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Abstract: Recent engineering and neuroscience applications have led to the development of brain–
computer interface (BCI) systems that improve the quality of life of people with motor disabilities.
In the same area, a significant number of studies have been conducted in identifying or classifying
upper-limb movement intentions. On the contrary, few works have been concerned with movement
intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major
topic in medical settings, as some people suffer from mobility problems in their lower limbs, such
as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with
hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one
of the most suitable computational tools for electroencephalography (EEG) signal analysis as the
explicit knowledge of the features involved in the PR process itself is crucial for both improving
signal classification performance and providing more interpretability. In this regard, there is a real
need for outline and comparative studies gathering benchmark and state-of-art PR techniques that
allow for a deeper understanding thereof and a proper selection of a specific technique. This study
conducted a topical overview of specialized papers covering lower-limb motor task identification
through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms
and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we
identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for
recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms
used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the
algorithms and determined which of them are the most suitable in terms of accuracy.

Keywords: brain–computer interfaces (BCI); electroencephalogram (EEG); lower limb; pattern recog-
nition (PR); topical overview

1. Introduction

EEG signal detection has shown excellent results in medical applications, including the
early detection of neurological disorders [1], such as Alzheimer’s disease [2]. In addition,
the detection of movement intentions by processing EEG signals is the basis of the non-
invasive brain–computer interface (BCI). This application benefits people with motor
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disabilities by allowing them to control robotic prostheses [3], biomechanical assistive
orthoses [4], lower-limb robotic exoskeletons [5], and home automation devices [6,7].

Biomedical EEG signals acquired from the human scalp are used to record the activity
of the cerebral cortex in the order of micro-volts [8]. These applications seek to improve the
quality of life of people with motor disabilities but require wearables or medical equipment
capable of acquiring EEG signals with a low signal-to-noise ratio [9]. EEG signals are
recorded in the time domain and—because of being bioelectrical-type—are very sensitive
to the noise produced mainly by the relative movement between the surface electrodes and
the scalp, skin sweating, heartbeat, blinking, and harmonics of the electrical network [10].

Applications based on movement intention detection with unsupervised [11] and
supervised [12] Machine Learning (ML) algorithms use EEG signals. Due to the low signal-
to-noise ratio of these signals, a preprocessing and feature extraction stage is required [13].
However, some studies, such as those carried out by Garcia-Moreno, use Deep Learning
algorithms for the detection of movement intentions [14]. These methods are highly used
nowadays because they do not require a preprocessing or feature extraction stage.

There is an unprecedented growth of devices to detect brain activity while performing
motor tasks [15]. In addition, medical studies reveal that EEG signals can be used to detect
movement intentions in people suffering from neurological disorders such as epilepsy
and autism spectrum disorder [16], Alzheimer’s disease [17–20], and Parkinson’s disorder
(PD) [21–24]. Consequently, people with motor disabilities may control assistive devices or
prostheses using noninvasive EEG sensors [25].

Particularly, in the context of BCI- or EEG-based motor task identification, a substantial
number of research papers have focused on the upper-limb analysis while only a few have
been devoted to lower-limb-related applications.

Furthermore, to the best of the authors’ knowledge and in light of the here-obtained
findings, the potential of lower-limb-related BCI (EEG signal analysis) has not been compre-
hensively exploited, at least at the level of the design of a conventional pattern recognition
(PR) system [26], which typically includes the following building blocks: data acquisition,
preprocessing, representation (e.g., characterization and/or feature extraction), and gener-
alization (e.g., classification, clustering, and/or regression). Conventional PR alternatives
are preferred in biomedical settings as they work on the basis of a feature set defined from
a proper characterization step, which not only feed the subsequent classifiers but naturally
provide interpretability. In addition, classification accuracy can be improved when using
more expressive features [27]. That said, feature extraction is of great interest in EEG signal
analysis, and thus, this work gives special attention to it.

In this sense, this paper presents a specialized review aimed at reviewing scientific
papers focused on BCI-driven detection of lower-limb movement intentions. Methodolog-
ically speaking, the review is outlined as a topical overview following the terminology
presented in [28]. The focus of our study is on papers addressing the motor imagery
paradigm (as defined in [29]) and involving PR stages. Furthermore, the data acquisition
methodologies are studied. To do so, the review process is framed within the use of PR
building blocks as follows: Firstly, we explore the experimental methodologies used for
data acquisition. Secondly, we identify the preprocessing and feature extraction techniques.
Finally, we compare the classification algorithms.

The remaining of the manuscript is organized as follows: Section 2 briefly presents
some remarkable related works to both provide a context and highlight the gap that this
work is intended to bridge. Section 3 provides background information on the brain areas
and the EEG signals with their different frequency bands. Section 4 describes the research
methodology of searching the scientific papers in different databases. Section 5 draws the
results and elaborates on answering the research question. Section 6 presents the discussion
of the results obtained. Finally, Section 7 gathers the final and concluding remarks of this
work. Figure 1 depicts the structure of this study.
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Figure 1. Structure of this study. It includes: A background on brain and electroencephalogram
fundamentals; the proposed research methodology for searching and data extraction steps; results for
the experimental methodology and the pattern recognition stages; discussion about the findings and
concluding remarks.

2. Related Works

A large body of work on detecting movement intentions for the upper limbs based
on EEG signals has led to the development of BCI systems [30–33]. Some works [34,35]
even use visual stimuli based on SSVEP EEG to detect the motor intention of the subjects.
Nonetheless, such works are not considered in this study as their methodologies are limited
to the detection of the frequencies of the visual stimuli and make no use of the cortical
activity generated during the execution of motor or motor imagery tasks. Another related
work [36] presents a brain-controlled lower limb exoskeleton for rhesus macaques, which
was unmistakably discarded since we are solely interested in motor activity in the cerebral
cortex of humans. This application improves the quality of life of people with motor
disabilities by giving them the ability to control assistive devices and active prostheses.
However, the detection of movement intentions for the lower limbs has recently gained
more attention from the scientific community. The number of publications on this research
topic has grown in just the last three years.

As a remarkable, related work, scientific literature reports the study by Lennon et al. [37]
submitted on December 2019 and published on June 2020. Such a work reviews studies
about robotic gait devices interfaces for stroke rehabilitation and explores both upper-limb-
and lower-limb-related signals. It covers approaches based on EEG and electromiographic
signals (both individually and jointly) in a wider, exhaustive manner. Thus, due to the
recent major advances in both electronic device design as well as computational and
artificial intelligence techniques, an up-to-date, specialized overview is needed.

3. Background Information
3.1. Electroencephalography

The brain is responsible for leading advanced neural activities such as learning, lan-
guage, memory, and intelligence in the central nervous system. As the brain works, neurons
create bioelectricity, which, in turn, generates voltage fluctuations [38]. These fluctua-
tions can be amplified and recorded, thanks to the development of electronics, using
an electroencephalograph.

Biomedical EEG electrodes measure electric potentials in the scalp; those signals
represent neuronal activities corresponding to each area of the brain [38]. One of the most
well-known applications of EEG signals is BCIs, which make people with motor disabilities
and residual cortical activity able to interact with robotic prostheses [39].

The experimental procedures to develop algorithms for analyzing and interpreting
EEG brain activity are based on measuring motor tasks or motor imagery activity. These
electrical signals are acquired in the time domain from the scalp with a magnitude in the
order of microvolts (uV) [40–42].

To the best of our knowledge, techniques for detecting cortical motor activity corre-
sponding to the lower limbs have not been widely explored. Such electric potentials are
difficult to assess due to their origin in deep locations of the brain, as the central motor gyro,
located in the inner side of the longitudinal fissure of the brain [43]. Thus, some topographic
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visualization techniques based on EEG data of cortical motor activity are mainly focused
on the upper limbs [44,45]. For example, Yoon Kyum Shin et al. [44] demonstrate the
difference in the prefrontal cortex when performing motor activities with the hands and
when just imagining moving them. In the present work, we included the analysis of motor
and imaginary movement of the legs and feet.

3.2. Frequency Bands

Cortical activity is represented in the behavior of EEG signals in a frequency range
from under 4 to 140 Hz. This range includes the following frequency bands:

• Delta wave: frequencies below 4 Hz. It has been detected in infants or adults during
deep sleep [46];

• Theta wave: frequencies between 4 and 7 Hz. It is detected in youngsters and adults in
stages of drowsiness [47].

• Alpha wave: frequencies between 8 and 12 Hz. It is detected in young people and
adults during low brain activity or rest [46].

• Mu wave: 7.5–12.5 (Performs a motor action):

– Unlike the alpha wave, which occurs at a similar frequency over the resting visual
cortex at the back of the scalp, the mu wave is found over the motor cortex [47].

– The mu wave is even suppressed when observing another person performing
a motor or abstract motion with biological characteristics. Researchers such
as V. S. Ramachandran and colleagues have suggested that this is a sign that
the mirror neuron system is involved in mu wave suppression, [48] although
others disagree.

• Beta wave: 13–25/12.5–30 Hz (Alertness). This band is divided into three sub-bands:
Low Beta Waves (12.5–16 Hz, “Beta 1 power”), Beta Waves (16.5–20 Hz, “Beta 2
power”), and High Beta Waves (20.5–28 Hz, “Beta 3 power”) [49].

• Gamma wave: >25/25–140 Hz (Awareness). They correlate with large-scale brain
network activity and cognitive phenomena, such as working memory, attention and
perceptual grouping [50].

Table 1 summarizes the mental activities with their respective EEG signal frequency bands.

Table 1. EEG Rhythms.

Band Frequency (Hz) Mental State

δ <4 Infants or Adults during Deep Sleep.
θ 4–7 Youngsters and adults in stages of drowsiness.
α 8–12 Young people and adults during low brain activity or rest.

µ 7.5–12.5 Present in the motor cortex during the execution or think-
ing of motor activities.

β 16–31 Present during active or busy thinking, state of concentra-
tion, high alertness, and anxiety.

γ 32 High Brain Activity.

Motor cortical activity measured with EEG-BCI systems is most evident in Alpha(α)
and Beta(β) frequency bands, corresponding to 7–13 Hz and 13–30 Hz, respectively [42].
Power Spectral Density (PSD) typically measures features that determine the movement
intention in the frequency ranges of α and β [51–53]. Yong Zhang et al. [52] used Wavelet
coefficients as characteristics for the classification of mental tasks, contributing to the
accuracy of the temporal resolution in the algorithm. In addition, several methods apply
time series analysis to EEG signals, such as wavelet coherency analysis, continuous wavelet
transform, empirical wavelet transform, and empirical mode decomposition [54,55].

Some ML algorithms (supervised and unsupervised learning) used for detecting
movement intentions for the upper limbs are: Support Vector Machines (SVMs) [51,56],



Sensors 2022, 22, 2028 5 of 24

Artificial Neural Networks (ANNs) [51], Linear Discriminant Analysis (LDA) [51,53], and
clustering algorithms [38,40]. SVMs perform better when detecting movement intentions
for the upper limbs [51,56].

3.3. Brain Areas

The Penfield homunculus is a map of the cerebral cortex that shows that specific
human brain areas are dedicated to processing the motor and sensory functions of each
part of the body. For example, the lower and upper limbs are linked to certain motor and
somatosensory cortex areas. In addition, each limb is associated with the contralateral side
of the brain, i.e., the right cerebral hemisphere controls the motor activity of the left side
of the body and vice versa. Thus, if the brain receives a stimulus in a specific part of the
cerebral cortex, the body part linked to that area of the brain will be activated. [57].

The somatosensory cortex processes and treats sensory information from the dermis,
muscles, and joints and performs voluntary hand movements [58]. On the other hand, the
motor cortex plans, controls, and executes all voluntary motor actions.

The cerebral cortex is divided into areas that react to the stimuli in the organism
and coordinate body functions. These areas are known as Brodmann areas, defined and
numbered by the German anatomist Korbinian Brodmann in 1909. [25].

The American Electroencephalographic Society standardized the international 10-10
system with 64 electrodes to ensure throughput and replicability in EEG research. The
10-10 refers to the actual distances between adjacent electrodes, 10% of the central sagittal
curve or the central coronal curve, as shown in Figure 2. In the diagram, each letter refers
to individual brain regions [38]: Frontal Coronal (F), Fronto-Central/Temporal (FC/FT),
Temporo-/Central-Parietal (TP/CP), Parietal Coronal (P), Anterior-Frontal Coronal (AF),
Parieto-Occipital Coronal (PO) and Occipital (O). Furthermore, Figure 2 shows the 10-10
system of electrode placement corresponding to Brodmann’s areas. The colors represent the
function of each area: motor, somatosensory, attention, visual, executive, memory, emotion
regulation, and sound.

Figure 2. Brodmann areas in the 10-10 electrode positioning system.

4. Research Methodology
4.1. Scope and Research Questions

The review conducted in this paper is an overview according to the classification given
in [28]. It aims to present a survey of specialized scientific papers about the detection of
lower-limb movement intentions using BCI/EEG-based approaches. It focuses on studies
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that followed the motor imagery paradigm, as defined in [29]. At a signal analysis level,
for the sake of a subsequent interpretability, PR-driven approaches are of interest for this
work, with particular emphasis on the PR stages such as preprocessing, feature extraction,
and classification. Along with all of the above, the experimental methodologies for data
acquisition are also surveyed. Specifically, the following questions are addressed:

• What are the experimental methodologies used during data acquisition?
• What is the preprocessing technique used on EEG signals?
• What are the techniques used in feature extraction?
• What are the classification algorithms used in the detection of lower-limb movement

intentions?

4.2. Search Method

According to the scope presented in Section 4.1, on 20 July 2021, an extensive but
specialized literature search was conducted in: the Web of Science (WoS) core collection
(2001–present), KCI—Korean Journal Database (1980–present), RSCI—Russian Science
Citation Index (2005–present), SciELO Citation Index (2002–present), and PubMed. The
search covered studies published between 1980 and 2021. The combinations of search terms
were: ((“Brain-machine interface” OR “brain–computer interface” OR “brain controlled”
OR “eeg” OR “electroencephalography” OR “BCI” OR “BMI”) AND (“lower limb” OR
“floor limbs” OR “legs” OR “leg” OR “underlimbs”)). After searching, the first filter was to
consider only full-text reports published in English. This search resulted in 81 scientific
papers, as shown in Figure 3.

Figure 3. Search Results on WoS, KJD, RSCI, SCIELO, and PubMed.

Figure 4 shows that 50% of the 81 papers resulting from the search query were pub-
lished in the last ten years. This growth indicates an increasing interest in researching this
topic. Moreover, the distribution of publications shows the increase in research papers
over time, e.g., four papers in 2017, five papers in 2018, and twice as many between 2019
and 2020. This growth of 24% in the number of publications in the last three years alone
indicates the relevance of this research topic.
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Figure 4. Publications per year about EEG signal classification during lower limbs tasks.
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We observe that 59% of the papers were published in Neurosciences/Neurology
and 25% in Engineering, Computer Science, and Science and Technology. The remaining
16% belongs to Physiology, Anatomy Morphology, Psychology, and Computational Biol-
ogy. These percentages show a growth in the close collaboration between technical areas
and neuroscience.

Within the 81 papers, we defined the following search terms: Reading title, abstract,
and keywords linked to human-related studies. As a result, we obtained 63 papers. Subse-
quently, based on the complete reading of the 63 papers, we applied the following inclusion
and exclusion criteria: exclude duplicity, exclude papers that used steady-state visual
evoked potential (SSVEP) to detect motor intentions, and include documents related to
EEG signal processing while performing lower limb tasks and motor imagery tasks. How-
ever, we also chose to include papers studying both upper and lower limbs, not just lower
limbs. As a result, 46 papers were excluded and 5 papers were included for cross-reference;
thus, we were left with 22 papers for this research, as shown in Figure 5.

The 22 resulting papers mainly focus on analyzing EEG signals acquired noninvasively
during lower limb motor and motor imagery tasks. Figure 2 shows that the lower limbs are
linked to certain motor and somatosensory cortical areas, while the upper limbs are linked
to other motor and somatosensory cortical areas. Therefore, physiologically, recording EEG
signals while performing upper limb tasks will differ from lower limb tasks. This study
explores the data acquisition methodologies, the feature extraction algorithms, and the
classification algorithms used for capturing and interpreting EEG signals during lower
limb tasks.

Figure 5. Data filtering process and inclusion/exclusion criteria.

4.3. Data Extraction

We extracted general characteristics from the selected research papers, including the
method employed in preprocessing the EEG signals, the number of volunteers recruited, the
type of EEG signal used, whether a modality such as EMG, EOG, or other mechanical sensor
was involved, and the main findings. We then performed individual abstract evaluations
to determine which papers might meet inclusion considerations. For papers that met the
inclusion criteria, we obtained the full-text content. The documents were then categorized
according to the type of exoskeleton, either upper limb or lower limb. Nevertheless, we
included papers dealing with both upper and lower limbs and not just lower limbs.

5. Results

As a result of the systematic review, we finally chose 22 papers about EEG-based
monitoring for detecting lower-limb movement intentions, as listed in Table 2.
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Table 2. EEG-based control for lower limb movements.

Author [Ref] Application Subjects Protocol Task EEG Signal Other Input Signal

Gwin and Ferris [59] Tracking cortical activity 8 healthy subjects Active Movements
Isometric and isotonic

ankle and knee
movement

8–30 Hz Load Cell

Rea et al. [60] Custom pedal chair 7 chronic stroke patients
Movemenet

intention—Active
movement

Hip movements—knee
and ankle constrained - EMG

Tariq et al. [61] RE lower limb
Exoskeleton 14 healthy subject Motor imagery Gait ERD/ERS -

Qiu et al. [62]
Personal assistance,
VitalStim Therapy +
visual coordination

12 healthy subject + 1
hemiplegic stroke

patient

Active, assisted, and
FES-induced movements Right leg raise ERD -

Hsu et al. [63] Elevated platform +
visual coordination 8 healthy subject Motor imagery Left and right Stepping 8–30 Hz EOG

Al-Quraishi et al. [64] Prosthetic Knee 3 healthy and 4 SCI
patients Motor imagery Walking and Idling ERD -

Hauck et al. [65] sensory stimulation 6 healthy subject Electrical lower-limb
stimulation - - MRI/EOG

Liu et al. [66]
Customize leg

Press—Gait trainer +
visual coordination

10 healthy subject
Movemenet

intention—Active
movement

Plantar flexion (0.1–1 Hz) (0.05–2 Hz) EOG, EMG, force on
pedal

Chou et al. [67] Avatar, BWS and
Overground exoskeleton 5 SCI subjects Motor execution Left and right Stepping - -

Delisle-
Rodriguez et al. [68]

Motorized pedal + visual
coordination 10 healthy subject Motor imagery—Active

Movement Pedaling 8–24 Hz sEMG

Gurve et al. [69] Motorized pedal + visual
coordination 10 healthy subject Motor imagery—Active

Movement Gait 0.1–30 Hz sEMG

Gu et al. [70] BCI system 11 healthy subject Motor imagery Foot dosiflexing 1–30 Hz Vertical and horizontal
EOG
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Table 2. Cont.

Author [Ref] Application Subjects Protocol Task EEG Signal Other Input Signal

Gordleeva et al. [71]
MI-based BCI lower limb

exoskeleton control
system

8 healthy subjects Motor imagery—Active
Movement Leg lift 8–15 Hz EMG

Chang et al. [72] Mixed Augmented
Reality (Hololens)

3 healthy subject + 2
stroke subjects Active movements Walking 0.5–25 Hz

Motion capture sensors
(Notch—knee joint

angle)

Hoshino et al. [73] - 24 post-stroke subjects Active movements
Ankle movements—

Dorsiflexion and plantar
flexion

alpha bands (8–12), beta
(13–30), low beta (13–19),

high beta (20–30)
-

Choi et al. [74]

MI-based BCI lower limb
exoskeleton control

system + visual
coordination

10 healthy subject Active movements Gait and sit 7–34 Hz -

Ortiz et al. [75]
MI-based BCI lower limb

exoskeleton control
system

3 healthy subject Motor imagery Walking 2–60 Hz -

Kline et al. [76] Mapping of spatial brain
activity 16 healthy subjects Executed and imagined lower limb movements

alpha (8–12 Hz), beta
(13–30 Hz) and gamma

(31–45 Hz)
fMRI

Murphy et al. [77]

Event-related
desynchronization (ERD)

for lower extremity
prosthesis control system

A subjects male suffered
a right transfemoral

amputation

Imaging right
lower-limb movement

and walking
Motor imagery task 16–24 Hz Gyro + Accelerometer

Do et al. [78] Brain-Controlled robotic
gait orthosis

Two subjects (one
able-bodied and one

with paraplegia due to
Spinal Cord Injury (SCI))

Complete a
goal-oriented task of

Walking along a linear
path

Kinesthetic motor
imagery (KMI) 8–10 Hz and 10–12 Hz EMG electrodes and

gyroscope

Asanza et al. [79] BCI System 8 healthy subjects Dorsi and plantar flexion
of both feet

Motor activity and
imaginary motor 8–30 Hz -

Jochumsen et al. [80] BCI for stroke
rehabilitation

12 healthy subjects and
6 stroke patients with

lower limb paresis
movement kinetics

Executed, imaginary,
and attempted

movements
0.1–10 Hz Force transducer
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5.1. Experimental Methodology

Figure 6 shows the devices used by the authors for recording EEG signals. There is
commercial equipment such as: ETG-4000 [60], Neuroscan [62,63,70,76], BrainNet BNT
36 [68,69], Biotop 6 R-12 [73], BrainVision actiCHamp [74], ActiCap and two BrainAmp
amplifiers (Brain Products GmbH) [75], NVX 52 amplifier [71], NuAmps [72], BrainBoard
using an ADS-1299 chip module (an open-source EEG hardware platform) [77], NeXus-
32 bioamplifiers [78], and BCI2000 [79]. Other authors have used combined equipment
such as Two 32-channel EEG amplifiers (Synamps, Neuroscan) [65]. In addition, one
of the researchers used part of the FP1 electrodes of the Nuamps Express Neuroscan to
record electrooculography (EOG) [80]. Finally, other authors have used the Active Two
amplifier [59,66].

Figure 6. EEG Acquisition Devices used in reviewed works. Associated bibliographic references:
ETG-4000 [60], Neuroscan [62,63,65,70,76,80], BrainNet BNT 36 [68,69], Biotop 6 R-12 [73], BrainVision
actiCHamp [74], ActiCap and two BrainAmp amplifiers [75], NVX 52 amplifier [71], NuAmps [72],
BrainBoard [77], NeXus-32 [78], BCI2000 [79], and Active Two amplifier [59,66]. The images displayed
here are freely available from the manufacturer/provider’s official website and are exclusively used
for non-profit, academic purposes. ETG-400: https://www.usa.philips.com/healthcare/resources/
landing/fnirs; Neuroscan, NuAmps: https://compumedicsneuroscan.com; BrainNet BNT 36: https:
//www.emsamed.com.br; BrainVision actiCHamp, ActiCap and two BrainAmp amplifiers: https:
//brainvision.com; NVX 52 amplifier: https://mks.ru; BrainBoard: https://github.com/gskelly/eeg;
Nexus-32: https://www.biofeedback-tech.com; BCI2000: https://www.bci2000.org. Last accessed
(all of them): 10 February 2022).

Based on Tables 1 and 2, we can classify the experimental methodology proposed by
the authors into the following types:

https://www.usa.philips.com/healthcare/resources/landing/fnirs
https://www.usa.philips.com/healthcare/resources/landing/fnirs
https://compumedicsneuroscan.com
https://www.emsamed.com.br
https://www.emsamed.com.br
https://brainvision.com
https://brainvision.com
https://mks.ru
https://github.com/gskelly/eeg
https://www.biofeedback-tech.com
https://www.bci2000.org
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• Active Movements

– In their work on cortical activity tracking, Gwin, J. T., and Ferris, D.P. [59] recorded
EEG signals in the 8–30 Hz frequency band from eight healthy right-handed sub-
jects (seven men and one woman) between 21 and 31 years old. The volunteers
were seated and performed movements using a knee device that assisted in-
voluntary movements during the experiment. The tasks they performed were:
isometric and isotonic ankle and knee movements. The physical tasks were per-
formed with the dominant limb. As additional sensors, Gwin and Ferris used
a load cell to measure the force and a goniometer to measure the flexion angle.
No visual or audible stimulation was used to indicate to the volunteers when to
execute the movement.

– Chou et al. [67] recorded EEG sinals from five volunteers with a Spinal Cord
Injury (SCI). The volunteers stood facing a monitor during the experiment, and
an avatar told them when to perform the movement. With the help of an exoskele-
ton, they performed left and right stepping movements. No additional sensors
were used.

– Chang et al. [72] recorded EEG signals in the 0.5–25 Hz frequency band from three
healthy volunteers in the first experiment and two post-stroke patients in the
second (two trials, one with and one without the music rehabilitation system). The
volunteers were standing during the experiment and used mixed and augmented
reality as a visual stimulus to indicate when to execute the movement. The task
performed was walking. Motion capture sensors (Notch-knee joint angle) were
used as additional sensors to obtain the knee flexion angle of the volunteers.

– Hoshino et al. [73] recorded EEG signals in the alpha (8–12 Hz), beta (13–30 Hz),
low-beta (13–19 Hz), and high-beta (20–30 Hz) frequency band from 24 post-
stroke patients. Patient selection criteria were: first-ever stroke (ischemic or
hemorrhagic), supratentorial lesion, between 20 and 85 years old, independently
active before the stroke, and right hand dominant. They included patients within
four weeks of the event who did not lose all of their motor function. As a result,
24 participants with an average age of 62 years were chosen. Patients were lying
on a bed with their eyes closed during the experiment. The tasks performed were
ankle movements, dorsiflexion, and plantar flexion. No additional sensors were
used. No visual or audible stimulation was used to indicate to the patients when
to perform the movement.

– Choi et al. [74] recorded EEG signals in the 7–34 Hz frequency band from
10 healthy volunteers. All volunteers were right-handed males with an aver-
age age of 26.6 years and no history of neurological disorders. The volunteers
performed active movements, and the task was gait and sit. Visual stimulation
was used to indicate to the patients when to execute the movement. No additional
sensors were used.

• Motor Imagery

– Tariq et al. [61] recorded Event-Related Desynchronization and Event-Related
Synchronization (ERD/ERS) EEG signals from 14 healthy volunteers. Participants
were seated during the experiment and performed motor imagery tasks. No
additional sensors were used. A monitor was used as visual stimulation.

– Hsu et al. [63] recorded EEG signals in the 8–30 Hz frequency band from eight
healthy volunteers aged 20–25 years. The tasks performed by the volunteers were
left and right stepping. Electrooculography (EOG) was used as an additional
sensor because a screen was used for visual stimulation.

– Al-Quraishi et al. [64] recorded Event-Related Desynchronization (ERD) EEG
signals from three healthy volunteers and four Spinal Cord Injury (SCI) patients.
The participants were seated during the experiment and performed motor im-
agery with the aid of a prosthetic knee. The task performed was walking and
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idling. A screen was used for visual stimulation. No additional sensors were
used during the experiment.

– In their work on implementing a BCI system, Gu et al. [70] recorded EEG signals
in the 1–30 Hz frequency band from 11 healthy right-handed volunteers (4 males
and 7 females) aged 22–27 years with no history of neuromuscular disorders. The
subjects were seated during the experiment and performed motor imagery. The
task performed was foot dorsiflexing. Vertical and horizontal electrooculography
(EOG) was used as an additional sensor. A screen was used as a means of visual
stimulation to perform the timed tasks.

– Ortiz et al. [75] recorded EEG signals in the 2–60 Hz frequency band from three
adult volunteers without physical impairments. Participants were seated during
the experiment and performed motor imagery. The task performed was walking.
No additional sensors were used. Auditory stimulation was used to indicate the
execution of the task while the participant was thinking about the action.

– Do et al. [78] recorded EEG signals at a sampling rate of 256 Hz from two subjects
(one able-bodied and one with paraplegia due to Spinal Cord Injury (SCI)). The
task performed was kinesthetic motor imagery (KMI). The task consisted of
walking using BCI-edRoGO along a linear trajectory. Electromyography (EMG)
signals were measured to rule out BCI control by voluntary leg movements in the
healthy subject.

• Motor imagery—Active Movements

– Gordleeva et al. [71] recorded EEG signals in the 8–15 Hz frequency band from
eight healthy volunteers aged 20–27 years. EEG and EMG signals to perform a
leg lift movement were obtained using an HMI. The tasks performed were motor
imagery and active movement. EMG sensors were also used for feedback of the
lower limb exoskeleton control system.

– Kline et al. [76] recorded EEG signals in the 8–45 Hz frequency band from sixteen
healthy male volunteers with an average age of 24.7 years. EEG and fMRI data
were collected during executed and imagined movements of the lower limbs.
The tasks performed were motor imagery and active movement. Participants
observed the Computer-Generated Image (CGI) of a walking human being and
performed a lower limb movement or imagined it following the CGI rhythm.

– Murphy et al. [77] recorded EEG signals in the 1–100 Hz frequency band from a
36-year-old male that underwent a right transfemoral amputation. Two additional
Gyro + Accelerometer sensors were used. The subject performed ten visits of
two test sessions using a lower limb prosthesis. A conductive gel was used to
fill the space between the electrodes and the scalp to ensure good conductivity
and minimize noise artifacts. At the first visit, the subject was trained to use
the BCI system to control a switch on a lower limb prosthesis. Each training
visit had two sessions. In the first session, training ensued. EEG signals were
recorded while the subject performed motor imagery tasks of the amputated limb.
These data were used to determine the parameters needed to predict movement
intention. In the second session, these parameters were used to control a knee
locking mechanism in the prosthesis in real-time while walking on parallel bars.
No additional sensors were used. Auditory stimulation was used to indicate the
execution of the task while the participant was thinking about the action.

– Asanza et al. [79] used a database of 64-channel EEG signals recorded using the
so-called BCI2000 system. Both the acquisition system and the data are widely
described in [81]. EEG signals were recorded at 160 samples per second from
eight healthy subjects. The tasks used for this study were motor activity and
motor imagery of dorsi and plantar flexion of both feet. No additional sensors
were used.

• Motor imagery—Active Movements—Attempted movements



Sensors 2022, 22, 2028 13 of 24

– Jochumsen et al. [80] recorded EEG signals in the 0.05–10 Hz frequency band from
twelve healthy subjects (two females and ten males: 28 ± 4 years old) and six
stroke patients with lower limb paresis. The subject was seated in a comfortable
chair with the right foot (or the affected foot) attached to a foot pedal where a
force transducer was set up. The tasks performed were executed and attempted
movements and motor imagery kinetics. The healthy subjects performed the
two tasks with Motor Execution (ME) and Motor Imagery (MI), while the stroke
patients were asked to attempt the movements.

• Movement intention—Active Movements

– Rea et al. [60] recorded EEG signals from seven right-handed patients (four men
and three women) with chronic stroke and an average age of 54.7 years. The
requirements for participation in the study were: interval since the stroke of at
least 12 months, no psychiatric or neurological condition other than stroke, no
cerebellar lesion or bilateral motor deficit, and ability to understand and follow
instructions. The subjects were seated during the experiment and performed
movements with a foot pedal. The tasks performed were hip movements with a
knee and ankle constraint. The authors employed additional EMG sensors during
the tasks.

– Liu et al. [66] recorded EEG signals in the 0.1–1 Hz and 0.05–2 Hz frequency bands
from ten healthy volunteers (seven males and three females) with an average age
of 26.1 years. The subjects used a customize leg press as a gait trainer during
the experiment. EMG sensors and a force pedal were used. In addition, an
EOG sensor was employed as the subjects were in front of a monitor with visual
stimulation to indicate the execution of plantar flexion.

– Delisle-Rodriguez et al. [68] and Gurve, D. et al. [69] used the same data. They
recorded EEG signals in the 8–24 Hz [68] and 0.1–30 Hz [69] frequency bands from
ten healthy volunteers (three women and seven men) between 21 and 36 years
old. The volunteers had to perform motor imagery and active movement. The
task performed by the volunteers was to think about pedaling for five seconds
and then actually pedal. sEMG signals were captured to verify the absence of
muscle contractions. A screen with visual stimulation was used to perform the
series of pedaling and gait movements [68,69].

• Assisted movements

– Qiu et al. [62] recorded Event-Related Desynchronization (ERD) EEG signals
from 12 healthy volunteers (five women and seven men) aged 20–26 years and
a 56-year-old stroke patient with hemiplegia. The requirements for enrollment
were: a minimum of 2.5 years since the last stroke, severe hemiparesis, and
difficulty in extending the right knee. The tasks performed were right-leg lifts.
A screen with visual stimulation was used to perform the series of movements.
No additional sensors were used.

• Electrical lower limb stimulation

– Hauck et al. [65] recorded EEG signals from six healthy right-handed volunteers
with an average age of 24.5 years. In addition, Magnetic Resonance Imaging (MRI)
was obtained from five volunteers for data recording. Subjects were lying down,
and low amperage electrical stimulation was applied to the peroneal, proximal
tibial, and distal tibial nerves. Electrooculography (EOG) sensors were also used.

Figure 7 summarizes all experimental methodologies used to record EEG signals for
lower limbs.
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Figure 7. High-level taxonomy and related works for the experimental methodologies for data ac-
quisition. Associated bibliographic references: active movements [59,67,72–74], motor imagery
[61,63,64,70,75,78], motor imagery–active movements [71,76,77,79], motor imagery–active
movements–attempted movements [80], movement intention–active movements [60,66,68,69], as-
sisted movements [62], and electrical lower limb stimulation [65].

5.2. Data Preprocessing

Preprocessing techniques are essential as they help reduce noise in EEG signals. The
techniques used for preparing the lower-limb EEG signals in the reviewed papers are:

• Butterworth filter

– Gwin and Ferris [59] used a Butterworth 1 Hz High-Pass filter to remove noise
from active movement EEG signals. Channels with a standard deviation greater
than or equal to 1 mV were removed; channels whose kurtosis was higher than
three standard deviations from the mean were removed; uncorrelated channels
(r ≤ 0.4) with nearby channels for more than 0.1% of the time-samples were
removed.

– Liu et al. [66] removed noise from EEG signals of movement intention and active
movement using a sixth-order non-causal Butterworth filter for the 30–300 Hz
frequency bands. In addition, they used Teager-Kaiser Energy Operator (TKEO)
to condition signals, minimize background noise, and reduce movement artifacts.
Conditioning also included 2nd order non-causal Low pass Butterworth filter
50 Hz.

– Gurve et al. [69] eliminated noise from EEG signals of motor imagery and active
movement using a second-order Butterworth filter from 0.1 to 30 Hz and Riemann
geometry Non-negative Matrix Factorization (NMF).

– Asanza et al. [79] eliminated noise from EEG signals of motor activity and imagi-
nary motor using a two hundred-order Butterworth Infinite Impulse Response
(IIR) filter from 8 to 30 Hz.

• Low-pass filter

– Rea et al. [60] eliminated noise from EEG signals of movement intention and
active movement using a low-pass filter Wavelet-minimum description length
Gaussian low-pass filter with 4-second Fullwidth-Half-Maximum (FWHM).

– Hauck et al. [65] used a low-pass filter below 100 Hz to remove noise from EEG
signals of induced movements.
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• Notch filter

– Qiu et al. [62] used a notch filter at 50 Hz and Downsampling at 200 Hz to remove
noise from EEG signals of movement intention and active movement.

– Delisle-Rodriguez et al. [68] removed noise from EEG signals of movement
intention and active movement using a notch filter at 60 Hz, Spectrogram based
on Short-Time Fourier Transform (SSTFT), and Riemann geometry.

– Ortiz et al. [75] removed EEG signal noise from movement intention and active
movement using a notch filter at 60 Hz.

• Band-pass Filter

– Hsu et al. [63] removed noise from EEG signals of movement intention and active
movement using a band-pass filter in 4–40 Hz frequency bands.

– Gu et al. [70] removed noise from EEG signals of movement intention and active
movement using a band-pass filter in 1–30 Hz frequency bands and Independent
Component Analysis (ICA).

– Gordleeva et al. [71] used a band-pass filter in 8–15 Hz frequency bands to remove
noise from EEG signals of movement intention and active movement.

– Chang et al. [72] used a band-pass filter in 1–50 Hz frequency bands to remove
noise from EEG signals of movement intention and active movement.

– Hoshino et al. [73] removed noise from EEG signals of movement intention and
active movement using a band-pass filter in the 0.5–100 Hz frequency bands and
multiple linear regression analysis.

– Kline et al. [76] removed EEG signal noise from DC offset and noise associated
with blinking using a bandpass filter between 5 and 55 Hz with a roll-off of
20 dB/decade.

– Murphy et al. [77] used non-stimulus BCI signal event-related desynchronization
EEG (ERD). For this, he employs a bandpass filter for the beta band frequencies
(1–100 Hz) along with a custom-made MATLAB toolbox (BCI2VR).

• Spatial Filter

– Choi et al. [74] removed EEG signal noise from movement intention and active
movement using a Filter Bank Common Spatial Pattern (FBCSP).

– Jochumsen et al. [80] used an Optimized Spatial Filter (OSF). The output of the
OSF (one channel) was bandpass filtered from 0.05 to 10 Hz with a second-order
Butterworth filter and downsampled to 20 Hz.

Figure 8 summarizes all preprocessing techniques used on the EEG signals.

Figure 8. High-level taxonomy and related works for data preprocessing. Associated bibliographic
references: butterworth filter [59,66,69,79], low-pass filter [60,65], notch filter [62,68,75], band-pass
filter [63,70–73,76,77], and spatial filter [74,80].
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5.3. Feature Extraction

The following is a summary of the feature extraction techniques:

• Time-domain

– Jochumsen et al. [80] used six time-domain features extracted from the 2-second
data segment before movement detection. The features were: (i+ii) slope and
intercept of a linear regression of the entire data segment, (iii+iv) slope and
intercept of a linear regression of the data segment from the point of detection
and 0.5 s prior to this point, (v) average amplitude of the entire data segment,
and (vi) the peak of maximum negativity.

• Based on ERD/ERS

– Qiu et al. [62] used Event-Related Spectral Perturbation (ERSP) and Event-Related
Desynchronization (ERD) for feature extraction from highly event-related EEG
signals in right leg lifting tasks.

– Murphy et al. [77] used Event-Related Desynchronization (ERD) for feature
extraction from the beta band (16–24 Hz). It was calculated in real-time against
baseline activity when the subject was relaxed.

• Based on Filter bank

– Hsu et al. [63] used the Filter-bank CSP (FB-CSP) for feature extraction from highly
event-related EEG signals in left-and-right stepping and motor imagery tasks.

– Gordleeva et al. [71] used the Common Spatial Pattern Filter (CSP) for feature
extraction from highly event-related EEG signal characteristics in motor imagery
and active movement leg lifting tasks.

• Based on Power Analysis

– Rea et al. [60] used T-value for feature extraction of EEG signals with high tempo-
ral resolution in movement intention and active movement tasks of hip move-
ments with a knee and ankle constraint.

– Hauck et al. [65] used the mean global field power signal-to-noise ratio (SNR) for
feature extraction of EEG signals of induced movements.

– Liu et al. [66] used Gini index scores of tree nodes for feature extraction of EEG
signals related to movement intention and active movement.

– Chang et al. [72] used the Power Spectrum over the main channel for feature
extraction of EEG signals of walking active movement.

– Ortiz et al. [75] used Empirical Mode Decomposition (EMD) for Intrinsic Mode
Functions (IMFs) and Variation of Power for IMFs for feature extraction of EEG
signals from motor imagery of walking.

– Kline et al. [76] used the power spectrum value of all the studied frequencies
(alpha, beta, and gamma) for each EEG electrode.

– Do et al. [78] used spatio-spectral features from the 8–10 Hz frequency band for
able-bodied subjects and the 10–12 Hz frequency band for SCI subjects.

– Asanza et al. [79] used Power Spectral Density (PSD) from 8 to 30 Hz, calculated
at 10 s of sampling of each EEG electrode.

• Based on Correlation Analysis

– Gwin and Ferris [59] used an Adaptive Mixture Independent Component Analy-
sis (AMICA) for feature extraction of EEG signals with a high temporal resolution
in isometric and isotonic ankle and knee movements.

– Delisle-Rodriguez et al. [68] and Gurve, D. et al. [69] used a Neighborhood
Component Feature Selection (NCFS) algorithm for feature extraction of EEG
signals from motor imagery and active movement during the pedaling task.

– Gu et al. [70] used Sparse Multinomial Logistic Regression for feature extraction
of EEG signals from motor imagery during the foot dorsiflexing task.



Sensors 2022, 22, 2028 17 of 24

– Hoshino et al. [73] used Amplitude Envelope Correlation (AEC) for feature extrac-
tion of EEG signals from active movement during ankle movements, dorsiflexion,
and plantarflexion.

– Choi et al. [74] used Mutual Information-based Best Individual Feature (MIBIF)
for feature extraction of EEG signals from active movement during the gait and
sit task.

Figure 9 summarizes all the feature extraction techniques used on the recorded EEG signals.

Figure 9. High-level taxonomy and related works for feature extraction. Associated bibliographic
references: time-domain [80], based on ERD/ERS [62,77], based on filter bank [63,71], based on power
analysis [60,65,66,72,75,76,78,79], and based on correlation analysis [59,68–70,73,74].

5.4. Classification Algorithms

The following is a summary of the classification algorithms used:

• Bayesian Classifier

– Gwin and Ferris [59] used a four-way linear naïve Bayesian Classifier to classify
isometric and isotonic ankle and knee movements with an accuracy of 87%.

– Do et al. [78] used a Bayesian Classifier, performing stratified 10-fold cross-
validation and used 90% of the EEG data to train. This offline analysis resulted
in a model classification accuracy of 94.8 ± 0.8% and 77.8 ± 2.0% for able-bodied
and SCI subjects, respectively.

• Support Vector Machine (SVM)

– Hsu et al. [63] used Fuzzy SVM to classify EEG signals in left-and-right stepping
motor imagery tasks with an accuracy of 86.25%.

– Gu et al. [70] used SVM to classify EEG signals in motor imagery during the foot
dorsiflexing task with an accuracy of 67.13%.

– Choi et al. [74] used SVM to classify the EEG signals of active movement during
the gait and sit task, achieving 80% accuracy.

– Jochumsen et al. [80] classified EEG signals from executed, imaginary, and
attempted movement tasks using SVM with accuracy of 57 ± 3%, 53 ± 6%, and
47 ± 7%, respectively.

• Liu et al. [66] used Random Forest to classify the EEG signals related to movement
intention and active movement with an accuracy of 85%.

• Linear discriminant analysis (LDA)

– Rea et al. [60] used LDA with linear kernel to classify the EEG signals in move-
ment intention and active movement tasks of hip movements with a knee and
ankle constraint. They achieved an accuracy of 67.77%.
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– Delisle-Rodriguez et al. [68] and Gurve, D. et al. [69] classified EEG signals from
motor imagery and active movement during the pedaling task using LDA with
accuracies of 92.85% and 96.66%, respectively.

– Gordleeva et al. [71] classified EEG signals in motor imagery and active move-
ment leg lifting tasks with LDA and achieved an accuracy of 65.7%.

– Murphy et al. [77] classified EEG signals from motor imagery with an offline
LDA model. This model was made for online detection of the subject’s intention
to activate the switch by imaging lower-limb movement. The algorithms used
the BCI2VR toolbox.

• Neural Network (NN)

– Kline et al. [76] used a neural network (NN) implemented in Python 3.7 to classify
right and left lower limb movement. The model used the Keras toolbox, achieving
greater than 66% accuracy.

– Asanza et al. [79] used a neural network (NN) trained in Matlab and then imple-
mented it on Field-Programmable Gate Arrays (FPGAs). The model classified
motor activity and motor imagery of both feet, with accuracies of 92.1% and
93.8%, respectively.

Figure 10 summarizes all the classification algorithms used on the recorded EEG signals.

Figure 10. High-level taxonomy and related works for classification algorithms. Associated bib-
liographic references: bayesian classifier [59,78], SVM [63,70,74,80], random forest [66], LDA
[60,68,69,71,77], and NN [76,79].

6. Discussion

This section starts by discussing the experimental methodologies and the different
types of tasks performed by the volunteers. Figure 11 summarizes the different tasks
performed by the participants and the algorithms reported by the authors in the stages of
preprocessing, feature extraction, and classification of EEG signals. These tasks involve
the lower limbs, and during their execution, EEG signals from the cerebral cortex were
recorded. In applications that require motor activity to control or test devices, volunteers
performed tasks with voluntary or active movement [59,67,72–74]. In applications aimed
at improving visual coordination and controlling prosthetic equipment, subjects performed
motor imagery [61,63,64,70,75,77,78]. In prosthetic equipment control applications, volun-
teers combined motor imagery [71] and movement intentions [60,66,68,69,79] with active
movement. Several works also used combined tasks such as executed and imaginary
movements for healthy subjects and attempted movements for stroke patients [80]. Other
applications use computer-generated images (CGI) of a person walking that participants
followed to perform a lower limb task [76]. Finally, there are tasks related to non-voluntary
movements such as induced movements [65] and assisted movements [62] for rehabilitation
and motor coordination applications.
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Figure 11. A joint flowchart summarizing the types of tasks and algorithms that have been used
at each stage. Associated bibliographic references per task: Experimental methodology: active
movements [59,67,72–74], motor imagery [61,63,64,70,75,78], motor imagery–active movements
[71,76,77,79], motor imagery - active movements - attempted movements [80], movement intention–
active movements [60,66,68,69], assisted movements [62], and electrical lower limb stimulation [65];
Data preprocessing: band-pass filter [63,70–73,76,77], butterworth filter [59,66,69,79], spatial filter
[74,80], notch filter [62,68,75], and low-pass filter [60,65]; Feature extraction: based on filter bank
[63,71], based on ERD/ERS [62,77], based on correlation analysis [59,68–70,73,74], based on power
analysis [60,65,66,72,75,76,78,79], and time-domain [80]; Classification: LDA [60,68,69,71,77], SVM
[63,70,74,80], bayesian classifier [59,78], random forest [66], and NN [76,79].

Regarding the preprocessing stage, we can determine that for EEG signals involving
active movement, motor imagery, and the combination of both, Band-pass filters are
primarily used in frequency ranges from 8 to 30Hz [63,70–73,77], capturing Alpha (α), Mu
(µ), Beta (β) brainwaves, as well as gamma (γ) brainwaves, up to 55 Hz [76], as shown
in Table 1. Moreover, several works reported the use of low-pass filters for frequencies
below 100 Hz, thus eliminating noise from EEG signals [60,65]. Other authors removed
power grid noise from EEG signals using a notch filter for 50 Hz [62] or 60Hz [68,75],
depending on the location of the power grid used. On the other hand, in applications
related to movement intention with active movement tasks, Butterworth filters are usually
employed in frequency ranges from 0.1 to 30 Hz, capturing Delta (δ), Theta (θ), Alpha (α),
Mu (µ), and Beta (β) brainwaves [59,66,69,79]. Finally, we also report papers that used a
spatial filter for frequency bands from 0.05 to 10 Hz. An Optimized Spatial Filter (OSF)
was used, and the output was bandpass filtered using a second-order Butterworth filter
for executed, imaginary, and attempted movements [80]. A Filter Bank Common Spatial
Pattern (FBCSP) was used for movement intention and active movement [74].

For the feature extraction stage, we determined that for EEG signals of active move-
ment and motor imagery combined with active movement, they used feature extraction
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based on a filter bank [63,71]. For tasks such as executed and imaginary movements for
healthy subjects and attempted movements for stroke patients, time-domain features were
used [80]. Furthermore, some authors used feature extraction based on correlation analysis
for motor tasks such as active movement, movement intention with active movement, and
motor imagery [59,68–70,73,74]. On the other hand, other authors used feature extraction
based on power analysis for tasks such as active movement, movement intention with active
movement, induced movements, and motor imagery [60,65,66,72,75,76,78,79]. In addition,
techniques based on ERD/ERS have been used in tasks such as assisted movements [62,77].

In the classification stage, we can say that the authors used SVM in motor imagery
tasks, achieving an accuracy of 86.25%, 67.13%, and 52.3% (average) [63,70,80]. Several
authors have also used NNs to classify left and right lower limb imagined movement,
achieving a 66.6% accuracy [76]. In motor activity and motor imagery classification of both
feet, the model achieved 92.1% and 93.8% accuracies, respectively [79]. In the classification
of active movement, they reported an accuracy of 80% [74]. Classification algorithms
based on Naive Bayesian, frequency bands’ power comparison has been used to classify
active movement tasks, achieving an accuracy of 87% [59,73]. Other Bayesian classification
algorithms were used to classify kinesthetic motor imagery (KMI), achieving 94.8 ± 0.8%
and 77.8 ± 2.0% accuracies for able-bodied and SCI subjects, respectively, [78].

Some works have used LDA for tasks such as movement intention with active move-
ment, reaching accuracies of 67.77%, 92.85%, 96.66%, and more than 90% [60,68,69,77], and
motor imagery tasks with active movement, with an accuracy of 65.7% [71]. In movement
intention tasks with active movement, the random forest classification algorithm was used,
achieving an accuracy of 85% [66].

7. Conclusions

This work has taken place on the basis that, on one hand, there is not a great number
of BCI- or EEG-based studies focused on lower-limb motor task identification, and, on the
other hand, this topic has not been widely exploited within a conventional pattern recogni-
tion (PR) framework. This is an important aspect as PR provides substantial advantages
in terms of interpretability and modularity. In this study, we consider a PR system [26]
mainly composed by stages for data acquisition, preprocessing, feature extraction, and
classification. We present a topical overview of specialized scientific papers focused on
BCI-driven detection of lower-limb movement intentions.

Regarding the experimental methodologies, the following physical tasks were estab-
lished to record EEG signals: for capturing signals from active movement, the volunteers
performed isometric and isotonic ankle and knee movements [59]. For recording signals
from motor imagery and active movement, the volunteers performed movements using a
lower limb exoskeleton control system [71]. In motor imagery, data acquisition was per-
formed during left-and-right stepping [63]. Finally, for capturing signals from movement
intention and active movement, the tasks were to think about pedaling for a while and then
actually to pedal [69].

The papers that reported the highest accuracy employed the following algorithms
for preprocessing: Butterworth filter in the 8–30 Hz frequency range for classifying active
movements tasks [59]; band-pass filter in the 8–15 Hz frequency range for motor imagery
and active movement tasks [71]; band-pass filter for the 8–30 Hz frequencies in motor
imagery tasks [63]; finally, Butterworth filter for the 0.1–30 Hz frequencies for movement
intention and active movements tasks [69].

In the feature extraction stage, the papers with the highest accuracy employed the
following algorithms: adaptive mixture independent component analysis (AMICA) for
classifying active movement tasks [59]; Common Spatial Pattern Filter (CSP) for motor
imagery and active movement tasks [71]; Filter-bank CSP (FB-CSP) in motor imagery
tasks [63]; and finally, the Neighborhood Component Feature Selection (NCFS) algorithm
for movement intention and active movement tasks [69].
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Regarding the works that performed classification, we observed that in signal classifi-
cation during active movement tasks, the Naive Bayesian Classifier achieved the highest
accuracy at 87% [59]. For signal classification during kinesthetic motor imagery (KMI), the
Bayesian Classifier achieved the highest accuracy of 94.8% [78]. In motor imagery and ac-
tive movement tasks, LDA classifies motor intentions with an accuracy of 65.7% [71]. SVM
classifies intentions in motor imagery tasks, with an accuracy of 86.25% [63]. Finally, the
LDA algorithm is again the most accurate when classifying motor intentions of movement
intention and active movement tasks, with a 96.66% mark [69]. Table 3 summarizes the best
algorithms according to their accuracy in classifying signals during each task performed by
the volunteers.

Table 3. Classification accuracy of the algorithms for each type of task.

Task Algorithm Accuracy Reference

Active Movements Naive Bayesian Classifier 87% [59]
Motor Imagery—Active Movements LDA 65.7% [71]
Motor Imagery SVM 86.25% [63]
Kinesthetic motor imagery (KMI) Bayesian Classifier 94.8% [78]
Movement Intention—Active Movements LDA 96.66% [69]
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