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Abstract: Accurate segmentation of the myocardial scar may supply relevant advancements in
predicting and controlling deadly ventricular arrhythmias in subjects with cardiovascular disease.
In this paper, we propose the architecture of inclusion and classification of prior information U-
Net (ICPIU-Net) to efficiently segment the left ventricle (LV) myocardium, myocardial infarction
(MI), and microvascular-obstructed (MVO) tissues from late gadolinium enhancement magnetic
resonance (LGE-MR) images. Our approach was developed using two subnets cascaded to first
segment the LV cavity and myocardium. Then, we used inclusion and classification constraint
networks to improve the resulting segmentation of the diseased regions within the pre-segmented LV
myocardium. This network incorporates the inclusion and classification information of the LGE-MRI
to maintain topological constraints of pathological areas. In the testing stage, the outputs of each
segmentation network obtained with specific estimated parameters from training were fused using
the majority voting technique for the final label prediction of each voxel in the LGE-MR image.
The proposed method was validated by comparing its results to manual drawings by experts from
50 LGE-MR images. Importantly, compared to various deep learning-based methods participating in
the EMIDEC challenge, the results of our approach have a more significant agreement with manual
contouring in segmenting myocardial diseases.

Keywords: segmentation; ICPIU-Net; myocardium; myocardial infarction (MI); late gadolinium
enhancement magnetic resonance (LGE-MR); microvascular-obstructed (MVO); deep learning

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of global mortality, with an
estimated 17.9 million deaths in 2019, mainly due to MI. Radiologically diagnosing MI in
its early phases plays a crucial role in supplying guidance on further patient treatment. In
recent decades, automatic methods have been developed to improve the diagnosis and
prognosis steps of CVDs. A crucial clinical parameter to evaluate the state of the heart after
MI is the viability of the considered segment, i.e., if the segment recovers its functionality
upon revascularization.

Replacement myocardial fibrosis is a known substrate for occurring malignant ven-
tricular arrhythmias (VA), a prevalent cause of abrupt cardiac death worldwide. The scar
development in the heart is most commonly from MI, an irreversible decease of the con-
tractile muscle associated with the occlusion of a coronary artery. MI occurs as a result of
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atherosclerosis, in which plaque builds up inside the artery walls. This build-up makes
the arteries progressively narrower and slows blood flow, causing angina. Finally, an
area of cholesterol plaque can tear inside of a coronary artery. This rupture results in a
blood clot forming on the plaque’s surface, which can then completely block blood flow
through arteries. If the blockage is not remedied fast, the heart muscle begins to die. The
healthy heart area is substituted with the infarct area. In chronic MI, capillaries in the
myocardial region continue to be impeded after the re-perfusion, indicating severe ischemic
disease. MVO, also called the no-reflow phenomenon, is an incident that usually appears
in a proportion of subjects with acute MI following re-perfusion therapy of an occluded
coronary artery [1]. Patients sustaining MVO regions have higher proportions of MI and
raised mortality. Recently, computational modeling for the accurate characterization of
myocardial scar geometry and its volume and the heterogeneity of patients with chronic is-
chemic cardiomyopathy (IC) may help clinicians determine the appropriateness of analysis
and treatment-related rhythm disorders [2,3].

Two-dimensional (2D) LGE-MRI is the primary reference for recognizing myocardial
scarring through enhancement from preserving its based contrast agents. LGE-MRI is a
non-invasive technique achieved approximately after 10 min of gadolinium-based contrast
agent injection. Healthy and infarct tissues are distinguished by their altered wash-in
and wash-out contrast agents. Nonetheless, by progress in MRI acquisition techniques,
3D LGE-MRI has arisen with improved spatial resolution, allowing accurate volumetric
quantification of scar tissue [4–7]. As the manual segmentation is tedious, dependent on
observer variability, and time-consuming, automated volume segmentations are highly
intended for this task. This increased interest was primarily justified through the success
rate performed by these methods. There are several studies on automatic MI segmentation
methods that motivate our approach.

Considering the performance reached by deep-learning approaches in medical image
analysis, this paper proposes an inclusion and classification of prior information U-Net-
based network (ICPIU-Net) for the fully automatic and efficient segmentation of LV healthy
myocardium and LV myocardial diseases in LGE-MRI. Our approach integrates image
features and a post-processing decision phase to aggregate the final prediction. This
algorithm is novel to quantify myocardial tissues’ presence on a set of contrast-enhanced
acquisitions, leading to better prevention and higher survival opportunities for patients.

Figure 1 shows short-axis LGE-MRI at the base, middle, and apical ventricular lev-
els, illustrating a large region of hyperenhancement (scar) with a hypo-enhanced central
area (MVO).

(a) Apex (b) Middle (c) Base

Figure 1. Short-axis LGE-MR images show MI (blue triangular) and MVO (yellow triangular).

The rest of the paper is structured as follows: In Section 2, we introduce the previous
literature related to our study. In Section 3, we describes the new methodology used
throughout this work. In Section 4, we present experimental results that allow the quan-
titative evaluation of the performance of our approach on the EMIDEC test dataset and
a comparison between different methods. Finally, in Section 5, we summarize the main
conclusions of the paper.
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2. Related Work

Traditional scar segmentation research studies were frequently based on intensity
thresholding or clustering techniques responsive to local intensity variations [8]. The
predominant limitation of these techniques is that they typically require expert delineations
of the region of interest to decrease the computational costs and the search space [9].
As a result, researchers focus on deep-learning cardiac segmentation approaches that
are more convenient for clinical guidance. For instance, Moccia et al. [10] applied fully
convolutional networks (FCNs) for MI-tissue segmentation protocols from LGE-MRI. The
authors investigated two segmentation algorithms. Segmentation results against expert
contours showed that both algorithms identified scar tissues in LGE-MRI, particularly
when delimiting the search area to the myocardium only. Xu et al. [11] proposed a new
joint motion feature-learning architecture based on deep learning and optical flow to
segment MI from non-contrast agents cardiac MRI accurately. The validation results proved
that the suggested architecture has a comparable performance with a human expert’s
delineation (pixel-level accuracy: 95.03%, Kappa statistic: 0.91, Dice: 89.87%, and Hausdorff
distance: 5.91 mm). De La Rosa et al. [12] proposed a deep learning-based method for
the automatic segmentation and quantification of the scar and MVO tissues in LGE-MRI.
Their approach is based on a cascade framework where, firstly, healthy and diseased
slices are distinguished by a convolutional neural network. Secondly, the MI is segmented
by an initial fast coarse segmentation. Then, the resulting segmentation is refined by
a boundary-voxel reclassification strategy to incorporate MVO tissues in the infarction
segmentation. Compared to the reference techniques, the proposed network achieved
the highest agreement in volumetric infarct segmentation with the manual delineations
(p < 0.001). This method reached an average Dice coefficient of 77.22 ± 14.3% and a
volumetric error of 1.0± 6.9 cm. Hao et al. [13] developed a multi-branch fusion architecture
for automatic MI screening from 12-lead ECG images. Their method included feature
fusion and classification network. Extensive experiments demonstrated that the proposed
architecture reached human-level performance on all four evaluation criteria (accuracy,
sensitivity, specificity, and F1-score of 94.73%, 96.41%, 95.94%, and 93.79%, respectively).

U-Net [14] has become the widespread variant of FCNs for biomedical image seg-
mentation and is commonly employed in cardiology. The network uses skip connections
between the down-sampling and up-sampling paths to recover the spatial context loss in
the encoder, performing more accurate segmentation. Different previous cardiac image-
segmentation networks have utilized the 3D U-Net [15] and the 3D V-Net [16] as their basis
architectures, reaching efficient segmentation for several cardiac segmentation tasks [17–19].
Isensee et al. [20] introduced nnU-Net (no-new-U-Net) to automatically adjust preprocess-
ing techniques and network architectures to a medical dataset. nnU-Net has been well
applied to several segmentation tasks [21,22]. Despite the potential of deep learning for
several fields, few deep learning-based methodologies have been proposed in the litera-
ture for infarct segmentation from LGE-MRI. Fahmy et al. [23] used a U-Net architecture
with 150 layers to automatically quantify LV mass and infarct volume on LGE images
of 1041 subjects with hypertrophic cardiomyopathy (HCM). Their methodology reported
DSCs of 82 ± 0.08% (per-patient) and 81 ± 0.11% (per-slice) for the LV quantification
and 57 ± 0.23% (per-patient) and 58 ± 0.28% (per-slice) for MI segmentation. In another
study, Zabihollahy et al. [24] developed a U-Net-based network to accurately segment LV
myocardium and infarct borders from 3D LGE-CMR images of 34 subjects with IC. Two
cascaded subnets were used to segment the LV myocardium and quantify the MI region
into the segmented LV myocardium. Three U-Nets were trained in each subnet using slices
extracted from coronal, axial, and sagittal planes. The proposed network reached a DSC of
88.61 ± 2.54% for LV infarct segmentation on the 3D test dataset. Recently, Arega et al. [25]
proposed a segmentation network that, firstly, generates uncertainty estimates during
its learning process using the Monte Carlo dropout method. Secondly, it integrates the
uncertainty information into the loss function for better segmentation results. The proposed
model showed an accurate segmentation of all myocardial regions.
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The major disadvantage of adopting 2D and 3D FCNs is that they are usually trained
with cross-entropy, soft-Dice losses, and compound loss functions. These losses neglect
high-level features that represent the implicit anatomical structures, such as their shape
or topology and spatial relationships between tissues [26]. Likewise, U-Net architecture
does not influence contextual or anatomical consistencies. Several research works focus on
alleviating this challenge by incorporating further prior information to improve network
robustness and produce plausible segmentations [27]. Prior knowledge can be introduced
into segmentation in many ways, such as by appending it as a penalty term in the loss
function, anatomical, or contextual constraints. Many researchers have used autoencoders
to extract semantic feature information from input images or labels, which steer the cardiac
image segmentation [28–30]. The contextual information can include shape priors to
guide the segmentation results toward a ground truth shape. Oktay et al. [31] modified the
decoder layers of a U-Net architecture to embed prior information through super-resolution
gold standard maps using cardiac cine MRI. Zotti et al. [32] developed a grid-Net-based
network to segment heart structures from cardiac cine-MRI. Their model integrates cardiac
shape prior information to encode a 3D position-point likelihood for being a definite class.
More recently, El Jurdi et al. [33] included position and shape priors to the learning phase
via inserting bounding filters on the skip-connections in a U-Net model. Duan et al. [34]
introduced a shape-constrained bi-ventricular segmentation technique. Firstly, a multi-task
network is used to localize definite landmarks. Then, these landmarks are employed to
initialize atlas propagation during the segmentation step to improve the segmentation
quality. These networks can also be adjusted for improving spatial, temporal, and topology
consistency of segmentation prediction in the cardiac cycle [35–40].

Different studies based on deep learning models evaluating infarct segmentation from
LGE-MRI have been included in the EMIDEC challenge (http://emidec.com/) (accessed on
1 April 2020). Camarasa et al. [41] presented two approaches to evaluate if the uncertainty
of an auxiliary unsupervised task is helpful for MI segmentation. Their baseline method
first determined the ROI centered on the non-background labels to use U-Net architecture
to segment all myocardial regions from the definite ROI. Feng et al. [42] developed an auto-
matic LGE-MRI segmentation model using: (a) rotation-based augmentation to force the
algorithm to remove the image orientation and learn the anatomical and contrast relation-
ships; (b) dilated 2D U-Net to increase the robustness of the network against different slices’
misalignment. The authors applied the weighted cross-entropy and soft-Dice loss functions
to relieve the class imbalance problem. They also favored slices containing damaged tissues.
Girum et al. [43] proposed a two-stage CNN network to segment the anatomical structures
firstly, and then pathological regions from LGE-MRI. The segmented myocardium area from
the anatomical network is further used to refine the pathological network’s segmentation,
thus producing the final four-class segmentation output. Huellebrand et al. [44] compared
a hybrid mixture model approach with two U-Net segmentations. The proposed mixture
model is inspired by [45] and is suited to EMIDEC data. This algorithm differentiated the
infarct regions depending on the intensity distribution. The authors proved that a better
segmentation is achieved using a mixture of Rayleigh and Gaussian than a mixture of Rician
and Gaussian. In addition, they realigned the image slices to prevent any inconvenience
due to respiratory motions. Yang and Wang [46] developed an improved and hybrid U-Net
architecture for myocardial segmentation in LGE-MRI. The modified U-Net embodied
the squeeze-and-excitation residual (SE-Res) module in the encoder part and a selective
kernel (SK) block in the decoder part. Zhang [47] proposed a cascaded convolutional neural
network to segment myocardial zones from LGE-MRI automatically. Its model achieved
the best segmentation performance. The winner first employed 2D U-Net to focus on the
intra-slice information for a preliminary segmentation and then a 3D U-Net to focus on
the volumetric spatial information for a better segmentation based on both the original
volume and the 2D segmentation. Finally, post-processing, removing all the scattered pixels
from the latest segmentation, is applied to produce the final segmentation. Zhou et al. [48]
developed an anatomy prior-based network, which combines the U-Net segmentation

http://emidec.com/
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architecture with attention blocks. They also presented a neighborhood penalty strategy
to assess the inclusion relationship among the healthy myocardium and damaged areas,
and a data-augmentation technique based on the mix-up strategy [49] to interpolate two
images and their corresponding segmentation maps.

3. Materials and Methods
3.1. Study Subjects and Data Acquisition

The LV myocardial diseases LGE-MRI dataset used in our experiment is provided by
the EMIDEC challenge [50]. The data was acquired with 1.5 and 3 T Siemens MRI scanners.
Additional data (12 features), including physiological and patient medical background were
also included but not used in the present study. The training dataset includes 100 subjects,
among them 67 scar cases and 33 normal cases. The EMIDEC test dataset consists of
50 exams divided into 1/3 healthy cases and 2/3 unhealthy myocardial cases (Table 1). All
subjects underwent a standardized imaging protocol of LGE-MRI. Each patient’s LGE-MRI
contains a series of 5–10 short-axis slices, wrapping the whole LV myocardium from the
base to the apex. Manual boundaries (LV cavity, LV healthy myocardium, scar, and MVO),
delineated by a biophysicist with deep competency in medical imaging, are presented for
the training set.

Table 1. Stratification of the EMIDEC dataset.

EMIDEC Dataset (n = 150) Healthy Cases
Pathological Cases

Infarcted Cases Infarcted + MVO (a Subclass of MI) Cases

Training dataset (n = 100) 33 27 40

Testing dataset (n = 50) 17 22 11

3.2. Pre-Processing

The data pre-processing is one part of the pipeline. We performed pre-processing
steps to the test data similar to those that were performed on training data. It includes the
following tasks.

To reduce the class imbalance in medical images and eliminate unimportant anatomical
structures, all images were cropped automatically to the region whose center is the centroid
of the LV cavity. LGE-MRI cropping was fully automatic. Cropping results in both reducing
the background class as well as the computational time for training our model.

Since the EMIDEC data shape varies between various subjects, it is necessary to
alleviate the shape mismatch by reshaping each patient’s volume image. Thus, all MR
volumes are reshaped to 96× 96× 16 with appending empty slices [51].

A standard adaptive histogram equalization algorithm is then used to enhance the
local image contrast [52,53] and, hence, improving the efficiency of the training process. We
also applied the non-local mean denoising [54] to all the data for decreasing the noise.

3.3. Architecture of ICPIU-Net

Figure 2 presents the pipeline of the ICPIU-Net network, which includes two major
stages (Anatomical-Net (nnU-Net [20]) and Pathology-Net) as the myocardial diseases (MI
and MVO) that are ensured to be localized within the LV myocardium. By segmenting
the LV myocardium and cavity first, we may eliminate other hyper-enhanced and hypo-
enhanced tissues of the LGE-MRI.
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Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Figure 2. Workflow of our ICPIU-Net approach for fully automatic myocardial disease segmenta-
tion. The red, green, blue, and yellow colors show the LV cavity, the LV myocardium, scar, and
MVO, respectively.

A schematic flowchart of the ICPIU-Net network is displayed in Figure 3. In the
training step, Anatomical-Net and Pathology-Net were trained separately on 100 LGE-MRI.
In the testing step, 50 LGE test MR images were supplied to the trained algorithm to
generate the relative segmentation maps, which were later fused through a majority voting
technique to yield the final label prediction of myocardial segmentation output. Each
stage’s details are explained in the following clauses.

Used in testingUsed in testing

Image Pre-processingLGE train
MR images

Manual
delineations

Training
ICPIU-Net

+

ICPIU-Net - Training Phase

Segmentation Map1
Segmentation Map2

...
Segmentation MapN

LGE test
MR images

λIC = 10−2

λCC = 10−2

λIC = 10−2

λCC = 10−1

...

λIC = 10−1

λCC = 5× 10−1

ICPIU-Net - Training Phase

Majority Vote Tech-
nique for each Voxel

Label Prediction

Myocardial Seg-
mentation &

3D Surface Creation

ICPIU-Net - Testing PhaseEstimated Parameters from training

Figure 3. Block diagram of ICPIU-Net network.

3.3.1. Anatomical Network

The segmentation networks used in the anatomical network are based on nnU-Net [20].
nnU-Net is a fully automatic segmentation framework based on the widely used U-Net [14]
architecture. Similar to U-Net, it uses convolutional layers between poolings in the down-
sampling path and deconvolution operations in the up-sampling path. However, it replaces
classical rectified linear unit (ReLu) activation functions with leaky ReLus (leakiness = 10−2)
and uses instance normalization [55] rather than the more common batch normalization
(BN) [56]. The order of operations is as follows: convolution—instance norm—leaky ReLus.
In addition, the downsampling is completed using strided convolutions instead of max-
pooling. nnU-Net ensembles 2D U-Net and 3D U-Net networks. 2D U-Net trains whole
slices to concentrate on intra-slice information. A 3D U-Net is used to extract the volumetric
spatial features. This architecture aims to restrict the impact of intra-slice heterogeneity
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and take into account the volumetric information for more accurate segmentation. Thus,
the cross-validation outputs automatically lead to the best ensemble to be employed for the
testing prediction.

The anatomical network uses 2D, 3D, and cascaded U-Net to alleviate the conve-
nient shortcoming of a 3D U-Net architecture on datasets with large-size images. In a
cascaded U-Net, a 3D U-Net is first trained on 3D down-sampled images for a preliminary
segmentation. Then, the resulting segmentations are up-sampled to the original input
resolution and passed to a second 3D U-Net, trained on patches at full resolution for final
prediction segmentation.

The anatomical network was implemented on NVIDIA Tesla V100 with four embedded
GPUs using the Pytorch source code (http://github.com/MIC-DKFZ/nnunet/) (accessed
on 1 February 2021) based on the nnU-Net implementation [20]. To train the model, we
employed a five-fold cross-validation. The ADAM optimizer was used with an initial
learning rate of 3× 10−4. The learning rate is reduced during training using a polynomial
learning rate scheduler. The short-axis slice and volume inputs are provided for 2D and 3D
networks, respectively. The sum of the cross-entropy loss (LCE) and the Dice loss (LDICE) is
used as the final loss function to train the proposed network (Equation (1)):

L = LCE + LDICE. (1)

The LDICE function is summarized as follows:

LDICE = − 2
|K| ∑

k∈K

∑
i∈I

uk
i vk

i

∑
i∈I

uk
i + ∑

i∈I
vk

i
, (2)

where u refers to the softmax output of the proposed network and v is a one-hot encoding
of the ground truth label delineated manually by the experts. Both u and v have shape
I × K with i ∈ I being the pixels’ number in the training patch/batch and k ∈ K being the
different classes.

3.3.2. Pathological Network
3D U-Net Architecture

Our pathological network mainly has a 3D U-Net as the main network and it incor-
porates some prior knowledge to further improve the result. The encoder part consists
of stacked convolutions followed by BN, ReLu, and max-pooling layers for capturing
contextual information. The decoder part consists of deconvolutions, convolutions, BN,
and ReLu for the accurate position of patterns. Skip connections concatenate symmetrically
contextual and positional attributes from opposing contracting and expanding pathways.
The last convolution layer reduces its output channels number to the number of predicted
classes, generating a myocardial segmentation map of identical dimensions to that of the
target map.

Network Implementation

We trained the proposed architecture with sampled patches of size 12× 12× 12 voxels
and a batch size of 4. The training is completed using the ADAM optimizer with a learning
rate α = 10−4 for a maximum of 200,000 iterations, taking a total time of 314 min. The
pathological network was implemented in Python using the Chainer library.

Shape Reconstruction

To learn the latent representation from which the original cardiac shapes can be recon-
structed with inclusion-restricted segmentation, we train the proposed 3D convolutional
variational autoencoder (CVAE), which uses an iterative optimization process with expert
ground truth. The 3D CVAE encodes the original cardiac shape information as a compact
representation in a reduced dimension, interprets the code, and decompresses the input

http://github.com/MIC-DKFZ/nnunet/
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without any reconstruction loss. Thus, a pre-trained 3D CVAE from an ensemble of cardiac
shapes is used as a constraint to regularize a segmentation output into a proper shape [30].
The 3D pre-trained CVAE has in-depth information about segmenting several feature rep-
resentations’ categories. Compared to [30], our CVAE learns the general shape as well as
the inclusion of the MVO into the MI itself into the myocardium. The inclusion criteria are
helpful for plausible reconstruction with accurately localizing the borders of the cardiac
tissues. Figure 4 depicts the configuration of the proposed 3D CVAE.

16
3D U-Net

Feature Map

3D Convolutional Layer

+ BN + RELU

Max Pooling

3D Deconvolutional Layer

Concat

3D Convolutional Layer + Softmax

Reshape Layer

Dense Layer

Encoder Decoder

3D Convolutional Layer

3D Deconvolutional Layer

16

6

6

6

32

3

3

3

64

2

2

2

128

1

1

100

1

1

128

1

1

64

2

2

2

32

3

3

3

16

6

6

6

5

12

12

12

Nbr.filters:

Depth:

Width:

Height:

5
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12
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3D Convolutional Variational AutoEncoder

Pre-Training

λIC * IC LossSeg Loss +

Pre-Training Dataset

Final Loss =

Reshape Layer

Dense Layer

1

32

32 32 64

64 64 128

128 + 64 64 64

32 32 564 + 32

LGE-MRI

Real masks

Segmentation

λCC * CC Loss +

Predicted Class Ground Truth Class

Classification

Reconstructed Masks

Figure 4. The overall architecture of our pathological segmentation network. We present the number
of channels overhead each feature map. The classification is as well applied only in the training stage
to supervise the segmentation network profoundly.

Class Constraint

All along the optimization process, we develop a binary classification module to dis-
tinguish patients with myocardial infarction from regular patients. Hence, we incorporate
classification priors for the segmentation process to constrain the predicted tissue in this
known category.

As Figure 4 illustrates, we propose the inclusion (IC in cyan) and class constraint
(CC in purple) modules, connected as an extended network and to the bottom of the 3D
U-Net, respectively, for penalizing the final prediction of myocardial segmentation output.
These constraints are introduced as auxiliary LIC and LCC loss terms to highlight small
classes’ tissue.

One of the main challenges with diseased myocardial tissues’ segmentation is the class
imbalance (i.e., LV healthy myocardium has way more instances than pathological regions)
in the dataset. As shown in Table 1, the EMIDEC test dataset provides 1/3 healthy patients
and 2/3 infarcted patients. The resulting segmentation of training with the cross-entropy
loss function may not be effective, as the most frequent class may leverage training. That is
why it is critical to optimize the appropriate loss function for accurate segmentation. We
train our penalty-based pathological network with a fusion of multi-class mean intersection
over union (IoU) loss LSeg [57], inclusion constraint loss LIC, and a class constraint loss LCC.
This final loss function is given in Equation (3):

LFinal = LSeg + λIC × LIC + λCC × LCC, (3)

where λIC denotes the inclusion constraint penalty-term and LIC indicates the L2 loss
function that is defined in Frobenius norm Equation (4); λCC represents the class constraint
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penalty-term and LCC indicates the cross-entropy loss function. We regularize, with λIC
and λCC, the weights in the interval (10−2, 10−1).

LIC =
n

∑
i=1
||RPi − RGi||2F, (4)

where n is the total number of training volumes, RGi is the reconstructed manual delin-
eation, RPi is the reconstructed segmentation output, and ||.||F denotes the Frobenius norm
of an m× n matrix.

The multiclass LSeg function measures the overlap between two samples [58] and is
incorporated into deep learning networks as follows:

LSeg = LIoU =
1
|C| ∑

c∈C

∑
i

pic × p∗ic

∑
i

pic + p∗ic − pic × p∗ic
, (5)

where pic is the prediction score at position i for class c, and p∗ic is the gold standard
distribution which is a delta function at yi∗, the true label.

3.4. Post-Processing

In our post-processing, we employed morphological operators such as opening (kernel
size of 3× 3), to remove small predicted classes with less than 64 voxels from the predicted
segmentation. In addition, we used connected components to further improve the segmen-
tation result of scar and MVO. Finally, the cropped slices were resized to the original input
LGE-MRI size.

The majority voting method, based on all fusions of our models’ results, with varying
estimated parameters from training (λIC and λCC), is used to improve the segmentation.
Based on the best experimental results, we chose λIC ∈ [10−2, 5× 10−1] with an increment
step of 7× 10−2 and λCC ∈ [10−2, 5× 10−1] with an increment step of 7× 10−2, obtaining
the best fit. Indeed, hyperparameter tuning ranges from 10−2 to 5× 10−1 make for the
best trade-off between evaluation metrics. Thus, the voxel was labeled as infarct if at least
three of the combined models predicted this voxel as an infarct label. The final model (or
ensemble) that yields the highest Dice similarity coefficient (DSC) on the training set is
automatically selected.

4. Results and Discussion
4.1. Evaluation Metrics

As proposed by the challenge organizers, we employed region-based and volume-
based evaluation metrics (in 3D) to appraise the performance of our approach-generated
segmentations of myocardial tissues. The DSC (Equation (6)) computes the spatial overlap
of our presented model delineation and the gold standard, varying from 0 (mismatch) to
1 (excellent match). A various class of scores evaluates the distance between segmenta-
tion contouring.

DSC = 2
|P ∩ G|
|P|+ |G| , (6)

where P and G represent the predicted and manual segmentation maps, respectively.
Given two boundaries generated from our algorithm (A = {ai : i = 1, . . . , NA}) and

manual (M =
{

mj : j = 1, . . . , NM
}

) segmentation, the Hausdorff distance (HD) [59] is
determined as follows:

HD = max
ai∈A

min
mj∈M

∣∣∣∣ai −mj
∣∣∣∣. (7)

The HD computes the degree of mismatch between A and M by calculating the
Euclidean distance of each point ai that is most distant from any point mj.

The absolute volume difference (AVD) calculates the difference between our method-
generated VA and manual VM LV volumes by the expert. In addition to the AVD, abso-
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lute volume difference rate according to the volume of the myocardium (AVDR) metric,
Equation (8) was reported:

AVDR =
AVD
VMYO

, (8)

where AVD = |VA −VM| and VMYO is the myocardium volume of the manual annotation.
For consistency with other publications, the metrics were based on the online evalu-

ation platform (http://github.com/EMIDEC-Challenge/Evaluation-metrics/) (accessed
on 1 April 2020). Therefore, region- and volume-based metrics were measured for each
test patient, and we calculated their mean values to investigate the performance of our
approach for myocardial disease segmentation. We also applied Bland–Altman plots [60] to
consider the accuracy between the proposed method and manually generated LV volumes.

4.2. Results Analysis and Extensive Discussions

We compared the results of our proposed network to different previous methods used
in the EMIDEC challenge, enclosing Feng et al. [42], Huellebrand et al. [44], Yang et al. [46],
Zhang [47], Camarasa et al. [41], Zhou et al. [48], and Girum et al. [43]. The LV myocardium,
scar, and MVO were segmented using those methods from the same test dataset. We also
compared the ICPIU-Net segmentation results to Brahim et al. [61], which is based on only
a shape prior constraint for myocardial disease segmentation and manual delineations. The
results prove that our approach performs well on all substructures. A statistical test was
conducted for each model to check if the difference of the results between the coronary
arteries is significant. We have found that there is no statistical difference.

There are a total of 100 exams with published labels to train our algorithm. We
make random five-fold cross-validations by shuffling the scan sequence and splitting the
database into five folds to provide a more comprehensive evaluation of our network. In
Tables 2 and 3, the cross-validation results of our segmentation output and of two networks’
segmentation output are represented.

The conducted experiments’ metrics on the internal cross-validation shown in Table 2
prove that our approach can accurately segment each target tissue despite using a small
sample size. The standard deviations, which are relatively small, demonstrate the stability
of our proposed method for the segmentation of myocardial diseases.

Table 2. Internal quantitative assessment on 5-fold cross-validation results.

Targets Metrics
5-Fold Cross-Validation

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Average Standard Deviation

Myocardium

DSC (%) 95.38 95.07 95.21 95.35 95.59 95.32 0.17

AVD (mm3) 232.74 290.61 225.42 229.14 203.49 236.28 29.01

HD (mm) 4.02 4.78 3.87 3.61 3.46 3.95 0.44

MI

DSC (%) 77.05 79.45 78.73 78.92 77.34 78.30 0.75

AVD (mm3) 283.31 267.26 190.34 156.53 271.25 233.74 50.65

AVDR (%) 4.01 4.20 3.18 2.03 4.53 3.39 0.77

MVO

DSC (%) 76.54 79.15 79.92 75.51 78.03 77.83 1.62

AVD (mm3) 34.18 26.80 45.10 49.19 46.68 40.39 8.51

AVDR (%) 0.62 0.61 0.69 0.74 0.76 0.68 0.10

http://github.com/EMIDEC-Challenge/Evaluation-metrics/
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Table 3. A comparison of evaluation methods on 5-fold cross-validation of EMIDEC dataset. Best
values are marked in bold font.

Targets Metrics
Methods

Huellebrand et al. [44] Zhang [47] Proposed (ICPIU-Net)

Myocardium

DSC (%) 81.00 94.40 95.32

AVD (mm3) 13655.55 6474.38 236.28

HD (mm) 16.72 17.21 3.95

MI

DSC (%) 36.08 72.08 78.30

AVD (mm3) 8980.5 4179.5 233.74

AVDR (%) 7.07 3.41 3.39

MVO

DSC (%) 54.15 71.01 77.83

AVD (mm3) 1501.73 918.69 40.39

AVDR (%) 1.08 0.69 0.68

Table 3 gives a summary of the comparison study. From the result, our approach
yielded the best clinical and geometrical metrics compared with two existing networks.

Figure 5 shows the LV myocardium, infarct, and MVO segmentation results of
Brahim et al. [61] and our proposed ICPIU-Net for three different slices, randomly chosen
from three patients of the testing dataset. We stacked up the segmented 2D slices of each
EMIDEC test dataset to reproduce a 3D rendering surface of myocardial regions for visual-
ization purposes. In comparison to Brahim et al. [61], our approach segmented myocardial
diseases more accurately. Visually, the proposed network-generated segmentation narrowly
matches the manually segmented delineation for all the labeled regions. The test results
proved that our approach is comparatively accurate in segmenting scar tissue.

LGE-MRI GT Brahim et al. 2021 ICPIU-Net 3D rendering

Pa
ti

en
t1

Pa
ti

en
t2

Pa
ti

en
t3

Figure 5. Qualitative results. In the first four columns, input LGE-MRI, manual delineations, and
exemplary test results of the segmented myocardial regions in three slices extracted from LGE-MRI
of three patients generated by the Brahim et al. [61] method and our ICPIU-Net approach are shown.
The fifth column illustrates the 3D view of the myocardial tissues of our proposed method prediction.
LV cavity is displayed in red, LV myocardium is in green, infarct in blue, and MVO in yellow.
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Figure 6 shows segmentation results of EMIDEC challengers, ground truth mask,
and our proposed ICPIU-Net for all slices, chosen from one patient of the testing dataset.
Visually, our proposed network correctly depicted myocardial structures and showed a
good agreement with the gold standard. In comparison to Zhang’s method, our approach
demonstrated promising performance in segmenting the damaged myocardial areas from
LGE-MRI.

a
b

c
d

Figure 6. Segmentation results and the ground truth mask on Case 119. (a) LGE-MRI, (b) Ground
Truth, (c), Zhang [47], and (d) ICPIU-Net.

As shown in Figure 7, qualitative evaluations demonstrate that our proposed network
accurately segments infarcted patients, especially at the middle slices. The segmentation
results achieved by our proposed ICPIU-Net approach are coincident with the expert
delineations for both two volumes. Most segmentation errors appear at basal and apical
short-axis slices.

Base Middle Apex Base Middle Apex

LG
E-

M
R

I
G

T
IC

PI
U

-N
et

Figure 7. Examples of test segmentation results and ground-truth for three different levels (base,
middle, and apex) of two patient slices (columns 1–3 from patient 1 and columns 4–6 from patient 2).
Red: LV cavity, Green: LV myocardium, Blue: Infarct, and Yellow: MVO.

Table 4 summarizes the quantitative results of our proposed method against those
of the alternatives for the testing dataset. Experimental results demonstrate that the
myocardium segmentation is globally satisfying, whereas the diseased areas (i.e., MI
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and MVO) are comparatively challenging to predict accurately. The evaluation methods
were based on the clinical metrics most applied in cardiac clinical practice: the AVD and
AVDR of the diseased areas (MI and MVO) and the geometric metrics: the DSC for the
different tissues and HD for the myocardium. A ranking is computed for each metric,
and the final ranking representing the sum of the rankings for each evaluation metric is
chosen to select the best model. Our developed ICPIU-Net reported higher DSC, AVD,
and AVDR than other methods for MI and MVO segmentations. The second-best DSC
for fully automated segmentation of myocardial diseases was reached using the network
proposed by Zhang [47] (71.24% for scar and 78.51% for MVO). In testing, our proposed
method also achieved DSC, AVD, and HD of 87.65 %, 8863.41 mm3, and 13.10 mm for LV
myocardium segmentation, respectively. The publicly available test database consists of
50 exams divided into 17 cases with normal MRI after injection of a contrast agent and
33 patients with myocardial infarction. A patient-by-patient study of the proposed network-
generated segmentation revealed that the infarct tissue could be correctly determined in
32 out of 33 pathological subjects from the test dataset.

Table 4. Comparative study for EMIDEC myocardial segmentation in LGE-MRI (test leader-
board) [62]. Best values are marked in bold font.

Methods

Structures
Myocardium MI MVO

DSC (%) AVD (mm3) HD (mm) DSC (%) AVD (mm3) AVDR (%) DSC (%) AVD (mm3) AVDR (%)

Feng et al. [42] 83.56 15,187.48 33.77 54.68 3970.73 2.89 72.22 883.42 0.53

Huellebrand et al. [44] 84.08 10,874.47 18.3 37.87 6166.01 4.93 52.25 953.47 0.64

Yang et al. [46] 85.53 16,539.52 13.23 62.79 5343.69 4.37 60.99 1851.52 1.69

Zhang [47] 87.86 9258.24 13.01 71.24 3117.88 2.38 78.51 634.69 0.38

Camarasa et al. [41] 75.74 17,108.13 25.44 30.79 4868.56 3.64 60.52 867.86 0.52

Zhou et al. [48] 82.46 13,292.68 83.42 37.77 6104.99 4.71 51.98 879.99 0.54

Girum et al. [43] 80.26 11,807.68 51.48 34.00 11,521.71 8.58 78.00 891.13 0.51

Proposed (ICPIU-Net) 87.65 8863.41 13.10 73.36 2693.84 1.95 81.31 511.25 0.32

We conducted a comprehensive ablation study of prior information modules to inves-
tigate their impact on the segmentation results. As shown in Table 5, the combination of IC
and CC regularization penalty terms provided more plausible segmentation close to the
manual delineation. The results have demonstrated the effectiveness of inclusion and class
constraints to the segmentation task on the EMIDEC dataset.

Table 5. Performance analysis and comparison between our proposed ICPIU-NET network without
and with using IC and CC modules. Best values are marked in bold font.

Methods

Structures
Myocardium MI MVO

DSC (%) AVD (mm3) HD (mm) DSC (%) AVD (mm3) AVDR (%) DSC (%) AVD (mm3) AVDR (%)

Without IC and CC 87.77 9381.77 13.07 65.05 3096.54 2.39 78.82 553.56 0.34

Without CC 87.74 9201.04 13.09 71.71 2830.32 2.15 80.99 538.60 0.34

Proposed (ICPIU-Net) 87.65 8863.41 13.10 73.36 2693.84 1.95 81.31 511.25 0.32

The metrics of DSC, AVD, and AVDR applied during the MVO segmentation challenge
can be inconsistent since the MVO represents only a small volume of the input LGE-MRI.
Indeed, MVO’s absence from all the data seemingly supplies correct results with DSC and
volumes. However, the accuracy highlights the effectiveness of the proposed method to
identify MVO regions. Therefore, in Table 6, the additional metrics of MVO tissue are
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provided. Results reveal the pertinence of inclusion and class constraints in segmenting
MVO tissues.

Table 6. Additional metrics for EMIDEC myocardial segmentation [62]. Best values are marked in
bold font.

Methods
MVO

Acc. (Case,%) Acc. (Slice,%)

Feng et al. [42] 80.00 90.78

Huellebrand et al. [44] 70.00 85.75

Yang et al. [46] 76.00 81.56

Zhang [47] 84.00 94.97

Camarasa et al. [41] 74.00 84.36

Zhou et al. [48] 64.00 86.87

Girum et al. [43] 78.00 89.66

Proposed (ICPIU-Net) 84.00 94.97

Figure 8 depicts the Bland–Altman plots for the proposed ICPIU-Net vs. expert manual
LV volumes. In these graphics, the dashed blue line, and the upper and lower red dashed
lines show the mean value of the difference and the upper and lower limits of accordance,
respectively. In comparison to manually segmented volumes, our method’s mean bias
in assessing LV myocardium, MI, and MVO volumes was 4.9888 cm3, 1.2266 cm3, and
0.5112 cm3, respectively. Thus, our proposed network lightly overvalued the LV myocardial
tissue volumes, resulting in a mean absolute LV volume percentage error of 8.12%.

The EMIDEC classification contest aims to classify the patients as healthy or infarct.
In Table 7, the classification results of each method are provided. The proposed network
achieved the best results with the best pathology classification accuracy of 98%. Our
approach failed only on 1 exam among 50, which the challenge organizers considered to be
an outstanding result.

Table 7. Results of the classification contest. Best results in bold.

Methods Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

Lourenço et al. [63] 87.88 70.59 85.29 82

Ivantsits et al. [64] 72.73 82.35 88.89 76

Sharma et al. [65] 72.73 41.18 70.59 62

Girum et al. [43] 78.79 88.24 92.86 82

Shi et al. [66] 90.91 94.12 96.77 92

Proposed (ICPIU-Net) 100 94.44 96.96 98
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Figure 8. The graph represents the difference between the generated method and the expert target
volumes according to their average. (a) Bland–Altman plot of LV myocardium volume acquired from
our ICPIU-Net approach. (b) Bland–Altman plot of infarct volume acquired from our ICPIU-Net
approach. (c) Bland–Altman plot of MVO volume acquired from our ICPIU-Net approach.
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Deep learning networks have significantly boosted state-of-the-art segmentation per-
formance in cardiac MRI. Evaluation of the MI’s presence and extent (MVO) stays essential
for assessing myocardial viability. The visual estimation by cardiologists remains the
routine approach. However, an accurate automatic prediction of the exams as an objective
assessment of the volume and the percentage of damaged myocardium plays a crucial
role in treating and improving clinical outcomes. The proposed network achieved a Dice
score of 0.8765 for the myocardium and 0.7336 for the infarction tissue. Nevertheless, MI
tissue segmentation still proved to be a challenging task compared to the myocardium. Our
results demonstrate that automatic myocardial segmentation is now a possible task. Still,
the segmentation of diseased regions requires further development before being included
in software solutions applied in clinical practice.

5. Conclusions

In this paper, we describe a novel deep learning-based approach for fully automated
segmentation of myocardial tissue in LV myocardium from LGE-MRI. The experimental re-
sults proved the relevance of our proposed architecture for clinical guidelines diagnosis and
treatment planning. Our ICPIU-Net outperformed prior deep learning-based techniques
in terms of segmentation accuracy. In building our approach, we addressed the critical
class imbalance issue due to a relatively small size of myocardial diseases compared to the
healthy area in the myocardium via constructing informative inclusion and classification
constraints from pathological tissues. A decision-fusion technique was used to aggregate
the predictions achieved through varying estimated parameters from training for final
prediction. Nonetheless, cases of MVO were not all identified in the subject cohort enlisted
for this work (Acc. of 84.00%). Thus, further studies, to integrate the clinical metadata
information, are needed for improving the segmentation of myocardial abnormalities.

6. Code Availability

Updated versions of the anatomical network can be found at https://github.com/
mic-dkfz/nnunet (accessed on 1 February 2021). The pathological network repository is
available for download at https://github.com/KhawlaMarrakchi/Pathological-ICPIU-Net
(accessed on 16 February 2022).
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