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Abstract: Human action recognition has been applied in many fields, such as video surveillance
and human computer interaction, where it helps to improve performance. Numerous reviews of
the literature have been done, but rarely have these reviews concentrated on skeleton-graph-based
approaches. Connecting the skeleton joints as in the physical appearance can naturally generate
a graph. This paper provides an up-to-date review for readers on skeleton graph-neural-network-
based human action recognition. After analyzing previous related studies, a new taxonomy for
skeleton-GNN-based methods is proposed according to their designs, and their merits and demerits
are analyzed. In addition, the datasets and codes are discussed. Finally, future research directions are
suggested.
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1. Introduction

Human action recognition (HAR), aiming at automatically detecting human activi-
ties, has become increasingly popular, especially after being armed with deep learning,
tremendous data and more computational resources. Typically, HAR holds great value in
video surveillance [1,2], human–computer interactions (HCI) [3–5], virtual reality [6–8],
security [9] and so forth.

HAR is supported by multi-modalities. Specifically, one kind of modality is structured
data, e.g., images or videos and auxiliary data, such as semantic information. The common
use of sensors (including cameras) and cloud databases makes structured data easy to
be captured and shared. Moreover, they are visually or semantically informative, e.g.,
the shape or motion difference of subjects, the space–time trajectory [10] and the names
of joints.

With the help of carefully designed representation learners, such as deep-learning
(DL) models, these informative representations are obtained in a task-related way so as to
help solve the problem more accurately. However, the performances are upper-bounded
by the data, which emphasizes less on the intrinsic relations between the joints of skeletons.
The other is unstructured data that are non-Euclidean, such as human skeletons. Extractors,
e.g., Openpose, Google PoseNet and Nuitrack, are capable of working in real-time and thus
generate sufficient skeleton graphs.

These poses contain intrinsic information among spatial joints and temporal frames
as well as 3D information if the depth data are offered. Additionally, compared with an
image that requires a storage space proportional to the image width, height and number of
channels, skeletons only require the 3D coordinates and confidence score of every joint, and
normally there are no more than 30 joints, which decreases the storage cost significantly.

Moreover, while image-based methods suffer from varied brightness, changing of
backgrounds, chromatic differences, different subjects etc, 3D skeletons can work on various
scenes once they are detected. As HAR should label the same activity with the same label
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even when performed by different persons under different conditions or styles, a skeleton
graph is undoubtedly a promising choice.

Models to find representations of human skeletons are classified into three categories.

• The traditional method is handcrafted descriptors, such as principle components
analysis (PCA) based on 3D position differences of joints [11], selecting joint pairs
by top-K Relative Variance of Joint Relative Distance [12]. These descriptors are
interpretable; however, they are limited as they tend to extract shallow and simple
features and normally fail to find significant deep features.

• The other idea is redefining the problem a deep learning problem in Euclidean space,
such as serializing the graph nodes into a sequence and then adopting the well-known
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) etc. In
this way, deep features are extracted mechanically but without paying attention to the
intrinsic spatial and temporal relations between graph joints, e.g., the serialization of
joints ignores their natural structures in skeletons.

• Recently, Graph Neural Networks (GNNs), especially graph convolution networks
(GCNs), have come into spotlight, and were imported into skeleton graphs. The
earliest milestone is ST-GCN [13] (Figure 1). Thereafter, multiple works based on ST-
GCN were proposed. Among them, 2s-AGCN [14] (Figure 2) is another typical work,
which adopted an attention mechanism. As GNNs are professional in discovering the
intrinsic relations between joints, GNN HAR methods have achieved a new state-of-
the-art (SOTA).

Figure 1. The method ST-GCN [13].

Figure 2. The method 2s-AGCN [14], B-Stream and J-Stream stand for bone stream and joint stream,
respectively.

Therefore, this survey focuses on skeleton GNN HAR, which regards the input skeleton
as a graph and process it via GNNs. It is true that there are many HAR surveys; however,
most of them emphasize sensors, DL methods, datasets or HAR applications. The rapid
development of GNNs and emergence of GNN HAR methods call for a constant update.
As far as we know, there is only one survey that analyzed GCN-based methods; however, it
did not cover all aspects and missed some approaches. In this respect, our survey updates
and completes the aforementioned existing survey. The main contributions of this survey
are as follows:
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1. New taxonomy: We propose a new taxonomy for previous methods, which relate
to GNNs and skeleton graphs. They are grouped into spatial-based approaches,
spatiotemporal-based approaches and generated approaches. Figure 3 illustrates the
idea. Their common frameworks are also summarized.

2. Comprehensive review: Apart from analyzing methods, we also review the categories
of skeleton graphs in applications and the construction of them.

3. Abundant resources: To give a complete summary for the skeleton-GNN-based HAR,
we collected commonly used datasets and published codes. The details of each
collected dataset and method are summarized in Tables A1 and A3, respectively, in
Appendices A and B.

4. Future directions: Further directions are presented and discussed after having a look
at the challenges in this field, with the hope of offering some inspiration for the benefit
of other researchers.

This paper is organized as follows: Section 2 gives a literature review on GNNs and
HAR. Then, Section 3 analyzes skeleton graphs more specifically, leading to Section 4, which
focuses on how to build skeleton graphs. Afterwards, the new taxonomy of methods on
skeleton GNN HAR is proposed in Section 5, and their common frameworks are described
in Section 6, which gives a comprehensive review for all related approaches. Various
datasets are collected in Section 7, and then we end with a discussion of the challenges
and our final conclusions in Sections 8 and 9, respectively. The Appendices A and B collect
all mentioned datasets and methods. A detailed framework of this survey is presented in
Figure 4.

(a)

Figure 3. Illustration of (a) the spatial-based approach, (b) the spatiotemporal-based approach and
(c) the generated approach. Among the figures, green trapezoid blocks denote the GNN-HAR
model with dashed lines marking the unfixed model structure; pink trapezoid blocks denote action
classifiers; orange trapezoid blocks for hidden states and purple blocks for tasks rather than HAR.
The multiple skeletons together in (b,c) stand for skeleton graphs of video clips. The purple arrow in
(c) denotes supervision from tasks, such as adversarial learning and knowledge distillation.

2. Previous Works
2.1. GNNs

Recently, there has been an increased interest in graph data. Their applications include
e-commence recommended systems, chemistry molecules, citation networks and so on.
Some works are committed to extract embeddings, either at node-level, edge-level or
graph-level embeddings. Some are more interested in topologies attempting to add edges
or nodes to build a new topology or regenerate a graph after observing subgraphs [15].

Nodes in a graph do not satisfy the independent and identical distribution (i.i.d.)
assumption [15]. In contrast, each node is related to others through various types of links.
When this dependency presents troubles, it also contributes to the intrinsic information.
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Motivated by the requirement of mining graph data, the name of GNNs was first
introduced by Gori et al. [16] in 2005. Afterwards, by extending the achievements of CNNs
and RNNs, convolutional graph neural networks (ConvGNNs) and recurrent graph neural
networks (RecGNNs) were improved gradually. For ConvGNNs, both the spectral Con-
vGNNs and spatial ConvGNNs were developed. Spectral ConvGNNs prefer graph kernels
in spectral space, while spatial ConvGNNs imitate traditional CNNs but perform on the k-
order topological neighbors. Apart from them, many alternatives have emerged, including
graph autoencoders (GAEs) and spatiotemporal graph neural networks (STGNNs).

Considering the accomplishment of GNNs, if the skeletons are built as graphs, then
any GNN proposal can be a possible candidate for skeleton graph-based HAR.

Figure 4. The framework of this paper, where RNN means recurrent neural networks, CNN means
convolutional neural networks and DL means deep learning.

2.2. HAR Surveys

Surveys of HAR have been studied by many researchers. Since 2010, according to the
topics, related papers are mainly classified as:

1. Papers on datasets [17,18], which reviewed the common used datasets in HAR tasks.
2. Papers on modalities [10,19–23] on videos (images) [24–26] on skeletons, and [27]

analyzed multi-modalities.
3. Papers on sensors, among which, paper [28] is related to inertial sensors [29] analyzed

kinect-related approaches [30] on depth sensors, and [31] on body-worn sensors.
4. Papers on methodologies, where [32] dived into GCN-based approaches [23,33–37]

collected DL-based methods, and [38] collected both handcrafted-based methods
and learning-based methods. Specifically [36,37] only summarized CNN-based ap-
proaches, while others analyzed all kinds of DL approaches.
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5. Papers on evaluation, such as [39], gathered the evaluation metrics applied on HAR tasks.
6. Papers on applications. Surveys, such as [40] on human–robot interaction applica-

tions, [41] on automatic driving, [42,43] on view-invariant domain, [44] on multi-
people video surveillance, [45] on gestures, and [46] in the traffic context.

Although these surveys attempted to review the new emergence of HAR, only
Tasweer et al. [32] focused on GCN-based approaches. Papers [26,29] mention GCN-based
methods but do not take them as their main purpose.

Tasweer et al. set their point on GCNs, and proposed a taxonomy that categorizes
GCN-based HAR into five architectures, which are spatiotemporal GCN, RNN-Attention
GCN, Two-Multi Stream GCN, Encoder–decoder GCN and Miscellaneous GCN. They are
the first to discuss such taxonomy for GCN-based HAR; however, they emphasized this
taxonomy without analyzing other aspects, such as the types of graphs, the construction
of graphs, and thus it is not a thorough survey. Moreover, they mix the category of
GCN methods and generalized frameworks together, e.g., the ‘Two-multi Stream’ is a
common framework, while ‘RNN-Attention GCN’ is a method with specific networks.
Their taxonomy is kind of confusing when one attempts to understand a proposed method
systematically. This motivated our paper where a deeper analysis of skeleton-GNN-based
HAR is offered.

Specifically, rather than mixing GCN categories and frameworks together, we sum-
marize the ways to construct skeleton graphs, the category of used networks, and the
frameworks that can be generalized, into four sections. Sections 3 and 4 discussed the
categories and structures of skeleton graphs, Section 5 collects the main approaches, and
Section 6 demonstrates the common frameworks. For graphs, this paper emphasizes the
categories of skeleton graphs in applications and their structures and also introduces the
ways to build them.

For approaches based on whether to create an end-to-end model and the input skele-
tons, this paper classifies skeleton-GNN-based HAR methods into spatial approaches, spa-
tiotemporal approaches and generated approaches. Among them, the spatial approaches
and spatiotemporal approaches use static models and are trained in end-to-end mode.
However, for generated approaches, models are first trained in a non-end-to-end way. A
non-task-specific model is trained before, and the task-specific model is obtained based on
this pretrained model.

3. Skeleton Graphs in Applications
3.1. Input Graphs

Although the most direct idea is extracting a graph for each frame, the used graphs
vary in real applications.

3.1.1. Spatial Graphs

The simplest idea is taking the skeleton from each frame as an independent graph. In
this way, the graph size will be the number of skeleton joints, and the graph links are the
physical connections. If representing the graph as G = (V, E), where the node set V is a set
consisting of body joints, featured by 3D/2D coordinates and confidence scores; and the
edge set E contains the links of physical connections.

Usually, edges can be represented as an adjacency matrix A for further utilization,
with each item denoting whether there is a link between two nodes. Concretely, Aij = 1
denotes there is a link between joint i and joint j, and Aij = 0 for null edges.

3.1.2. Spatiotemporal Graph

The other idea is extending the spatial graph by connecting skeleton joints along
temporal dimension to build a spatiotemporal graph, e.g, the graph used in ST-GCN. In this
way, both the spatial and temporal information are combined to use. However, taking the
meaning of edges into consideration, this graph is heterogeneous since one type of edges
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coming from physical connections and the others explicitly display temporal relations.
Figure 5a demonstrates the idea.

(a) The spatiotemporal graph (b) The interaction graph

Figure 5. The input graphs, (a) with the green color to denote the temporal dimension and blue to
denote the spatial dimension; (b) demonstrates shaking hands [47].

3.1.3. Interaction Graphs

When performing GNNs on human-interaction applications, a graph that consists
of two or more skeletons was proposed [48], one example is shown in Figure 5b. In this
way, nodes are heterogeneous since they come from different subjects, and edges are also
heterogeneous because one type of edges are the physical connections within each skeleton,
and the other type is the connections between subjects.

3.1.4. Generated Graphs

The graphs mentioned before were all manually built; however, in some applica-
tions [49], the authors assumed that the graph was redundant or uncompleted, which is
frequent if there are occlusions, and thus they attempted to generate a new graph. In this
way, the graph is modified with automatically generated nodes or edges, which are beyond
the idea of spatial, temporal or interaction links. Figure 6 demonstrates an example where
action specific edges are added.

Figure 6. The generated graph [49], where (a) the original skeleton for the action phone call and
(b,c) illustrates the inferred action-specific skeletons for the action phone call with new edges in green.

3.2. Problem Definition

The problems to be solved for different input graphs vary. In the spatial graph, the
main point is how to extract spatial information and then perform the temporal aggregation
to obtain long-term information. For the spatiotemporal graph, the essential difficulty is
to process the spatial and temporal information simultaneously. In the interaction graph,
another problem is how to preserve interactions. As for the generated graph, adding the
relevant information is the main challenge.

Moreover, when the graph is built as a directed graph (see next section), the main
problem is how to pass messages efficiently. Since, in this graph, messages can only pass
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along the predefined directions; therefore, the graph convolution kernels working on
undirected graphs have to be modified to fit. Based on the forms of graphs used in HAR,
the next section will take a deep look at the structure of skeleton graphs.

4. The Structure of Skeleton Graphs
4.1. Graph Structures Based on Directions

Before extracting the spatial and temporal information, the essential step is to build a
graph. Based on whether the input graphs are directed or undirected, usually, graphs are
further combined with GNNs after converting edges as a connection matrix, such as an
adjacency matrix. For directed graphs, connection matrices are more complex since they
have to denote the predefined directions to pass messages accordingly.

4.1.1. Undirected Graphs

Most methods are built upon undirected graphs. ST-GCN is one well-known milestone.
Most Graph Neural Networks (GNNs) are first proposed for undirected graphs, among
which, messages are conducted in bi-directions. The adjacency matrix in this case is
symmetrical and therefore leads to even-handed passing of information on each orientation.
One clear demerit of the undirected graph is that it does not cover direction information.
For example, bone information, which represents the direction and length of a bone, has
been proven to be a good modality for skeleton graph-based HAR [16,50].

4.1.2. Directed Graphs

Methods built on directed graphs are rare, e.g., [50–52]. Though the computations
are more expensive in these graphs since not each connection direction is equal, they are
capable of emphasizing the messages for action related parts, such as arms for clapping
and legs for jumping.

Lei Shi et al. [50] and B. Fu et al. [51] handled joints and bones information simultane-
ously and thus proposed to take joints as nodes and bones as edges. The center of gravity in
the skeleton is defined as the root node, and the direction of each edge (bone) is determined
by the distance between the node and the root node. The node closer to the root node is
designated to point to the node farther from the root node.

Q. Zuo et al. [52] built a directed graph for each body part, more precisely, left arm,
right arm, left leg, right leg and trunk. The connection matrices used in their directed graph
consist of a self-loop matrix (an identity matrix), an inward and an outward adjacency
matrix. The inward and outward connections are determined with respect to the center
point in that part. Each connection matrix is tackled by one GCN layer, and finally features
from these three matrices are fused together as the part features.

J.L. Gao et al. [53] regarded an undirected spatial temporal graph as two directed
graphs with opposite directions for each edge, and therefore the message passing between
joints is bi-directional, leading to two directed graphs, namely the focus graph and diffusion
graph. During message passing, they first convey information forwardly through focus
graphs and then transform the updated features back via diffusion graphs.

4.2. The Construction of Graph Topology

The construction of graph topology is essential since topology holds a great value
of structural information. Here, the topology not only covers the edges in the graph but
also the nodes. In this respect, the frame-level, edge-level or node-level will be discussed.
The construction absorbs ideas from handcrafted topology and learnable topology, while
handcrafted topology is simple and cheap in computation, learnable topology is more
adaptive as it attempts to build a new graph to preserve relevant information.
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4.2.1. Handcrafted Graph Topology
Modality Level

Rather than directly take the skeletons as a graph, some papers created the skeleton
graph from implicit features to complete the information that original skeleton graphs
missed. For example, J. Cai et al. [54] took the joint-aligned optical flow patch sequence as
an orthogonal cue to the skeleton sequence, and then tackled features from this sequence
as an implicit graph.

Frame Level

In this level, the easiest way is downsampling the frames, such as what Z. Liu et al. [55]
proposed. They chose a frame every d frames and named this operation as dilated windows
with the aim to enforce the information across spatiotemporal dimension but decrease
the redundant information aggregated from an increasingly larger spatiotemporal recep-
tive field.

Subgraph Level

Some researchers are more interested in subgraphs—in other words, sub-connection
matrices, e.g., divided or factorized adjacency matrices. Since, after division, different
matrices can be flexibly manipulated with different weights, this provides the ability of
paying diverse attention on different parts. This idea also helps to capture local information.

• Body-part partition
Papers, such as [56–62], directly divided the original skeleton graph into several body
parts. Typically, the group comprising left arm, right arm, left leg, right leg and trunk,
is intuitive and easy to be implemented. Normally, our limbs are more flexible than
our trunk and interact more with other parts. Moreover, when people are moving, the
diverse parts of the human bodies are capable of making distinct gestures. Based on
this, many strategies can be designed to assign different weights strategy to these parts.

• Distance-based partition
In this category, the definition of distance mainly focuses on centrifugal and centripetal
partition, which divides the neighbors of each node into two or more parts. For one
node vi, a node vj in the centripetal part is closer to the gravity center than vi, and a
node vk in the centrifugal part is farther away from the gravity center than vi. Usually,
the gravity center is the average of all skeleton joints. Although this idea does not
partition the graph topology explicitly, the adjacency matrix is implicitly classified
into different groups with an allowance of applying different weights.
The idea was first proposed by ST-GCN that divides node vi’s neighbors into the
group vi, the group vi’s centripetal joints and the group vi’s centrifugal joints. The
other case comes from [63], which suggests making use of neighbor bones of node vi
and therefore augmenting the three partitions to five, with the addition of centripetal
bones and centrifugal bones, where the centripetal bones are those that are closer to
the gravity center than vi, and the centrifugal bones are those that are farther from the
gravity center than vi.

• Multiscale partition
One partition is based on geometry. For example, B. Parsa et al. [64] performed GNN
on node-level, part-level and global-level graphs. The global level graph is the output
of the group average pooling on the part-level graph, and the part-level graph is the
output of group average pooling on the node-level graph (the original skeleton graph).
The other partition directly makes use of downsampling so as to implement it mechan-
ically. For example, Y. Fan et al. [65] conducted two more downsampling operations
to extract additional graphs of different scales from the original graph.

Edge Level

Apart from the common used self-loop matrix and adjacency matrix, some researchers
argue that there are more implicit edges. Some emphasize the edges in temporal dimension.
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O. Yuya et al. [66] found new edges by a proposed temporal extension module, which adds
connections to multiple adjacent joints on inter-frames. To expand the sampling area for
the temporal dimension gradually, the proposed temporal extension module is applied
between conventional spatial graph and temporal graph convolution.

P. Ghosh et al. [67] added more temporal connections that can span multiple timesteps,
e.g., the left arm joint at timestep t can have connections with corresponding joint at
timestep t + 1, t + 2, · · · rather than only t + 1 in ST-GCN. To capture the dependence of
non-physical connections between joints, some researchers simply add edges between
joints, while others focus on edges between the parts of interest.

Z. Bai et al. [68] fully connected each joint in the skeleton with other joints arguing the
division of root, centripetal and centrifugal in ST-GCN is not optimal.

R. Zhao et al. [69] added edges between limbs and head, while treating all other joints
independently and named this graph as the global graph. The original skeleton graph was
taken as the local graph. Finally, they computed the sum of the output from both local and
global graphs.

Y. Li et al. [70] focused on hand gesture recognition. They added three types of edges,
one by linking the tip of each finger except the pinkie with the base of the finger to its right,
and the tip of the pinkie is linked with the base of the ring finger. The second type is to link
the third joint of each finger except the pinkie to the second joint of the little finger. The
third type is to link the tip and third joint of the same finger. Among them, the first type
offers a way to measure the distance of two adjacent fingers, the second better measures
the opening degree of the hand. The third type directly provides the information of some
actions, such as grabbing in which fingers bend.

Moreover, some methods inherit the characteristics of actions and physical nature,
such as symmetry and movements. Q. Zuo et al. [52] added a symmetric matrix and
edge matrix, among which, the symmetric matrix considers the symmetric structure of the
human body, and the edge matrix tends to contain significant movements of some edge
joints. The inspiration comes from the fact that, if one waves his hands, then the movement
of hands is more clear than the arms, considering the acceleration.

Additionally, some methods choose a constant hyperparameter to generate edges. In
addition to the self-loop and common adjacency matrix, X. Hao et al. [71] added global
hyperedges capturing global information and local hyperedges capturing local information.
These edges are generated by varying the regularization parameter of sparse representation
objective functions. In other words, global and local hyperedges are constructed under
different sparsity assumptions, controlled by a hyper parameter β. The choice of β is in a
specified range.

4.2.2. Learnable Graph Topology

Learning graph topology is more adaptive, which allows finding more valuable
information and keeping the information of interest.

Frame-Level

At the frame-level, except for manually selection, an automatic mechanism armed with
reinforcement learning (RL) is preferred. To build a RL system, three components—namely
rewards, values and the set of actions—are unavoidable. For each action, such as choosing
one frame or dropping one frame, a predefined reward will be assigned. After evolving
for a sequence of actions, values are used to estimate the current state. The objective of a
RL system can be defined to obtain a highest value at the preferred state. After carefully
designing the reward mechanism, RL is capable of choosing key frames and ignoring frames
with unclear motions or other irrelevant information.

Y. Tang et al. [72] proposed the Progressive Reinforcement to detect the best key
frame, the set of actions consists of a shift to the left, shift to the right and staying still.
The state is at the chosen frame at time t, and rewards are [1,−1] at the first iteration for
correctly predicting or not; after that, the rewards are [Ω,−Ω], where Ω is a constant. Deep
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Q-learning and policy gradient are adopted in two branches. Frame distillation network
(FDNet) and GCN promote each other mutually, as GCN provides rewards for FDNet and
FDNet selects key frames to refine GCN. The better the GCN is, the more accurate rewards
will be provided.

Edge-Level

To capture more information among physically nonadjacent joint but action-related
or task-related joints, most methods focus on learning new connections. Some authors
formalize the learning procedure as a learnable matrix by modifying existing methods. L.
Shi et al. [73] adopted two new parameterized adjacency matrices rather than the original
adjacency matrix, namely Bk, Ck, where k denotes the index of layer in the model.

Moreover, Bk, the global graph learned from data, represents the graph topology
that is more suitable for the action recognition task; Ck is the individual graph learned by
normalized embedded Gaussian function, which has unique topology for each sample.

H.Y. Yang et al. [74] proposed a learnable matrix that can learn pseudo connections,
covering the dependencies between connected joints and joints that are not connected.
Other researchers propose an explicit inference module to generate a new adjacency matrix.

• For every three consecutive frames, X. Gao et al. [75] proposed learning a new graph
with a graph regression (GR) module. The graph regression problem is formulated
as the optimization of the graph Laplacian matrix L. For intra-joints, the weights for
weakly connected and strongly connected joints are different, where strong connec-
tions include physical connections and some physical disconnections among joints,
and weak connections denote potential connections, such as those between head
and hands. For the inter-joints, connections between corresponding joints along the
temporal dimension and their neighborhoods are assigned with different weights, and
others are set as zero.

• To capture the intrinsic high-order correlations among joints, B. Li et al. [76] proposed
spatiotemporal graph routing, consisting of a spatial graph router (SGR) and temporal
graph router (TGR). SGR captures the connectivity relationships among joints based
on sub-group clustering. TGR focuses on structural information with the correlation
degrees of joints trajectories.

• M. Li et al. [77] estimated actional links (A-links) and structural links (S-links), where
A-links are estimated by encoder–decoder (AE)-based A-links inference module (AIM),
and S-links are estimated by high-order polynomials of an adjacency matrix. The
A-links capture the latent dependencies among joints, and S-links indicate higher
order relationships.

• F. Ye et al. [78] proposed a joint relation inference network (JRIN) to aggregate the
spatiotemporal features of every two joints globally and then infer the optimal relation
between every two joints automatically. The relations of joints are quantified as the
optimal adjacency matrices.

• F.F. Ye et al. [79] estimated edges by joint-relation-reasoning (JRR). JRR is trained by
RL, optimized with policy gradient. In detail, the state equals to E⊗M, where E
contains the global edges information, M represents the connectivity weights of every
tow joints, and ⊗ denotes the element-wise product; rewards comes from the output
of GCN; action is the output of JRR, which indicates temporal relevance of every two
joints under the current action.

• To extract the implicit connections and properly balance them for each action, W.S.
Chan et al. [49] created three inference modules, namely the ratio inference, implicit
edges inference and bias inference. The finally estimated matrix is the combination of
the output from these three modules. The ratio of the implicit and structural edges is
vital. Adjacency matrices A and Mbias present the structural edges. Mbias is updated
with back propagation and is kept the same for all actions.

Other works show their interest in context-enriched skeleton, samples variety etc.
Fanfan Ye et al. [80] proposed learning a context-enriched dynamic skeleton topology with
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a Context encoding Network (CeN). CeN simply consists of three 1× 1 convolutional layers
and permutations, which maps the input tensors into an adjacency matrix. The convolution
is alongside the joint coordinate dimension, temporal dimension and then joint dimension,
and thus CeN can generate sample different graphs.

K. Liu et al. [63] proposed learning additional connections among joints and bones for
various action samples. Precisely, the adaptive joint-bone adjacency matrix and adaptive
joint adjacency matrix are all learned by softmax, which uses normalized embedded
Gaussian functions to measure similarity.

Node-Level

Rather than focusing on new connections, some methods aim to remove redundant in-
formation or aggregate messages from multiple nodes. Some works learned new vertexes—
in other words, they aggregate multiple nodes as one node. Heidiri et al. [81] proposed a
spatiotemporal bilinear network (ST-BLN) with no requirement of predefined adjacency
matrix. ST-BLN forces the attention matrix to be symmetric. The selection of the nodes in
the first layer will lead to an aggregation of joint information or the addition of new nodes.

Other works selected nodes first. To distinguish the most informative joints for each
stream, Y.F. Song et al. [82] only passed the information from unactivated joints to the next
stream. The activated class activation maps (CAM) obtained from previous GCN streams
are accumulated as a matrix to inform the new stream about which joints have been already
activated. Others aim at learning node embeddings.

• W.W. Ding et al. [83] emphasized the learning of localized correlated features. By
projecting each part of human body into a node, a fully connected similarity graph is
formed to capture relations among the disjoint and distant joints of the human body.
The learned mapping of spatial matrices and temporal matrices can determine which
part of the human body across several consecutive frames should be mapped to a
node in the similarity graph.

• W.J. Yang et al. [84] merged nodes in the same part of the skeleton into one node.
Each new generated node takes the weighted summation of the original nodes that it
covers as its feature, using trainable weights. This integration is done part-wise and
channel-wise.

• Y.X. Chen et al. [85] proposed structural pooling since the motion information con-
tained in human body is highly related with the interaction of five body parts, and
therefore graph convolution on the graph with these five-part nodes can capture more
global motion information. By graph pooling, the new compressed graphs in different
sizes are input to the model.

• G.M. Zhang et al. [86] proposed learning a new topology by topology-learnable graph
convolution, which is decomposed as feature learning and node fusion. Node fusion
is performed by a learnable fusion matrix L that is initialized with a normalized
adjacency matrix and added with an additional constant bias.

5. A New Taxonomy for Skeleton-GNN-Based HAR

The skeleton-GNN-based HAR approaches are classified as spatial methods, spa-
tiotemporal methods and generated methods, while spatial ones take spatial graph as
input, spatiotemporal ones use spatiotemporal graphs as inputs, and generated approaches
are supervised by tasks rather than HAR, such as knowledge distillation, or have an unfixed
model structure before training. The idea is illustrated in Figure 3.

5.1. Spatial-Based Approaches

Approaches in this category take GNN as a spatial feature extractor, and the temporal
evolution is handled by other modules. Two major candidates are proposed to evolve
states in temporal dimension. One category is traditional conditional random field (CRF)
methods, including Hidden CRF (HCRF). The other one prefers the family of RNN, such as
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RNN, long-short temporal memory network (LSTM) and Gated Recurrent Units (GRU).
Examples in each category are shown in Figure 7.

(a) (b)

(c) (d)

Figure 7. Examples of spatial methods: (a) the CRF approach [87], the others are RNN methods.
Precisely, (b) a separated approach [88], (c) a bidirectional approach [53] and (d) the aggregated
approach [89].

5.1.1. CRF

CRF is an undirectional graph model whose nodes are divided into exactly two disjoint
sets X and Y, the observed and output variables, respectively. The conditional distribution
p(Y|X) is then modeled. It is suitable for labeling action sequences since Markov chain
models are able to track the evolution among temporal dimension.

K. Liu et al. [87,90] argued that GCN is powerful in extracting spatial information but
weak on state evolution and then performed HCRF on extracted features. After obtaining
features by GCN, HCRF will learn hidden states on each node and perform directed
message passing on these hidden states. Finally, under the minimum negative conditional
log-likelihood rule, the label for an action sequence sample is defined. By viewing the
skeleton graph as a CRF, K. Liu et al. [63] adopted CRF as a loss function to improve
performance.

5.1.2. RNN

Although CRF works as a graph model and handles the state evolution, there are
situations when they are non-Markov chains. For example, the current state may rely on
states from all previous timesteps. This is why RNN was proposed and started becoming
popular. The family of RNN is capable of preserving the relationships between states in
multiple timesteps compared with CRF in k predefined timesteps. Among the family, LSTM
is capable of solving gradient explosion and gradient vanishing that exists in vanilla RNN,
while GRU can be regarded as a simplification of LSTM.

The RNN methods are classified as separated strategy, bidirectional strategy and
aggregated block.
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Separated Strategy

Some methods perform spatial information extraction, usually by GCN (either GCN in
spectral space or in spatial space) and perform state evolution separately. In [88], to further
encode continuous motion variations, the deep features learned from skeleton graphs by
GCN in spectral space were gathered along consecutive temporal slices and then are fed
into a recurrent gated network. Finally, the recurrent temporal encoding was integrated
with the spectral graph filtering and action-attending to jointly train.

R. Zhao et al. [69] performed GCN and LSTM separately, the spatial information from
GCN in each frame was directly input into LSTM cell. Z. Y. Xu et al. [91] proposed using
RL combined with LSTM as the feature selection network (FSN) consisting of a policy
network and a value network. To be precise, both the policy network and value network
are based on LSTM for sequential action or value generation. The feature selection is done
along temporal dimension and the input features are the spatial features from GCN.

S. Xu et al. [92] worked on two-subjects interaction graphs. After performing GNN
on skeleton graphs in one frame to extract spatial information, the attentioned LSTM is
preformed on the joint-level, person-level and scene-level so as to pass information in
different scales. To leverage these three types of features, a Concurrent-LSTM (Co-LSTM) is
applied to further balance their temporal dynamics for action recognition.

M.S. Li et al. [77] used GRU to update the joint features while inferring the future pose
conditioned on the A-links and previous actions. The prediction from GRU evolution was
then handled and later adopted by GNN.

In the work proposed by J.M. Yu et al. [93], RNN was used as an autoregressive model
to predict the hidden state of noisy skeleton graphs. The hidden state was later used to
predict action class. Q.Q. Huang et al. [94] worked with the same idea except for changing
the basic GNN to attentioned GNN. Others, such as [62,64,95] extract state evolution
information similarly after various GNN modules but not based on attentioned GCN.

Bidirectional Strategy

Considering the bi-directional information of video sequence, some use bidirectional
LSTM to keep forward information and backward information simultaneously.

In order to utilize the past and future temporal information, X.L. Ding et al. [96] choose
the bidirectional RNN to model skeleton sequences and adopt it before extracting spatial
information by GNN. To capture the temporal contextual information over frames, J.L. Gao
et al. [53] provide a context-aware module consisting of bidirectional LSTM cells, aiming at
modeling temporal dynamics and dependencies based on the learned spatial latent nodes.

Except for the basic bidirectional LSTM, J. Huang et al. [97] deployed GCN on LSTM
to enhance its ability of extracting spatial features. Precisely, they provided a LSGM that
consists of one original LSTM cell followed by two GCN layers. Then, the LSGM was used
to build Bi-Direction LSGM modules, which comprises of a forward LSGM and a reverse
LSGM. The forward LSGM and reverse LSGM work in parallel, and the outputs from them
are added together to pass to the next layer.

Aggregated Block

Some argue that the extraction of spatial information and temporal information can be
stacked together as a basic building block; however, they process the spatial information
before performing temporal convolution. Papers [89,98] integrated GCN with LSTM, in
other words, each gate in LSTM—namely, the input gate, forget gate and output gate—is
armed with GCN so as to operate LSTM directly on the extracted spatial information from
each frame.

5.2. Spatiotemporal Approaches

The methods mentioned above tackle spatial information and temporal information
separately. However, spatial information and temporal information are correlated. For
example, the similar actions of waking up and lying on the bed have similar spatial
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information but distributed at different timestamps. Examples in each category are shown
in Figure 8.

(a) Expand timescale

(b) Modify GCN (c) RNN-based

Figure 8. Examples of spatiotemporal-based methods: (a) the approach that attempts to expand
timescale [99], (b) an approach that modifies GCN [100] and (c) an RNN-based approach [83].

5.2.1. CNN

ST-GCN is a typical spatiotemporal approach since it performs GCN on spatiotemporal
graph (STG) directly and therefore extracts spatiotemporal information simultaneously.
Methods, such as [29,48,54,60,68,82,86,96,101–113] are all developed based on ST-GCN.
Methods based on AGCN also work on STG, such as [66,73,93,114]. However, one drawback
for these methods is that they only perform spatiotemporal extraction on a predefined
temporal size (the kernel size of CNN in temporal dimension); therefore, multi-scale
temporal information cannot be handled.

To work on multiple timescale dynamically so as to take either long term dependen-
cies or short term dependencies into consideration, P. Ghosh et al. [67] also used STG
but they allowed flexible temporal connections, which can span multiple timesteps. For
example, the joint left arm at timestep t can have connections with left arm joint at timestep
(t + 1, t + 2, · · · ) rather than only at t + 1 in ST-GCN. Their method is based on Hourglass
(a CNN framework), combined with ST-GCN.

Z.T. Zhang et al. [99] attempted to handle temporal information with two gated
temporal convolutional network (TCN), herein 1DCNN and 2DCNN with tanh and sigmoid
activation functions working as gates. They argued that TCN will not overfit to some
extent since it inherits the stable gradient of CNN. After performing filtering in temporal
dimension, the outputs are combined together and then tackled by GCN and MLP.

In addition to making progress on temporal dimensions, some approaches attempted
to modify GNN to take multi-scale in spatiotemporal dimension into consideration. Z. Hu
et al. [100] established dependence relationships for different bone nodes with a bone joint
module, which is based on multiscale dynamic aggregated GCNs. GCNs describe and
aggregate the bone joint semantic information. In this way, either the spatial information or
the multiscale temporal information are all handled together.
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5.2.2. RNN

Based on GCN, to tackle long-term information, W.W. Ding et al. [83] used LSTM as a
vertex updater during message passing. Therefore, the features of each vertex will contain
the temporal information and thus handle spatiotemporal information simultaneously.

5.3. Generated Approaches

The generated approaches cover two categories, one includes self-supervised methods,
also known as unsupervised methods, and the other is neural architecture search (NAS),
which aims at generating the best model by combining candidate components.

Both categories work in a non-end-to-end way. For the self-supervised methods, they
first use priors, like pretext tasks, to generate a pretrained model, and then adapt it to
fit the target task. For NAS, it aims at generating a best model on the target task. They
emphasize the combinations of given components first, and chose the best model from
these combinations. Then, the chosen model will be fine tuned on the target task.

Examples in each category are shown in Figure 9.

(a) (b)

(c) (d)

Figure 9. Examples of generated methods: (a–c) self-supervised approaches, where (a) the approach
with Autoencoder (AE) [77], (b) the adversarial approach [69], (c) a teacher–student approach [115]
and (d) a neural architecture search (NAS) approach [116].

5.3.1. Self-Supervised

Self-supervised learning is a means for training computers without manually labeled
data. It is a member of unsupervised learning methods where outputs or goals are de-
rived by machines. The machines are thus capable of labeling, categorizing and analyzing
information on their own and then drawing conclusions based on connections and correla-
tions. We classify methods in this category as AE, adversarial learning and teacher–student
mechanism.

AE

M. Li et al. [77] built an A-links inference module (AIM) based on AE, where the
output of the encoder is the probability of each joint pair with type-c link, and the decoder
requires the output of encoder and joints positions in the previous frame. Thus, the loss of
AIM is the difference between part of the input from the encoder and decoder’s prediction.
In this way, no more labeled data are required during pre-training the AIM except for the
input poses.
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Adversarial Learning

Inspired by adversarial learning, in [69], they incorporated it into the Bayesian infer-
ence framework and formulated it as a prior that targets regularized model parameters as to
improve the generalization. The discriminator was implemented as a fully connected layer.
The loss function while training is similar as what is adopted in generative adversarial
network (GAN).

Teacher–Student Mechanism

For transferring knowledge between two graphs, such as one obtained in the lab
and the other from real life, Y.S. Tang et al. [115] used a teacher–student mechanism. The
teacher network guides the student network to transfer the knowledge across the weight
matrices by a task-specific loss function, so that the relation information is well preserved
during transfer. By doing so, no more action labels for the target domain are required
during training.

5.3.2. NAS

In addition to self-supervised methods to generate task-specific models, some re-
searchers showed their interest on automatic machine learning (AutoML), among which,
NAS has gained more attention.

W. Peng et al. [116] discussed the best architecture of skeleton GCN methods, given
components: the dynamic graph modules with various spatiotemporal cues and Cheby-
shev approximations in different orders. All candidates have residual connections. The
proposed NAS framework works to find the most accurate and efficient network. Moreover,
instead of providing a pre-defined graph, they generate dynamic graphs based on the node
correlations captured by different function modules.

N. Heidari et al. [117] progressively adjusted the model topology by increasing the
width of the model layers until the performance converges. If the addition of the last layer
does not improve the performance, this newly added layer is removed and the algorithm
stops growing the topology.

6. The Common Frameworks

In addition to the proposed taxonomy, most methods use some specific frameworks to
improve their performance.

6.1. Attention Mechanism

The attention mechanism helps emphasize the inference related information. Based
on the dimension where the attention mechanism is used, approaches are divided as
self-attention methods and other attention methods.

In a general attention mechanism, there are three components, namely the query Q,
the key K and the value V. After comparing the similarity between the key and the given
query, one attention map is obtained and then employed on V so as to select discriminative
values. The more similar are K and Q, the higher attention score that the corresponding
value will have. Usually, the sigmoid functions or softmax functions are good candidates of
similarity functions. One example of an attention mechanism is shown in Figure 10a.
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(a) (b) (c)

Figure 10. Examples of (a) self-attention [118], (b) the skip connections [119] and (c) the effective
squeeze-excitation (eSE) block [120], where (b,c) are dense blocks.

6.1.1. Self-Attention

Self-attention is the basic component in Transformers, commonly used in natural
language processing (NLP). It is well-known for its capability of reweighting features.
However, self-attention in NLP specifically includes an attention mechanism for the source
domain or the target domain. Here, the definition of self-attention is extended. Since the
model for HAR may not always have the target domain and source domain that occurs in
NLP, as long as the features used for generating attention maps have the same meaning—in
other words, are homogeneous—they are all regarded as self-attention. One common
example is the attention maps between joints in skeleton graphs.

The first milestone of this idea is AGCN, which integrates attention with GNN by
taking the attention map of the input joints as an added weight matrix. The attention
map is then summed to the mask matrix, which is also used in ST-GCN. The self-attention
matrix is estimated between input joints. All of the weight matrices are summed together to
re-balance the relation of joints. Methods, such as [66,73,93,114,121] also used the same idea.

W. Peng et al. [122] adopted self-attention on joints and measure the similarity with a
Gaussian similarity function. J. Shi et al. [123] proposed using the self-attention mechanism
to calculate the weighted sum of the values from all nodes so as to aggregate features from
the entire graph and also use the gating mechanism to adjust the weight of self-attention.

Y.B. Fan et al. [113] used a cross-attention module that consists of a self-attention
branch and a cross-attention branch. Apart from paying more attention to informative
joints in the self-attention branch, the combination of these two branches also suppress the
influence of joints that are less relevant to the context information. T. Ahmad et al. [124]
proposed a self-attention graph pooling to retain local properties and graph structures
while pooling.

C. Plizzari et al. [125] highlighted a spatiotemporal Transformer network (ST-TR). In
this model, the Spatial Self-Attention module (SSA) was used to understand intra-frame
interactions between different body parts. They also adopted a Temporal Self-Attention
module (TSA) to model inter-frame correlations.

W. Li et al. [126] proposed using self attention in spatial, temporal and channel dimen-
sion, which takes the features after global average pooling and max pooling as the original
features, after one-dimensional convolution operation, they are regarded as the query and
the key and then used softmax to calculate the attention map.

Instead of simple self-attention, such as what AGCN used, J. Xie et al. [127] integrated
channel attention module (CAM) into their Vertex Attention Mechanism (VAM) to extract
the global co-occurrence features of actions. The CAM generates channel weights by
performing a fast 1DCNN in adaptive kernel size. This aggregated feature is used to
generate attention map and later is added to sub-adjacency matrices. Finally, the complete
summation of adjacency matrices is applied on the input node features.
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6.1.2. Other Attention Mechanism

Instead of calculating the relation between homogeneous features in self-attention,
other attentions work on multi-domains, including spatial attention, temporal attention,
channel attention and auxiliary data attention.

Spatial Attention

• Joint-level
The joint-level spatial attention is the most used attention module, since it helps to
re-weight joints and emphasize those task-informative joints. This is especially helpful
in discovering the long-distance dependency.
For each channel, Y.X. Chen et al. [85] converted the the relationship between local
motion pattern and global motion pattern to an attention map, where the local features
come from the rescaled graph and the global features come from the original skeleton
graph. This can be regarded as a channel-separated joint-wise attention.
To adaptively weight skeletal joints for different human actions, C. Li et al. [88] set a
dynamic attention map that works on the features from spectral GCN. This attention
map varies according to the spectral GCN features and different actions, and is used
to weight nodes.
S. Xu et al. [92] took the point-level hidden states captured by LSTM, as the key and the
query. For different people, an attention map is captured to select informative joints.
X.L. Ding et al. [96,128] used the attention graph interaction module, designed to pay
different levels of attention to different joints and connections. The attention map is
trained together with other parameters.
The other one follows the popular recipe while using LSTM, which emphasizes the in-
formative hidden state extracted by LSTM cell. For example, C. Si et al. [89] integrated
the attention operation in LSTM cells. They take the weighted summation of all nodes’
hidden states as the query, and use sigmoid similarity function to select discriminative
spatial information so that to enhance the information from key joints.

• Part-level
Some researchers argue that the attention mechanism on joints is too localized and
fails to detect the intra-part relation (global topologically relations).
Since each action comprises of multiple interactions that happen in different parts,
G. Zhang et al. [129] adopted multi-heads attention, which will generate multiple
attention maps so as to focus on different parts. The attention model identifies key
joints of every action by introducing two regularization terms, spatial diversity and
local continuity. The spatial diversity is multi-head. It works by maximizing the
distance between attention maps so as to focus on different parts. The local continuity
is controlled by the attention map on graph’s Laplacian matrix.
Y.F. Song et al. [119] concatenated the features of all parts and perform average pooling
in temporal dimension, and then pass them through a fully connected layer with
a BatchNorm layer and a ReLU function. Subsequently, five fully connected layers
are adopted to calculate the attention matrices and a softmax function is utilized to
determine the most essential body parts.
Q.B. Zhong et al. [109] emphasized the joints with more motions and propose a
novel local posture motion-based attention module (LPM-TAM) to filter out low
motion information in temporal domain. This operation helps improve the ability
of motion-related feature extraction. The attention map of skeleton sequence in the
spatiotemporal graph is represented by the attention of local limbs estimated in
temporal dimension.

Temporal Attention

Some approaches argue to use the temporal attention to select the most informative
frames or joints that are instructive in temporal dimension. N. Heidari et al. [130] proposed
a temporal attention module (TAM) to increase the efficiency in skeleton-based action
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recognition. It selects the most informative skeletons of an action, in other words, skeletons
corresponding to the top T′ highest attention values at the shallow layers of the network.

Most papers [73,74,97,109,126] calculated the temporal attention map with the most
popular recipe, which adopts a sequence consisted of a pooling layer, a fully connection
(FC) layer or one 1DCNN layer, followed by Relu or softmax activation functions. For
example, L. Shi et al. [73] performed attention by 1DCNN. They first conducted average
pooling for features and then processed the result by 1DCNN, and the attention map was
calculated by softmax.

H.Y. Yang et al. [74] proposed a temporal and channel-wise attention (TCA) module,
among which, the query is the node features after temporal and joint-wise global pooling,
while the key is the node features after channel and joint-wise global pooling. The later
follows the common recipe of attention. Q.B. Zhong et al. [109] processed the motion
feature map by local posture motion-based temporal attention module and further by local
posture motion-based channel attention module, with an aim at selecting the strongest
discriminative representations between different posture movements.

Channel Attention

Methods, such as [49,73,74,100,120,126,127,131], assumed that features in different
channels have various importance, and thus they attempted to balance the importance of
each channel while inferring, known as channel-wise attention.

In [49], channel-wise attention was adopted in both GCN and gated CNN for infor-
mation filtering. Squeeze-and-excitation (SE) block is the specific channel wise attention
mechanism and was used after their action-specific graph convolutional module and gated
convolution.

Auxiliary Data Attention

In addition to the attention on skeleton graphs, some also include attention on auxiliary
data with the hope of completing the information that graph skeletons may be lack of. T.
Ahmad et al. [132] used attention on RGB images to generate attention masks. These masks
will be used on skeletons to pick attention joints.

6.2. Dense Block

The dense block attempts to compress features and also preserve gradients. There are
mainly two types of dense block structures. One is the SE block [120], working on channel
dimension, which performs a channel-wise attention for adaptive aggregation along the
channel dimension. The other one is skip connection, also known as residual connection,
which adds more connections between hidden states. One well-known example of skip
connection is ResNet. It proposes to pass residual features by shortcut passing.

6.2.1. Skip Connection

The skip connection is in fact a shortcut operation while passing information. By
doing so, there are at least two advantages: one is that shortcuts help preserve gradients,
preventing gradient vanishing after a long sequence and also ensure stable training. The
other is that by carefully designing skip steps, one can control the dependencies along
the temporal dimension both locally and adaptively. One example is demonstrated in
Figure 10b.

The first benefit has been proven by numerous papers using CNN or RNN. Methods,
such as [51,61,67,91,107,110,113,120–123,126,128,132–135], all follow the basic architecture
of skip connection. The second benefit was also discovered by multiple papers.

C.Y. Si et al. [136] designed a skip-clip connection by adding shortcuts between the
final hidden states from each clip and also between the adjacent skip-clip LSTM layers. In
this way, gradients along adjacent clips and gradients among each frame in one clip are all
taken care of. Paper [62] used the same idea. Some designed a more complex connection
strategy to pass dependencies in multi-paths.
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Y.F. Song et al. [119] (Figure 10b) proposed three types of skip connections, namely
block residual, module residual and dense residual. The block residual, which adds
connections between spatial-block and temporal-block, are regarded as the basic component
of their modules. The module residual adds connections between modules, and the dense
residual combines the connections in block residual and module residual.

Some researchers exploited the benefits of skip connections in different aspects. Xia. H
et al. [137] used skip connections to fuse the information of the previous hop and the infor-
mation of the next hop to collect information in different spatial scales. K. Papadopoulos
et al. [112] preserved the information of short-term dependencies by skip connections.

6.2.2. Squeeze-and-Excitation Block

Methods with SE block highlight the non-homogeneous features in each channel and
attempt to squeeze features by pooling. One example of effective SE (eSE) is demonstrated
in Figure 10c. F. Li et al. [120] concatenate consecutive layers by a one-shot aggregation
(OSA) and the effective squeeze-excitation (eSE) block, an improved version of SE, which
well balances the performance and efficiency. The eSE explores the interdependency
between the output channels and squeezes the temporal and spatial dependencies.

Z.T. Zhang et al. [99] compress and extract multi-channel data through SE block to
obtain the structure and feature weight. The weight is fused with the extracted features to
obtain the spatial structure features.

6.3. Multi-Modalities

Multi-modalities is a very common framework using data in various domains. It can
greatly help to improve the efficiency of a method since the weaknesses of one modality
can be compensated by the strengths of another. The summary of possible candidates for
modalities is shown in Figure 11.

Figure 11. The candidates for a multi-modalities framework.

6.3.1. Multi-Stream

Multi-stream is the most commonly used structure in skeleton-GNN-HAR, methods,
such as [14,49,52,54,68,69,71,73,87,89,90,93,99,104,114,119,120,123,125,126,134,137–139] all
use this framework. This framework utilizes different types of data, such as joint stream,
bone stream, part stream, relative coordinates of the joints, temporal displacements. One
example is shown in Figure 2. Different types of data make up the information that one
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single stream is lacking of; however, the more streams that one approach adopts, the higher
the computation price is.

6.3.2. Multi-Sensors

Usually the sensors are the same but are fixed at different positions to obtain a multi-
perspective dataset. For example, Y. Jiang et al. [102] used two Kinect sensors, which were
orthogonal to each other, to help extract skeleton graphs from different perspectives.

6.3.3. Semantics

Semantics information is also helpful in enhancing the feature representation capability.
For example, P. Zhang et al. [135] used frame index and joint index in cooperation with
their model. The joint index is important since two joints of the same coordinates but
different semantics would deliver very different information. The temporal information
(frame index) is also important to distinguish actions, such as sitting down and standing
up from a chair, which are different only in posture occurrence order along the temporal
dimension.

6.3.4. Images

J.M. Cai et al. [54] used Joint-aligned optical Flow Patches (JFP) to capture the local
subtle motion around each joint. The extracted features are taken as pivotal joint-centered
visual information. T. Ahmad et al. [132] used attention on RGB images to generate attention
masks, which helps to pick attention joints.

6.4. Change Feature Space

Rather than working in the original features space, some approaches attempted to
explore a better modeling space for skeleton graphs, such as manifold and spectral space.
Examples are shown in Figure 12a,b.

(a) Manifold (b) Eigenvectors in spectral space

(c) Regular spatial convolution (d) Shift spatial convolution

Figure 12. Examples of frameworks, where (a) [106], (b) [140] are examples, which change space, and
(c,d) [141] are examples of neighbor convolution.
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6.4.1. Manifold

The idea of manifold is inspired by the non-Euclidean characteristics of skeleton
graphs. W. Peng et al. [106] define their model on a Riemann manifold, which they argue is
more suitable to model the graph data. Their model is built via the Poincaré geometry to
better model the latent anatomy of the data structure.

6.4.2. Spectral Space

One common idea of spectral space approaches is spectral GCN. Some implementa-
tions of spectral GCN are based on Chebyshev expansion. For example, methods [88,116]
all adopt k-order Chebyshev expansion. J. kao et al. [140] designed graph representations
for motion data, which is implemented by performing Graph Fourier transformation (GFT)
on Laplacian matrix.

T. Ahmad et al. [124] performed spectral sparsification by exploiting similarity of the
original graph, which is in Laplacian quadratic form, and that of the sparsed graph. It aims
at discarding some redundant information by eliminating noisy nodes and edges.

6.5. Neighbors Convolution

The ways of convolution decide the characteristics of the aggregated features. The
traditional way is k-neighbors convolution, while the one-hop convolution used in ST-GCN
is the specific case of k-neighbors convolution when k = 1. Others consider to modify
the basic weighted summation in traditional convolutions, targeting at containing more
structural information. Examples are shown in Figure 12c,d.

6.5.1. The k-Neighbors Convolution

This kind of convolution aggregates the features of the node itself and its neighbors.
According to the order of neighbors, the module are classified as one-hop and multi-
hop. The method ST-GCN [13] and related methods [29,96,110–113] all adopt one-hop
convolution. Methods [55,107,128] change one-hop to multi-hop, since the k-order of
neighbors will capture more local information around the center node and also preserve
the structural information around it.

6.5.2. Other Convolution

One example is shift-convolution [141]. During shift convolution, the input features
are first shifted along one predefined direction along body parts and then are weightly
aggregated by 1DCNN. The paper proposes two kinds of spatial shift graph operations for
modeling spatial skeleton graph, namely local shift graph convolution and non-local shift
graph convolution. The first one’s receptive field is specified with the physical structure of
the human body, while the later one makes the receptive field of each node cover the full
skeleton graph.

7. Datasets
7.1. Means for Collecting Datasets

At the beginning, the 3D skeletons were directly captured by retro-reflective markers
(RRMs), which were adhered to a suit and taken as joints. For example, with the VICON
(Oxford, UK), a tracker system comprising RGB cameras, infrared-sensitive cameras and
markers, movements and the 3D coordinates of every marker can be captured. This offers
exact joint coordinates but no depth maps. Also, the requirement of markers and tracker
system makes capturing intrusive and only possible under laboratory context.

Afterwards, as the emerging of DL-based skeleton extractors, e.g., Staked Hourglass [142],
Google PoseNet [143], and especially the popularity of ToF cameras (Kinect [144]), binocular
disparity-based cameras (Intel Realsense [145]), the marker-suit and complex tracking
system are no longer or less necessary. Though the extracted joint position might still
be influenced by the environment, for example when the subject’s clothes look similar
to the background, this makes non-intrusive extraction in real-life possible. In addition
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to the simulation dataset captured under laboratory conditions, video platforms, such as
YouTube are excellent candidates for action datasets, since their users have shared lots of
videos under various contexts. Videos collected in this way are closer to real cases where
HAR methods will be applied and therefore will help to fill the incompleteness shown in
simulation datasets. Apart from collecting data from scratch, existing datasets are free to
be used to recreate a new dataset, such as the UOW LSC [146] dataset, which combines
various existing datasets.

7.2. Dataset Taxonomy

The datasets are grouped as simulation datasets and real-life datasets, each group is
divided into single-subject actions, interacted actions and hybrid actions. The details of
all mentioned datasets are summarized in Tables A1 and A2 of the Appendix A, where
Table A1 collects the basic information of the datasets, and Table A2 collects the activity
list and related methods. The example of each dataset is illustrated in Figures A1–A3 of
Appendix A.

7.2.1. Simulation Datasets
Single-Subject Actions

MSR Action3D [147]: This dataset consists of 20 actions that interacting with game-
consoles and each is performed three times by seven subjects. The depth maps are captured
at about 15 frames per second (fps). The actions are classified into AS1, AS2 and AS3, where
AS1 and AS2 intend to group actions with similar movements, and AS3 groups complex
actions together. Depth maps and skeletons are offered without RGB videos.

CAD 60 [148]: RGB videos and aligned depth maps are captured by Kinect. Videos
are taken in five different environments and the 12 unique activities (composed of several
sub-activities) are performed by four actors. These actions cover the daily activities in office,
kitchen, bedroom, bathroom and living room.

3D Action Pairs [149]: Six pairs of actions are carefully collected such that the two
actions in each pair are similar in motions and shapes, with an aim to emphasize the
importance of analyzing the shape and motion cues jointly during action recognition.
Actions in every pair have similar trajectories and similar objects. Each action is performed
three times by 10 actors. Depth sequences are offered but without skeletons.

MSR DailyActivity3D [150]: The dataset was captured by a Kinect. Sixteen activities
in living room were recorded. Each of the ten subjects performs every activity twice: once
in standing position, and once in sitting position. The depth maps, skeletons, and RGB
videos are recorded; however, RGB videos and depth maps are not strictly synchronized.

CAD 120 [151]: After collecting 120 human–object interaction videos, this dataset
annotates each video with the human skeleton tracks, object tracks, object affordance
labels, sub-activity labels, and high-level activities. In total, four actors help to perform
10 sub-activities in 10 different contexts, e.g., making cereal, taking medicine, arranging
objects.

ORGBD [152]: This dataset targets human–object interaction recognition based on
RGBD videos. Seven actions were collected and performed by 36 subjects. The depth map,
skeletons and RGB videos were offered.

SYSU [153]: It is a human–object interaction dataset performed by 40 subjects. There
are 12 different activities, among which, each participant manipulated one of six different
objects. The RGB videos, depth sequence and skeleton data were captured by Kinect in
one view.

UW-IOM [154]: The University of Washington Indoor Object Manipulation dataset,
designed for ergocentric risk detection, comprises videos from twenty subjects. They are
classified into 17 action classes. Videos were recorded by Kinect at an average rate of 12 fps.
Each participant performed to pick up six objects.

In addition to, the pure human–object datasets summarized above, others below in
this section cover other single-subject action dataset (with or without objects).
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HDM05 [155]: This dataset was introduced in 2005 and contains more than 70 motion
classes performed by five actors. The resulting 3D trajectory data are stored in the C3D
mocap file format. To capture videos, six RGB cameras and six infrared cameras were used
within a VICON MX system.

IEMOCAP [156]: The Interactive Emotional Dyadic Motion Capture (IEMOCAP)
database is an acted, multimodal and multispeaker dataset, collected in the SAIL lab
at USC. Video, speech, motion capture of face and text transcription are all provided.
During recording, 53 markers were attached to the face of the subjects, and they also
wore wristbands, an extra marker on hand and headband. Finally, 9 emotions are labeled.
Markers are captured by VICON optical tracker.

TUM [157]: The dataset is recorded in kitchen, tracked by four overhead cameras. The
28-joint skeletons were extracted and formated as BVH files. Since actions happening in
a kitchen do not always involve every joint of the entire skeleton, the dataset is labeled
separately. In nine actions, only the left hand is labeled. Two actions concentrate on the
right hand, and two actions focus on the trunk of the skeleton.

UT-Kinect [158]: The videos were captured by a single stationary Kinect. There are
10 indoor actions, performed by 10 subjects. Each subject performs each action twice. The
RGB videos, depth maps and skeleton are recorded.

Florence3D [159]: Captured by a Kinect camera, this dataset includes 9 daily activities.
During capturing, 10 subjects were asked to perform the given actions.

N-UCLA [160]: It contains RGB, depth and human skeleton data, captured simulta-
neously by three Kinect cameras. Ten indoor daily actions are undertaken, each action is
performed by 10 subjects.

UWA3D Multiview [161]: This dataset consists of 30 indoor daily activities from ten
subjects’ performances at different scales, but all are taken in front view. This was captured
by Kinect. The self-occlusions and high similarities in this dataset contribute to more
challenges.

UWA3D Multiview Activity II [162]: In this dataset, 30 indoor actions are performed
by 10 subjects from four different views at different scales. RGB videos, depth videos and
skeletons are all provided.

UTD MHAD [163]: One Kinect camera and one wearable inertial sensor (WIS) are
used to capture the RGB videos, depth maps and 20-joints skeletons. The dataset contains
27 indoor actions performed by eight subjects and repeated four times.

Additionally, there are some datasets created from other existing datasets.
UOW LSC [146]: By combing nine publicly available single-view RGB-D action

datasets, this dataset with 94 actions was constructed. Data are all captured by Kinect, in-
cluding datasets MSRAction3DExt, UTKinect, DailyActivity, ActionPair, CAD60, CAD120,
G3D, RGBD-HuDa and UTD-MHAD. There are more viewpoints and subjects in this
dataset. Actions include large motions of all body parts, e.g., spinal stretch, raising hands
and jumping, and small movements of one part, e.g., head anticlockwise circle.

The following hand gesture datasets are also included into HAR action dataset, actions
in these datasets are more similar and thus more challengeable since only the hand joints
are recorded.

DHG-14/28 [164]: The DHG-14/28 dataset contains 14 gestures performed by 20 sub-
jects in two ways: using one finger and using the entire hand. The captured sequences
are labeled following their gestures, the number of fingers used, the performer and the
trial. Each frame contains a depth image, the coordinates of 22 joints both in the 2D depth
image space and in the 3D world space. The Intel RealSense short range depth camera was
adopted as the capture device.

SHREC’17 [165]: The dataset contains 14 hand gestures sequences performed in two
ways: using one finger and the entire hand. In these ways, each gesture is performed
between 1 and 10 times by 28 participants. Each frame contains a depth image, the
coordinates of 22 joints both in the 2D depth image space and in the 3D world space. The
capturing device is Intel RealSense short range depth camera.
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Interacted Actions

This part only discusses human–human interaction datasets.
SBU Kinect Interaction [166]: Using Kinect, this two-person interaction dataset was

collected. Eight interaction actions are covered. Seven subjects perform activities in a
laboratory and repeat. Apart from RGB videos and depth maps, the 15 joint skeletons were
extracted by OpenNI with NITE middleware provided by PrimeSense.

Hybrid Actions

The dataset comprising hybrid actions include single-subject actions and interacted
actions.

CMU Mocap [167]: The Carnegie Mellon University Motion Capture Database used
12 VICON infrared MX-40 cameras and 41 markers to build a 3D skeleton with 6 DOF at
each joint. There are 144 participants who act both interaction motions and single subject
motions. The actions are classified into 23 subcategories, covering human interaction,
interaction with environment, locomotion, physical activities and sports and situations and
scenarios.

Human3.6M [168]: The 3.6 Million accurate 3D Human poses are captured under four
viewpoints and performed by 11 subjects. To capture 3D motions, four digital video cam-
eras, one time-of-flight sensor and ten motion cameras were used. This dataset comprises
17 daily actions.

NTU RGB+D [47]: Built in 2016 and captured by three Kinect V2 cameras, NTU RGB+D
contains 60 action classes and 56,880 video samples. RGB videos, depth map sequences,
3D skeletons, and infrared (IR) videos for each sample are provided. Each skeleton has 25
body joints. The 49 actions are preformed by a single subject, while 11 actions interacted.

PUK-MDD [169]: It contains 1076 long video sequences in 51 action categories (41 daily
actions and 10 interactions), performed by 66 subjects in three Kinect camera views. The
data including RGB videos, depth maps, Infrared images and skeletons are recorded under
daily-life indoor context.

NTU RGB+D 120 [170]: Improved in 2019, this dataset extends NTU RGB+D by adding
another 60 classes and another 57,600 video samples. The data type and the cameras are
the same as in NTU RGB+D. Actions include 82 daily actions, 12 health-related actions
(blowing nose, vomiting etc.) and 26 interacted actions (handshaking, pushing etc.).

7.2.2. Real-Life Datasets

Datasets captured in real-life context are reliable and helpful for the generalization
of methods, and also contain more challenges, such as occlusions, various environments.
Collective Activity (CA) [171]: CA was proposed for group activity recognition. It contains
44 video clips, which are labeled with six individual action classes (null, crossing, walking,
waiting, talking and queueing) and five group activity labels (crossing, walking, waiting,
talking and queueing). Each clip has 10 frames, which was recorded by consumer hand-held
digital cameras with varying view points.

J-HMDB [172]: Joint-annotated HMDB, an annotated subset of HMDB51 database,
contains 21 single-person actions. Actions were collected from movies or the Internet. The
13-joint skeletons were extracted by 2D puppet model, while the model was constructed in
16 viewpoints.

Charades [173]: By distributing and crowdsourcing the entire process of video creation
from script writing to video recording and annotation, Charades was collected as an indoor
daily activity dataset, with 267 subjects performing 157 actions. Over 15% of the videos
have more than one person. It can be used for egocentric vision research.

Volleyball [174]: This dataset was collected from publicly available YouTube volleyball
videos. The 4830 frames, handpicked from 55 videos, were annotated with nine player
action labels and eight team activity labels. The eight activities are right set, right spike,
right pass, right winpoint, left pass, left spike and left set, while the nine actions are waiting,
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setting, digging, falling, spiking, blocking, jumping, moving and standing. Both RGB
videos and bouding boxes are provided.

StateFarm [175]: This dataset was provided for a Kaggle competition in 2017, with an
aim of classifying the RGB videos of drivers into 10 categories in order to check whether
the driver is driving safely.

Kinetics [176]: It was built in 2017 by DeepMind, based on YouTube videos. In total, it
contains 400 human action classes, and laterly was expanded to Kinetics-600, Kinetics-700.
The actions include human–object interactions and human–human interactions. Skeleton
dataset is not included.

ICVL-4 [177]: This is a subset of ICVL [178] real-time video surveillance dataset, with
only object-related subsets being picked. Actions are divided into 13 categories, and each is
performed by a single subject. Only the RGB videos and action labels are offered.

IRD (Illegal Rubbish Dumping) [177]: This human–object dataset comes from the
post-processed videos by CCTV cameras. Actions are classified as garbage dumping and
normal actions. All data were captured in unconstrained environments rather than indoor.

HiEve [179]: This dataset focuses on human-centric analysis in various crowd and
complex events. Videos are collected from nine different scenes and 32 real-world video
sequences are captured. Each subject in a video is annotated with a bounding box, 14 joint
skeletons, human identities and human actions. In total, there are 14 action categories.

7.3. Performance

This part discusses the properties of datasets and the performance of the methods
tested on them quantitatively and qualitatively. Precisely, we divide this section as the
statistics of datasets, model performance, and hard activity cases. The datasets cover those
summarized in Table A1, and the methods are those in Table A3.

7.3.1. The Statistics of Datasets

We classify the datasets according to action types, and count the methods evaluated on
them. The results are shown in Figure 13a,b, respectively. From Figure 13a, most datasets
are simulated rather than captured in real-life, and are performed by one subject. Only a
few of the datasets focus on pure human–object or human–human interaction.

The top-eight most used datasets are NTU RGB+D, Kinetics, NTU RGB+D 120, SYSU,
N-UCLA, MSRAction3D, HDM05 and SBU Kinect Iteraction (Figure 13b), among which,
Kinetics is a real-life dataset, and others are simulated.
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(a) Activities (b) Usage

Figure 13. The properties of the cited datasets: (a) Action categories of every dataset, with single-
subject actions (with or without objects), pure human–object actions, group activities, hybrid for
single-subject and interaction actions, and interaction for pure human–human interactions. (b) How
many methods are developed on each dataset. The methods are those listed in Table A3. The MSR
stands for MSRAction3D, and MSRDA stands for MSR DailyActivity3D.

7.3.2. Model Performance

The model performance can be estimated from the accuracy, model complexity and
model size.

• Accuracy
The accuracy of methods is shown in Figure 14, with Figure 14a on NTU RGB+D,
NTU RGB+D 120 and Kinetics, Figure 14b on SYSU, N-UCLA, MSRAction3D, HDM05
and SBU. Figure 14a demonstrates that the Kinetics dataset is more challengeable
(scores are below 50% ) than simulated NTU, considering it is a real-life dataset
and only provides RGB videos. Under real-life context, because of the occlusions,
illuminations, complex environments etc., it is difficult to infer 3D skeleton graphs
accurately. This huge challenge proves that the accurate 3D information is neccesary
for skeleton-GNN-HAR.
Moreover, it is clear that cross-subjects is more challengeable than cross-views, either
on NTU or NTU120. This is because 3D skeletons are view-invariant, and under
cross-view case, the 3D skeletons from different view points complement each other.
When skeletons are from multiple subjects, the different sizes of subjects, separated
clothes etc. all contribute to increase the recognition error.
On other datasets, performance on MSRAction3D varies severely. MSRAction3D is
challengeable because of the 3D information without RGB videos, and high inter-
action similarities. Specifically, ST-GCN [13] and ST-GCN-jpd [29] underperform
others [12,69], where [12] used temporal pyramid, and [69] takes LSTM as the back-
bone. Methods that are good at temporal tracking outperform ST-GCN-based methods.
This can be explained that the temporal evolution in ST-GCN is handled by CNN.

• Model Complexity and model size
To show the complexity and model size of each approach, the floating point opera-
tions in Gigabytes FLOPs(G) for each action sample and the size of parameters in
Megabytes are collected. Because none of the mentioned papers tested all methods
under the same environment, for the same approach and same dataset, these statistics
vary in different papers, due to the basic assumptions, devices, platforms, counting of
multi-streams, resolutions etc. Therefore, for one single approach, if the statistics are
different in multiple papers, we choose the maximum value. The model complexity
FLOPs is measured on NTU RGB+D, collected from [54,57,80,117,121,141,180,181].
The model size is summarized from [54,55,57,82,85,117,121,135,180,181].
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(a) NTU, NTU120, Kinetics (b) Other commonly used datasets

Figure 14. The performances of models (colored dots) on commonly used datasets: (a) The accuracy
in logarithmic scale of cited methods (Table A3) on NTU RGB+D, NTU RGB+D 120 and Kinetics. (b)
The performance (logarithmic) on SYSU, N-UCLA, MSRAction3D, HDM05 and SBU. Each method is
denoted by its index in Table A3, marked as RefIndex in the figure. The colors identity each dataset.
In (b), the numbers around dots denote [12,13,29,56,59,61,69,72,74,75,83,85,87–90,92,97,110,115,135,
136,138,141,182] respectively in ascending order.

According to [141], most GCN methods are over 15 FLOPs(G). Figure 15 illustrates
the complexity and model size on NTU RGB+D in cross-subjects case. Dots that closed
to the bottom right of the figure are the best models, with both lower complexity and
lower model size but higher performance. JOLO-GCN [54] adopts multi-modalities– the
Joint-aligned optical Flow Patches (JFP) to capture the local subtle motion around each
joint, which proves the importance of local subtle motions.

Figure 15. The logarithmic complexity and model size of the most popular methods (denoted as
dots) performed on NTU cross-subjects. The text around each dot indicates the index of reference of
the method. Green texts annotate the methods measured by ‘Params(M)’, and blue texts annotate
‘FLOPs (G)/Action’. The numbers around dots denote [13,14,50,54,55,57,59,62,73,77,80,82,85,86,89,
110,116,117,121,127,130,135,141,183] respectively in ascending order. Number 94 [54] is a remarkable
one, with both relatively low complexity and small model size.
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7.3.3. Hard Activity Cases

Despite many successes, there are hard activitiy cases that require further analysis.
Unfortunately, only a few methods list the hard activities (less than 20% in our method set).
We present them in this part.

• Similar single subject actions without objects
For actions involving no objects, activities are mainly misclassified due to similar mo-
tion patterns with low pose resolution or inappropriate standardized axis coordinates.
When actions only differ slightly around hand joints, the low hand pose resolution will
increase the classification error. For instance, the NTU RBD+D dataset only records
three joints for each hand, namely the wrist, the tip of the hand and the thumb. These
joints are not enough to help distinguish actions with subtle movements around hands.
Therefore, for actions with subtle hand movements, the NTU skeletons are less sup-
portive in recognition. For example, Ref. [83] observed that actions, such as rubbing
two hands together and clapping, are easily confused with each other on NTU, Ref. [71]
misclassified stand up as check time (from watch) on NTU, Ref. [92] mistook make victory
sign as make ok sign, snapping fingers as make victory sign. Ref. [64] misclassified standing
and walking especially when the back of subjects faces the camera, which is due to
the low pose resolution (missing of joints) caused by self-occlusions. Authors of [64]
also discovered that actions like twisting are difficult because the standardized axis
coordinates (Cartesian coordinates) erases the subtle rotation around the wrist.

• Similar single subject actions with objects
Similar human–object interactions usually differ in the subtle movements of hands
and have similar action trajectories.
Generally, the errors are mainly caused by low pose resolution or lacking object
information.
Ref. [54,91] failed while classifying reading, writing, playing with phone/tablet, and typing
on a keyboard. The authors argue these actions only differ for hand movements,
while the skeletons provided by NTU RGB+D are less supportive for hand joints.
Ref. [114] mentioned that when the body movements are not significant, and the sizes
of the objects are relatively small, e.g., counting money, and playing magic cube, and
the skeletons only provide three hand joints, the model can easily become confused.
Ref. [89] also blamed the low NTU hands resolution, which leads to misclassify reading
as writing, writing as typing on keyboard. As for distinguishing actions with subtle
movements of two hands, such as wearing a shoe, taking off a shoe, Ref. [96] failed, and
expects more precise hand joints to help. Similarly, Ref. [119] made mistakes on reading
and writing, and holds the same opinion for fixing it.
Ref. [71] misclassified stapling book into cutting paper, counting money into playing magic
cube. The authors explained that this is because the information about objects is
missing. This is supported by [83], where the authors observed that although actions,
such as drinking water and brushing teeth, have similar motion patterns, the objects
involved are different. Ref. [89] expects that their failure cases, such as reading and
writing, can be erased by combining object appearance information.

• Human–human interaction
In human–human interactions, one important reason of recognition errors given by
the method set is occlusions.
For instance, Refs. [82,111] observed that if important joints, such as right arms, are
occluded, actions, such as handshaking cannot be inferred with the rest of the joints.

8. Challenges

Though the proposed approaches have shown their efficiency, there are still multiple
challenges that call for further investigation.
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8.1. Pose Preparation
8.1.1. Real-Life Context

If datasets are collected under real-life context, the colorization, illumination, back-
grounds etc. vary, caused by the complex and various environments, the capturing time,
the exposure condition of capturing devices etc. These all contribute to increase the error of
detected skeletons.

Occlusions is another natural problem in the real-life context, and is caused by sur-
rounded objects, or by the subject himself (self-occlusions). Self-occlusions are common
while doing actions, due to the interactions between body parts, such as playing basketball.
The most rude way to deal with this situation is simply discarding those skeletons who
have occlusions, which will lead to a huge loss. It is not only because of the cost of data
acquisition but also the plenty of implicit information among occluded skeletons. One
possible suggestion from [183] is RL-based pose refinement.

8.1.2. Pose Resolution

The number of joints are different in different datasets. Normally, skeletons detected
by DL methods, such as Openpose, PoseNet, have around 18 or 25 joints. Skeletons
captured under simulation context, with RRM markers are more precise because of more
joints. While distinguishing subtle movements of two hands, such as clapping and rubbing
two hands together, more subtle hand joints are expected [71,96]. One possible solution is
to mimic the hand gesture datasets during data capturing so as to provide more subtle
hand joints.

8.1.3. Pose Topology

Usually the pose topology is directly extracted from frames, following the physical
human skeleton, and is fixed while inputing. Each joint has the similar weights during
meassage passing, and follow the prefixed edges. However, Ref. [135] observed that
different actions correspond to different informative joints. This indicates that there exist
potential connections that are informative but missed by physical connections.

Ref. [137] discovered that the correlations of joints in learned spatial-temporal graph
differ for different actions and different frames. Therefore, combining action information,
spatial and temporal information with pose topology is one possible way to provide
complementary information for recognition. The most common way is using self-attention
to reweight joints.

8.2. View-Invariant

Human can easily recognize the same action, even when looking from different angles.
However, combining the captured skeletons of one action observed from different views
and recognizing them as the same action is more challengeable for machines, since one
action appears quite differently if observed from another view. Features extracted from one
viewpoint cannot be identified from another viewpoint accurately.

Currently, armed with RGBD cameras, reconstructing 3D human skeletons with
captured depth videos is quite easy. Once the exact locations of skeleton joints are known,
one can directly use estimated transformation matrix to make skeletons strictly view-
invariant as standardized poses. Figure 14a demonstrates that 3D skeletons are helpful
for HAR. However, when skeletons in different views are standardized to one pose, some
partial relative motions among the original skeletons could be erased. For example, the
action rotating wrists might be lost if all skeletons are standardized to one specific direction,
such as facing the front.

Moreover, depth information is not always available. When only 2D skeletons and 2D
videos in different views are provided, it is even more difficult to preserve view invariance
due to the lack of 3D information.
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8.3. Multiscale
8.3.1. Multi Spatial Scale

Most approaches only extract spatial information at the joint scale, without considering
feature extraction at multiple scales. However, for different actions, features just from joint
scale are not subtle enough for accurate recognition. For example, actions cutting and
writing all move hands and arms. If all joints are taken into consideration equally, rather
than paying more attention to arms and hands, the result will under-perform since many
local information will be ignored. Therefore, capturing local features without losing global
features is critical. One hint to solve this is based on skeleton partition, such as part-based
partition [57,64,86,95].

8.3.2. Multi Temporal Scale

Temporal scale also contains implicit features, e.g., the actions race walking and
walking are visually similar; however, if one compares the frames at different time scales,
they are different. Moreover, the order of frames (timesteps) is also important when taking
sitting down and standing up into consideration. To deal with this, some previous works
performed dilated temporal convolution [55,84], while others simply sampled specific
frames [104,137].

8.3.3. Multi Subject Scale

There are two major problems caused by this situation, one is for interacted actions,
how to balance features from inter subjects and features from intra subjects. Paper [92]
offers a hint to perform attentioned LSTM in joint-level, person-level and scene-level so as
to trade-off both the intra-subject and inter-subject information. The other is when there
are numerous subjects, such as in the Kinetics dataset. From the performance of methods
on NTU RGB+D (Figure 14a), the cross-subjects case is more challengeable compared with
the cross-views case.

8.4. Multi-Modalities
8.4.1. Multi-Modalities Fusion

Understanding video content precisely benefit from multimodalities. Ref. [123] proves
that each modality (skeleton, audio, text) had its unique strengths, and believes that a better
fusion strategy may improve performance. Ref. [73] clarifies the complementarity between
the skeleton modality and the RGB modality. Ref. [113] argues that, except for RGB video,
video captions can also provide context information.

However, the challenges in modalities fusion come from resolution, fusion strat-
egy, alignment etc. Inspired approaches for solving these problems include [54], which
proposes JFP (optical flow patches) sequences to capture the local subtle motion informa-
tion, Ref. [184] that used speech texts, Ref. [185], which used context information, and
AdaMML [186] adaptively selected which modality to use for each video segment.

8.4.2. Inner Heterogeneous

From Section 3, we know that graph edges are heterogeneous if considering temporal
edges, spatial edges etc. Normally, the GNN layer is used on the entire graph rather than
treating these edges heterogeneously. Traditional methods, such as the recipe combining of
GNN and LSTM, treat spatial edges and temporal edges separately; however, they ignore
the inter relations of spatiotemporal data. Tackling the heterogeneous nodes or edges in
graphs but without ignoring the original relations among them has created a large question
for the scientific community.

For that case, X. Gao et al. [75] suggested distinguishing intra-frame and inter-frame.
Precisely, joints in intra-frame are grouped as weakly connected and strongly connected
joints, and their corresponding edges are further emphasized by two constant weights.
Temporal edges in inter-frames are also assigned with two constant weights to distinguish
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edges between corresponding joints and edges between each point and the neighborhood
of its correspondence in the adjacent frames.

8.5. Interactions

Most methods focus on single skeleton graph-based HAR. However, in addition to
this simple case, there are two more complex cases: the human–human interaction and
human–object interaction, errors among them are not the same [187].

8.5.1. Human-Human Interaction

For human–human interactions, such as hugging, kicking, there are at least two skele-
tons in each frame. In some complex cases, such as walking through zebra crossing, more
skeletons are obtained. Either grouping multiple skeletons to detect sub-activities or
handling local and global features simultaneously all can be a problem.

Coping with this, papers [48,187,188] concentrate on relative features, paper [101]
splits the motion model into single person and double person motion model, paper [115]
attempted to transfer the knowledge between the two interacted skeletons by the teacher–
student mechanism. Ref. [125] discovered the long-range relations on two people actions
benefit from self-attention, because self-attention detects the correlation along the entire
action. Ref. [189] used distance, orientation and O-space features to describe the relations
between subjects.

8.5.2. Human-Object Interaction

There are two main tasks in human–object interactions. One is object detection, the
other is HAR according to the semantics of object detection. Human–objects interactions
that have subtle movements of hands can be easily misidentified [83,91,92]. However,
Ref. [61] observed that almost no skeleton motion and the differences are illustrated as
human–object interaction.

Some existing papers give inspiration. S. Kim et al. [177] split the problem into two
sub-problems and build two streams upon it, which are the human pose stream and the
object-related pose stream. X. Shi et al. [190] treated the related objects as joint points and
linked them to hands. Refs. [61,89] recommend to combine object appearance for similar
movements, Ref. [119] preferred adding more hand joints while collecting datasets.

9. Conclusions

In this paper, we thoroughly analyzed skeleton graph-based HAR. Concretely, the
types of skeleton graphs and the means to build graph structures were discussed. We pro-
posed a new taxonomy that classifies the skeleton-GNN-based HAR into spatial approaches,
spatiotemporal approaches and generated approaches. The most common frameworks
were also summarized, including the attention mechanism, dense blocks, multi-modalities,
changing feature space and neighbor convolution. Finally, the most frequently used datasets
were also collected and described.

Based on the previous discussion, the possible future directions are apparent. Usu-
ally, the built graphs are undirected graphs, and many researchers attempted to develop
models based on ST-GCN or AGCN, the two milestones in this field. Additionally, the
two frameworks (the attention mechanism plus skip connections and multi-stream with
multi-modalities) were preferred. The details are shown in Figure 16.
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(a) (b)

Figure 16. The common recipe for skeleton-GNN-based HAR: (a) [14] the attention plus skip connec-
tions, (b) a way to use multi-modalities with multi-stream.

Though numerous proposed methods have solved many problems, challenges from
pose preparation, view-invariant, occlusion, multi-scale, multi-modalities and interactions
remain to be solved.
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Appendix A. Datasets

Table A1 presents a list of the relevant datasets for HAR with their main characteristics.

Table A1. The summary of datasets. ’RGB’ is RGB videos, ’IR’ is infrared sequences, ’D’ is depth
maps, ’S’ is skeletons, ’PD’ is pose direction, ’OP’ is optical flow, ’WIS’ is wearable inertial sensor,
’TOF’ is time-of-flight sensor, ’RRM’ is retro-reflective markers, ’H’ is head movement, ’Script’ is
dialog transcriptions, and ’M’ is mesh data.

Name Sensors Subjects Views Actions Data Year Types

CMU Mocap, http://mocap.cs.
cmu.edu/ Vicon 144 - 23 RGB+S 2003 Indoor simulation, in-

cluding interaction.

HDM05, http://resources.mpi-
inf.mpg.de/HDM05/ RRM 5 6 >70 RGB+S 2007 Indoor simulation

IEMOCAP, https://sail.usc.edu/
iemocap/ Vicon - 8 9 RGB+H +

Script 2008 Emotion and speech
dataset

CA, https://cvgl.stanford.
edu/projects/collective/
collectiveActivity.html

Hand held
camera - - 5 RGB+PD 2009 Group activities

TUM, https://ias.in.tum.de/
dokuwiki/software/kitchen-
activity-data

- - 4 9 (l),9 (r),
2 (t) RGB+S 2009 Activities in kitchen

MSR Action3D, https://sites.
google.com/view/wanqingli/
data-sets/msr-action3d

- 10 1 20 D+S 2010 Interaction with game
consoles

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://resources.mpi-inf.mpg.de/HDM05/
http://resources.mpi-inf.mpg.de/HDM05/
https://sail.usc.edu/iemocap/
https://sail.usc.edu/iemocap/
https://cvgl.stanford.edu/projects/collective/collectiveActivity.html
https://cvgl.stanford.edu/projects/collective/collectiveActivity.html
https://cvgl.stanford.edu/projects/collective/collectiveActivity.html
https://ias.in.tum.de/dokuwiki/software/kitchen-activity-data
https://ias.in.tum.de/dokuwiki/software/kitchen-activity-data
https://ias.in.tum.de/dokuwiki/software/kitchen-activity-data
https://sites.google.com/view/wanqingli/data-sets/msr-action3d
https://sites.google.com/view/wanqingli/data-sets/msr-action3d
https://sites.google.com/view/wanqingli/data-sets/msr-action3d
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Table A1. Cont.

Name Sensors Subjects Views Actions Data Year Types

CAD 60, https://drive.
google.com/drive/folders/
1Z5ztMpeys5I0XfZn8J26-_6
rqplweFGI

Kinect v1 4 - 12 RGB+D+S 2011 Human–object interac-
tion

MSR DailyActivity3D,
https://sites.google.com/
view/wanqingli/data-sets/msr-
dailyactivity3d

Kinect 10 1 16 RGB+D+S 2012 Daily activities in living
room

UT-Kinect, http://cvrc.ece.
utexas.edu/KinectDatasets/
HOJ3D.html

Kinect v1 10 4 10 RGB+D+S 2012 Indoor simulation

Florence3D, https://www.micc.
unifi.it/resources/datasets/
florence-3d-actions-dataset/

Kinect v1 10 - 9 RGB+S 2012 Indoor simulation

SBU Kinect Interaction,
https://www3.cs.stonybrook.
edu/~kyun/research/kinect_
interaction/index.html

Kinect 7 - 8 RBB+D+S 2012 Human–human interac-
tion simulation

J-HMDB, http://jhmdb.is.tue.
mpg.de/ HMDB51 - 16 21 RGB+S 2013

Annotated subset of
HMDB51, 2D skeletons,
real-life

3D Action Pairs, http://www.cs.
ucf.edu/~oreifej/HON4D.html Kinect v1 10 1 12 RGB+D+S 2013 Each pair has similarity

in motion and shape

CAD 120, https://www.re3data.
org/repository/r3d100012216 Kinect v1 4 - 10+10 RGB+D+S 2013 Human–object interac-

tion

ORGBD, https://sites.google.
com/site/skicyyu/orgbd - 36 - 7 RGB+D+S 2014 Human–object interac-

tion

Human3.6M, http://vision.imar.
ro/human3.6m/description.php

Laser scan-
ner, TOF 11 4 17 RGB+S+M 2014 Indoor simulation,

meshes

N-UCLA, http://wangjiangb.
github.io/my_data.html Kinect v1 10 3 10 RGB+D+S 2014 Daily action simulation

UWA3D Multiview, https:
//github.com/LeiWangR/HDG Kinect v1 10 1 30 RGB+D+S 2014

Different scales, includ-
ing self-occlusions and
human–object interac-
tion.

UWA3D Multiview Activity II,
https://github.com/LeiWangR/
HDG

Kinect v1 10 4 30 RGB+D+S 2015

Different views and
scales, including
self-occlusions and
human–object interac-
tion.

UTD-MHAD, https://personal.
utdallas.edu/~kehtar/UTD-
MHAD.html

Kinect v1 +
WIS 8 1 27 RGB+D+S 2015 Indoor single-subject

simulation

NTU RGB+D, https:
//rose1.ntu.edu.sg/dataset/
actionRecognition/

Kinect V2 40 80 50 + 10 RGB+IR
+D+S 2016

Simulation, including
human–human interac-
tion

Charades, https://prior.allenai.
org/projects/charades - 267 - 157 RGB+OP 2016 Real-life daily indoor ac-

tivities

https://drive.google.com/drive/folders/1Z5ztMpeys5I0XfZn8J26-_6rqplweFGI
https://drive.google.com/drive/folders/1Z5ztMpeys5I0XfZn8J26-_6rqplweFGI
https://drive.google.com/drive/folders/1Z5ztMpeys5I0XfZn8J26-_6rqplweFGI
https://drive.google.com/drive/folders/1Z5ztMpeys5I0XfZn8J26-_6rqplweFGI
https://sites.google.com/view/wanqingli/data-sets/msr-dailyactivity3d
https://sites.google.com/view/wanqingli/data-sets/msr-dailyactivity3d
https://sites.google.com/view/wanqingli/data-sets/msr-dailyactivity3d
http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
https://www.micc.unifi.it/resources/datasets/florence-3d-actions-dataset/
https://www.micc.unifi.it/resources/datasets/florence-3d-actions-dataset/
https://www.micc.unifi.it/resources/datasets/florence-3d-actions-dataset/
https://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/index.html
https://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/index.html
https://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/index.html
http://jhmdb.is.tue.mpg.de/
http://jhmdb.is.tue.mpg.de/
http://www.cs.ucf.edu/~oreifej/HON4D.html
http://www.cs.ucf.edu/~oreifej/HON4D.html
https://www.re3data.org/repository/r3d100012216
https://www.re3data.org/repository/r3d100012216
https://sites.google.com/site/skicyyu/orgbd
https://sites.google.com/site/skicyyu/orgbd
http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/description.php
http://wangjiangb.github.io/my_data.html
http://wangjiangb.github.io/my_data.html
https://github.com/LeiWangR/HDG
https://github.com/LeiWangR/HDG
https://github.com/LeiWangR/HDG
https://github.com/LeiWangR/HDG
https://personal.utdallas.edu/~kehtar/UTD-MHAD.html
https://personal.utdallas.edu/~kehtar/UTD-MHAD.html
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https://rose1.ntu.edu.sg/dataset/actionRecognition/
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https://prior.allenai.org/projects/charades
https://prior.allenai.org/projects/charades
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Table A1. Cont.

Name Sensors Subjects Views Actions Data Year Types

UOW LSC, https://sites.google.
com/view/wanqingli/data-
sets/uow-largescale-combined-
action3d

Kinect - - 94 RGB+D+S 2016 Combined dataset

StateFarm, https://www.kaggle.
com/c/state-farm-distracted-
driver-detection/data

Kaggle
competi-
tion

- - 10 RGB 2016 Real driving videos

DHG-14/28 Intel
RealSense 20 - 14/28 RGB+D+S 2016 Hand gestures

Volleyball, https://github.com/
mostafa-saad/deep-activity-rec

YouTube
volleyball - - 9 RGB 2016 Group activities, volley-

ball

SYSU, https://www.isee-ai.cn/
~hujianfang/ProjectJOULE.html Kinect v1 40 1 12 RGB+D+S 2017 Human–object interac-

tion

SHREC’17, http://www-rech.
telecom-lille.fr/shrec2017-
hand/

Intel
RealSense 28 - - RGB+D+S 2017 Hand gestures

Kinetics, https://deepmind.com/
research/open-source/kinetics YouTube - - 400 RGB 2017

Real life, including
human–object interac-
tion and human–human
interaction

PUK-MDD, https://www.icst.
pku.edu.cn/struct/Projects/
PKUMMD.html

Kinect 66 3 51 RGB+D+
IR+S 2017 Daily action simulation,

including interactions.

ICVL-4, https://github.com/
ChengBinJin/ActionViewer - - - 13 RGB 2018

Human–object action in
real-life, a subset of
ICVL.

UW-IOM, https://data.mendeley.
com/datasets/xwzzkxtf9s/1 Kinect 20 - 17 RGB+D+S 2019 Indoor object manipula-

tion

NTU RGB+D 120, https:
//rose1.ntu.edu.sg/dataset/
actionRecognition/

Kinect V2 106 155 94 + 26 RGB+IR
+ D+S 2019

Simulation, including
human–human interac-
tion

IRD CCTV - - 2 RGB 2019 Illegal rubbish dump-
ing in real life

HiEve, http://humaninevents.
org/ - - - 14 RGB+S 2020 Multi-person events un-

der complex scenes

Table A2 summarizes the action list and methods performed on each dataset. The
most popular compared methods across datasets are [13,14,50,54,55,57,59,62,73,77,80,82,
85,86,89,110,116,117,121,127,130,135,141,183], among which, Ref. [54] is a remarkable one
on NTU RGB+D cross-subject, with both low complexity and small model size but good
performance.

Table A2. The summary of datasets and methods.

Name Papers Action List

CMU Mocap [95] Human Interaction, Interaction With Environment, Locomotion, Physical Activities +
Sports, Situations + Scenarios

HDM05 [56,61,74,88] Walk, Run, Jump, Grab and Deposit, Sports, Sit and Lie Down, Miscellaneous Motions

IEMOCAP [123] Anger, Happiness, Excitement, Sadness, Frustration, Fear, Surprise, Other and Neutral
State

https://sites.google.com/view/wanqingli/data-sets/uow-largescale-combined-action3d
https://sites.google.com/view/wanqingli/data-sets/uow-largescale-combined-action3d
https://sites.google.com/view/wanqingli/data-sets/uow-largescale-combined-action3d
https://sites.google.com/view/wanqingli/data-sets/uow-largescale-combined-action3d
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://github.com/mostafa-saad/deep-activity-rec
https://github.com/mostafa-saad/deep-activity-rec
https://www.isee-ai.cn/~hujianfang/ProjectJOULE.html
https://www.isee-ai.cn/~hujianfang/ProjectJOULE.html
http://www-rech.telecom-lille.fr/shrec2017-hand/
http://www-rech.telecom-lille.fr/shrec2017-hand/
http://www-rech.telecom-lille.fr/shrec2017-hand/
https://deepmind.com/research/open-source/kinetics
https://deepmind.com/research/open-source/kinetics
https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
https://github.com/ChengBinJin/ActionViewer
https://github.com/ChengBinJin/ActionViewer
https://data.mendeley.com/datasets/xwzzkxtf9s/1
https://data.mendeley.com/datasets/xwzzkxtf9s/1
https://rose1.ntu.edu.sg/dataset/actionRecognition/
https://rose1.ntu.edu.sg/dataset/actionRecognition/
https://rose1.ntu.edu.sg/dataset/actionRecognition/
http://humaninevents.org/
http://humaninevents.org/
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Table A2. Cont.

Name Papers Action List

CA [115] Null, Crossing, Wait, Queueing, Walk, Talk

TUM [64]
Set the Table, Transport Each Object Separately as Done by an Inefficient Robot, Take
Several Objects at Once as Humans Usually Do, Iteratively Pick Up and Put Down
Objects From and to Different Places

MSR Ac-
tion3D [12,29,69,140]

High Arm Wave, Horizontal Arm Wave, Hammer, Hand Catch, Forward Punch, High
Throw, Draw X, Draw Tick, Draw Circle, Hand Clap, Two Hand Wave, Side Boxing,
Bend, Forward Kick, Side Kick, Jogging, Tennis Swing, Tennis Serve, Golf Swing, Pick
Up + Throw

CAD 60 [29]
Still, Rinse Mouth, Brush Teeth, Wear Contact Lenses, Talk on Phone, Drink Water,
Open Pill Container, Cook (Chop), Cook (Stir), Talk on Couch, Relax on Couch, Write
on Whiteboard, Work on Computer

MSR DailyAc-
tivity3D [115]

Drink, Eat, Read Book, Call Cellphone, Write on a Paper, Use Laptop, Use Vacuum
Cleaner, Cheer Up, Sit Still, Toss Paper, Play Game, Lay Down on Sofa, Walk, Play
Guitar, Stand Up, Sit Down

UT-Kinect [12,140] Walk, Sit Down, Stand Up, Pick Up, Carry, Throw, Push, Pull, Wave Hands, Clap Hands

Florence3D [12,88] Wave, Drink From a Bottle, Answer Phone, Clap, Tight Lace, Sit Down, Stand Up, Read
Watch, Bow

SBU Kinect In-
teraction [83,115,182,187] Approach, Depart, Push, Kick, Punch, Exchange Objects, Hug, and Shake Hands

J-HMDB [124] Brush Hair, Catch, Clap, Climb Stairs, Golf, Jump, Kick Ball, Pick, Pour, Pull-Up, Push,
Run, Shoot Ball, Shoot Bow, Shoot Gun, Sit, Stand, Swing Baseball, Throw, Walk, Wave

3D Action
Pairs [29]

Pick Up a box/Put Down a Box, Lift a box/Place a Box, Push a chair/Pull a Chair, Wear
a hat/Take Off a Hat, Put on a backpack/Take Off a Backpack, Stick a poster/Remove a
Poster.

CAD 120 [67] Make Cereal, Take Medicine, Stack Objects, Unstack Objects, Microwave Food, Pick
Objects, Clean Objects, Take Food, Arrange Objects, Have a Meal

ORGBD [115] Drink, Eat, Use Laptop, Read Cellphone, Make Phone Call, Read Book, Use Remote

Human3.6M [95]
Conversations, Eat, Greet, Talk on the Phone, Pose, Sit, Smoke, Take Photos, Wait, Walk
in Various Non-Typical Scenarios (With a Hand in the Pocket, Talk on the Phone, Walk
a Dog, or Buy an Item)

N-UCLA [59,87,89,90,92,94,
138,141]

Pick Up With One Hand, Pick Up With Two Hands, Drop Trash, Walk Around, Sit
Down, Stand Up, Donning, Doffing, Throw, Carry

UWA3D Mul-
tiview [29]

One Hand Wave, One Hand Punch, Sit Down, Stand Up, Hold Chest, Hold Head, Hold
Back, Walk, Turn Around, Drink, Bend, Run, Kick, Jump, Mope Floor, Sneeze, Sit Down
(Chair), Squat, Two Hand Wave, Two Hand Punch, Vibrate, Fall Down, Irregular Walk,
Lie Down, Phone Answer, Jump Jack, Pick Up, Put Down, Dance, Cough

UWA3D Mul-
tiview Activ-
ity II

[29,94]

One Hand Wave, One Hand Punch, Two Hand Wave, Two Hand Punch, Sit Down,
Stand Up, Vibrate, Fall Down, Hold Chest, Hold Head, Hold Back, Walk, Irregular Walk,
Lie Down, Turn Around, Drink, Phone Answer, Bend, Jump Jack, Run, Pick Up, Put
Down, Kick, Jump, Dance, Mope Floor, Sneeze, Sit Down (Chair), Squat, Cough

UTD-MHAD [69,105] Indoor Daily Activities. Check https://personal.utdallas.edu/~kehtar/UTD-MHAD.
html for details

NTU RGB+D

[13,14,48–57,59–
63,65,66,68,69,71–
97,99–107,109–
117,119–122,124–
139,141,182,183,
187,191–196]

https://rose1.ntu.edu.sg/dataset/actionRecognition/

https://personal.utdallas.edu/~kehtar/UTD-MHAD.html
https://personal.utdallas.edu/~kehtar/UTD-MHAD.html
https://rose1.ntu.edu.sg/dataset/actionRecognition/
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Table A2. Cont.

Name Papers Action List

Charades [67] https://prior.allenai.org/projects/charades

UOW LSC [88]

Large Motions of All Body Parts, E.g., Spinal Stretch, Raising Hands and Jumping,
and Small Movements of One Part, E.g., Head Anticlockwise Circle. Check https://
sites.google.com/view/wanqingli/data-Sets/uow-Largescale-Combined-Action3d for
details.

StateFarm [192] Safe Drive, Text-Right, Talk on the Phone-Right, Text-Left, Talk on the Phone-Left,
Operate the Radio, Drink, Reach Behind, Hair and Makeup, Talk to Passenger

DHG-14/28 [70] Grab, Tap, Expand, Pinch, Rotate Clockwise, Rotatr Couter Clockwise, Swipe Right,
Swipe Left, Swipe Up, Swipe Down, Swipe X, Swipe V, Swipe +, Shake

Volleyball [115] Wait, Set, Dig, Fall, Spike, Block, Jump, Move, Stand

SYSU [62,69,72,75,85,90,
97,135,136]

Drink, Pour, Call Phone, Play Phone, Wear Backpacks, Pack Backpacks, Sit Chair, Move
Chair, Take Out Wallet, Take From Wallet, Mope, Sweep

SHREC’17 [70] Grab, Tap, Expand, Pinch, Rotate Clockwise, Rotatr Couter Clockwise, Swipe Right,
Swipe Left, Swipe Up, Swipe Down, Swipe X, Swipe V, Swipe + and Shake

Kinetics

[13,14,48–55,57,
60,66,68,71,73,76–
80,84,86,91,93,
95,96,99,107,109,
113,116,117,120–
122,124,127,128,
130,131,133,134,
137,139,183,191,
192,195,196]

https://deepmind.com/research/open-Source/kinetics

PUK-MDD [132] 41 Daily + 10 Interactions. Details are shown in https://www.icst.pku.edu.cn/struct/
Projects/PKUMMD.html

ICVL-4 [177] Sit, Stand, Stationary, Walk, Run, Nothing, Text, and Smoke, Others

UW-IOM [64]

17 Actions as a Hierarchy Combination of four Tiers: Whether the Box or the Rod Is
Manipulated, Human Motion (Walk, Stand and Bend), Captures the Type of Object
Manipulation if Applicable (Reach, Pick-Up, Place and Hold) and the Relative Height
of the Surface Where Manipulation Is Taking Place (Low, Medium and High)

NTU RGB+D
120

[48,52,54,55,59,
63,80,82,91,92,99,
103,106,110,112,
114,119–122,124–
126,135,137,138,
141,187,194]

82 Daily Actions (Eating, Writing, Sitting Down etc.), 12 Health-Related Actions (Blow-
ing Nose, Vomiting etc.) and 26 Mutual Actions (Handshaking, Pushing etc.).

IRD [177] Garbage Dump, Normal

HiEve [188] Walk-Alone, Walk-Together, Run-Alone, Run-Together, Ride, Sit-Talk, Sit-Alone, Queu-
ing, Stand-Alone, Gather, Fight, Fall-Over, Walk-Up-Down-Stairs and Crouch-Bow

Examples of each dataset are listed in Figures A1–A3.

https://prior.allenai.org/projects/charades
https://sites.google.com/view/wanqingli/data-Sets/uow-Largescale-Combined-Action3d
https://sites.google.com/view/wanqingli/data-Sets/uow-Largescale-Combined-Action3d
https://deepmind.com/research/open-Source/kinetics
https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure A1. Examples of datasets. (a) CMU Mocap [167]; (b) HDM05 [155]; (c) IEMOCAP [156,197];
(d) MSR Action3D [147]; (e) TUM [157]; (f) Florence3D [159]; (g) CAD 60 and 120 [148,151]; (h)
UT-Kinect [158]; (i) Human3.6M [168]; (j) N-UCLA [160]; (k) 3D Action Pairs [149]; (l) SBU Kinect
Interaction [166]; (m) CA [171] and (n) ORGBD [152].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure A2. Examples of datasets. (a) MSR DailyActivity3D [150]; (b) UW-IOM [154]; (c) UWA3D
Multiview [161,162]; (d) UTD MHAD [163]; (e) SYSU [153]; (f) NTU RGB+D [47]; (g) SHREC’17 [165];
(h) UOW LSC [146]; (i) Charades [173]; (j) StateFarm [175]; (k) J-HMDB [172] and (l) Volleyball [174].
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(a) (b)

(c) (d)

(e) (f)

Figure A3. Examples of datasets. (a) HiEve [179]; (b) Kinetics [176]; (c) ICVL-4 [177]; (d) PUK-
MDD [169]; (e) DHG-14/28 [164] and (f) IRD [177].

Appendix B. Methods

Table A3 shows a list of the most important methods for HAR with their main charac-
teristics and accuracy.

Table A3. The summary of methods and their accuracy. The accuracy on each dataset is top-1. AE
is Autoencoder, SVM is support vector machine, LSTM is long-short term memory network, TCN
is temporal convolution network, RL is reinforcement learning, CAM is class activation maps, GFT
is graph fourier transform, SE is squeeze-excitation block, TCN is temporal convolution, conv. is
convolution, PGNs is Pyramidal GCNs, and FV is Fisher Vector.

Datasets

Name Code Year Details Kinetics
NTU
RGB+D

NTU
RGB+D
120

CV CS CV CS

GCN [12] - 2017 GCN+SVM - - - - -

STGR [76] - 2018 Concatenate spatial router and tem-
poral router

33.6 92.3 86.9 - -

AS-GCN [77] Github 2018 AE, learn edges 34.8 94.2 86.8 - -

A2GNN [88] - 2018 GCN+LSTM, adaptively weighting
skeletal joints

- 82.8 72.74 - -

GR-GCN [75] - 2018 LSTM - 94.3 87.5 - -

SR-TSL [136] - 2018 GCN+clip LSTM - 92.4 84.8 - -

DPRL [72] - 2018 RL - 89.8 83.5 - -

BPLHM [139] - 2018 Edge aggregation 33.4 91.1 85.4 - -

ST-GCN [13] Github 2018 ST-GCN 30.7 88.3 81.5 - -

PB-GCN [61] Github 2018 Skip connection, subgraphs, graphs
are overlapped

- 93.2 87.5 - -

https://github.com/limaosen0/AS-GCN
https://github.com/yysijie/st-gcn
https://github.com/kalpitthakkar/pb-gcn
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Table A3. Cont.

Datasets

Name Code Year Details Kinetics
NTU
RGB+D

NTU
RGB+D
120

CV CS CV CS

3s RA-GCN [111] Github 2019 ST-GCN backbone, softmax for
CAM

- 93.5 85.9 - -

AR-GCN [96] - 2019 Skip connection, BRNN + atten-
tioned ST-GCN, spatial and tempo-
ral attention

33.5 93.2 85.1 - -

GVFE+AS-GCN with
DH-TCN [112] - 2019 ST-GCN-based, dilated temporal

CNN, skip connection
- 92.8 85.3 - 78.3

BAGCN [53] - 2019 LSTM - 96.3 90.3 - -

[101] - 2019 ST-GCN - 89.6 82.6 - -

[140] - 2019 GFT - - - - -

OHA-GCN [177] - 2019 Human–object, frame selection +
GCN

- - - - -

AM-STGCN [191] - 2019 Attention 32.9 91.4 83.4 - -

[192] - 2019 GCN 30.59 88.87 80.66 - -

[70] - 2019 Add edges, hand gestures - - - - -

GCN-HCRF [87] - 2019 HCRF, directed message passing - 91.7 84.3 - -
Si-GCN [56] - 2019 Structure induced part-graphs - 89.05 84.15 - -

4s DGNN [50] Github 2019 Directed graph 36.9 96.1 89.9 - -

2s-AGCN [14] Github 2019 Two stream, attention 36.1 95.1 88.5 - -

2s AGC-LSTM [89] - 2019 Attention - 95.0 89.2 - -

SDGCN [133] - 2019 Skip connection - 95.74 89.58 - -
JRIN-SGCN [78] - 2019 Adjacent inference 35.2 91.9 86.2 - -

JRR-GCN [79] - 2019 RL for joint-relation-reasoning 34.8 91.2 85.89 - -

3heads-MA-
GCN [129] - 2019 Multi-heads attention - 91.5 86.9 - -

GC-LSTM [98] - 2019 LSTM - 92.3 83.9 - -

Bayesian GC-
LSTM [69] - 2019 Bayesian for the parameters of GC-

LSTM
- 89 81.8 - -

RGB + skeleton [113] - 2020 Cross attention (joints + scenario
context information), ST-GCN back-
bone

39.9 89.27 84.23 - -

ST-GCN-jpd [29] - 2020 ST-GCN backbone - 88.84 83.36 - -

[132] - 2020 Skip connection, attention to select
joints

- - 90.7 - -

2s-FGCN [68] - 2020 Fully connected graph 36.3 95.6 88.7 - -

https://github.com/yfsong0709/RA-GCNv2
https://github.com/kenziyuliu/DGNN-PyTorch
https://github.com/lshiwjx/2s-AGCN
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Table A3. Cont.

Datasets

Name Code Year Details Kinetics
NTU
RGB+D

NTU
RGB+D
120

CV CS CV CS

2s-GAS-GCN [49] - 2020 Gated CNN, channel attention 37.8 96.5 90.4 - 86.4

SGP-JCA-GCN [85] - 2020 Structure-based graph pooling, learn
edges between human parts

- 93.1 86.1 - -

4s Shift-GCN [141] Github 2020 Cheap computation, shift graph con-
volution

- 96.5 90.7 85.9 87.6

STG-INs [83] - 2020 LSTM - 88.7 85.8 - -

MS-AGCN [114] - 2020 Multistream, AGCN backbone - 95.8 90.5 - -

MSGCN [65] - 2020 Attention+SE block, scaled by part
division

- 95.7 88.8 - -

Res-split GCN [51] - 2020 Directed graph, skip connection 37.2 96.2 90.2 - -

Stacked-STGCN [67] - 2020 Hourglass, human–object-scene
nodes

- - - - -

2s-PST-GCN [117] - 2020 Find new topology 35.53 95.1 88.68 - -

2s-ST-BLN [81] - 2020 Symmetric spatial attention, sym-
metric of relative positions of joints

- 95.1 87.8 - -

4s-TA-GCN [130] - 2020 Skip connection, temporal attention 36.9 95.8 89.91 - -

DAG-GCN [100] - 2020 Joint and channel attention, build de-
pendence relations for bone nodes

- 95.76 90.01 82.44 79.03

LSGM+GTSC [97] - 2020 LSTM, feature calibration, temporal
attention

- 91.74 84.71 - -

VT+GARN
(Joint&Part) [94] - 2020 View-invariant, RNN - - - - -

[102] - 2020 Skeleton fusion, ST-GCN backbone - - 82.9 - -

4s-EE-GCN [120] - 2020 One-shot aggregation, CNN 39.1 96.8 91.6 - 87.4

MS-ESTGCN [134] - 2020 Spatial conv. + temporal conv. 39.4 96.8 91.4 - -

EN-GCN [193] - 2020 Fuse edge and node - 91.6 83.2 - -

MS TE-GCN [194] - 2020 GCN+1DCNN as TCN - 96.2 90.8 - 84.4

ST-GCN+channel aug-
mentation [103] - 2020 ST-GCN+new features from param-

eterized curve
- 91.3 83.4 - 77.3

RHCN+ACSC +
STUFE [182] - 2020 CNN, skeleton alignment - 92.5 86.9 - -

[188] - 2020 Use MS-G3D to extract features, mul-
tiple person

- - - - -

MS-TGN [57] - 2020 Multi-scale graph 37.3 95.9 89.5 - -

MM-IGCN [126] - 2020 Attention, skip connection, TCN - 96.7 91.3 - 88.8

SlowFast-GCN [104] - 2020 Two stream with 2 temporal resolu-
tion, ST-GCN backbone

- 90.0 83.8 - -

VE-GCN [63] - 2020 CRF as loss, distance-based partition,
learn edges

- 95.2 90.1 - 84.5

RV-HS-GCNs [187] - 2020 GCN, interaction representaion - 96.61 93.79 - 88.2

https://github.com/kchengiva/Shift-GCN
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Table A3. Cont.

Datasets

Name Code Year Details Kinetics
NTU
RGB+D

NTU
RGB+D
120

CV CS CV CS

MS-G3D [55] Github 2020 Dialted window, GCN+TCN 38 96.2 91.5 86.9 88.4

WST-GCN [105] - 2020 Multi ST-GCN, ranking loss - 89.8 79.9 - -

MS-
AAGCN+TEM [66] - 2020 Extended TCN as TEM 38.6 96.5 91 - -

ST-PGN [64] - 2020 GRU, PGNs+LSTM - - - - -

GCN-NAS [116] Github 2020 GRU, PGNs, LSTM 37.1 95.7 89.4 - -

Poincare-GCN [106] - 2020 ST-GCN on Poincare space - 96 89.7 - 80.5

ST-TR [125] Github 2020 Spatial self-attention + temporal self-
attention

- 96.1 89.9 - 81.9

S-STGCN [123] - 2020 Skip connection, self-attention - - - - -

MS-AAGCN [73] Github 2020 Attention 37.8 96.2 90 - -

HSR-TSL [62] - 2020 Skip connection, skip-clip LSTM - 92.4 84.8 - -

PA-ResGCN [119] Github 2020 Part attention - 96.0 90.9 - 87.3

3s RA-GCN [82] Github 2020 Occlusion, select joints, ST-GCN
backbone

- 93.6 87.3 - 81.1

IE-GCN [107] - 2020 L-hop neighbours, skip connection,
ST-GCN backbone

35.0 95.0 89.2 - -

FV-GNN [195] - 2020 FV encoding, ST-GCN as feature ex-
tractor

31.9 89.8 81.6 - -

GINs [115] - 2020 Two skeletons, transfer learning
(teacher–student)

- - - - -

MV-IGNet [59] Github 2020 Two graphs, multi-scale graph - 96.1 88.8 - 83.9

GCLS [127] - 2020 Spatial attention, channel attention 37.5 96.1 89.5 - -

AMCGC-LSTM [92] - 2020 LSTM, point, joint and scene level
transformation

- 87.6 80.1 - 71.7

GGCN+FSN [91] - 2020 RL, TCN, feature fusion based on
LSTM

36.7 95.7 90.1 - 85.1

ST-GCN-PAM [48] Github 2020 Pairwise adjacency, ST-GCN back-
bone interaction

41.68 - - 76.85 73.87

CGCN [60] - 2020 ST-GCN backbone 37.5 96.4 90.3 - -

FGCN [138] - 2020 Dense connnection of GCN layers - 96.3 90.2 - 85.4

PGCN-TCA [74] - 2020 Learn graph connections, spa-
tial+channel attention

- 93.6 88.0 - -

Dynamic GCN [80] - 2020 Seperable CNN as CeN to regress
adjacency matrix

37.9 96.0 91.5 - 87.3

PeGCN [93] Github 2020 AGCN backbone 34.8 93.4 85.6 - -

CA-GCN [196] - 2020 Directed graph, vertex information
aggregation

34.1 91.4 83.5 - -

SFAGCN [99] - 2020 Gated TCN 38.3 96.7 91.2 - 87.3

2s-AGCN+PM-
STFGCN [109] - 2020 Attetion, AGCN/ST-GCN backbone 38.1 96.5 91.9 - -

https://github.com/kenziyuliu/ms-g3d
https://github.com/xiaoiker/GCN-NAS
https://github.com/Chiaraplizz/ST-TR
https://github.com/iamjeff7/j-va-aagcn
https://github.com/yfsong0709/ResGCNv1
https://github.com/yfsong0709/RA-GCNv1
https://github.com/niais/mv-ignet
https://github.com/hendrikTpl/STGCN-PAM-TPIR
https://github.com/andreYoo/PeGCNs
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Table A3. Cont.

Datasets

Name Code Year Details Kinetics
NTU
RGB+D

NTU
RGB+D
120

CV CS CV CS

2s-TL-GCN [86] - 2020 d-distance adjacency matrix, ST-
GCN/AGCN backbone

36.2 95.4 89.2 - -

2s-WPGCN [52] - 2020 5-parts directed subgraph, GCN
backbone

39.1 96.5 91.1 - 87.0

SAGP [124] - 2020 Attention, spectral sparse graph 36.6 96.9 91.3 - 67.5

JOLO-GCN (2s-
AGCN) [54] - 2020 Descriptor of motion, ST-

GCN/AGCN backbone
38.3 98.1 93.8 - 87.6

Sem-GCN [128] - 2020 Attention, skip connection, L-hop,
semantics

34.3 94.2 86.2 - -

SGN [135] Github 2020 Use semantics (frame + joint index) - 94.5 89.0 - 79.2

Hyper-GNN [71] - 2021 Add hyperedges, attention, skip con-
nection

37.1 95.7 89.5 - -

SEFN [121] - 2021 Multi-perspective Attention,
AGC+TGC block

39.3 96.4 90.7 - 86.2

Sym-GNN [95] - 2021 Multiple graph, one-hop, GRU 37.2 96.4 90.1 - -

PR-GCN [183] Github 2021 MCNN, attention, pose refinement 33.7 91.7 85.2 - -

GCN-HCRF [90] - 2021 HCRF - 95.5 90.0 - -

2s-ST-GDN [122] - 2021 GDN, part-wise attention 37.3 95.9 89.7 - 80.8

STV-GCN [198] - 2021 ST-GCN to obtain emotional state,
KNN

- - - - -

MMDGCN [137] - 2021 Dense GCN, ST-attention 37.6 96.5 90.8 - 86.8

CC-GCN [131] - 2021 CNN, generate new graph 36.7 95.33 88.87 - -

SGCN-CAMM [84] - 2021 GCN, redundancies, merge nodes
by weighted summation of original
nodes

37.1 96.2 90.1 - -

DCGCN [110] Github 2021 ST-GCN backbone, attentioned
graph dropout

- 96.6 90.8 - 86.5
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