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Abstract: Unmanned Aerial Vehicles (UAVs) are considered an important element in wireless com-
munication networks due to their agility, mobility, and ability to be deployed as mobile base stations
(BSs) in the network to improve the communication quality and coverage area. UAVs can be used
to provide communication services for ground users in different scenarios, such as transportation
systems, disaster situations, emergency cases, and surveillance. However, covering a specific area
under a dynamic environment for a long time using UAV technology is quite challenging due to
its limited energy resources, short communication range, and flying regulations and rules. Hence,
a distributed solution is needed to overcome these limitations and to handle the interactions among
UAVs, which leads to a large state space. In this paper, we introduced a novel distributed control
solution to place a group of UAVs in the candidate area in order to improve the coverage score with
minimum energy consumption and a high fairness value. The new algorithm is called the state-based
game with actor–critic (SBG-AC). To simplify the complex interactions in the problem, we model
SBG-AC using a state-based potential game. Then, we merge SBG-AC with an actor–critic algorithm
to assure the convergence of the model, to control each UAV in a distributed way, and to have learning
capabilities in case of dynamic environments. Simulation results show that the SBG-AC outperforms
the distributed DRL and the DRL-EC3 in terms of fairness, coverage score, and energy consumption.

Keywords: UAV; fairness; coverage score; reinforcement learning; actor–critic

1. Introduction

Improvement in UAV-based methods and the expense decrease of their sensing de-
vices have offered a great foundation for wireless technologies. Due to the characteristics
of having a small volume, high three-dimensional (3D) mobility, low energy consumption,
and a higher chance of line-of-sight (LoS) [1], UAVs have been widely used in emergency
rescue, civil, public, and military applications [2–4]. In various applications, with proper
operation and placement, UAVs can be deployed either as extra access points to enhance
the communication performance of the network or relays to disseminate data. Further-
more, UAVs can work as self-organizing nodes and can efficiently process the preassigned
tasks [5]. Hence, a UAV-based network can provide efficient and reliable wireless communi-
cation approaches for different real-time scenarios such as public safety scenarios. Here, the
UAVs can be deployed as flying base stations (BSs) to replace the defective communication
network and guarantee the transmission of data for the ground users [6].

Despite the promising future and the numerous dazzling potentials for using UAVs as
flying BSs, different technical issues usually appear in the UAV networks, and these should
be avoided and minimized to have a reliable and efficient network. The most important

Sensors 2022, 22, 1919. https://doi.org/10.3390/s22051919 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051919
https://doi.org/10.3390/s22051919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3712-3405
https://orcid.org/0000-0002-7879-1469
https://doi.org/10.3390/s22051919
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051919?type=check_update&version=1


Sensors 2022, 22, 1919 2 of 27

issues include area coverage, 3D deployment/trajectory, communication connectivity,
resource allocation, and energy limitations [4,7–10]. In particular, the deployment of UAVs
for coverage and tracking purposes highly impacts the energy resources, the connectivity
among the UAVs, the limited communication range, and the interference produced by
UAVs. Hence, it is difficult for UAVs to cover the candidate region all the time. Therefore,
UAVs need to move around to ensure each ground point is covered for a specific duration.
In the UAV area coverage problem, the important part is the evaluation of the coverage
ability for the model. Another important factor in the coverage problem is the fairness;
the UAVs should cover all parts of the region rather than covering only certain areas and
leaving others without coverage [11,12].

UAV-communication-based research can be divided into two main categories: one is
extending the communication coverage of the UAV network and deploying the UAVs as
mobile BSs to serve the ground points, as in [13–15]; the second category is relay UAVs,
where UAVs are used to forward data from one point to the next UAV or to the ground
point with minimum resources, as in [16–18]. In addition to the coverage problem, energy is
another issue for the UAV network since UAVs are generally powered by limited batteries.
With limited energy resources, UAVs cannot keep moving all the time, and this leads
to performance and endurance degradation; hence, UAVs need to work in an energy-
efficient way to increase the network lifetime, keep the UAVs connected, and utilize the
UAVs’ resources. Given that the UAV coverage and energy control issues are even more
complex and challenging than other traditional control issues, a decision-making technique
is needed to manage the interactions among multiple UAVs to achieve multiple objectives
at the same time.

One of the decision techniques that is widely used to study the coverage and energy
problems in UAV networks is game theory (GT). It is a powerful tool for mathematically
modeling the interaction among the UAVs in the network to establish the coupling re-
lationships of various rational decision-makers and to achieve an efficient distributed
management of the network. Moreover, it can be used to design the distributed control
strategies in the UAV network, and it has the ability to find the optimal values of the control
strategies [19]. Different types of GTs have been used to study the interactions among the
UAVs and solve the coverage and energy issues in UAV networks such as the coalition
formation game [20], potential games [21], and the mean field game (MFG) [22].

Another type of solution that can be used to solve the energy and coverage problem is
by leveraging deep reinforcement learning (DRL). It has shown a superior performance
compared with the optimization- and game-based approaches [23–26]. The basic DRL
algorithm, deep Q learning, depends on the deep Q network (DQN) to find the Q-value for
each action–state pair, but it has a limited action space. Due to the unlimited action space for
the coverage and energy control problem in the UAV network, a deep deterministic policy
gradient (DDPG) method can be used instead of the basic DRL [27,28]. In this research,
the control problem is complex since it needs to optimize four objectives at the same time:
coverage ability, energy consumption, connectivity, and fairness. Therefore, the DDPG is a
promising solution, and it can be used along with the designed utility of the game model
to achieve more coverage, less energy consumption, and high fairness, while keeping the
UAVs connected all the time [29–31]. It can also deal with complex state spaces and with
time-varying environments, and it uses powerful deep neural networks (DNNs) to assist
the UAV in making decisions and providing high-quality services for the UAV network.
Moreover, the DDPG has the ability to deal with unknown environments and emergency
scenarios, and it enhances the robustness and reduces the calculation cost of the UAVs.

UAVs with high mobility properties need to work in a team to provide an effective
communication coverage for a long period. This mission is challenging since UAVs have
in general a limited energy resource and communication range. The first concern is that
it is difficult to have the appropriate UAV coverage of the candidate region for a long
period, due to the costs and the limitations in the communication range. Indeed, UAVs
sometimes need to fly around to guarantee that the region is being covered during the
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required period. It is also important to have a fair communication within the region, as it is
not efficient to cover part of the region for the whole period and leave some other parts
without coverage. The second concern is the limitation in the energy resources as UAVs do
not have the ability to keep flying for a long period. Hence, they need to use their energy
resources in an efficient way in order to increase their lifetime. UAVs’ movements should
also be optimized in order to complete more tasks with minimum energy requirements. In
addition, movement control for a number of UAVs is quite challenging due to the huge
number of possible interactions among UAVs.

To address the coverage and energy challenges, considering the limitations of the
existing models such as working in a dynamic environment, complexity, and high compu-
tational time, we need to propose a solution approach able to achieve a fair communication
and maximize the covered region of the UAVs with minimum energy resources. For this
purpose, we propose a game theoretic model with online learning capabilities. This model
is able to update the strategies following the environment dynamics and the mobility issues.
The main contributions of this paper are as follows:

• We modeled energy-efficient UAVs’ controls, which provide a fair communication
coverage for all ground cells in the candidate region;

• We developed a distributed UAV deployment algorithm using GT, which simplifies
the interactions among UAVs and provides an optimal solution for the proposed
game;

• We propose a learning model that handles cases such as time-varying environments
and sophisticated state spaces and to guide the decision-making process.

The remainder of the paper is organized as follows. Section 2 reviews the available
game- and learning-based models. Then, the system model and the problem definition are
presented in Section 3. Section 4 formulates the state-based game model and presents the
detailed design of the proposed DRL model. The simulation setting and the performance
evaluation are provided in Section 5. Section 6 concludes the paper.

2. Related Works

In this section, we review the recent game- and learning-based research, especially
those that studied the deployment, coverage, and energy problems in UAV-based networks.
We divide this section into game-based models and learning-based models, and we then
summarize the most important models as follows.

2.1. Game-Based Models

In [20], Ruan et al. presented an efficient cooperative UAV deployment method and
analyzed data transmission and UAV coverage in the UAV-assisted network. They designed
it based on a coalition formation game (CFG) with Pareto order. Then, they combined
the game model with the coverage deployment and coalition selection approach, so the
UAVs can select their strategies in a cooperative manner to improve the coverage ability.
Furthermore, Ruan et al. in [21] proposed a multi-UAV coverage model with energy-
efficient communication. It consisted of the coverage maximization problem and the power
control problem. The coverage algorithm was designed using a spatial adaptive gameto
maximize the coverage with minimum transmission power.

For cooperative search and surveillance purposes, Li and Duan in [32] presented a
game theoretic model for a multi-UAV network. They divided the cooperative search
problem into coordinated movements, sensor observations, and cooperative data fusion.
The coordinated movements task was studied as a multi-player potential game, and then,
they used a binary log-linear learning algorithm to perform and control the movements of
the UAVs in a way that would achieve the optimal coverage. Next, they used a cooperative
data fusion algorithm to build the probability map and, hence, guide the next coordinated
movements. In [33], Xing et al. proposed a distributed algorithm with cooperative and
reliable data transmission for a dynamic environment. To investigate the interactions
among UAVs, a game framework was presented with a utility function that included the
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delay, achievable rate, and energy consumption of the UAVs. They established a multi-hop
tree structure network between the UAVs and the BS using a hybrid network formation
algorithm.

Another type of game called MFG was used in [34]. Gao et al. formulated the velocity
control problem as the Schrödinger bridge problem for a set of massive rotary wing UAVs.
It helps describe the location dynamics of the UAVs and their frequent reconfiguration. To
reduce the computational complexity and achieve a stable and rapid coverage approach,
they transformed it into an MFG and then solved it using the Gprox primal dual hybrid
gradient (PDHG) technique.

2.2. Learning-Based Models

Li et al. in [35] used a non-cooperative game concept with a modified binary log-linear
technique in order to achieve fast and efficient deployment, while searching for an optimal
Nash equilibrium point. The technique not only considers the power management and
channel overlap, but also the interference and coverage problem. They used an aggregative
game that catches and covers all features to overcome the limitations in post-disaster
situations. In order to lessen the exchange of information and minimize computational
time, they introduced a synchronous payoff-based binary log-linear learning approach.
Another research work focused on minimizing the energy consumption [29]. Liu et al.
proposed a cooperative approach based on an actor–critic algorithm to provide coverage
for unknown areas while reducing the overlap of the UAVs’ views. Game theory was used
to solve the complex dynamics of the UAVs. Moreover, a gradient approach was designed
to deal with the large state space by reducing the required space to store variables.

Another set of research works studied the coverage and fairness problems [22,31,36,
37]. Liu et al. in [31] presented a DRL-based energy-efficient control for coverage and
connectivity (DRL-EC3), and it was an energy-efficient UAV control approach based on deep
reinforcement learning (DRL) technology. DRL-EC3 explicitly uses a new energy-efficient
mechanism based on the deep deterministic policy gradient (DDPG), while taking into
consideration the energy consumption, communication coverage, fairness, and connectivity
among UAVs. It takes actions based on the learning of the two DNNs for the actor and
critic networks. The simulation results showed that DRL-EC3 outperformed random and
greedy in coverage, consumption energy, fairness, and energy efficiency. Furthermore, in
[36], Liu et al. suggested a distributed deep reinforcement learning approach for controlling
the UAV in a decentralized way. The approach increases the average coverage score of
the UAVs, improves the fairness of all targeted points, and decreases the overall energy
consumption while achieving higher connectivity among UAVs and keeping them flying
inside the targeted region. They specifically designed each UAV using DNNs according to
the action space, reward, observation, and state in a straightforward way.

In [22], Chen et al. modeled the UAV control problem using an MFG to simplify the
interactions among UAVs. The mean-field trust region policy optimization (MFTRPO) uses
the MFG to build the Hamilton–Jacobi–Bellman and Fokker–Planck–Kolmogorov equations.
It uses neural network feature and trust region policy optimization to solve the difficulties
in practical applications and to reach the optimal solution. It improves the communication
efficiency while guaranteeing network connectivity and fair communication. Pham et al.
in [37] presented an algorithm for multiple agents based on reinforcement learning, where
UAVs can collaborate and learn to cover an unknown field of interest, while reducing the
resulting overlap of the UAVs’ views. The complexities of the UAV team’s joint actions were
resolved by designing a game approach. The fixed sparse representation (FSR) and radial
basis function (RBF) techniques were also used to solve the problem in a high-dimensional
state space, thus significantly reducing the space to store the parameters.

Researchers have also investigated the power control problem [38,39]. In [38], Yuan
et al. discussed the backhaul power allocation and user-timeslot scheduling problem to
reduce the energy consumption of UAVs. They proposed two learning models based on
actor–critic deep reinforcement learning called joint actor–critic-based user group schedul-
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ing and optimization-based backhaul power allocation (ACGOP), and actor–critic-based
user group scheduling and backhaul power allocation (ACGP). ACGOP combines opti-
mization and the actor–critic (AC) to speed up and improve the learning performance.
Furthermore, they developed reward re-design and action filtering approaches to decrease
the large action space and ensure feasibility. Li et al. in [39] studied the power control
problem in an ultra-dense UAV network to improve the energy efficiency (EE). They formu-
lated the downlink power control problem as a discrete MFG to simplify the interactions
among the UAVs. Then, a Markov decision process (MDP) was constructed using the
MFG framework due to the dense deployment of the UAVs to find the equilibrium point.
Furthermore, they extended the game by DRL-MFG using the DRL technology to reduce
the interference and improve the EE in the network.

The capacity, coverage, and energy efficiency problems were studied in [40,41]. In [40],
Atli et al. developed a Q-learning-based UAV placement strategy to solve the coverage
and capacity needs in terms of transmit power, altitude regulations, and non-flight zones
for long-term wireless communication. They focused on finding the best location for the
UAV-BS that would reduce the energy consumption and increase the coverage score. The
weighting method in the suggested Q-learning-based solution allows prioritizing the cov-
erage score and energy usage based on the network/battery circumstances. Furthermore, it
uses the standard k-means clustering method to place the UAV-BS at the centroid location
with the minimum distance to the ground users. Zhang et al. in [41] presented a DRL-based
self-remedy approach called SREC-DRL to improve the user satisfaction scores for a specific
time period when at least one UAV exits the UAV network. They trained the DDPG agent
to proactively relocate UAVs in the network when one UAV was about to quit rather than
to start the relocation process after one UAV quits.

Another set of research works focused on the trajectory design for UAV networks [42–45].
Cui et al. in [42] proposed a DDPG algorithm for power allocation and 2D UAV trajectory
design to maximize the downlink throughput and UAV’s service time with minimum
energy resources. In [43], Zhang et al. studied the trajectory design of the multi-UAV
network to achieve better downlink capacity in the communication system under the
coverage constraint. The 3D movement of UAVs under the coverage constrain was modeled
as a constrained Markov decision process (CMDP) problem. To solve this problem, they
used a constrained deep Q-network (cDQN) algorithm, where each UAV serves as an agent
to search and learn its 3D movement policy. The purpose of the cDQN was to maximize
the capacity and ensure that all ground points were covered in the system. They also used
a primal-dual method in the training of the primal and dual variables, and they applied
action filtering to remove the wrong actions.

In [44], Ding et al. presented the 3D trajectory and frequency allocation problem in
terms of the fairness and energy consumption of the UAV network. They formulated the
energy consumption equations of the UAVs as a function of the 3D locations and defined
the fair throughput in a way that would be improved with limited energy. Hence, they
proposed a deep reinforcement learning (DRL) approach called energy-efficient fair com-
munication through trajectory design and band allocation (EEFC-TDBA). It was designed
to maximize the fair throughput with the minimum energy resources. In [45], Qin et al.
discussed the trajectory optimization problem of multiple UAV-BSs in a dynamic environ-
ment for user-fair communication service. They characterized the user fairness by using
the fairness scheduling, and then, they formulated a weighted throughput maximization
problem as a function of the UAV-BSs’ trajectory. They also modeled the dynamic deploy-
ment problem as a Markov game with multi-agent DRL-based distributed UAV-BS control
called MAUC. It adopts the centralized training framework with the distributed execution.

We found from the previous works and the summarized features in Table 1 that
GT allows mathematically modeling the interactions among UAVs and constructing the
appropriate order relationships for the different decision-makers. GT is widely applied
in the formulation of wireless communication issues, such as coverage, fairness, and
power control problems. Potential games are suitable for modeling the coverage and
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energy problems with medium and small UAV networks [20,21,32]. On the other hand,
MFG in [34] was used for modeling the energy efficiency in large UAV networks due
to its ability to handle huge interactions among UAVs. In some scenarios, UAVs might
be distributed in unknown and dynamic environments; hence, the game models alone
will not achieve an optimal solution for the UAV network, Therefore, UAVs should have
some learning capabilities such as the DRL, DQN, and actor–critic algorithm (DDPG) as
in [22,31,36,37]. These learning techniques can be used for complex state spaces and time-
varying environments. Furthermore, it consists of DNNs that serve to decide the suitable
actions for the UAVs and achieve the convergence and robustness of the network.

Table 1. Literature summary of game- and learning-based models.

Ref. Method Type Objective(s) 2D/3D Utility/Reward UAVs Metrics

[21] Potential
game Game Coverage maximization

and power control 2D Coverage and
transmission power 4 to 9 Coverage with iterations,

UAVs’ power

[32] Potential
game Game Maximize coverage 2D Coverage probability 15 Coverage with iterations

[31] DRL Learning Maximizes energy
efficiency 2D

Coverage score,
fairness index, and

energy consumption
5 to 10

Coverage score,
fairness index,

energy consumption,
and energy efficiency

[38] Actor-Critic Learning Scheduling and
power allocation 3D Energy consumption 1 Energy

[40] Q-learning Learning Coverage and
capacity needs 3D Energy consumption 1 Reward, energy,

and coverage

[44] DDPG Learning
Enhance energy efficiency

and allocate frequency
band for fair communication

3D Throughput fairness
and energy consumption 1 Reward

and speed

3. System Model

This section details the system model components (scenario, channel, energy con-
sumption), states the problem, and discusses the solution approach in order to improve the
network performance.

3.1. Scenario

In this paper, we deployed a number of N UAVs (U) from a number of aerial base
stations. The UAVs were equipped with GPS and had the ability to fly within a limited
altitude level in order to provide a fair coverage to all cells in the candidate region. The
UAVs U1, U2, . . . , UN were aware of their own locations. The transmission powers of the
UAVs are defined as Pu1 , Pu2 , . . . , PuN . They had the ability to change their 3D locations and
track the on-ground users. This provides a better coverage and a higher wireless service
quality with minimum energy requirements. Each UAV had connectivity limitations, such
as a communication/sensing range Rc. The UAV would lose its links to the other UAVs
when the communication range was less than the separating distance. The UAVs also
had maximum flying altitude values. Therefore, their coverage range was limited by their
physical specifications and the environment conditions.

To simplify the coverage and energy issues and facilitate the representation of the
UAV-based network, the candidate region (R ∈ R2) was divided into Q cells, and the
center of each cell is referred to as the point of interest(IP), as illustrated in Figure 1. Each
UAV was required to cover a number of IPs in a reasonable time based on the mission. The
communication process can be achieved in T slots of equal duration, where each slot is
denoted ∆T. For the sake of simplicity, we assumed that the signal over the cell could be
wholly specified by the UAV when its center was within the sensing range. To clarify the
“points of interestor IPs” term, we assumed that there was a user in the center of this cell
(IP). Due to the limited number of UAVs and the energy and coverage challenges, UAVs
cannot always guarantee the coverage of all IPs in the region. Moreover, the distribution
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of UAVs in practical scenarios is considered as a random and independent process, since
UAVs are generally deployed in an unplanned and opportunistic manner. At the beginning
of the mission, the UAVs started from random locations, and in each timeslot, the UAV
could hover or move to the next location based on the 3D space, as explained later in the
game model.

Figure 1. UAV network with the actor–critic algorithm.

Let lu(t) = [xu(t), yu(t), hu(t)]
T represent the 3D location of a given UAV at time t,

where (xu(t), yu(t)), and hu(t) are, respectively, the UAV’s coordinates in the ground-level
horizontal plane and the UAV’s altitude at time t. Due to the limited flight speed of the
UAV, its trajectories are defined by the maximum moving distance and can be expressed as
follows:

‖lu(t + 1)− lu(t)‖ ≤ vuTf light, (1)

where vu represents the flight speed of the UAV (Uu) and t f light is the time needed to
travel from the start location to the destination location. An additional constraint was
introduced to avoid collisions that could occur between any two UAVs

(
Ui, Uj

)
. It is

expressed as follows: ∥∥li(t)− lj(t)
∥∥ ≥ dmin, (2)

where i, j ∈ {1, . . . , N}, i 6= j, and dmin represents the minimum distance to keep between
the two UAVs (i, j) to avoid collision and interference issues.

3.2. Channel and Coverage Model

We assumed that the link between any IP k ∈ {1, . . . , Q} and UAV u ∈ {1, . . . , N} fol-
lows the line-of-sight (LoS) and non-line-of-sight (NLoS) propagation models. As detailed
in [13], a channel in a free space path-loss model can be expressed as follows:

ξdB = 10× n0 × log
(

4π fcduk
c

)
, (3)

where fc is the system carrier frequency, duk represents the distance between the UAV and
IP, c is the speed of light, and n0 is the path-loss exponent specific to the environment
(i.e., rural, urban, dense urban), as in [46]. A popular approach used to model the UAV-
to-ground (U2G) links is the probabilistic LoS and NLoS [13], where the NLoS results
usually from the shadowing and diffraction issues in the environment, and the resulting



Sensors 2022, 22, 1919 8 of 27

attenuations in the NLoS have a greater effect on the UAVs compared to the LoS. As in [47],
the path-loss between UAV u and IP k is expressed as follows:

Luk(dB) =
{

ξuk + χLoS, LoS Link.
ξuk + χNLoS, NLoS Link.

(4)

where χLoS and χNLoS represent the additional attenuation caused by the shadowing
problem. In this system, the probability of the LoS link depends on a set of variables based
on the environment such as the IP’s and UAV’s locations and the elevation angle between
the IP and UAV. Therefore, the LoS and NLoS probabilities can be expressed [48] as follows:

PLoS
uk (t) = C×

(
180
π
× θk(t)

)B
, (5)

PNLoS
uk (t) = 1− PLoS

uk (t), (6)

where C and B are constant parameters that depend on the environment, and the elevation
angle θ can be obtained as follows:

θ(t) = sin−1
(

hu − hk
duk(t)

)
, (7)

Here, hu and hk represent the altitude of the UAV and the altitude of IP k from the
ground level, respectively. The horizontal coordinates of point k and the horizontal distance

from the UAV at time t are expressed by (xk, yk) and ruk(t) =
√
(xu(t)− xk)

2 + (yu(t)− yk)
2,

respectively. Let duk(t) =
√
(ruk(t))

2 + (hu(t)− hk)
2 represent the 3D distance between

the UAV and IP k at time t. As in [13,43], the average path-loss can be expressed as follows:

Luk(t) = PLoS
uk (t)× LLoS

uk + PNLoS
uk (t)× LNLoS

uk . (8)

The coverage probability of the IP can be evaluated by using the average path-loss
between the IP and the UAV. When the IP falls within the communication range of the UAV,
we considered that this IP was covered. We also assumed that any given IP can be covered
by many UAVs at the same time. As in [49], the corresponding coverage value of any cell
(IPi : i ∈ {1, . . . , Q}) at time t was considered as a control strategy for the network and
can be expressed as follows:

IPi(t) =

(
1− ∏

j∈N

(
1− Pcov(i,j)(t)

))
. (9)

The main objective of the study was to maximize the overall coverage score with
minimum energy requirements. However, in such cases, this might cause unfair coverage
for some IPs in the candidate region. In other words, some IPs could be covered for a long
time, while other IPs could be rarely covered during the mission period. Therefore, we
needed to guarantee a fair coverage for all IPs in the region. This can be carried out by
a measurement metric called Jain’s fairness index (FI) [50]. By adopting the predefined
control strategy, the corresponding FI value is expressed as follows:

FI =

(
∑Q

i=1 IPi

)2

Q
(

∑Q
i=1 IPi

2
) . (10)

3.3. Energy Consumption Model

In general, the UAVs’ energy consumption model consists of two main parts, namely:
the movement/propulsion part and the communication part. The movement/propulsion
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power consists of three parts: induced power, profile power, and parasitic power. The
induced power results in the thrust of the propelled air downward. The power of the profile
overcomes the rotational drag experienced by the spinning blades of the propeller. The
parasitic force avoids body drag when there is a relative translational displacement between
the quadrotor and the wind. Based on the previous description, the movement/propulsion
energy of the UAV is employed to provide thrust to overcome gravity and the drag dur-
ing the movements. The flight movements of a UAV can only be horizontal movement,
hovering, and vertical movement. Some factors affect the power consumption model such
as payloads, the weight of the UAV, and flight time [51]. On the other hand, the energy
for communication results from signal radiation/reception, signal processing, and the
communication circuitry. Specifically, this consumed energy is often smaller compared
with the flight energy [52]. Therefore, the energy for communication was neglected in
this research. Hence, the approximated movement/propulsion power can be expressed
mathematically as follows [53,54]:

Pu(vu) = P0

(
1 +

3v2
u

Utip

)
+ P1

√√√√(√1 +
v4

u

4v4
0
− v2

u

2v2
0

)
+

d0ρs0 Av3
u

2
, (11)

where Utip is the tip speed for the rotor blade on the UAV, d0 represents the fuselage drag
ratio for each rotor, ρ is the air density, s0 represents the rotor solidity, A is the disc area for
each rotor, v0 is the mean rotor-induced velocity in the hovering mode, and P0 and P1 are
the blade profile power and the derived power, respectively.

Hence, the energy consumption can be written as follows:

Econs(t) =Pu(vu)Tf light,u(t)+Pu(0)(∆T − Tf light,u(t)), (12)

where Tf light,u(t) = ‖lu(t)−lu(t−1)‖
vu

, and it represents the flight time for the UAV (u) in
timeslot t.

Furthermore, the residual energy (Eres) in timeslot (t) can be defined in terms of the
consumption energy (Econs) and the battery size (Emax) as follows:

Eres(t) =Emax−Econs(t). (13)

Once the UAV reaches a minimum energy called Emin, it quits from the system, and it
goes to recharge.

3.4. Problem Statement

UAVs should perform reasonable movements in order to provide a fair and effective
communication coverage to all IPs. However, to maintain the connections among the UAVs
as much as possible and reduce the energy consumption, we should reduce the movements
of the UAVs. In short, our target was to find a control algorithm that can meet the following
objectives:

1. Maximize the total coverage score in the network;
2. Maximize the geographical fairness to provide a fair and effective communication to

all IPs;
3. Minimize the energy consumption resulting from the movements of the UAVs;
4. Ensure the connectivity between the UAVs in the network, avoid crossing the borders

of the candidate region, avoid collisions between the UAVs, and optimize the UAVs’
movements in the network;

5. The UAV network should have online learning capabilities, especially in the case of
unknown environments or sudden changes in the candidate region during a mission.
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4. Problem Formulation

In this section, we develop a state-based potential game to move the UAVs from
random initial locations to appropriate locations in order to achieve maximum coverage
with minimum energy consumption. Then, we introduce a learning algorithm to update
the UAVs’ actions until reaching a steady-state point without any improvement.

4.1. Game Formulation

The main idea was to propose a distributed algorithm that can implement and simplify
the interactions among the UAVs based on GT. In general, GT is adopted and used in most
of the previous UAV-based research to analyze interactions among UAVs, especially in
dynamic and dense networks. UAVs in the game approach are considered as the players of
the game and can interact to make decisions based on the available strategies. They can
play in a smart manner by selecting the best strategy that maximizes the coverage score
and achieves fair communication coverage with minimum energy consumption. Our game
consisted of three main components:

1. Set of players: UAVs; Ui : i = 1, . . . , N;
2. A set of strategies for each player: This represents the next movement of the UAV in

the 3D location at time (t), where t is defined as t = 1, . . . , T. The selected strategy can
be represented for each player Ui at t by the location: lUi (t)=[xUi (t), yUi (t), hUi (t)]

T .
The UAV has the ability to move at multiple levels, and each level is limited by the
min and max height; they can move in a set of directions. We constructed our list by
27 movements in the 3D space (i.e., UAV can move forward, backward, right, left, and
diagonally, hover in the same location, and move up/down with the same previous
options);

3. Utility/payoff: This depends on the coverage score (IPi(t)) and the energy consump-
tion (Ei(t)).

The utility function depends on the energy consumption and the coverage score, and
it can be designed as follows: UAVs consume energy for their sensing and movement
processes. We first considered the energy consumption of the UAVs in the sensing process
to cover the IPs in the candidate region. Each UAV has the ability to sense the downward
area based on its own camera specifications. However, when the coverage radius increases,
the UAV needs more energy to cover more area either by moving or by increasing the used
power. We assumed that all UAVs had the same range of the sensing area due to the same
physical properties and altitude limitations. To reduce the energy usage, the sensing range
should be decreased, and it can be represented as a circular area with Rsens

i = 2× rmax
for all UAVs (i = 1, 2, . . . , N). Based on that, there is a tradeoff between the covered area
and the energy usage, and it can be expressed mathematically based on the selected action
(ai(t)) of the UAV as follows:

Esens
i (ai(t)) = βs(ar

i (t))
2, (14)

where βs is a constant depending on the efficiency of the sensing units of the UAV and ar
i (t)

represents the normalized sensing radius based on the selected action (i.e., new location) at
time (t), and each UAV attempts to find its own energy usage by finding a suitable radius.

Next, we considered the energy consumption resulting from the movements of the
UAVs, and this value depends on both the current and previous locations of the UAV. It
can be represented mathematically as follows:

Emov
i (ai(t), ai(t− 1)) = βpEcons(ai(t), ai(t− 1)), (15)

where βp is a constant depending on the efficiency of the power units for the UAV, ai(t) is
the action for UAV (i) and represents the new location of the UAV (lUi (t)), and ai(t− 1)
represents the previous location of the UAV (lUi (t− 1)).
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Using the coverage score, fairness, sensing energy, and movement energy equations,
the utility to be designed next is a function of the previous and current locations of the
UAV. Since the control problem depends on the current state and the previous one, it can
be implemented using the state-based potential game. The relation between these variables
can be represented in a linear form or a non-linear form by adding some other weights and
constants that describe the environment. To formulate the coverage–energy problem as a
state-based game, the utility function (Ui) was constructed for each UAV (i) to study the
tradeoffs between the covered area and the energy consumption by UAV (i). Initially, the
utility function for UAV (i) can be expressed as follows:

Ui(ai(t), ai(t− 1)) = F(ai(t))− Esens
i (ai(t))− Emov

i (ai(t), ai(t− 1)), (16)

where F is the coverage function for UAV i, which depends on the coverage score and the
fairness, and it is expressed as F(ai(t)) = FI(ai(t))× IPi(ai(t)). Note that Ui is local over
the covered area by UAV (i), and it is dependent only on the actions of UAV (i). As we
noticed from the utility function in Equation (16), increasing energy consumption will have
a negative impact on the utility value of the UAV. On the other hand, increasing the coverage
score will have a positive impact on the utility value while taking into considerations the
connectivity and the interference issues between UAVs, as well as the borders of the
candidate region and the minimum distances between UAVs. In this problem, the main
objective is to maximize the utility value for each UAV, and hence, we looked for the actions
that satisfy:

A∗ = argmax
a∈A

U(a(t)) . (17)

After introducing the game ingredients and based on [55], the state-based potential
game is discussed in the following definition:

Definition 1. The coverage–energy-state-based potential game G := (N, A, U), where U =
{Ui, i = 1, . . . , N} and A is the action set, is an exact state-based game with the following poten-
tial function:

Φ1(a(t), a(t− 1)) =
N

∑
i=1

(Fi(a(t))− Esens
i (a(t))− Emov

i (a(t), a(t− 1))). (18)

The proof part of the above equation is in Appendix A. Algorithm 1 summarizes the
main steps of the state-based game part.
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Algorithm 1. Pseudocode for the state-based game part.

1: Initialize the UAV network.
2: for each timeslot t in T do
3: for each UAV i in N do
4: for each action j in actions do
5: Evaluate IP and FI values using action j.
6: Find Esens and Emov using action j.
7: Store IP, FI, Esens, Emov.
8: end for
9: Select the action with the maximum reward value using Equation (16).

10: Update the UAV location based on the action.
11: while The new UAV location is outside the region or the UAV loses its connec-

tivity do
12: Cancel the new movement.
13: Select the next maximum action.
14: Update the UAV location based on the new action.
15: end while
16: Update the last IP, FI, Esens, Emov values for UAV i.
17: end for
18: end for

When the UAV changes its action, the utility will not be necessarily improved with
other UAVs’ actions. Hence, it does not definitely mean that the action is a global optimum
for all the network. Due to this and the sudden changes in the network, the UAV network
should have some learning capabilities to avoid such cases.

4.2. Learning Approach

The UAV network should have online learning capabilities especially in the case of
unknown environments or sudden changes in the candidate region during the mission.
Moreover, with the increasing complexity of the networks, most of the proposed game
approaches are unable to achieve the requirements and reach a stable point. Hence, a
learning approach is required to overcome such behaviors that can occur in the UAV
networks. One of the popular learning approaches is reinforcement learning (RL); hence,
we start by reviewing RL and then introduce the proposed learning approach.

4.2.1. Preliminaries and Problem Model

The deep RL (DRL) approach considers the “deep” shape of RL, which consists of
two phases: training phase and testing phase. In the training phase, the DNN is trained
offline, and the exploration stage is required to find the optimal policy. In the testing
phase, it consumes less resource, and there is no need for the exploration stage compared
to the training phase; it only performs forward propagation. DRL within the actor–critic
framework [56] consists of the critic Q(s, a

∣∣θQ ), which finds the action value function
using the actor policy π(s|θπ ), where θQ and θπ are the parameters of the critic and actor
networks, respectively.

Two methods are usually used to overcome the divergence problem that results from
using the DNN in DRL: the target network and the experience replay buffer [24]. The
DRL approach extracts and samples a mini-batch of the collected experiences during the
training from the replay buffer. The generated random samples break the relation between
the sequential samples and make the training process more stable. The target networks of

the critic and actor, Q
′
(s, a|θQ

′
.) and π

′
(s|θπ

′
.) have the same configurations of the learned

network (Q
(
s, a
∣∣θQ ), π(st|θπ )) and are employed to evaluate the update target.
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In the UAV network, a UAV is treated as an agent and interacts with the environment
in discrete decision epochs/timeslots. At each timeslot t, the UAV i observes the state
st, which enters the network as the input, and it outputs the action at. Next, the UAV
receives a reward value rt, and the state converts to st+1. We need to find a policy π(st|θπ )
that converts a state into an action to improve the discounted cumulative reward R0 =
∑T

t=0 γr(st, at), where γ∈ [0, 1] represents the discount factor. A replay buffer is used to
store the experience values (st, at, rt, st+1) for the training of the network. In the case of
state st, the system follows action at at epoch t, then:

Q(st, at) = E[Rt|st, at ], (19)

where Rt = ∑T
j=t γr(sj, aj), and it represents the discounted cumulative reward; Q(st, at)

estimates the expected value of Rt for each (st, at) pair. The greedy policy is one of the
commonly used off-policies, where π(st|θπ ) = argmaxat Q(st, at) . The critic network is
trained by minimizing the following loss function:

L
(

θQ
)
=

1
L

L

∑
b=1

[
yt(b)−Q

(
s(b), a(b)

∣∣∣ θQ
)]2

, (20)

yt(b) = rt(b) + γQ
′
(s(b + 1), π

′
(s(b + 1)

∣∣∣∣ θπ
′
)

∣∣∣∣ θQ
′
), (21)

where L is the mini-batch size from the reply buffer B. To train the actor network, we need
to minimize the following loss function of the actor:

L(θπ) =
1
L

L

∑
b=1
−Q

(
s(b), π(s(b)| θπ )

∣∣∣ θQ
)

, (22)

The parameters of the target networks
(

θQ
′
, θπ

′)
are updated using the following

expressions as explained before and the use of the gradient method [28]:

θQ
′
= εθQ + (1− ε)θQ

′
, (23)

θπ
′
= εθπ + (1− ε)θπ

′
, (24)

where ε represents a constant to control the soft update [57].

4.2.2. State Space

The UAV i at timeslot t in the system acts a control center, which adjusts its location and
power transmission. The observation space Oi

t of the coverage–energy problem contains:
UAV locations

(
xi

t, yi
t, hi

t
)

and the energy consumption ei
t of all UAVs. Specifically, Oi

t can
be represented as follows:

Oi
t =

{
xi

t, yi
t, hi

t, ei
t

}
(i∈N, t=1,2,...,T)

(25)

Based on the observation space, the state space of the system at timeslot t for any UAV
i can be written using the coverage score. Specifically, it can be represented as follows:

si
t =

{
xi

t, yi
t, hi

t, ei
t

}
(i∈N, t=1,2,...,T)

(26)

si
t has a cardinality of (4N), and the DRL agent makes decisions based on both the energy

consumption and the coverage score (i.e., location).
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4.2.3. Action Space

Each UAV needs to select the most appropriate next location with the minimum energy
consumption during its flight period. The action ai

t of UAV i at timeslot t is the next location
and can be represented as follows:

ai
t =

{
xi

t, yi
t, hi

t

}
(i∈N, t=1,2,...,T)

(27)

ai
t has a cardinality of (3N), and it is defined as a control policy that defines how the UAV

moves at each decision timeslot.

4.2.4. Reward Function

As we explained before, the UAV can move in restricted movements, where each UAV
should not cross the borders of the candidate region and should not move close to other
UAVs in the network. Therefore, we added a fine ( f i

t ) to the UAV that crosses the border.
Moreover, the UAV will lose its connections with other UAVs based on its communication
range Rc. This fine value forces the UAVs to avoid selecting the actions that lead them to
move outside the region and lose the connections with other UAVs. The network efficiency
at timeslot t can be defined as follows:

Ut = Ft − (Esens
t + Emov

t ) (28)

The first term of the reward is the gain (coverage), while the second term is the cost
(energy consumption). The reward function is then expressed mathematically for UAV i at
timeslot t as follows:

ri
t =

{
Ut − f i

t

}
(i∈N, t=1,2,...,T)

(29)

4.2.5. Training Process

The coverage–energy problem algorithm was designed to be an episode from the
start of the UAVs’ flight from the initial locations to the end of the energy consumption.
Algorithm 2 illustrates the learning process for the UAV based on the previous specifications.
Due to the huge state space and action space and in order to remove the redundancy and
improve the accuracy of the simulation, we used offline and online learning to train the
network. Each UAV has unique actor and critic networks, and the target network of the
UAV is a copy from this actor and critic networks. However, the weights of the target
network are updated separately using Equations (23) and (24). As explained before, the
algorithm learns from the experiences (i.e., action, state, and reward) that are stored in
the replay buffer with a size of (B). In other words, at each timeslot t during the learning
process, the actors and critics for all UAVs in the network are updated from the experiences
with the use of randomly sampled mini-batch (L).
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Algorithm 2. Pseudocode for the DRL approach.

1: Initialize the experience replay buffer B.
2: for each UAV i in N do
3: Initialize the actor network π(st|θπ ) with weights θπ .
4: Initialize the critic network Q

(
s, a
∣∣θQ ).

5: Initialize the target actor network π
′
(s
∣∣∣θπ

′
) with weights θπ

′
.

6: Initialize the target critic network Q
′
(s, a

∣∣∣θQ
′
) with weights θQ

′
.

7: end for
8: for each episode in H do
9: Initialize the locations of the UAVs.

10: The initial speed is zero for the UAVs, and their battery energy is Emax.
11: Initialize the environment.
12: Receive the initial state s1.
13: for each time t in T do
14: for each UAV i in N do
15: Select action ai

t = πi(st|θπ ) +N , where N is the noise term.
16: end for
17: UAVs execute their actions at = (a1

t , ..., aN
t ).

18: Update next state st+1, and obtain reward rt = (r1
t , ..., rN

t ).
19: for each UAV i in N do
20: if UAV i moves outside the region or close to other UAVs then
21: Find ri

t = Ut − f i
t .

22: Neglect the new location and update Oi
t.

23: end if
24: end for
25: Update st ←− st+1.
26: Store (st, at, rt, st+1) in the buffer.
27: for each UAV i in N do
28: Sample L random mini-batches (st, at, rt, st+1) ∈ B.

29: Find yt(b) = rt(b) + γQ
′
(s(b + 1), π

′
(s(b + 1)| θπ

′
.)| θQ

′
.), where b = 1, ..., L.

30: Update weights θQ by minimizing: L
(
θQ) = 1

L ∑L
b=1

[
yt(b)−Q

(
s(b), a(b)

∣∣∣ θQ
)]2

.

31: Update weights θπ by minimizing: L(θπ) = 1
L ∑L

b=1−Q
(

s(b), π(s(b)| θπ )
∣∣∣ θQ

)
.

32: Update the target network’s weights: θQ
′
= εθQ + (1− ε)θQ

′
and θπ

′
= εθπ + (1− ε)θπ

′
.

33: end for
34: end for
35: end for

From Algorithm 2, we can see the pseudocode of the training process for the learning
approach. It starts by initializing the replay buffer, and then, each UAV randomly initializes
its actor and critic networks with weights θπ and θQ, respectively. Furthermore, the weights

of the target network (θπ
′
, θ

Q
′

) are randomly initialized for all UAVs in the same manner
as the actor and critic networks. Next, the training is configured by having H episodes,
and each episode consists of T timeslots. In the training loop, the system obtains initial
state s1, and we construct the starting conditions of the environment. For each UAV i, it
selects an action at according to the actor πi(st|θπ ) with the observation Oi

t as the inputs.
To avoid the UAV selecting a locally optimal policy and performing more explorations, a
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noise term with a Gaussian distribution is added to the selected action. After performing
these actions, the UAV will obtain a reward value rt and a new state st+1. However, a fine
is applied on the UAV, if the selected action forces the UAV to go outside the region or
close to other UAVs. Hence, the UAV will avoid this action, and it cancels the new location.
The final values of (st, at, rt, st+1) are then stored in the replay buffer. At the end of the
training process, each UAV at timeslot t randomly selects a mini-batch with a length of (L)
samples from the buffer, and it then evaluates the target value (yt) using the target critic

Q
′
(s, a

∣∣∣θQ
′
). After this, the weights of the critic and actor network

(
θQ, θπ

)
are updated

using the loss L
(
θQ) and the gradient method, respectively. Lastly, the target network

weights (θQ
′
, θπ

′
) are updated slowly using

(
θQ, θπ

)
and the learning rate ε.

4.2.6. Complexity Analysis

In dynamic scenarios, we cannot determine the trajectory of the UAVs due to their
unpredictable movements. Thus, the time complexity analysis of the UAV control algorithm
is very important. With the increasing complexity of the UAV control problems, the basic
learning approach is not suitable to meet the requirements of the distributed algorithm in
dynamic scenarios. In our research, the control problem depended on many factors, the
most important factors being the energy and the location of the UAVs. Therefore, a learning
algorithm was needed to solve the control problem during the UAV movements, which
was a combination of the state-based game and the actor–critic algorithm.

As for the complexity analysis of the SBG-AC algorithm, the complexity of the explo-
ration and learning process depended on both the number of states and the number of
actions in the control problem, as well as the architecture of the learning model. Due to
the huge space and action spaces, a DNN was used in the learning process for both the
actor and critic networks. In the SBG-AC algorithm, the UAV chooses its action based on
the current state in each timeslot to construct the training dataset. With enough training
steps for a network with a number of UAVs, a huge number of training samples were
collected, which guaranteed the convergence of the DNN and enabled the UAV to learn the
optimal action. Since SBG-AC can be learned offline, we considered the time complexity
of the testing stage. In the testing stage, the collected observations were the input of the
DNN, and the selected action was the output. Hence, the complexity for the DNN with
fully connected layers depended on the number of neurons and the number of layers in the
network and can be expressed mathematically as follows:

Complexity = O

Nlayers

∑
l=1

Nl × N(l−1)

, (30)

where Nl represents the number of neurons in the fully connected layer (l) and Nlayers is
the number of fully connected layers in the model.

5. Performance Evaluation

In this section, we first present the simulation setting and then evaluate and discuss
the results for the game and learning model. To highlight the performance of the SBG-AC,
we considered a set of experiments with different numbers of UAVs and initial settings. In
addition, we simulated another two models from previous research for the performance
comparisons [31,36].

5.1. Simulation Settings

In our simulation, we performed the simulation runs with Tensorflow 2.0.0 and
Python 3.7, and other specifications of the machine are listed in Table 2. Due to random
initialization in the UAVs’ locations, we repeated our simulation scenarios 100 times, and
we found the average values of the targeted metrics. We considered a square area with
100 × 100 square units; the center of each unit is called the IP, and its side length equaled
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100 m. In addition, when the UAV covers part of the square or the whole square, it considers
it as a covered square based on the probability function described in Equation (9). UAV
(u) can fly in 3D space at time t with (xu(t), yu(t), hu(t)) coordinates. To avoid collisions
and keep UAVs connected most of the time, we restricted the movements of the UAVs
based on Equations (1) and (2), and we penalized the UAV when it lost its connections or
moved outside the area by one. Furthermore, the UAVs could move vertically within a
predefined range of altitude values due to UAV regulations and rules. The fully charged
energy of the battery was Emax = 1×105 joules. The channel characteristics of the UAV
network followed the urban environment with path-loss exponent (n0 = 2.5), and more
settings of the network are summarized in Table 3 based on [31,36,40,44,45].

Table 2. Machine/software specifications.

Hardware/Software Description

Processor Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz 2.29 GHz
Operating System Microsoft Windows 10 Professional x64

Memory 256 GB
Python v3.7

Tensorflow v2.0.0

Table 3. Simulation setting for the UAV network.

Parameter Notation Value Parameter Notation Value

Number of UAVs N [3,4,5,6,7,8,9] LoS attenuation χLoS 1 dB
Transmission power P 32 dBm NLOS attenuation χNLoS 20 dB

Cells/squares Q 100×100 Environmental constants C, B 0.11, 0.6
Timeslot ∆T 1 s Elevation angle θ 45

Duration/iterations T 200 LOS link k1, k2 10.39, 0.05
UAV speed vu 10 m/s NLOS link g1, g2 29.06, 0.03

Path-loss exponent n0 2.5 Tip speed Utip 120 m/s
Carrier frequency fc 2 GHz Mean rotor-induced velocity v0 0.002 m/s

Speed of light c 0.3 Gm/s Fuselage drag ratio d0 0.48
Air density ρ 1.225 kg/m3 Rotor solidity s0 0.0001

disc rotor area A 0.5 s2 Blade profile power P0 99.66 W
Sensing and power constants βs, βp Random (0.8–1) Derived power P1 120.16 W

5.2. Network Architecture

The learning process of the SBG-AC model was designed based on the actor–critic DRL
algorithm and the deep deterministic policy gradient (DDPG). The actor–critic network
is shown in Figure 2. Both actor and critic networks were developed using DNNs. Each
network consisted of a set of hidden layers with a predefined number of neurons. The
actor and critic DNNs need to have a large size to handle the learning data and prevent the
over-fitting problem. Hence, we conducted a set of experiments using “Tensorflow 2.0.0” to
find the optimal values of the hyperparameters for the actor–critic DNNs. Both networks
had two fully connected hidden layers. The neurons of the actor network were set to 1000
in the first hidden layer and 500 in the second hidden layer. On the other hand, the neurons
in the critic network were set to 500 and 400 neurons in the first and second hidden layers,
respectively. The input and output sizes of the two networks depended on the action and
state sizes and the number of UAVs in the model.

In our design, the actions represent the next 3D locations of the UAVs with a size
equal to (3× N), and the states represent the 3D location and the residual energy value
for each UAV with a size equal to ((3 + 1) × N). To improve the learning model and
avoid convergence instability or local optima, we normalized the states of the UAV to
[0, 1] and used the scaling and tanh methods to bound the actions in the actor network to
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[−1, 1]. Moreover, we used the rectified linear unit (ReLU) function for activation purposes
in all layers except the output layer and L2 regularization for over-fitting prevention in
both networks. The Adaptive moment estimation (Adam) optimizer [58] was used in the
actor and critic networks to update the DNNs with learning rates equal to 0.001 and 0.002,
respectively. We used (ε) equal to 0.01 in the soft updating process, and the discount value
(γ) was set to 0.999. Most of the settings in the two networks were used after performing
some trial experiments. All settings for the learning model are listed in Table 4.

Figure 2. Actor–critic network.

During the training phase, we stored the trained SBG-AC results every fifty episodes,
each of which had two-hundred epochs, and thus, we had eight models in total. In the
testing phase, we tested each model 10 times. We then found the average value and selected
the best one from the eight models.

Table 4. Parameters for the actor and critic networks.

Parameters Actor Critic

Number of hidden layers 2 2
Neurons per Hidden Layer 1 1000 500
Neurons per Hidden Layer 2 500 400

Activation function in hidden layers ReLU ReLU
Activation function in output layer tanh ReLU

Learning rate 0.001 0.002
Loss function Equation (22) Equation (20)

Optimizer Adam Adam
Batch size 64

Memory capacity 5000
Discount factor 0.999
Noise variance 0 and 0.01

Episode 400

5.3. Evaluation Metrics

In this paper, we used three metrics to evaluate the performance of the model, and we
plotted the normalized values of the selected metrics for different numbers of UAVs. The
three selected metrics were:
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1. Average coverage score: This was evaluated using the coverage probability
Equation (9). In each iteration, the coverage score was updated based on the new
movement of the UAVs, where the new location for the UAV was selected based on
the resulting action, which improved the reward value for the UAV network. With
any network size, we found the coverage probability for all cells in the selected area
over the running period;

2. Fairness index: This shows how the UAVs cover the ground points (IPs) in the
network. To have a fair model, we needed to avoid covering some cells all the time
and rarely covered other cells. The coverage performed by the UAVs should be equally
distributed on all cells to achieve the best fairness value. This metric was measured
using Equation (10);

3. Normalized energy consumption: This represents the required energy for sensing and
movement processes during the testing period. We recorded the energy consumption
for each UAV and then found the average energy consumption for all UAVs in the
network within the current iteration/timeslot. Next, we normalized the measured
values to the required energy for the UAV to move the maximum distance. The sensing
and movement consumption energy value was evaluated using Equation (12).

5.4. Benchmark Models

To compare and validate the SBG-AC model using the same simulation settings, we
simulated the following learning models:

1. DRL-EC3 [31]: This is a learning method that deploys and navigates the UAVs to
improve the energy efficiency of the UAV network. This model was built with the
help of DRL technology, and all UAVs worked based on one actor–critic network;

2. Distributed-DRL [36]: This is an enhanced version of the DRL-EC3 model. It was built
to handle the dynamic changes in the network, let the UAVs work in a distributed
manner, and ensure the connectivity among all UAVs. A learning-based method was
developed, where each UAV had its own actor–critic network, and it was able to
decide its best action.

The similarities and differences among SBG-AC, DRL-EC3, and distributed-DRL are
summarized in Table 5.

Table 5. Description of the SBG-AC, DRL-EC3, and distributed-DRL models.

Features SBG-AC DRL-EC3 Distributed-DRL

Simulation
setting

Same setting
in Table 3

Same setting
in Table 3

Same setting
in Table 3

Model
technology Game + learning Learning Learning

Altitude Varied with a
predefined range (3D)

Fixed for all
UAVs (2D)

Fixed for all
UAVs (2D)

Network
restrictions

Boundaries and
connectivity

Boundaries and
connectivity

Boundaries and
connectivity

State and
action spaces 3D location Horizontal flying angle

and 2D distance
Horizontal flying angle

and 2D distance

Reward
function Equation (28) Coverage×Fairness

EnergyConsumption

Learning
architecture

Multiple actor-
critic networks

One actor-
critic network

Multiple actor-
critic networks

Network type Distributed Centralized Distributed

5.5. Performance and Analysis

We started by comparing the performance of the three models in terms of the coverage
score with respect to the number of UAVs. Figure 3 demonstrates the results in terms of



Sensors 2022, 22, 1919 20 of 27

the coverage score for SBG-AC (red color), DRL-EC3 (blue color), and distributed-DRL
(green color) for different numbers of UAVs. From Figure 3, we noticed that SBG-AC beat
DRL-EC3 and distributed-DRL in terms of the coverage score by an average increment
approximately equal to 3% and 1.1%, respectively, for all network sizes. For instance, when
the number of UAVs = 3, SBG-AC achieved a coverage score equal to 42%, while DRL-EC3
covered around 39.5% and around 40.8% with distributed-DRL for the same area. In the
case of seven UAVs, the coverage score achieved by SBG-AC was 78%, by DRL-EC3 was
74.2%, and by distributed-DRL was 73.8% for the same network. Furthermore, in the case
of nine UAVs, SBG-AC outperformed DRL-EC3 and distributed-DRL by around 2% and
1% with coverage scores equal to 85.2%, 84%, and 83.1%, respectively. The same trend was
achieved by the three models for other sizes. When the number of UAV increased, the
average coverage score reached by SBG-AC monotonically improved due to the new UAVs
being able to have more flexibility in covering IPs, thus achieving a better coverage score.
The initial locations for the UAVs in these models were assigned using a uniform random
distribution. We also noticed that the average needed epochs to reach the same steady-state
coverage value were fewer for SBG-AC compared to DRL-EC3 and distributed-DRL in all
scenarios.

Next, we compared the three models in terms of the fairness index with respect to
the number of UAVs in the network. Figure 4 presents the results in terms of the fairness
index for SBG-AC (red color), DRL-EC3 (blue color), and distributed-DRL (green color)
for different numbers of UAVs. From Figure 4, we noticed that SBG-AC achieved better
fairness values in all networks compared to DRL-EC3 and distributed-DRL by an average
increment approximately equal to 2.2% and 1.1%, respectively. For instance, when the
number of UAVs was four, SBG-AC reached a fairness index equal to 69%, while DRL-EC3
achieved a fairness index equal to 66% and distributed-DRL a fairness index equal to 67.8%.
In the case of five UAVs, SBG-AC significantly improved the fairness index with a value
equal to 74.7%, 70.5% for DRL-EC3, and 72.7% for distributed-DRL using the same network.
In case of eight UAVs, SBG-AC outperformed DRL-EC3 and distributed-DRL by around
2.4% and 1.1%, with fairness values equal to 92.9%, 90.5%, and 91.4%, respectively. The
same trend was seen for these models for other network sizes. When the number of UAVs
increased in the network, the fairness index directly improved due to more cells being
covered by the new UAVs. We also noticed that the average needed epochs to reach the
same fairness index were fewer in SBG-AC compared to DRL-EC3 and distributed-DRL in
all scenarios.

Figure 3. Average coverage score value for a 3-, 4-, 5-, 6-, 7-, 8-, and 9-UAV network.
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Figure 4. Fairness index for a 3-, 4-, 5-, 6-, 7-, 8-, and 9-UAV network.

For the energy consumption metric, we compared the SBG-AC model with the two
models in terms of the normalized average energy consumption for different numbers of
UAVs. Figure 5 shows the normalized average energy consumption results for SBG-AC (red
color), DRL-EC3 (blue color), and distributed-DRL (green color). From Figure 5, we noticed
that SBG-AC, DRL-EC3, and distributed-DRL almost has the same energy consumption
values for all network sizes. For instance, when the number of UAVs was six and nine,
SBG-AC, DRL-EC3, and distributed-DRL required almost the same normalized energy
consumption (20.8% and 25.7%) to reach a coverage of 71.5% and 85.2% in SBG-AC, 69.4%
and 84% in DRL-EC3, and 70.4% and 83.1% in distributed-DRL. In the case of seven UAVs,
DRL-EC3 required less normalized energy consumption (24%) compared to SBG-AC (25%),
with coverage scores of 74.2% for DRL-EC3 and 78% for SBG-AC. For other sizes, SBG-AC
beat DRL-EC3 and distributed-DRL with a small deviation in their values. We observed
that the energy consumption values did not vary when the number of UAVs increased
in these models. Indeed, more UAVs might lead to fewer movements compared to fewer
UAVs due to the restrictions in the connectivity and interferences with other UAVs. As a
result, the UAVs did not consume more energy for the movements.
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Figure 5. Normalized average energy consumption for a 3-, 4-, 5-, 6-, 7-, 8-, and 9-UAV network.

5.6. Discussions

In this testing scenario, we used eight UAVs, and the noise term was zero variance,
while other simulation settings were kept as before. Here, we discuss if the SBG-AC model
has a practical sense to be applied for UAV control challenges such as energy, coverage,
and fairness. Then, we compared it with DRL-EC3 and distributed-DRL models in terms of
the three metrics.

Our reward function depends on three objectives (i.e., coverage, fairness, and energy),
and it has a penalty value to keep the UAVs in the candidate area and to maintain the
connectivity and interference among the UAVs. In the testing phase, the state data were the
input (i.e., location and energy) of the system, and each UAV utilized its own actor network
in a distributed manner to produce an action. The UAV selected its actions (i.e., next
location) based on the designed reward function and the utilization of the actor network.
However, when the UAV finds that the new location, it might move out of the area. Hence,
the UAV will cancel the new movement, and it update its states accordingly.

From the summarized testing data in Table 6, we noticed that SBG-AC outperformed
DRL-EC3 and distributed-DRL in the coverage and fairness metrics. In terms of coverage
score per episode, with eight UAVs, SBG-AC covered around 84.6% of the candidate area,
DRL-EC3 80.8%, and distributed-DRL 82.7%. For the fairness index, SBG-AC also achieved
a better fairness ratio compared to DRL-EC3 with the improvement ratio equal to 3% for
the same UAV network and 1.7% with distributed-DRL. In terms of energy consumption,
the three models had almost the same normalized value, and hence, this indicated that
the energy had less impact on the coverage and fairness values. As a result, these models
provided more robustness to the network compared to the traditional models (i.e., random-
based model). As indicated before, more movements introduced more energy consumption;
hence, we restricted the UAV movements by following only the resulting action from the
actor–critic network in order to save the energy and then increase the overall lifetime.
Indeed, the actor–critic-based algorithm was used since it considered the action policies of
all available agents in the network and it had the ability to learn the policies for control
problems with a large state space. The complexity of the SBG-AC can be determined with
respect to the action dimension, the state dimension, and the construction of the DNN in
the actor–critic network, as explained before in the complexity analysis part.
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Table 6. Performance comparison for an 8-UAV network.

Metrics SBG-AC DRL-EC3 Distributed-DRL

Coverage score per episode 0.846 0.808 0.827
Fairness index per episode 0.934 0.905 0.917

Normalized average energy consumption per episode 0.263 0.269 0.267

After the number of episodes in the training process, we found that the accumulative
reward value for SBG-AC converged to a specific value without any improvement. Figure 6
presents the results in terms of achieved rewards over episodes for the eight-UAV network
with zero variance noise and 0.01 variance noise. We noticed that the reward improved over
the episode value due to the learning stage, then the growth in the reward after 50 episodes
slowed down, and it started to converge. At the start of the simulation, many IPs still had
not been visited by the UAVs, and the fairness index of the network was still low. With the
learning process, an action will be selected based on the previous experience, and then,
it will provide a significant improvement on the reward value until it converges. This
convergence ensures that the model is designed in a proper way and it can work in different
scenarios and under dynamic environments.

Figure 6. Accumulated reward over the number of episodes.

The summary and the advantages of using SBG-AC with eight UAVs are listed as
follows:

1. SBG-AC improved the coverage score, fairness, and consumption energy by approxi-
mately 4%, 3%, and−0.6%, respectively, in the case of DRL-EC3 and by approximately
1.9%, 1.7%, and −0.4%, respectively, in the case of distributed-DRL;

2. SBG-AC needs fewer iterations/less time (=161) to achieve the best values of the three
metrics compared to DRL-EC3 (=178) and distributed-DRL (=165).

3. Due to the use of instantaneous rewards and the action space (only the next locations),
the performance of SBG-AC was higher than that of the DRL algorithm;

4. The dimensions of the input and output for the centralized algorithm increased with
the number of UAVs; thus, the time complexity will increase accordingly. Hence, the
distributed algorithm is more appropriate in the case of dynamic environments;

5. DNN was used in the actor and critic networks to estimate the state–action value
instead of the using Q-table as in the basic RL models. Therefore, it is able to fit
different functions based on different features, and the hyperparameters can be tuned
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(e.g., discount factor, neurons in the fully connected layer, and experience replay
buffer size) to improve our results.

To this end, we used the actor–critic algorithm (i.e., DDPG), one of the most common
DRL algorithms, in this research to take advantage of the above-mentioned results and
features.

6. Conclusions and Future Work

In this paper, we introduced a novel algorithm called the state-based game with actor–
critic (SBG-AC) to control multiple UAVs in order to improve the coverage, connectivity, and
fairness and minimize the energy consumption in a UAV network. The control problem of
the 3D movement for a group of UAVs under fairness, coverage, and energy constraints was
formulated as a state-based potential game, while an actor–critic algorithm was proposed
to solve the formulated game and to guarantee the convergence of the distributed model.
In the SBG-AC model, each UAV acted as an agent in the system to search and learn its 3D
location policy. We conducted extensive simulations for different numbers of UAVs (i.e.,
3, 4, 5, 6, 7, 8, and 9) for the performance evaluation. We also found the proper settings
of the actor–critic algorithm (i.e., DNNs’ configuration, learning rate, and discount factor)
through a trial simulation. The simulation results demonstrated the efficiency and the
convergence of SBG-AC, and it achieved better performance compared to DRL-EC3 and
distributed-DRL in terms of fairness, coverage score, and energy consumption. These
models converged to a final reward value in all network configurations, and this ensured
the validity and the adaptability of the models. In future work, we will try to change the
style of the action list and study the new behavior of the model. Furthermore, we will
consider a variable velocity for the UAVs instead of a constant value.
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Appendix A

Proof. The state-based potential game should achieve the following two conditions:

1. For any UAV i = 1, . . . , N and action a
′
i(t) ∈ Ai:

Φ1

(
a
′
i(t), a−i(t), a(t− 1)

)
−Φ1(a(t), a(t− 1)) =

Ui

(
a
′
i(t), a−i(t), a(t− 1)

)
−Ui(a(t), a(t− 1)),

(A1)

where a−i is the actions of all UAVs other than UAV (i) and a
′
i represents the alternative

action for UAV i;
2. For any state a

′
(t− 1) in the support of (a(t), a(t− 1)), the inequality Φ1

(
a(t), a

′
(t− 1)

)
≥ Φ1(a(t), a(t− 1)) holds.
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We first verified the first condition. According to the previous equations for the utility
and potential functions, we have:

Φ1

(
a
′
i(t), a−i(t), a(t− 1)

)
−Φ1(a(t), a(t− 1)) =

Fi

(
a
′
i(t), a−i(t)

)
+ Esens

i

(
a
′
i(t)
)
+ Emov

i

(
a
′
i(t), ai(t− 1)

)
− Fi(a(t))− Esens

i (ai(t))

−Emov
i (ai(t), ai(t− 1)) = Ui

(
a
′
i(t), a−i(t), a(t− 1)

)
−Ui(a(t), a(t− 1)).

(A2)

To verify the second condition, the fact that a
′
(t− 1) is in the support of (a(t), a(t− 1))

implies that a
′
(t− 1) = a(t). Hence, we have:

Φ1

(
a(t), a

′
(t− 1)

)
−Φ1(a(t), a(t− 1)) =

−Emov
i

(
ai(t), a

′
i(t− 1)

)
+ Emov

i (ai(t), ai(t− 1)) ≥ 0
(A3)

We applied the fact that Emov
i

(
ai(t), a

′
i(t−1)

)
= 0, and this satisfies the second condition.
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