%
Validation
= 10% Test

= 20%

CVDNet

Precision = 96.72%
Accuracy = 96.69%

Recall = 96.84%
F1 score = 96.68%

Accuracy = 97.20%
for COVID-19 class
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4. Discussion: Challenge and Future Research Direction

This section provides some directions can be utilized in future research in the detec-
tion and classification of coronavirus and enhance the efficiency of future deep learning
classifiers. Some challenges were inspired by [131].

To begin, it is vital to emphasize that some studies examined, analyzed, and evaluated
distinct datasets that were privately obtained by clinics, hospitals, or COVID research
institutes. The main drawbacks of this are that it is difficult to go against the performance
of these models in different studies.

Additionally, the training process plays an essential role in deep learning; to have a
good model, huge amounts of training data are needed. At the start of the pandemic, the
lack of datasets for training deep learning models for medical imaging (CT or X-rays) was a
major challenge. In general, collecting and labeling large amounts of medical imaging data
is difficult because it requires a great deal of time and effort by radiologists (experts). Several
factors can be involved in collecting data, such as lighting conditions, different presentation
characteristics of coloring, various sizes and views in different image modalities, and
enlargement. It is important to consider the influence of clinical situations and collection
techniques on the robustness of a dataset.

In the reviewed COVID-19 applications, authors used the classification of COVID-19
based on the supervised learning method. With this approach, training the models with
tagged images led to better results. From the beginning of December 2019, the outbreak of
COVID-19 has put health care systems under tremendous pressure. Thus, it is difficult to
gather images of correct indications of COVID-19 that have been labeled by professional
doctors. Generally, there are a number of unidentified clinical images that are accessible.
These unlabeled images are a major source of knowledge and cannot be used for supervised
learning. Hence, a classification model for COVID-19 is desperately needed and can be
trained using several of clustering methods without supervision [132].

Another limitation in some studies is the use of data augmentation approaches rather
than transfer learning to prevent over fitting. Most research studies applied data augmen-
tation techniques, including translation, horizontal (and vertical) flipping, and random
rotation to avoid the over fitting and to enhance the accuracy of model predictions [133].
Data augmentation is a good tool to solve the problems of unbalanced data or a lack of
data; it can generate new images that retain the original features.

An additional concern is data leaking, which is one of the most serious and widespread
issues in machine learning, as well as in deep learning. The most of the time, it can occur
in the feature engineering stage in the pre-processing phase. Generally, this problem is
caused by missing values, temporal data, and the normalization of data. In the context of
training dataset using CT or CXR images, the normalization stage of the whole dataset [24]
can be applied before splitting, and, at that time, a part of the information from the training
and testing dataset can be shared. Unfortunately, during the splitting phase, there is no
guarantee that all images from one patient will be placed into one sample set because all
the samples are taken at random without any restriction. Data leakage can be avoided by
properly performing cross validation.

Finally, the absence of benchmarks for COVID-19 classification systems based on deep
learning was viewed as a challenge and resulted in an absence of flexibility.

Diagnosis and treatment of COVID-19 is essential. In the absence of a good cure, we
just need to identify additional AI-based DL techniques for the early detection of COVID-19.

In order to prevent disease and the progression of the pandemic, it is necessary to
detect and diagnose COVID-19 quickly using DL applications at the lowest cost and with
few complications. The integration of DL techniques in radiology centers enables rapid and
accurate diagnoses of pneumonia, especially in cases of COVID-19. The incorporation of
DL methods in healthcare systems aids in decision making and a reduction in human error.

The majority of research on deep learning techniques, distinguishes COVID-19-
infected cases from the other classes, such as normal, tuberculosis (TB), bacterial pneumonia
(BP), and viral pneumonia (VP) cases.
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The World Health Organization (WHO) designated certain Pango lineages as vari-
ations of concern (VOC) and assigned Greek letter designations, such as alpha (Pango
lineage designation B.1.1.7), beta (B.1.351), delta (B.1.167.2), and, most recently, omicron
(B.1.1.529). There are variations among these strains that are more communicable and oth-
ers that are even more difficult to detect using traditional diagnostic techniques. Currently,
there is a pressing need to create deep learning algorithms that can accurately and swiftly
detect and classify the many SARS-CoV-2 mutations.

The reinforcement learning methodology allows a deep learning model to learn from
its environment. The development of a system based on reinforcement learning can
convincingly increase the efficiency and performance of COVID-19-classification techniques
using different modalities of medical images.

5. Conclusions

In conclusion, the review focused on approaches based on deep learning networks
for automated COVID-19 detection. The algorithms created in previous studies for the
detection and classification of SARS-CoV-2, using deep learning approaches, with two
imaging modalities (CT and X-ray samples), are described in this paper. Several studies
have combined multiple datasets and used them in DL models to improve COVID-19-
detection performance. In this paper, we collected sources of used datasets that can be
easily accessed by researchers. The major challenge was absence of benchmarks for COVID-
19 classification systems based on deep learning. We desperately need to develop deep
learning systems with a higher performance in identifying COVID-19 at an early stage and
that supports radiologists in their diagnoses.
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