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Abstract: Mineral exploiting information is an important indicator to reflect regional mineral activities.
Accurate extraction of this information is essential to mineral management and environmental
protection. In recent years, there are an increasingly large number of pieces of research on land
surface information classification by conducting multi-source remote sensing data. However, in
order to achieve the best classification result, how to select the optimal feature combination is the
key issue. This study creatively combines Out of Bag data with Recursive Feature Elimination (OOB
RFE) to optimize the feature combination of the mineral exploiting information of non-metallic
building materials in Fujian province, China. We acquired and integrated Ziyuan-1-02D (ZY-1-
02D) hyperspectral imagery, landsat-8 multispectral imagery, and Sentinel-1 Synthetic Aperture
Radar (SAR) imagery to gain spectrum, heat, polarization, and texture features; also, two machine
learning methods were adopted to classify the mineral exploiting information in our study area. After
assessment and comparison on accuracy, it proves that the classification generated from our new
OOB RFE method, which combine with random forest (RF), can achieve the highest overall accuracy
93.64% (with a kappa coefficient of 0.926). Comparing with Recursive Feature Elimination (RFE)
alone, OOB REF can precisely filter the feature combination and lead to optimal result. Under the
same feature scheme, RF is effective on classifying the mineral exploiting information of the research
field. The feature optimization method and optimal feature combination proposed in our study
can provide technical support and theoretical reference for extraction and classification of mineral
exploiting information applied in other regions.

Keywords: feature optimization; mineral exploiting information; remote sensing; image classification;
machine learning

1. Introduction

The improper exploitation and utilization of mineral resources may mainly be re-
sponsible for the deterioration of ecological environments worldwide. Mineral exploiting
information, which generally refers to the scope of the mining area and its status (us-
ing/discarded/restored), is a basic indicator to monitor mineral activities and evaluate
ecological conditions in a regional mining area [1–3]. Therefore, collecting mineral exploit-
ing information timely and accurately can provide a solid database for effective mining
activity management and ecological restoration [4]. Comparing with traditional field re-
search, remote sensing has several advantages, like high timeliness, extensive coverage, and
immediate results; and because of all the above has been applied in mineral exploitation
since 1970s [5,6]. Optical image is the most commonly used data source to obtain mineral
exploiting information. For instance, the China Geological Survey adopted high-resolution
remote sensing images to monitor the status of mining areas and land use from 2003 [7].
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Also, Felipe de Lucia Lobo et al. graphed the landscape of a mining area in Amazon, Brazil,
based on multispectral data obtained from supervised classification with a kappa coefficient
of 0.7 [8]. Using Landsat multispectral data, Lifeng Xie et al. extracted multiple ecological
index and established mining and restoration assessment indicators (MRAIs), which are
applicable in data collection and supervision of restoration in mining areas of southern
JiangXi province, China [9]. Li Hengkai et al. applied Sentinel-2 images to research the
devastation and restoration of rare earths regions [10]. Due to the similarity of the spectral
characteristics between mines under different developing status and other land features, it
is likely to affect the accuracy of land-feature classification and difficult to gather further
useful information, if we relied solely on single spectral image [11–13]. Moreover, manual
calibration is always required to obtain more precise results [14–16]. There are studies using
Polarimetric Synthetic Aperture Radar (PolSAR) data to classify mineral ground features
successfully, which may prove the feasibility of Synthetic Aperture Radar (SAR) applied to
mine classification as well [17]. In addition, for mines and other land features related with
human activities like residential buildings and transportation, land surface temperature
(LST) is the key factor to distinguish them [18] and can be captured by thermal infrared
data. However, thermal data is seldom used in mine classification because of its low spatial
resolution [19].

Differing from using a single data source, combining different data of land features
can fully amplify the respective advantages of those combinations, so it is more likely to
achieve practical success in research. Specifically, much researchers has already combined
hyperspectral, multispectral, SAR data, and the like together to identify vegetation and
evaluate wetlands and soil quality; and made great progress in these research pieces. Addi-
tionally, the overall accuracy of the classification has been significantly improved [20–22].
The current focus of multi-source imagery classification is to optimally select feature combi-
nation [23], as too many features probably weaken the performance of the classifier and
lead to unfavorable low accuracy and inefficiency [24]. Meanwhile, for classification of
mineral exploiting information, it is quite challenging to determine the most optimal and
relevant parameter, with logic and efficiency, from numerous available features. In the past,
researchers test all possible feature combinations and then determine the most suitable ones,
but it is obviously time-consuming for researchers with forced-repetitious works. To deal
with this problem, at present, Recursive Feature Elimination (RFE) is feasible to optimize
feature combinations by intentionally omitting particular features through recursion, then
building model on rest data and ultimately filtering the optimal combination based on the
previous modeling results. As a result of all advantages and conveniences attributed to
RFE, it is now widely adopted in land use classification, biological information identifica-
tion, landslide sensitivity assessment, etc. [25–27]. To explain, RFE can intentionally omit
particular features through recursion, build model on rest data, and filter the optimum
combination based on modeling results. Nevertheless, in practical application of RFE,
there is a potential data leakage problem in RFE when selecting the preferred number
of optimal features [28], which may lead to greater variance on results and over-fitting
on the training model [29]. Therefore, to prevent the leakage problem from disturbing
our research accuracy, we created Out of Bag data with Recursive Feature Elimination
(OOB RFE) feature combination optimization method that tested and verified each feature
combination by applying OOB samples in RFE. We expected the new method could remedy
the shortage in RFE and reinforce the generalization ability of the model to increase the
accuracy further.

The study set the non-metallic building material ore-concentrated area in southern
Fujian, China as research field, using Ziyuan-1-02D (ZY-1-02D) hyperspectral, Landsat-8
multispectral and Sentinel-1 SAR data to extract 52 features in total, like spectrum, heat,
polarization, texture, etc. We also applied support vector machine (SVM), random forest
(RF) on different feature combinations to classify mining information, and finally conducted
accuracy verification and comparison. The study aimed to testify the validity of OOB RFE
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method in research of mineral exploitation, and to provide a new idea for the selection and
optimization of feature variables in mineral exploiting information classification.

2. Materials and Methods
2.1. Study Area

The study area is located in the southern part of Quanzhou City, Fujian Province,
China (Figure 1). This area is rich in non-metallic minerals for building materials, and thus
one of the most important mineral areas in China. There is high-frequency of open-pit
mining in this particular area to mainly exploit limestone for construction. It is valuable
to conduct classification of mineral exploiting information in the typical area to facilitate
the mining process because of various mining area under development and relative lack of
effective exploiting methods.
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Figure 1. Location of the study area and map shown in true color image from Ziyuan-1-02D
(ZY-1-02D).

2.2. Data and Preprocessing
2.2.1. Satellite Images

The 2 scenes of ZY-1-02D hyperspectral image data used in this study were taken on
16 March 2020. In order to ensure the data accuracy and the consistency of land features
and corresponding timeline, 1 Landsat-8 image (https://earthexplorer.usgs.gov/, accessed
on 26 October 2021) and 1 Sentinel-1 image (https://scihub.copernicus.eu/, accessed on
26 October 2021) were taken on 16 March 2020 and 17 March 2020, respectively. Specific
information is shown in Table 1.

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
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Table 1. Characteristics of satellite images.

Data ZY-1-02D Landsat-8 Sentinel-1

Spatial resolution (m) 30
Operational land imager: 30

(Panchromatic band: 15)
Thermal infrared Sensor: 100

Ground Range Detected
(GRD): 20 × 22

Bands information

Visible~near infrared
(0.40–1.04 µm): 76 bands

Short wave infrared
(1.00–2.50 µm): 90 bands

Visible~Short wave infrared
(0.40–2.29 µm): 9 bands

(include 1 panchromatic band)
Thermal infrared

(10.6–12.51 µm): 2 bands

Dual VV + VH polarization *

Acquisition date 16 March 2020 16 March 2020 17 March 2020
Cloud cover 3% 1.3% -

* VV: vertical transmit and vertical receive; VH: vertical transmit and horizontal receive.

2.2.2. Auxiliary Data

The auxiliary data includes: Land Use and Land Cover (LULC) data and measured
data from fieldwork. LULC data was generated from experts’ visual interpretation based
on GaoFen-2 high-resolution datasets (photographing time range stretches from November
2019 to May 2020). To ensure the data accuracy, this study collected field survey data
separately in December 2019 and June 2020, including mineral exploiting status and land-
featured information in the study area (Figure 2); all collected data were updated and
correlated with each other in LULC data.
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ploiting states’ mines in the study area: (a,d): Using mine; (b,e): Discarded mine; (c,f): Restored mine.

2.2.3. Classification Types

Integrating the previous research [30] with our purpose, the land cover feature in
this study were classified into mines, building lots, croplands, forests, bare lands, and
waterbodies; furthermore, it is noteworthy that we divided the mines’ status to using,
discarded, and restored.
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2.2.4. Data Preprocessing

First, radiometric calibration and atmospheric correction were implemented on Landsat-
8 and ZY-1-02D data; meanwhile we used Shuttle Radar Topography Mission (SRTM)
30-m Digital Elevation Model (DEM) data as supplement and adopted C-correction model
(Formula (1)) to achieve terrain correction on ZY-1-02D, in order to reduce the effect of
terrain complexity on land-featured spectral information.

LH = LT
cos(θ) + c
cos(i)− c

(1)

where LH is the corrected image value, LT is the uncorrected image value, θ is the solar
zenith angle, i is the solar incident angle concerning the surface normal direction, and c is
the C-correction coefficient derived by regressing LT against cos(i) and taking the quotient
of the intercept and slope.

Then, there are six preprocessing toward Sentinel-1A data through SNAP: (1) Orbit
correction; (2) Thermal noise removal; (3) Radiation calibration; (4) Coherent speckle
filtering; (5) Terrain correction; (6) Decibelization.

We also use bilinear interpolation to resample the processed Sentinel-1 data to 30 m
resolution, which is consistent with the resolution of ZY-1-02D and Landsat-8 data.

Finally, 47 ground control points were selected for image registration of the above
three types of images, so the spatial error can be controlled within 0.5 pixels.

3. Methods

The workflow is shown in Figure 3. First, after preprocessing three types of remote
sensing data, we extracted spectral, thermal, polarization, and texture features, and estab-
lished different combinations through OOB RFE and RFE feature optimization. Then, SVM,
RF were applied to classify, and finally we conducted accuracy verification and comparison.
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3.1. Feature Extraction

Filtering appropriate features based on the characteristics of data can make sure that the
data is fully utilized, meanwhile, which can ensure efficient classification and accuracy [31].
This study extracts the following features according to 3 types of data [32–34].
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3.1.1. Spectral Feature

In order to acquire feature consistency, all spectral features in this study are extracted
by ZY-1-02D. Due to the Hughes effect, hyperspectral images are not directly used in land
cover classification [35]. Improving on previous studies [20,21], we selected 3 kinds of
features including Minimum Noise Fraction (MNF), band, and index features.

Minimum Noise Fraction

Minimum Noise Fraction (MNF) plays a pivotal role in dimensional reduction and
reconstruction for hyperspectral data. It can display important features on band images
collectively, which means it can effectively eliminate the data noise and reduce the bands’
correlations. By doing so, inefficient calculations can be avoided in the classification and
indistinguishable features will be revealed [36]. In this study, MNF was performed on
ZY-1-02D, and the first 2 components of MNF were selected as the MNF features.

Band and Index Feature

Through spectral curve analysis (Figure 4), we found that mines under different
status has similarities with other landscapes regarding spectral features, whereas there is
high heterogeneity of spectral reflectance values among different landscapes on Band 93
(1274.14 nm), Band 112 (1677.76 nm), and Band 122 (1997.50 nm) (vertical orange dotted-line
on Figure 4). Thus, these 3 particular bands were chosen in the classification to distinguish
the mines from other landscapes, meanwhile, we created 3 mine indexes (MI) by extracting
slopes of different bands (light green area on Figure 4):

MI1 = (ρ(765.44 nm)− ρ(395.86 nm))/∆λ1 (2)

MI2 = (ρ(1341.15 nm)− ρ(1762.16 nm))/∆λ2 (3)

MI3 = (ρ(1711.52 nm)− ρ(1997.50 nm))/∆λ3 (4)

where, ρ is the spectral reflectance value of the corresponding band; ∆λ1, ∆λ2, and ∆λ3
are respectively the wavelength difference of 395.86–765.44 nm, 1341.15–1762.16 nm, and
1711.52–1997.50 nm.
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In addition, referring to the Landsat-8 Operational Land Imager (OLI) band char-
acteristics, 6 main band values are extracted from ZY-1-02D (Table 2). Since ZY-1-02D
hyperspectral data has a relatively low signal-to-noise ratio, calculation using a single band
is susceptible to noise [37], so in this study, we calculated the average surface reflectance by
combining different bands and set the average value as a band variable.
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Table 2. Band features of ZY-1-02D reference to Landsat-8 Operational Land Imager (OLI).

Band Feature Related Bands’ Wavelength of
ZY-1-02D (nm)

Landsat-8 OLI Wavelength
Width (µm)

Blue 455, 464, 473, 481, 490, 499, 507 0.45–0.51

Green 533, 542, 550, 559, 567, 576, 585 0.53–0.59

Red 645, 653, 662, 670 0.64–0.67

NIR 851, 859, 868, 876 0.85–0.88

SWIR1 1576, 1593, 1610, 1627, 1644 1.57–1.65

SWIR2 2115, 2132, 2148, 2165, 2182, 2199,
2216, 2233, 2249, 2266, 2283 2.11–2.29

Moreover, 3 kinds of spectral indices [38,39] commonly used for feature classification
are calculated by the same average value (Table 3).

Table 3. Spectral Index Features used for Classification.

Index Name Calculation Formula

Enhanced Vegetation Index
(EVI) 2.5( ρNIR−ρred

ρNIR+6ρred−7.5ρblue+1 )

Soil Index
(SI)

[(ρSWIR1+ρred)−(ρNIR+ρblue)]
[(ρSWIR1+ρred)+(ρNIR+ρblue)]

Normalized Difference Water Index
(NDWI)

(ρgreen−ρNIR)
(ρgreen+ρNIR)

Where, ρblue, ρgreen, ρred, ρNIR, ρSWIR1 respectively represent the blue, green, red, near-infrared, and short-wave
infrared 1 band values.

Figure 5 shows the local spectral index feature map of the study area.
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Figure 5. The spectral index feature map of local study area. MNF1: Minimum Noise Fraction feature
1; MNF2: Minimum Noise Fraction feature 2; MI1: mine index 1; MI2: mine index 2; MI3: mine index
3; EVI: Enhanced Vegetation Index; SI: Soil Index; NDWI: Normalized Difference Water Index.



Sensors 2022, 22, 1948 8 of 22

3.1.2. Heat Feature

Landsat-8 has Thermal Infrared Sensor (TIRS) data recorded the thermal infrared
information of the ground features. The surface temperature data obtained from the data
inversion basing on TIRS are already successfully applied to artificial feature recognition
and surface thermal status evaluation [40,41]. The atmospheric correction method (also
called Radiative Transfer Equation (RTE)), which is widely adopted to extract LST through
Landsat-8 data attributing to its high accuracy and feasibility, is used in our study to extract
surface heat characteristics [42].

The calculation of RTE is shown below:

Lλ = [εB(TS) + (1− ε)L ↓]τ + L ↑ (5)

where, Lλ is the thermal infrared radiance value received by the satellite sensor, ε is the
surface specific emissivity, TS is the true surface temperature (K), B(TS) is the black body
thermal radiance, and τ is the transmittance of the atmosphere in the thermal infrared band.

B(TS) can be calculated by RTE, and TS can be obtained by the Planck formula function:

TS = K2/ ln(K1/B(TS) + 1) (6)

for Landsat-8 band10, K1 = 774.89 W/(m2 × µm × sr), K2 = 1321.08 K.
The surface temperature statistics of different features based on sample data are shown

in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 22 
 

 

Figure 5. The spectral index feature map of local study area. MNF1: Minimum Noise Fraction fea-
ture 1; MNF2: Minimum Noise Fraction feature 2; MI1: mine index 1; MI2: mine index 2; MI3: 
mine index 3; EVI: Enhanced Vegetation Index; SI: Soil Index; NDWI: Normalized Difference Wa-
ter Index. 

3.1.2. Heat Feature 
Landsat-8 has Thermal Infrared Sensor (TIRS) data recorded the thermal infrared in-

formation of the ground features. The surface temperature data obtained from the data 
inversion basing on TIRS are already successfully applied to artificial feature recognition 
and surface thermal status evaluation [40,41]. The atmospheric correction method (also 
called Radiative Transfer Equation (RTE)), which is widely adopted to extract LST 
through Landsat-8 data attributing to its high accuracy and feasibility, is used in our study 
to extract surface heat characteristics [42]. 

The calculation of RTE is shown below: 𝐿ఒ = [𝜀𝐵(𝑇ௌ) + (1 − 𝜀)𝐿 ↓]𝜏 + 𝐿 ↑ (5) 

where, 𝐿ఒ is the thermal infrared radiance value received by the satellite sensor, 𝜀 is the 
surface specific emissivity, 𝑇ௌ  is the true surface temperature (K), 𝐵(𝑇ௌ) is the black 
body thermal radiance, and 𝜏 is the transmittance of the atmosphere in the thermal in-
frared band. 

B(Ts) can be calculated by RTE, and Ts can be obtained by the Planck formula func-
tion: 𝑇ௌ = 𝐾ଶ ln(𝐾ଵ 𝐵(𝑇ௌ)⁄⁄ + 1) (6) 

for Landsat-8 band10, 𝐾ଵ= 774.89 W/(m2×µm×sr), 𝐾ଶ= 1321.08 K. 
The surface temperature statistics of different features based on sample data are 

shown in Figure 6. 

 
Figure 6. Land surface temperature statistics of different land type. 

3.1.3. Polarimetric Feature 

Figure 6. Land surface temperature statistics of different land type.

3.1.3. Polarimetric Feature

SAR data can reflect the geometric and dielectric characteristics scattered by ground
objects and enable us to improve the precision of classification [43]. This study acquired 4
polarization features from Sentinel-1 data (Figure 7).
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3.1.4. Texture Feature

Important imagery information can be obtained from texture features [44]. Gray-level
co-occurrence matrix (GLCM) is a method that utilize relative angles of gray-scale space
between pixels to extract texture information, and thus is widely used in the land cover
information extraction based on satellite imagery [45]. Applying with GLCM, this study
collected a total of 30 texture variables, like contrast, dissimilarity, homogeneity, Angular
Second Moment (ASM), variance, etc., by calculating two ZY-1-02D MNF images and four
sentinel-1 polarization images.

3.2. Feature Optimization

The main purpose of feature optimization is to remove redundant and irrelevant
information before classification and prediction, reinforce generalized ability of the model,
and to increase classification accuracy at the same time.

3.2.1. Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a greedy algorithm that can help researchers
find the optimal feature subset that can maximize the model function through eliminating
certain feature variables. To be specific, the principle of RFE is explained below: whole
data set is enter into RFE as start point, and then, based on the prediction accuracy of
the classifier (base model, like SVM, Logistic, etc.), RFE can use accuracy gained from the
base model to evaluate the relevance of each feature and remove the feature with lowest
relevance in each loop iteration until the remaining data set is empty. Also, the elimination
sequence of each feature demonstrates its importance toward combination, so we can easily
sort those features by their importance [46]. RFE requires cross-validation to select the
optimal number of features: Given that a set includes d features, then all subsets it included
can be written as 2d − 1 (including the empty set). After calculating the validation error of
each subset using basic model, this method chooses subset with the smallest error as the
required feature [47].

The common work flow of RFE is shown below (Figure 8):

(1) Pick an initial feature dataset N with n features and choose a base model for RFE;
(2) Generate feature subset by removing the features with lowest score based on calcula-

tion of base model;
(3) Basing on base model, deviation of subset can be testified through cross validation;
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(4) Repeat step (2), (3), until the last feature was left over. After comparing every output,
the feature subset with smallest deviation can be considered as the optimal feature set.
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Overall, RFE has 2 big advantages: eliminating irrelevant features while ensuring
accuracy and avoiding the degradation of classification performance caused by data redun-
dancy [48]. However, it is noteworthy that there is a potential data leakage problem through
cross-validation based on RFE: as every feature from the whole dataset was involved in
the validation, which means those features might be seen by some decision tree or even
applied in training models, there can be great variance in validation and over-fitting in
results generated by this method. By over-fitting it means that result of training model
shows high accuracy, whereas the weak results may occur in practice [49,50]. To tackle
the problem, we have to find a more appropriate method to avoid the potential data leak-
age problem brought by cross validation in traditional RFE and to determine the optimal
feature combination.

3.2.2. OOB RFE

Out of Bag data (OOB) means that when we use bootstrap sampling (random sampling
with put-back) in random forest to generate the training set of decision tree, some samples
(about 1/3) are never put into the sampling set of the decision tree. We call the unselected
samples as OOB [51]. OOB error and OOB score obtained from OOB can be, respectively,
used to evaluate feature importance and feature dimensional performance.

The principle of using OOB error to evaluate the importance of features is explained
below. Among a forest composed of n decision trees, first, we based it on OOB data to
calculate the Out of Bag error of each decision tree in the random forest, and then randomly
changed the j-th feature variable of the Out of Bag data to get the new Out of Bag error;
The more the Out of Bag error increases and accuracy rate decreases, the more important
the variable is. The importance of is expressed as [52]:

V
(

X j
)
=

1
n

n

∑
t=1

(ej
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OOB score refers to the Out of Bag estimation accuracy score, namely, the proportion
of correct predictions for Out of Bag samples. Since OOB data was not involved in the
construction of the decision tree, it can be used to evaluate the results of the regression
model. Usually, we use mean square error predicted by OOB to evaluate the effect of model
estimation [53]:

MSEOOB =
1
n

n

∑
1

(
yi − yOOB

i

)2
(8)

where, yi is the actual value of the dependent variable in the Out of Bag data, and yOOB
i is

the predicted value obtained by the RF model.
Then, the coefficient of determination (R2) between the predicted value and the true

value of all OOB data is the OOB score of the model [54]:

R2 = 1− MSEOOB
σ̂2

y
(9)

where, σ̂2
y is the variance of OOB predicted value.

The higher OOB score of a model get, the greater performance the model will have [49],
so we can determine the optimal dimensionality (number of features) of the model based
on the OOB score.

Different from cross-validation, in the OOB score calculation process, the model
is tested on OOB samples, which means that these data was not used in any previous
data training; so we can easily avoid data leakage problem and acquire a more accurate
prediction model with little over-fitting and minimum variance. However, OOB is a random
sampling based on random forest, hence there can be randomness in results acquired from
OOB calculation; and the best way to tackle this randomness is conducting multiple trial to
gain more stable results [55].

To sum up, according to respective characteristics of RFE and OOB, this study com-
bines OOB with RFE in the random forest to form an OOB RFE method, which excelled
both traditional methods in feature optimization. Here is the principle of OOB RFE: Set-
ting RFE as algorithm framework, we firstly extracted several samples through bootstrap
re-sampling of random forest to form OOB; then, decision tree was constructed for each
bootstrap sample to constitute a random forest, which was applied in recursion model for
feature importance calculation; In the meantime, we introduced cycle iteration of RFE to
evaluate the relevance of features and eliminate the features with relative low importance;
After that, we conducted random forest repeatedly to calculate the remaining features until
one feature left, and could easily select the optimal feature combination among all features
through comparing their determination coefficient and root-mean-square error.

The detailed process is shown as following (Figure 9):

(1) Starting with an initial feature dataset N with n features, this study constructs a
regression tree using subsets extracted by bootstrap random sampling and gathers
the OOB data to form a test sample

(2) According to certain criteria, the optimal branch was chosen from regression tree,
which allows the maximum growth of each decision tree

(3) After integrating the regression tree in (1) to build a random forest regression model,
we can calculate OOB score and obtain feature importance based on OOB error

(4) According to the principle of backward iteration, we can delete the feature with the
smallest feature importance

(5) The whole process (1)–(4) has been repeated over and over until one feature left. After
data output, we select the number of features that generates the largest OOB score
as the optimal feature number, and select variables based on the feature importance
ranking to form the optimal feature combination.
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It can be seen that our OOB RFE, compared with traditional RFE, differentiates data
set by sampling OOB randomly before feature elimination, which directly applies OOB in
final result validation without involving OOB in model training; while all data are included
in cross validation of RFE. Therefore, by effectively avoiding the problem, that same data
repeatedly was used in training model and validation, namely data leakage problem, this
new method successfully guarantees the generalization ability of the model. In addition,
setting RFE as algorithm framework, our OOB RFE method can reevaluate remaining
features in each cycle iteration, so the score of each feature is adjusted during the iteration;
which overcomes the shortage of OOB optimal feature selection that repetitious trials are
required to gain stable data subset.

3.3. Feature Combination Scheme

In order to compare the classification effects obtained by different feature combinations,
Table 4 shows six sets of feature combination schemes in this study. Scheme 1 was based
on the spectral features and texture features extracted by ZY-1-02D. Scheme 2 added LST,
which extracted from Landsat-8 to the Scheme 1. Scheme 3 was the combination of Scheme
1 and the polarization and texture features obtained from Sentinel-1. Scheme 4 contained all
the features based on 3 types of data; Scheme 5 was the OOB RFE optimization of Scheme
4′s feature combination. Scheme 6 was an optimized combination of Scheme 4 using
traditional RFE, base model of which is SVM, using 2-fold cross-validation to determine
the number of features. Scheme 6 was mainly used to compare and evaluate the effect of
OOB RFE’s result.
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Table 4. Feature combination schemes used for classification.

Scheme Layers

1 ZY-1-02D: 2 MNF, 15 band-index features, 10 textures.

2 Scheme 1, Landsat-8: 1 LST.

3 Scheme 1, Sentinel-1: 4 Polarimetric features, 20 textures.

4 Intersection of Scheme 2 and Scheme 3.

5 OOB RFE combination based on Scheme 4.

6 RFE combination based on Scheme 4.

3.4. Classification Algorithm and Samples

In recent years, machine learning algorithms have good performance in remote sensing
image classification [56–58]. SVM and RF are especially two typical and commonly used
examples among them [59–61]. This study used the 2 classification methods above to
classify and extract the mineral exploiting information in the study area by the ENVI
software program, and the algorithms’ parameter settings are demonstrated in Table 5.

Table 5. Parameter settings of 2 classification algorithms.

Support Vector
Machine (SVM)

Kernel Type Gamma Penalty Parameter Pyramid Levels

Radial basis function 1/Nvar * 100 0

Random Forest
(RF)

Number of
Trees Number of Features Impurity function Min Node Samples Min

Impurity

100 Square Root Gini coefficient 1 0

* 1/Nvar means the inverse of the number of input variables.

This study used random sampling based on LULC data and results of field research
to extract 1100 samples that could be applied in classification and accuracy assessment
(Table 6). We doubled the samples of mines to ensure the accuracy of mining information
excluding any other disruption.

Table 6. Quantities of samples.

NO. Types Quantities of Samples

Training Test

1
Mines

Using 120 80
2 Discarded 120 80
3 Restored 120 80
4 Buildings 60 40
5 Croplands 60 40
6 Forests 60 40
7 Bare lands 60 40
8 Water bodies 60 40

3.5. Accuracy Assessment

This study adopted a prevailing method ‘confusion matrix’ to verify the accuracy of
the classification results. The evaluation factors obtained by the confusion matrix include:
overall accuracy (OA), kappa coefficient, producer accuracy (PA), and user accuracy (UA).

4. Results
4.1. Optimized Results and Feature Importance

This research ran sample data in the Python sklearn module to optimize the feature
combination. Through OOB RFE calculation, the model had the highest OOB score 0.9162
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when the number of features equaled to 36. Moreover, through cross-validation, the RFE
model got peak value 0.9058 when the number of features was 41. Therefore, the optimal
number of features obtained by OOB RFE and RFE were 36 and 41, respectively.

Figure 10 shows the specific feature variables and their importance scores obtained
from OOB RFE and RFE.
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It can be seen from Figure 10 that the top 2 importance features among the feature
optimization results obtained by the 2 methods were MI3 and NDVI, and the last ranking
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feature was texture feature. The highest ranked 36 of the feature variables obtained by RFE
were generally consistent with which obtained by OOB -RFE, and only slightly different
in order of features’ importance. The optimized features from OOB RFE contained VV
(Variance) that were excluded in the RFE result, while the RFE result had extra variables
VV-VH(Variance), VV(Dissimilarity), MNF2(Variance), MNF1(Contrast), VV(Contrast),
MNF2(Contrast) compared with OOB RFE’s.

4.2. Accuracy Assessment and Comparison

Applying with SVM, this study used RF algorithms to classify the six feature combina-
tion schemes, and got the overall accuracy of classification based on the verification sample
(kappa coefficient are shown in Table 7). Scheme 5 optimized by the OOB RFE using RF had
the best classification effect with OA of 93.64% and kappa coefficient of 0.926, respectively.
In terms of classification method, the OA and kappa coefficient of the RF-based classifica-
tion outperformed the results of SVM-based classification, except for results in Scheme 1
that overall accuracy difference between this two classification is less than 0.68%. The study
presents that the overall accuracy of RF in the rest of the schemes exceeded SVM by more
than 1%. In addition, we got the lowest OA of 81.48% and kappa coefficient of 0.785 by
using Scheme 1 (only ZY-1-02D dataset) to extract mineral exploiting information; the OA
and kappa coefficient of Scheme 2 and Scheme 3 have been greatly improved than results
of Scheme 1. It indicated that the addition of Landsat-8 based LST features and Sentinel-1
based polarization and texture features effectively increase the classification accuracy of
mineral exploiting information. The average OA obtained from Scheme 4, which included
all feature variables, was 90.35% and the kappa coefficient reached 0.888. Furthermore,
through feature optimization, the OA of Scheme 5 and Scheme 6 had further increases than
OA of Scheme 4. Comparatively, Scheme 5 optimized by OOB RFE had achieved better
classification effects than Scheme 6 as the OA improved by 0.68%.

Table 7. Overall accuracy (OA) and kappa coefficient of each classifications.

SVM RF

OA Kappa OA Kappa

Scheme 1 81.14% 0.781 81.82% 0.789

Scheme 2 85.68% 0.834 87.95% 0.860

Scheme 3 86.59% 0.844 88.18% 0.863

Scheme 4 89.55% 0.878 91.14% 0.897

Scheme 5 91.14% 0.897 93.64% 0.926

Scheme 6 90.68% 0.892 92.73% 0.915

Figure 11 shows the PA and UA of land features under different scenarios and methods.
The water body had a very stable and high PA and UA in each scheme due to its disparate
differences from other land features. In general, both the PA and UA of the objects would
gradually increase as we tested schemes 1 to 5. The PA and UA of the ground objects
obtained by Scheme 1 with a single ZY-1-02D spectral characteristic, especially in the
croplands, forests, discarded, and restored mines, were the lowest due to their spectral
similarities. After adding LST, polarization, and texture to Scheme 2 and Scheme 3, the PA
and UA both increased even with different degrees. It is noteworthy that some objects of
this study (like, recovered mines, forests, and croplands) received better accuracy in Scheme
2 than in Scheme 3 because of the characteristic difference of those land features, so we could
conclude that their LST feature differences were more distinctive than polarization and
texture features. On the contrary, using mines and bare lands with sensitive polarization and
texture features would show higher accuracy in Scheme 3. The accuracy further increased in
Scheme 4 including all features. Furthermore, Scheme 5 and Scheme 6 both obtained higher
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accuracy in PA and UA than Scheme 4 after feature optimization. Compared with Scheme
6, Scheme 5 had a better classification effect on the restored mines, cropland, and forest.
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Figure 11. (Top) Producer accuracy (PA) of each type by (a) SVM, (b) RF; (Bottom) User accuracy
(UA) of each type by (c) SVM, (d) RF.

In addition, three mine concentration areas in the study area (Figure 12) were used to
evaluate the visual effects of the classification results obtained from different methods and
schemes, which are shown in Figure 13. It can be seen in all schemes that the features of
water body were accurately extracted. However, in Scheme 1, there were high-frequent
misclassifications among discarded mines, restored mines, croplands, and forests appearing
in result, and some built-up areas and bare land in c were misclassified as using mines.
Scheme 2′s result became more accurate in distinguishing restored mines, forests, and
discarded mines, but it had a bad performance in identifying using mines, buildings, and
bare lands in flatland. The result of Scheme 3 showed high distinctive results to effectively
distinguish discarded mines, bare lands, and built-up areas. Moreover, the classification
effects of Scheme 4, Scheme 5, and Scheme 6 are close to each other, but Scheme 5 and 6
displayed more details when extracting the land features’ boundaries. Scheme 5 especially
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showed little speckle noise in image. Comparing those classification methods, it is evident
that the RF-based classification that obtained more complete features and divided small
features more accurately has the better overall visual effect than SVM.
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5. Discussion

Due to the structural complexity and high heterogeneity, classifying mineral features
through single dataset should be a challenge [62], while we refer complementary multi-
sensor satellite images to separate mineral features from non-mineral features. The results
of this study are consistent with previous research on mapping classification by integrating
multi-source data [63,64], which indicates that combining ZY-1-02D hyperspectral im-
agery with the heat and polarization characteristics provided by Landsat-8 and Sentinel-1
data can effectively enable us to identify mining information in the study regions and
acquire accurate results. Specifically, the combination of hyperspectral features and LST
inversed from thermal infrared data (Scheme 2) outperforms the single spectral feature
in distinguishing restored mines, forests, discarded mines, and croplands, which have
highly similar spectral curves, from thermal perspective; however, when it comes to plains,
the combination is not ideally functioned on identifying using mines, built-up areas, and
bare lands. The results show that the LST-based classification difference is both physical
and logical [28]. As a result, through appropriate inversion combined with other features,
LST feature obtained from Landsat-8 OLI+TIRS can be used to improve the classification
accuracy. The combination of hyperspectral and SAR features (Scheme 3) that has similar
classification accuracy with Scheme 2 can better extract used/discarded mines and bare
lands with different backscattering coefficients. The combination of all feature sets (Scheme
4) obtained from the three types of remote sensing images has achieved more accurate
classification results than the two data combinations (average overall accuracy increased
by 9.38%, the corresponding kappa coefficient is increased by 0.108).

Through OOB RFE and RFE feature combination optimization, Scheme 5 and Scheme
6 not only cut down the number of required features (36 and 41, respectively), but also has
higher classification accuracy than Scheme 4. The optimization applied in the classification
of mineral exploiting information practically reduces the redundancy of feature information
while enhancing the classification efficiency and accuracy. Furthermore, differing from
Scheme 6, Scheme 5 further improves the overall accuracy and the classification accuracy
of restored mins, croplands, and forests. Besides, compared with the RFE method, the OOB
RFE method proposed in this study can generate better results with less optimized feature
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combinations. It indicates that our method successfully overcomes the shortages of RFE in
feature selection and extracts more accurate and effective features.

According to the results of feature importance (Figure 9), there are only seven differ-
ences between the two feature selection methods. Among all features, spectral features as
basic information makes the largest contribution to land-cover information classification
while LST respectively ranks sixth and seventh in the two results. The mines under dif-
ferent developing status have spectral similarities with other landscapes, whereas great
thermal differences because of human activities, correspond with the physical truth and
conclusions of previous studies [19]. Polarization characteristics of SAR, VH, and VV
both rank relatively high, because backscattering coefficients of polarization data can be
easily distinguished in research of mines, built-up areas, and bare lands [65]. However,
the texture feature has low ranking. The possible reason is that we generally used the
medium-resolution images (30 m) that lack delicate details to identify land information by
their texture.

In terms of classification methods, under the same feature combination scheme, the
overall accuracy of the RF classification exceeds that of SVM. The RF method compared
with SVM shows greater stability, namely that RF method is unlikely to overfit as processing
multi-dimensional data and multi-type classification. Furthermore, it can display clear
boundaries between different land features in mineral exploiting research, which enable
us to extract fine details. Even though slight differences existed in classification accuracy
obtained by the two mentioned methods using single feature data, in general, for the
classification of mineral exploiting information in our study area, the RF algorithm certainly
can filter the optimal classification and has strong robustness.

6. Conclusions

Based on a total of 52 features including spectrum, heat, polarization, and texture fea-
tures, respectively, extracted from ZY-1-02D, Landsat-8, and Sentinel-1, this study creatively
proposed an OOB RFE feature combination optimization method and integrates it with
RF and SVM classification methods to effectively classify mineral exploiting information.
After assessing and comparing the accuracy and visual of different feature combination
schemes, we draw the conclusion as below:

• In this study, using the traditional RFE algorithm and the OOB RFE method to perform
dimensional reduction and feature optimization, we decided the number of features
included in optimal combination should be 41 and 36, respectively. It was shown
that the average OA of these two classification increase 1.365 and 2.05%, respectively.
Also, it was noteworthy that the classification based on OOB RFE method had top
performance, as it gained the highest average OA 92.39%. Comparing with traditional
RFE method, OOB RFE method could reduce more data redundancy and enhance
model generalization ability, so it could make a balance between feature dimension
and classification accuracy of mineral exploiting information. In addition, compared
with SVM, RF, average OA, of which rises 1.78%, could more accurately distinguish
the land boundary of mineral exploiting information and get stronger robustness.

• Among the importance gained by two feature optimization, specifically for the mineral
exploiting information in our study, spectral features based on ZY-1-02D showed the
highest importance, while features like MI3 and NDVI rank in the second place; and
LST gained from Landsat-8 successively ranked in sixth and seventh in two different
methods; besides, the importance of other polarization features, like VV, VH from
Sentinel-1 got a middle position in our ranking; However, the texture feature had the
lowest importance as it ranks 20th among all features.

To conclude, our study can provide a usable reference about the selection of optimal
features for classification of open-pit mineral exploiting information in other areas or
other mines.
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