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Abstract: Natural disasters cause enormous damage and losses every year, both economic and in
terms of human lives. It is essential to develop systems to predict disasters and to generate and
disseminate timely warnings. Recently, technologies such as the Internet of Things solutions have
been integrated into alert systems to provide an effective method to gather environmental data
and produce alerts. This work reviews the literature regarding Internet of Things solutions in the
field of Early Warning for different natural disasters: floods, earthquakes, tsunamis, and landslides.
The aim of the paper is to describe the adopted IoT architectures, define the constraints and the
requirements of an Early Warning system, and systematically determine which are the most used
solutions in the four use cases examined. This review also highlights the main gaps in literature and
provides suggestions to satisfy the requirements for each use case based on the articles and solutions
reviewed, particularly stressing the advantages of integrating a Fog/Edge layer in the developed
IoT architectures.

Keywords: Internet of Things; early warning systems; flood early warning; earthquake early warning;
tsunami early warning; landslide early warning

1. Introduction

An Early Warning System (EWS) is an integrated architecture of hazard monitoring,
forecasting and prediction, disaster risk assessment, communication and preparedness
activities, systems, and processes that enables individuals, communities, governments,
businesses, and others to take timely action to reduce disaster risks in advance of hazardous
events [1]. An EWS has the following key elements: (i) risk knowledge and risk assess-
ment, (ii) monitoring of parameters that can enhance or enable predictions and forecasts,
(iii) dissemination of timely warnings, and (iv) preparedness to respond to the disaster [2,3].
The United Nations Sendai framework for disaster reduction recommends to substantially
increase availability and access to multi-hazard early warning systems by 2030 [4]. In 2020,
only 23 out of 195 of the UN countries had a working multi-hazard national EW system.
In these countries, 93.63% of the population exposed to natural disaster-related risks was
successfully protected through evacuation following the early warning [5], showing the
great effectiveness of these systems. The societal impact of a national Early Warning system
in terms of risk preparedness and risk mitigation are expected to be extremely relevant.
A survey in California from 2016 showed that 88% of the population agreed about the
importance of a national Early Warning system for earthquakes [6], and another study
showed how such a system on the United States West Coast could reduce the risk of injuries
by 50% by enhancing the population preparedness to the event [7,8]. From a cost–benefit
standpoint, while a rigorous analysis is required for each use case and it strongly depends
on the frequency of the event and the ability of the system to avoid false alarms, employing
an EW system can provide great damage reduction, especially when coupled with efficient
infrastructures and complementary safety measures. As such, EWSs are useful tools to
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protect human lives, valuable assets and the financial stability of disaster-prone regions [9].
For example, it has been estimated that a flood forecasting system can reduce up to 35%
of annual damages due to floods [10]. The benefits from damage and fatalities reduction
thanks to an earthquake warning system could easily repay 1 year of operation of said
system [7], and the estimated benefit to cost ratio of a tsunami EWS in the Indian Ocean
would be 4:1 [11]. Moreover, according to the Sendai framework, an efficient disaster
risk reduction framework requires a multi-hazard approach and inclusive risk-informed
decision making based on the open exchange and dissemination of disaggregated data. The
use of advanced information and communication technologies could provide the means to
make multi-hazard warning systems available in most countries that still do not have a
national implementation, thanks to their low deployment costs, and also provide the means
for smart and effective alert and information broadcasting [12]. In particular, technologies
such as Internet of Things, Cloud Computing, and Artificial Intelligence can assist the
monitoring, forecasting and alarm generation aspects of Early Warning (EW) by providing
the tools to sense, clean, process, and analyze data coming from the environment.

The Internet of Things (IoT) consists of infrastructures interconnecting connected
objects and allowing their management, data mining and the access to the data they
generate [13]. It aims at connecting objects, actuators, or sensors to accomplish various
tasks, such as environmental monitoring for various customized purposes [14]. A basic and
generic IoT architecture includes three levels: (i) the local environment, containing smart
objects or sensors that communicate with each other and interact or sense data from the
environment; (ii) a transport layer that allows end-nodes from the first layer to communicate
with higher layers and infrastructures; and (iii) a storage, data mining, and processing
layer, usually implemented in the cloud, and possibly with systems and interfaces to
let users access and visualize the data. While Wireless Sensor Networks (WSN) are an
essential component in many IoT deployments (providing an interface between the local
environment and the users), IoT solutions allow the coexistence of heterogeneous devices,
real time applications, data analytic and data storage services, improved security [15],
and energy management [16], from which WSNs can benefit. In the context of disaster
management and Early Warning systems, the IoT provides the means for widespread
environmental monitoring from different data sources, low latency communications and
real-time data processing, which enable the generation of accurate and timely warnings in
the case of disaster occurrence or forecasting.

This work presents a review on the architectures and the requirements of IoT solutions
used in EW systems. In particular, the paper will first introduce a general IoT architecture
and some general concepts and requirements for IoT-based EWSs, and then focus on
four different natural disasters: floods, earthquakes, tsunamis, and landslides. For each of
them the review will present a set of use cases that focus on or optimize some IoT-related
aspects (such as radio coverage, energy consumption, fault tolerance, latency, and real-time
data processing) required for the optimal operation of each specific EW context of use.
The main contributions of the review article are the following: (i) it describes a generic
architecture for an Early Warning system based on the IoT; (ii) it systematically determines
which are the most used solutions in the four use cases examined and it highlights possible
trends and gaps; and (iii) it provides suggestions for future research in this field and some
recommendations to be able to satisfy the main requirements of such a system, based on
the reviewed papers and the authors’ experience in this field.

Compared to other reviews, surveys, or papers containing literature overviews that
focus on a particular type of disastrous event or a single category of hazards, such as [17–23],
this paper takes into account multiple natural disasters highlighting the differences from
one case to the other, in term of IoT architectures and systems requirements such as the
required latency constraints. While some reviews, such as [20,21], more explicitly focused
on prediction algorithms, Machine Learning prediction models and Computer Vision, or
post-disaster management, the main focus of this work is on the adopted IoT solutions and
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their possible optimizations, including system requirements, communication protocols,
data processing, and sensor network topology aspects.

The paper is structured as follows. In the next section, we explain the methodology
used to compile the review paper and we introduce the Research Questions (RQs) addressed
by the paper. In Section 3, a generic IoT architecture is introduced, alongside a set of
requirements for an EWS. Sections 4–7 answer the aforementioned RQs by analysing
papers and up-to-date solutions for the four natural disasters that have been taken into
consideration. In Section 8, we provide some recommendations about the future research
on the topic of IoT solutions for Early Warning systems. Lastly, in Section 9, we discuss the
main findings of the paper.

2. Methodology

Below we briefly analyze the methods used to compile the review and the Research
Questions (RQs) taken into consideration.

2.1. Method

This article reviewed papers concerning IoT solutions for EW systems focus on four
different natural disasters: floods, earthquakes, tsunamis, and landslides. For each of
these use cases a search process of scientific articles was conducted using four different
search engines: Google Scholar, Elsevier, IEEE Xplore, and MDPI. The articles collected
in each search process were preliminary filtered by year of publication in order to occupy
a time frame spanning from 2017 to 2022 and review more recent papers and solutions.
Older key reference papers have been cited when necessary during the discussion of
generic architectures, protocols, or methods. Each search process for a chosen search engine
brought a great number of results, so efficient search keywords were used. The main
focus of the review is on EW systems architectures and IoT-related aspects, so articles that
only proposed prediction algorithms, Machine Learning models for disaster forecasting,
post-disaster recovery systems, or alert dissemination have not been included among the
reviewed literature, unless they also provided the implementation or proposal of an IoT
architecture for EW or dealt with some of its specific aspects. The reviewed articles contain
(i) proposed or developed IoT and WSN solutions, (ii) methods and simulations regarding
sensor networks optimization and performance evaluation, and (iii) considerations about
network topologies or other aspects related to the constraints and requirements of an EWS.
Taking these aspects into consideration, specific search keywords were selected for each
search process of the four use cases examined in the reviewed. For example, keywords such
as “Early Warning System”, “IoT”, “Wireless Sensor Networks”, and “Alert System” were
used for the research for each use case, while for a specific use case such as Tsunami Early
Warning other keywords were also used, namely, “Underwater Sensor Networks”, “IoUT”,
“Ocean Monitoring”, and “Sea Waves Monitoring”. Further reduction was obtained by
excluding papers that did not directly deal with IoT-related topics and by crossing the
specific keywords. The process of selecting research articles ends evaluating whether the
selected papers could answer one or more of the Research Questions. For example, the
search process of Tsunami Early Warning in the IEEE Xplore search engine brought more
than 160 results, which were then reduced to 52 after the preliminary filtering by year.
Subsequently, by crossing the keywords the total papers were reduced to a handful, and
lastly only three papers were selected from this search engine for the review of this use case.

2.2. Research Questions

The paper aims to answer the following Research Questions:

• RQ1: What are the main constraints and strategies when developing an EWS for
disaster management and forecasting, especially when it comes to IoT-related aspects?

• RQ2: What are the most used IoT architectures and communication protocols in EWS
for different types of disasters?
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• RQ3: How can existing EW systems be improved or optimized and what are the main
gaps in literature and reviewed use cases?

The questions were selected with the objective to both give a general overview of
architectures and networks in the field of EWSs, and provide possible insights or solutions
during the development of such systems, starting from its prerequisites and constraints up
to the overall architecture.

The goal of the reviewing process was to answer the RQs that were previously defined.
For each article we highlighted the main objectives and the results, with the aim of showing
both the progresses and the possible missing pieces or improvements that are needed in the
more recent literature (RQ3). The reference architecture was used to analyze the papers and
to easily extrapolate the main technologies used for each layer of the architecture developed
in the various solutions (RQ2). Lastly, we provided some general recommendations to be
able to satisfy the requirements of an EW system, based on the literature and the reviewed
papers (RQ1).

3. IoT Architectures for EW Systems

In the following section, we introduce a simple IoT architecture that can be used to
describe EW systems based on the IoT paradigm. The paper will consider this reference
architecture to better describe the reviewed IoT systems in the following sections, and find
possible trends. For each of the reviewed use cases, we will summarize the main features
of each reviewed paper following this template, not only to highlight the key aspects of
each solution, but also to show which solutions adopted Edge implementations and which
did not.

3.1. Reference Architecture

IoT systems’ functions and peculiarities can be described starting from their architec-
tural configuration. As for the most basic IoT solutions [24], a three-layered architecture
can be used to describe a generic EW system based on the IoT. As shown in Figure 1 the
common IoT architecture basically consist of a Perception layer, a Communication layer,
and an Application layer [23].

EARTHQUAKES

TSUNAMIS LANDSLIDES

APPLICATION Layer

COMMUNICATION Layer

PERCEPTION Layer

FLOODS

Figure 1. Reference IoT architecture.



Sensors 2022, 22, 2124 5 of 39

While specific architectures may introduce or specify new layers and intermediate
layers, such as Edge/Fog Layers, Middleware and Interface Layers, a generic and simple
architecture can be considered to be one that senses data from the environment, processes it,
and/or forwards it to a central server which will then use the current and previously stored
data to generate alarms through different methods, such as signal processing, statistical
methods, computer vision, or Artificial Intelligence (AI), specifically through the adoption
of Machine Learning (ML), and Deep Learning algorithms. Below is a brief description of
each layer with its main characteristics.

3.1.1. Perception Layer

The perception layer has the task to sense and collect data from the environment,
usually through sensors. Wireless Sensor Networks are widely used in disaster monitoring
scenarios: they consist of nodes equipped with sensing units and communication units that
can harvest data from the environment and then forward it towards a gateway node that
interfaces and communicates with higher layers. WSNs offer benefits such as scalability,
dynamic reconfiguration, reliability, small size, low cost, and low energy consumption [24].
Some aspects of a WSN development are particularly important in disaster monitoring or
disaster EW scenarios, such as battery life, coverage, and fault tolerance, and they will be
explained in detail in Section 3.2.

The choice of the right sensing unit can be essential in providing a timely and accurate
response, and different parameters can contribute differently to a particular environmental
hazard. Positioning sensors in certain zones or terrains can be particularly difficult, and
while some applications monitor localized events (such as landslides), others might require
deployments over large areas (such as river basins in flood EW, or the large geographical
regions that can be affected by earthquakes), and this will enhance the cost of the solution
and require ad hoc strategies to efficiently cover the entire area to be monitored, for example
differentiating between nodes with long and short range coverage capabilities [25] or, for
example, with a smart and optimized distribution of the sensors depending on the disaster
probability of occurrence [26].

3.1.2. Communication Layer

The communication layer transmits the data acquired and processed by the percep-
tion layer to a server, cloud service or application. This layer is responsible for routing,
communication between heterogeneous networks, and reliable data transmission. There
are different communication technologies that can be used to transmit data, both wireless
and wired.

Wireless communication technologies in IoT solutions for EW Systems can be divided
in two categories: long range technologies and short range technologies. Low Power
Wide Area Network (LPWAN) technologies such as Long Range Wide Area Network
(LoRaWAN), SigFox, Narrowband Internet of Things (NB-IoT) and Extended Coverage
GSM IoT (EC-GSM-IoT) offer long range and can be further divided into Licensed and
Unlicensed, depending on the frequency bands used. LoRaWAN and SigFox use Unlicensed
Industrial, Scientific and Medical (ISM) bands, while NB-IoT and Global System for Mobile
communications (GSM) use cellular networks and work in licensed spectrum. Cellular
networks are widely deployed and they offer reliable services and Quality of Service, but
cellular networks can be badly affected by environmental disasters [27,28], which is a
critical requirement for the development of EW Systems. Among short range technologies,
wireless protocols such as Bluetooth Low Energy (BLE) and Zigbee can offer low-cost
solutions with very low power consumption and mesh architectures support [29]. Their
main limit is the lack of support for long distance communication, unless the solution
makes use of repeaters, which could enhance the costs [30]. The most common wireless
communication technologies for EW systems are the following:

• Zigbee: Zigbee is a popular low-cost, low-energy, low-speed protocol built on existing
IEEE 802.15.4 protocol and developed by ZigBee Alliance. It works on the 2.4 GHz
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band and it has data rates from 20 to 250 kbps. Zigbee supports star, mesh and cluster
tree topologies, among which mesh connection is more flexible and reliable [31],
allowing the WSN to survive node faults and node losses. It has a light weight stack
compared to Wi-Fi and Bluetooth and battery life up to 5 years, but relatively short
range and low data rates.

• Bluetooth and BLE: Bluetooth is based on the IEEE 802.15.1 standard. The ultra low-
power, low-cost version of this standard is Bluetooth Low Energy. Both Bluetooth and
BLE operate in the 2.4 GHz ISM band. They have data rates up to 1 Mbps and they
use fragmentation to transmit longer data packets [27]. In BLE, there is a trade-off
between energy consumption, latency, piconet size, and throughput, but parameters
tuning allows BLE to be optimized for different IoT applications [32].

• 6LOWPAN: IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)
is a standard defined by the Internet Engineering Task Force to send IPv6 packets
over IEEE 802.15.4 or currently also over other protocols such as Bluetooth/BLE. It is
widely used for sensors that need to transmit low amounts of data, and it operates on
unlicensed bands. The 6LoWPAN group defined the encapsulation and compression
mechanisms that allow the IPv6 packets to be carried over the wireless network to
allow sensor networks to use IP instead of other proprietary technologies.

• Wi-Fi: Wi-Fi is a widely spread group of wireless technologies under the 802.11 stan-
dard. While faster than other IoT-specific standards such as Bluetooth, Wi-Fi devices
consume more power than other devices, such as those based on BLE. Wi-Fi HaLow
(802.11.ah) is a new Wi-Fi technology that operates in the spectrum below 1 GHz and
is specifically designed for IoT use cases by adding low power consumption and long
range, which are suitable for this kind of applications.

• LoRaWAN: LoRa is a physical layer technology that uses a proprietary spread spec-
trum technique and LoRaWAN Medium Access Control protocol is an open source
protocol standardized by the LoRa Alliance that runs on top of LoRa physical layer.
It works in ISM bands, that is, 868 MHz in Europe, 915 MHz in North America, and
433 MHz in Asia. LoRa’s modulation allows for great performance against interference
and different data rates, from 300 bps to 50 kbps. LoRaWAN improves the received
messages ratio using re-transmissions, it offers great coverage (10–40 km in rural zones
and 1–5km in urban zones [33]) and low costs and long battery life for end-devices. It
provides three classes of end devices for different IoT requirements, such as latency or
energy consumption.

• EC-GSM-IoT: EC-GSM-IoT re-purposes 200 kHz narrowband carriers from GSM
networks and it only requires a software update of the GSM network, without needing
additional hardware. Some solutions in the reviewed literature still use GSM and
General Packet Radio Service (GPRS) modules for connectivity, but Extended Coverage
GSM aims to provide better performance, including better indoor coverage, large scale
deployments, reduced complexity and better power consumption compared to old
GSM modules and devices [34].

• NB-IoT: NB-IoT is a technology introduced by 3rd Generation Partnership Project
that operates in licensed spectrum and reuses existing Long Term Evolution infras-
tructures. NB-IoT provides high coverage (20 dB stronger than traditional GSM)
with a high Maximum Coupling Loss of 164 dB [34], which allows NB-IoT devices
to reach underground locations (for example, for locating victims [28]). It has low
energy consumption and it improves energy saving mechanisms; network procedures,
protocol stack, modulation schemes, and base-band complexity are simplified to re-
duce the User Equipment complexity and cost. Different kinds of latency can occur
during the NB-IoT communication, and latency must be kept below 10 s in real time
applications [30].

• 5G: 5G networks will provide further solutions and resources when it comes to
cellular/mobile communications. Particularly, Ultra Reliable and Low Latency Com-
munication (URLLC) aims to provide delays below 1 ms and with 99% reliability,
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making it particularly suitable for use cases such as Earthquake Early Warning, which
is strongly characterized by the latency constraint [35].

• EnOcean: EnOcean works in Unlicensed bands, 868 MHz frequency in Europe and
315 MHz frequency in America. EnOcean is not capable to handle ad hoc network
topologies as other wireless communication protocols and it has less features than
other protocols, but its main focus is to be energy efficient [36], therefore being suitable
for disaster management, especially thanks to its energy harvesting feature [27].

• Satellite communications: The use of satellite communications can prove effective
when terrestrial communications are down or when the IoT deployment is in geograph-
ical areas that are difficult to reach with other means such as cellular communication,
for example for a lack of existing infrastructures. There are some providers currently
offering services that support satellite IoT, and satellites are also expected to play a
relevant role in supporting 5G and IoT systems [37].

Wired technologies can also be used in WSNs and IoT systems. For example, Industrial
IoT protocols such as CANOpen have also been used in the reviewed literature to connect
devices and sensors that were used in the developed EW systems. Similarly, other wired
system such as optic fiber communication can still prove effective for communication, for
example in underwater settings. In this context, the aforementioned radio wireless protocols
are often not the right choice for communications because of the different propagation
scenarios, and instead Underwater Wireless Sensor Networks (UWSN) more often use
acoustic communications.

Usually, wireless communications have proved to be the most efficient in disastrous
events and emergencies [38], even though both wired and wireless communications are
susceptible to failure. Disasters can have a large impact on infrastructures and networks
facilities, for example cutting off the affected region in case of antennas, optical fiber links,
or overhead cables failures [27]; as such, redundant communication channels should be
considered to ensure that working communication links are always available.

3.1.3. Application Layer

The application layer is at the top of the IoT layered architecture. It uses the data
received from the communication layer to provide services or operations [24], possibly
combining collected data with historical data, and satellite or weather forecasting data from
other sources. The application layer implements algorithms to generate and propagate
warnings if a disastrous event is imminent; it can provide databases to store old data and
current data in real time; it can make predictions and forecasts, and so on. User interfaces
can be created on top of the application layer and, in service-oriented-architectures, service
management and middleware layers can be interposed between the Application Layer and
the Communication layer to act as a bridge between the devices and the applications, and
to ensure interoperability [39]. Cloud-based IoT platforms provide almost limitless storage
and computational capabilities. There are many existing Cloud platforms that provide
different services useful for IoT solutions [40]. Data analytics is an essential part of IoT
EW systems, that might have to deal with large amounts of data from different sources,
geographic locations and points in time that need to be processed and analyzed. Data
analysis can become the bottleneck of an EW system [27], and therefore cloud platforms
should be associated with modern EW systems [19]. Cloud computing also comes with
problems such as latency when the amount of data to process is too big, but Fog/Edge
computing can reduce the weight on the application layer. When dealing with a great
number of heterogeneous devices, sensors and data sources, like in EWSs, a semantic
approach can also be used to enhance queries and data processing [11].

Fog or, more generally, Edge computing can be implemented between the Communi-
cation layer and the Application layer to provide a faster response and better quality than
solutions based solely on Cloud computing [24]. While Cloud services provide essential
storage and processing capabilities, transmitting big amounts of data from many sensors or
data sources can be costly, and processing a lot of raw data in dedicated servers will add
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a latency that can affect the performance of the EW system. In fog and edge computing,
the data from the perception layer is first processed at the network edge (on gateways or
even end devices) before transmitting it to higher layers, for example to a cloud service,
so that latency and the amount of data to send to the cloud can be reduced. This can also
help overcome bandwidth instability [19] (since processing data at the edge can lower the
bandwidth consumption [39]) and intermittent network conditions when environmental
hazards occur or during the disaster response phase [41]. Moreover, Edge Computing
is also suitable for devices with limited battery life [42]. Fog nodes can also implement
algorithms to make predictions based on the data collected from the perception layer [26].
It is also possible to embed ML models in Edge devices, but complexity and memory
constraints could make it more challenging [39].

3.2. Requirements of an EW System

All IoT solutions have some constraints that need to be taken into account when
deploying an IoT system. Early Warning systems need to produce well-timed warnings
using data usually obtained from a WSN, which also comes with its own requirements such
as limited power consumption and low power communications, high or total end-to-end
reliability, and limited delays. Data transmission and processing on higher layers should
also be optimized as to not add latency to the system. Therefore, the following requirements
can be defined when designing an IoT solution for EW systems:

• Battery life: WSNs deploy sensors that need to last for a long time, especially when
they are installed in locations that are hard to reach or difficult terrains that would
make replacing the batteries a costly task. Energy budgets should be evaluated for
each application, and data acquisitions and transmissions should be optimized to also
limit power consumption in critical work conditions such as dark times operations
(when solar batteries are not recharged) for sensors equipped with photo-voltaic units,
or critical environmental situations that require more measurements and so on. A
common energy preserving strategy is to let nodes go into sleep mode when they
are not being used; however, communication protocols for WSN should be energy-
efficient, minimizing overheads and re-transmissions [43].

• Fault tolerance and reliability: The system should be able to work even if one or
more nodes are no longer available or if the network topology changes. Many factors
can determine a faulty situation, such as low battery, bad coverage, a node being
damaged or destroyed, etc. Since nodes or gateway mobility change the state of
the network and complicate the message routing, numerous dedicated WSN routing
protocols can be used to take into account these factors [43]. Protocols that support
mesh network topology (Zigbee, Bluetooth) are useful because they provide flexibility
for the network in case of failure of one or more nodes. Self-reorganizing algorithms
and failure prediction are therefore essential to allow the EW system to keep issuing
warnings [44]. Moreover, the casing or fabrication of a sensor node should be made so
that bad weather conditions, floods, or hurricanes have less impact on it [27].

• Coverage: The geographical regions that need to be covered by an IoT solution for EW
systems can be very large, and, as such, the chosen communication protocols must
be able to allow long range communication between far nodes and gateways with
predetermined rates, latency, packet loss, and other parameters. Some locations might
also have blockage, heavy shadowing, or other issues that can compromise radio
communications, and therefore a link budget evaluation is essential to understand
whether or not communication links will work with the required parameters.

• Latency: EW systems should provide timely warnings, and as such systems should
be able to transmit data quickly and the elaboration should not take time. Fog/Edge
computing lowers the amount of data to be sent to higher layers, reducing the latency
introduced when cleaning, analysing, and processing large amounts of data in the
application layer. The choice of the right processing algorithm can also be valuable
to reduce latency. Depending on the application, different time constraints could be
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required, and different communication protocols that are suited for EW can provide
short transmission times, from the order of seconds to milliseconds.

Based on the general IoT architecture defined, and on the general requirements for IoT
systems, the following sections are going to present peculiarities and solutions for each of
the four use cases identified as relevant for the application of EW Systems.

4. Floods

Floods are one of the most dangerous environmental hazards, every year bearing
enormous losses in terms of human lives and infrastructures. Flash floods are a particular
concern because they happen quickly, intensely and without warning, thus requiring
systems that allow to predict them and give time for evacuation and other security measures.
Events that can generate floods are heavy rainfalls, thunderstorms and rapid snow melts.
Hydro-geological instability and soil properties are also to be taken into account when
assessing the risk of floods. Some existing and operational flood EW systems, such as
the European Flood Awareness System, use rainfall detection (for example, from radars)
or rain forecasts to generate alarms when the amount of rain detected has risen above a
certain threshold [45]. IoT systems produce data that is immediately accessible for real-time
warning applications. Prediction methods in EW IoT systems can rely on hydro-geological
models or statistical and Machine Learning models that collect data in real time from WSNs,
send them to a remote server for processing and then display results or generate alarms.
Figure 2 illustrates a generic implementation of a flood Early Warning system based on the
IoT which makes use of different types of sensors.

Figure 2. Example implementation of a Flood Early Warning System based on the IoT.

4.1. Reviewed Use Cases for Flood EW

Table 1 summarizes the articles reviewed in the context of the Flood Early Warning
systems and an objective analysis of them is illustrated below.
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Table 1. Reviewed Articles in Flood EW.

Article Focus and Objectives Results

[46]

The paper proposes a simple IoT system for dams flood
warning, trying to compensate some issues in previous
solutions such as the need to deal with heterogeneous

data, power consumption, and the abrupt loss of
cellular coverage.

A cellular application is to be deployed to alert users,
based on Zigbee tech. This would provide resilience to

cellular network failures, but it requires users to use
Zigbee hardware.

[26]

Fog Layer implementation in Flood EW to reduce latency
and provide predictions before the Data Analysis Layer,
and energy and cost optimizations through hexagonal

division of the monitored area. Proposal and validation of
prediction algorithms.

A prototype was proposed to test all layers simultaneously,
showing effectiveness of the proposed architecture.

Algorithms were tested with geographical data collected
from flood monitoring websites.

[47]

Use of different sensors connected using 3G/2G/GSM
modules and LoRa modules, taking advantage of the good

network coverage in the area, to process, compile, and
forward information to provide timely warnings.

The cost of this solution is high, but it proved successful in
generating alarms and it comes with an user interface.

[48]

Revival of a rural water monitoring system, with a focus
on how NLoS communication and remote locations are

challenging for GSM, and how an ad hoc
LoRA/non-cellular network could be an attractive and

reliable option.

Experimental measurements on the LoRa transmission
show a dependency on the receiver and transmitter

heights and worse performance than empirical models. A
migration to other cellular protocols besides GSM

is suggested.

[49]

The study develops a river monitoring system with a focus
on power consumption, showing that radio transmissions
are the most energy consuming operation for the node and

how critical measurement modes affect energy waste.

When solar batteries are not recharged and when in critical
mode, battery life of the sensor node becomes 57% shorter.
The measurement success rate also depends on the cone

used for the ultasonic sensor.

[50]

Sensor node implementation for Flood EW WSN with low
energy consumption achieved through a dedicated deep

sleep algorithm and testing to evaluate
power consumption

Current is on average 13 mA during the setup time period,
and it drops to an average of 0.3 mA in standby phase.

Thanks to short wake-up and transmission windows, more
than 280 days are needed to discharge a 2200 mAh battery.

A full WSN implementation and high traffic were not
tested yet.

[44]

Case study for an EW system called SENDI with a focus
on fault tolerance through a clustering model and sensor

nodes with embedded forecasting models and
self-organizing algorithms.

The clustering system and the forecasting models were
tested through simulation, showing good results as far as

energy optimization, fault tolerance and accuracy. A
limitation is the requirement of a large number of nodes to

properly work.

[51]
Development of a WSN whose data is used to train and
validate a SVM Machine Learning model which can be

embedded into the WSN coordinator nodes.

98% accuracy for flood prediction was achieved.
Architecture thresholds are dependent on the location, so
the system needs to first obtain data (if not available) and

compute them. There is ambiguity for data from
overlapping endpoints. LoRa communication worked with

virtually no data loss.

[52]

Development of an Early Warning system based on
Computer Vision, using images from a CMOS cameras

sensor network and comparing them with stored
references using image comparison techniques.

The developed algorithms are able to provide curves
regarding: (i) rank of calamity, (ii) image registration curve,
(iii) precision, (iv) object recognition curve. A web platform
was also developed to make the graphs available to users.

[53]

Proposal of a cloud based wireless sensor and actuators
network to alert from floods and to open watchman inlets

to make water flow out of the monitored water source
if needed.

An algorithm to manage the sensors and actuator was also
and successfully validated through model analysis,

specifying different checks for water. The paper did not
propose a specific communication protocol to send data

over the Cloud or to the actuators.

In the scenario of flood warning systems, the solution developed by Basha et al. [25]
and successfully deployed in Honduras and Massachusetts, consists of a heterogeneous
WSN with different nodes that can cover large distances and avoid single points of failure.
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While successful, Jayashree et al. [46] pointed out that this kind of solution has the downside
of needing many different kinds of nodes and dealing with heterogeneous data; therefore it
is more expensive and it requires more complex computation. They propose a generic and
simple EW architecture to solve this and other issues such as power consumption, resilience
in absence of cellular coverage, less delay and shorter computations. The architecture
consists of flow and water level sensors that send data to a server only when sensed data
rises above a fixed threshold. An android app would be used for mobile users, working
with Zigbee hardware that is connected to the mobiles via USB On-The-Go module for
communication, so that the system works even if cellular coverage is down, but this
approach would require users to be equipped with said USB On-The-Go system.

In the flood EW IoT-based architecture proposed by Sood et al. [26] the IoT layer
is responsible for collecting and aggregating data from sensors and the Fog computing
Layer is used to decrease latency by pre-processing the raw data from the sensors before
sending it to higher layers, which is useful to ensure timely predictions and to lower the
amount of data sent to the cloud. A forecasting model is also implemented in the fog
nodes. The framework proposed in [26] also introduces a variable size hexagonal division
of the monitored space to cover large areas while providing uniform sensing, optimized
cost requirements and energy saving based on the probability of flood in each hexagonal
division: by defining five probability-of-floods labels, the hexagons in which a monitored
area is divided can be categorized so that only hexagons with a high probability of flood
have all the sensors active, while devices in low probability areas can be put in sleep mode,
minimizing energy waste.

Taking advantage of existing telecommunication infrastructures for connectivity
is often one of the best and easiest solutions, as shown in the use case developed by
Ibarreche et al. [47] in Colima, Mexico, which use the 3G network and the Message Queue
Telemetry Transport (MQTT) protocol to send data to a remote Cloud server for data
processing and storage. The system also employs drifters (mobile sensor nodes) with
LoRa modules which forward data to the 3G connected nodes. The great amount of data
from different data sources and the reliable communication network make the solution
successful in providing timely warnings, but it comes with a high cost.

Cellular networks generally offer good coverage in most locations and future 5G
deployments will further improve their performance. This is not always true, as certain
locations might instead have bad coverage because of Non Line of Sight (NLoS) propagation
problems or because there are not enough base stations to properly cover the entire area
where the sensors are deployed. In this case, a better solution might be achieved creating
ad hoc networks using protocols such as LoRaWAN, as observed by Nordin et al. in [48].
They evaluated the radio performance of both LoRaWAN and GSM in a rural environment
with weak cellular coverage and with different cellular network providers in the case of
GSM. They showed that 2G technology is not always suitable for this kind of application
and that there is a need to migrate to newer technologies such as LTE or NB-IoT, while also
proving LoRaWAN potential in this context.

Critical situations such as water levels rising over a certain threshold might require
the sensors to make more measurements, with a much bigger energy consumption. For
sensors equipped with photo-voltaic systems, adverse weather conditions can compromise
the recharging of batteries. D. Purkovic et al. [49] took into account these factors to evaluate
the energy budget of their developed solution based on EnOcean for better planning before
deployment. They used a generic ultrasonic sensor which has two modes of operation:
normal mode and critical mode. When the water levels rise above a certain threshold, the
device enters critical mode, making more measurements and transmitting all of them. The
study showed that critical mode and dark mode operations reduce the battery life to more
than half its life in normal modes of operation.

Ragnoli et al. [50] also developed a solution with an heavy focus on energy consumption.
Their system consists of a standard LoRa architecture, with a sensor node that communicates
with a server through a gateway. The sensors used are resistance sensors, able to detect the
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presence of water and with a very low cost compared to other sensors, but also very simple
processing since they display an on/off behavior in the presence of water. Three sensors are
put at different heights in the monitored area, obtaining different thresholds and flood levels
from 0 to 2. Low energy consumption is achieved using a dedicated deep sleep algorithm.
Tests were made to evaluate energy consumption, especially to consider night time activity,
during which the battery is not recharged by solar harvesting. Since the wake-up and data
transmission phases are kept very short compared to the sleep period, it is possible to achieve
good performance in terms of battery duration. While a sensor node was fully tested, the full
WSN implementation was not tested, and while the system is scalable, traffic management
needs to be taken into account and might not scale properly with many devices.

Protocols that support mesh networks, like Zigbee, are particularly useful for areas,
such as river basins, where the central node might fail, and as such mesh implementations
are recommended and have been shown to provide better reliability than star or tree
architectures in terms of packet loss [54]. There should be a focus on handling nodes loss in
the developed solutions to make sure the WSN keeps working under difficult operating
conditions. Furquim et al. [44] propose an EW model that exhibits high tolerance to faults
and node failures, especially in harsh environmental conditions. The architecture is divided
into three tiers: (i) sensing nodes, (ii) a fog computing layer, and (iii) a cloud layer. Fault
tolerance is obtained by providing nodes from the first two layers with self-organizing
algorithms and ‘light-weight’ forecasting models that allow them to make predictions if the
connection to the cloud is impossible, even though with less accuracy. If nodes from the
second tier are compromised, first layer nodes take the task of aggregating the data from
other nodes of the same layer. Alarms and sound systems equipped to the first layer allow
to make localized alarms in case the communication system is heavily compromised. To
achieve this level of fault tolerance, the model requires a large number of nodes.

Ali et al. [53] proposed a cloud based wireless sensor and actuators network to alert
from floods. The proposed system is to be deployed not only to monitor water levels so
that warnings can be issued, but it also includes actuators that open watchman inlets to
make water flow out if needed. Water level and volume sensors identify the status of
water and compare it with a threshold. Gateways are used to manage the communication
between sensors and towards the Cloud, which is used to manage the entire system. An
algorithm to manage the sensors and actuator was also proposed and validated through
model analysis, specifying different checks for water levels: when the ‘danger’ level is
reached, a warning message is generated and the watchman is activated by the gateways.
While the paper focused on the WSN and overall IoT architecture, it did not propose a
specific communication protocol.

Flood data is dynamic and non-linear, and as such using ML algorithms or Deep
Neural Networks (DNN) to support the prediction is an often used solution, especially if
previous flood and weather data from the area is available. There is a vast literature on
Neural Networks and DNN used for flash flood prediction, and the approaches rely on the
knowledge of previous data and flood maps and new data coming from the chosen WSN
solution, for which good communication is essential, alongside the right choice of measured
parameters and positioning of the network. As an example, Anbarasan et al. [55] propose
a generic block diagram for flood prediction using Convolutional DNN that follows the
aforementioned approach of data sensing, communication, and prediction. The developed
data-processing algorithm and Convolutional Neural Networks (CNN) showed better
results than systems that use Artificial Neural Networks (ANN) or Deep Neural Networks
(DNN) when validated using doppler radar data.

Al Qundus et al. [51] realized in Kuwait a flood EW system that uses Machine Learning
on data obtained from a sensor network to issue warnings. They deployed 24 sensors and
6 coordinators/receivers, dividing the monitored area into 6 sectors. The sensors used are
water level, temperature, humidity and wind speed sensors, and the coordinator nodes also
use the Google Weather API to get additional data. LoraWAN is used for communication
technology. Since not many sensors were available, the number of reading from each sensor
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had to be raised. The data collected over a year was used to form a training set which was
used to train a Support Vector Machine (SVM) model which was then implemented on
each coordinator node, and validations showed a 98% accuracy for detecting flood. The
thresholds for the sensors must be calculated every time a new solution is deployed in a
new location (requiring a period to collect data if previous data was not available), and
there is an ambiguity for data coming from overlapping endpoints, i.e., from locations that
intersect, and better clustering and locations separation is needed.

As already mentioned, camera based systems and Computer Vision can also be used
for flood Early Warning. Thekkil et al. [52] developed an IoT platform using simple feature
extraction and image comparing algorithms that use data obtained from CMOS cameras
and images from a database to produce curves that give a rank of the danger of flooding
calamity. The compressed images are collected from the cameras network using Zigbee,
forwarded to a GSM gateway and then sent to a processing server for analysis, with the
advantage of being low-cost and economic.

4.2. IoT Architectures for Flood EW Systems

Referring to the layered architecture described in the Introduction, Table 2 lists the
sensing units, communications technologies, and prediction methods employed, and other
applications developed in each reviewed paper. The table also highlights if an Edge/Fog
computing paradigm has been adopted or not in each of the reviewed use cases.

Table 2. Technologies and solutions used for each layer of the reviewed papers for Flood EW.

Article Perception Layer Communication
Layer Application and Edge Layer Edge/Fog

Computing

[46] Water Level, Water flow Zigbee
Data analysis and threshold-based warning
at remote server; Android smartphone
application

No.

[26] Water flow sensor, water
level sensor and rain value. None proposed

Holt–Winter method for prediction at
remote server; early processing and
prediction at sensors/gateway level

Yes.

[47] Monitoring, meteorological,
and mobile stations 3G/GSM, LoRA IoT Cloud Platform to receive, manage, and

store sensor data; semaphore alert system No.

[48] HMS stations GSM, LoRA Data processing and storage at remote
server No.

[49] Ultrasonic Sensor EnOcean Water level monitoring at remote server No.

[50] Resistive Sensors LoRa
Threshold-based alarm system at Cloud
level; data storage and analysis on separate
website

No.

[44] Water pressure, rain gauge 6LoWPAN
Machine Learning forecasting at Cloud and
sensor level; Visual and sound alarms
system

Yes.

[51]
Wind sensor, humidity
sensor, temperature sensor
and water level sensor

LoRa
SVM model embedded in concentrator
nodes for risk classification; final decision at
Cloud server

Yes.

[52] CMOS Cameras Zigbee, GSM
Web platform; algorithms to get
information such as rank of calamity and
precision

No.

[53] Water Level, Water Volume None proposed Threshold-based alert system; Cloud
solution to manage actuators Yes.

Different meteorological and hydraulic quantities can be measured for flash floods
predictions, such as: water level, water velocity, amount of rainfall, temperature, and atmo-
spheric pressure. Alongside these quantities, soil composition, topology, and soil moisture
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might influence floods, and weather forecast data can be used to enhance predictions.
The sensors in the Perception Layer can be integrated with other sensors such as Global
Positioning System (GPS) units. Smart camera systems can be used alone or alongside
sensors that monitor hydraulic and meteorological quantities [56], but they require deeper
data analyses and deep learning or image processing algorithms on the Application Layer
(a comprehensive review on computer vision methods for flood monitoring by Arshad
et al. is reported in [20]). The presence of pre-existing weather stations or hydro-geological
monitoring stations can facilitate the deployment of the EW system. The correct positioning
and installation of IoT devices is essential to achieve good results, and depending on the
number of installed devices the solution might have drawbacks: a large number of IoT
devices will increase cost and will generate redundant data; too few will decrease the
effectiveness of predictions [26].

When it comes to the Communication layer, some of the reviewed solutions still rely
on GSM, 3G or GPRS modules for long range communications, while new cellular solutions
(such as 5G or Narrowband-IoT) could provide better coverage and less latency and an
overall better performance. Ad hoc networks supported by protocols with long range
such as LoRa are also a solution, and they are able to obtain high link budgets in difficult
environments, but they require the installation of a gateway. Furthermore, protocols that
work in ISM bands such as LoRa might experience degradation if there is a large number
of devices transmitting at the same time [48,57]. Zigbee is the most used solution when
it comes to short range communications, and the Zigbee support for mesh networks is
considered useful to survive sensor network faults.

Lastly, while many of the reviewed solutions still make use of Cloud platforms or
servers to store and process data or to run ML models, Fog/Edge layer solutions are
recommended to improve the overall efficiency of the system, both in terms of latency
and the amount of data to be transferred on the network. Machine Learning models can
enhance the result of predictions and they can be embedded in Fog devices. More simple
threshold-based alarms can also be effective to create an Edge solution and generate quicker
alarms, and they are more easily implemented on local sensor nodes.

4.3. System Requirements and Constraints for Flood EW Systems

Important system requirements that were highlighted by the reviewed literature
are: (i) coverage in remote areas and difficult terrains, which might require to discard
certain IoT solutions as they might not be suitable for said environments; (ii) energy
consumption, especially under certain environmental or weather conditions (such as
“dark modes” of operation when using a photo-voltaic energy supply) or when certain
measurement requirements are to be met; and (iii) fault tolerance and the ability of the
sensor network to keep working even if some nodes fail, because of low battery or harsh
weather conditions.

While the loss of nodes is taken into account in some reviewed articles and mesh
solutions are proposed to avoid single points of failure, high fault tolerant systems require
a large number of sensors to properly work, and most use cases do not take into account
the effect of heavy rainfalls and extreme weather conditions on the communication channel,
for example not planning for redundancy or fail-safe systems, as also noted in [23,58].
Link budgets evaluations are important to determine if an area can be served properly
by a service (for example, with areas with heavy foliage or distant, rural areas) or ad hoc
network. Services that operate in ISM bands such as LoRaWAN can provide good coverage,
but they can also bring some limits due to the shared radio resource. Worst case scenarios
should also be evaluated in terms of battery life, when the weather can limit solar energy
harvesting or when a higher sampling frequency is required during a measurement.

5. Earthquakes

Earthquake EW systems can also benefit from the Internet of Things and related
technologies. Sensors and sensing units can monitor vibrations and ground movement to
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create alarms and to alert people in certain places before the earthquake waves reach them.
Even a few seconds or minutes of warning can prove essential in saving lives. The most
common method to detect an earthquake is P-wave detection. When an earthquake occurs,
compression P waves and transverse S waves radiate from the epicenter. Since P-waves
travel faster but are have less destructive effects, if detected they can be used to forward
warnings before the more destructive S waves reach a location. Figure 3 illustrates a generic
implementation of an earthquake Early Warning System based on P-Wave detection.

Figure 3. Example implementation of an Earthquake Early Warning System based on the IoT and
P-wave detection.

A very simple IoT system based on this method is the one proposed by Alphonsa et al. [59],
which uses accelerometers connected to micro-controllers to collect and process ground
vibration measurements, and then sends the data using Zigbee to a receiver connected to a
PC which is used to forward warnings to users. GSM modules can also be used to send
warnings to a base transceiver station which will then alert mobile phone users.

EW systems for Earthquake monitoring are already developed in many countries,
but there are still efforts to optimize sensor networks, provide reliable and low latency
communications, and decrease the data processing latency, which is usually the most
important factor contributing to the overall delay of an alert system for earthquakes [60].
Once an Earthquake EW message is generated by the network or processing hub, every
millisecond delay to send the message corresponds to an increase of about 8 m of the radius
of the area reached by the earthquake [35]. This means that decreasing latency is an essential
requisite in earthquake EW and precise time constraints must be considered. Warning
times and the collection of geophysical data should therefore be seconds to minutes. Since
the most damage caused by an earthquake is usually localized within a certain perimeter
around the epicenter, the most critical objective of an Earthquake EW system is to provide
alarms within seconds to this area, while more accurate alerts to larger regions can then be
sent in tens of seconds [6]. With optimized data processing algorithms and data latency
reduced to 1 s, it is possible to obtain possible peak performance of 3–6 s to generate and
disseminate the Earthquake EW alert [61].

5.1. Reviewed Use Cases for Earthquakes EW

Table 3 contains reviewed papers about Earthquake EW that focus on some important
issues when designing an earthquake Early Warning system, such as reducing communica-
tion and algorithmic latency, synchronization, and the choice of WSN nodes density.
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Table 3. Reviewed Articles in Earthquake EW.

Article Focus and Objectives Results

[53]

Proposal and testing of an SWEDA earthquake algorithm
to achieve milliseconds earthquake detection and warning
and optimizing computational costs, also designing and

producing 2 kinds of sensor nodes. The system is also able
to detect different kinds of seismic waves.

The solution was tested with three different systems
installed in SHM sites at Qatar University, and it identified

p-waves 11 s before a second trigger for s-waves was
generated, showing good Earthquake EW capabilities.

[62]

Proposal of a distributed Edge Computing approach for
EEW which uses GPS stations and seismoters to run a ML

model. The distributed approach would reduce the
amount of data to be transmitted towards the Cloud and

provide a more resilient system in case of wide
earthquakes.

GPS stations and seismometers have a complementary
performance (for large earthquakes the prediction accuracy

is 99% for GPS, 28% for seismometers). As such, they
evaluated a multi-parametric model, confirming how a

combined model is the better choice in terms of accuracy.

[63]

Modelling and simulation of a WSN for Earthquake EW
and evaluation of how its performance changes depending

on different WSN parameters, such as synchronization
protocol, sampling frequency and node density.

TPSN gives velocity and localization errors 0.6 to 6 times
and 1 to 5 times greater than with perfect synchronization,

but errors are 5 to 266 times and 96 to 361 times greater
with no synchronization. Using 5 nodes, a faulty node

corrupts 25% of the data, while with 25 nodes only 4% of
the data is corrupted. A higher sampling frequency also

improves performance.

[64]

Development and testing of a sensor node for dense
Earthquake EW networks, achieving low costs using

MEMS sensors and standalone TCP/IP units to handle
communications, so that the device can be controlled by a

simple and cheap MCU.

Data from the low cost sensor arrays have good
consistency with data from standard seismographs, and
seismic phases obtained were accurate enough for EW.
Even small earthquakes were identified within a 20 km

range from the sensors. Bigger earthquakes (M 4.7) were
detected at up to 200 km from the sensors.

[65]

Performance Evaluation of a Dense MEMS-Based Seismic
Sensor Array with 170 sensors (based on the design

developed in [66]) to show that they can be classified as
class B sensors.

The proposed sensors duplicate the performance of
‘traditional’ earthquake sensors with a percentage

difference below 10%, also when far from the epicenter
(150 km). Stations with difference higher than 20% were

due to calibration errors.

[67]

Design and testing of a low-cost, low-power cloud based
Earthquake EW platform called Earthcloud, which uses

geophones to detect strong motions and issue first alarms
to AWS IoT using MQTT, and then further processes the

data using Amazon Kinesis for precise alarms.

One out of the three sensors used in the testing of the
Earthcloud solution failed (it could not differentiate

background noise and earthquake data), while the other
two showed results which were comparable to the ones

obtained by the national authority.

[68]

The articles proposes and validates a 3-layered architecture
that uses smartphones to create a MCS widespread

Earthquake EW network, using a layer intermediate to the
sensors and the application layer to ensure reliability.

Validation shows a 12 s anticipation of the seismic peak,
but the validation phase is still to be improved. Low power

usage (4.9%) was achieved.

[69]

Overview and valuation of the performance of the
MyShake smartphone earthquake monitoring application
through simulation, with a focus on the possibility to use it

for EW.

MyShake phones detect the earthquake 3.8 s after the
origin time and the system recognizes the event when

26 phones have been triggered, 15.6 s before the S-wave
reaches the monitored city, but slightly underestimating
the magnitude. Alert delivery latency was of 2.8 s, but it

could be reduced and it is unclear how it would scale with
many devices.

[35]
Proposal of an Early Warning system that uses SHM to

detect seismic events and evaluation of the advantages of a
5G gateway in this context, using the URLLC service.

Latency will be reduced (<1 ms) while maintaining very
high reliability using URLLC. While the proposed system
architecture and 5G networks provide advantages in two
key Earthquake EW constraints, field tests still need to be

carried out.

[70]

Performance evaluation of an energy economical WSN for
SHM embedded with an Earthquake EW system,
employing WoR modules to minimize the energy

consumption required to wake up the WSN when an
earthquake is detected with a P-wave detector.

WoR modules and radio triggering allow the nodes to go
into complete sleep mode when no sensing is required,
reducing power consumption to 350 µA with a 229 ms

delay for waking up the nodes, with a better performance
IEEE 802.15.4.
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Tariq et al. [53] proposed and tested a Seismic Wave Event Detection Algorithm
(SWEDA) to achieve milliseconds earthquake detection and warning. It uses inclinometer
nodes for Industry 4.0 and the CANOpen communication protocol for industrial IoT. They
designed and produced two types of sensor node: a flat inclinometer consisting of two
accelerometers, and a cilindrical one consisting of seven sensors coupled with a 24-bit sigma-
delta ADC and a programmable gain amplifier to increase the resolution. Besides P-waves,
this system is also able to detect S-waves, Rayleigh waves, and Love waves, but different
sensors placements are required to detect different types of waves with low computational
efforts (matching positions of the sensors and direction/angular displacements of the
earthquake). The data processing algorithm was optimized to avoid false alarms and
reduce the computational cost of floating-point operations and calibrations, the latter
being essential to avoid false alarms. The solution was tested with three different systems
installed in Structural Health Monitoring (SHM) sites at Qatar University. The system was
able to identify an on-site induced earthquake, with a first trigger for P-waves 11 s before a
second trigger for S-waves was generated, showing good early warning capabilities.

Machine Learning models can also be implemented to predict earthquakes using
data from multiple sensor sources. Fauvel et al. [62] proposed a distributed approach for
Earthquake EW that uses data from GPS stations and seismometers to make predictions
based on an algorithm they validated on a real-world dataset. The distributed approach is
based on Edge/Fog computing and is meant to reduce the amount of data to be sent on
the network by embedding a ML classifier on each sensor. The classifier produces a class
output that is sent to a central server that combines the class prediction from each sensor to
give a final prediction. The aggregation produced at sensor level combined with the fact
that the information transmitted is unrelated to earthquake values drastically reduces the
transmission effort over the network, lowering latency and making communications easier.
The article showed that GPS stations and seismometers have a complementary performance
(for example, for large earthquakes the accuracy is 99% for GPS, 28% for seismometers). As
such, they evaluated a combined model, confirming how a multi-parametric model is the
best choice in terms of accuracy.

Khedo et al. [63] simulated an on-site WSN model to predict and detect earthquakes
in the island of Mauritius, and they analyzed how different WSN parameters can corrupt
or enhance estimations of velocity and location of the epicenter (obtained from P waves) to
evaluate the feasibility of such a system. The article focused on synchronization issues for
WSNs in earthquake monitoring: it is essential that all nodes and the base station/sink are
synchronized, otherwise the clock offsets between the nodes becomes a component of the
wave propagation delay, thus making warnings imprecise. The simulated architecture uses
Timing-sync Protocol for Sensor Networks (TPSN) to achieve synchronization between
nodes. Simulation results show that while networks using the TPSN protocol for synchro-
nization have a worse performance compared to perfectly synchronized (ideal) systems,
networks with no synchronization protocols whatsoever have a much worse results in
terms of velocity and epicenter localization. The paper also proves that denser networks
provide better data and are more resilient to faulty nodes, and higher sampling frequencies
allow better performance.

Since the efficiency of the earthquake detection relies on the network’s density, this could
translate into a very high cost for the Earthquake EW solution. Micro-ElectroMechanical
System (MEMS) can provide a low cost alternative to traditional seismographs or seismome-
ters and they can be used to build denser networks with a smaller investment. Fu et al. [64]
proposed a MEMS accelerometers network that can meet the same performance as a classic
dense Earthquake EW network. Each low-cost MEMS Seismograph consists of: the MEMS
accelerometer module, TCP/IP module, Power over Ethernet module, and an optional local
storage module. Synchronization is achieved using a simplified Network Time Protocol
(NTP). The standalone TCP/IP module is able to handle the data communication to the
server via Ethernet by itself, so that the sensing unit can be controlled by a simple MCU unit,
since it does not have to handle the communication routines. A low-cost seismic sensor array
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with 10 sensors connected to 3G/4G modems was built for field testing. The records ob-
tained by the low cost sensors have good consistency with the data obtained by the standard
seismographs and that they can obtain clear seismic phases to trigger earthquake detection
for early warnings, and even earthquakes with smaller magnitude (M 3.1 to M 3.6) were
identified within a 20 km range from the sensors. Bigger earthquakes (M 4.7) can be detected
at up to 200 km from the sensors.

Peng et al. [65] tested the performance of a dense Earthquake EW network of 170 sen-
sors that they were able to deploy in the Sichuan–Yunnan border region, China. The sensor
design is better specified in [66] and it is a low-cost, low-energy MEMS accelerometer sensor
with the performance of a Class B accelerometer (for comparison, MEMS sensors are usually
Class C sensors, such as the unit used in the previously reviewed solution [64]). Each unit
also provides data suitable for P-wave detection, early warning parameters computing,
and a low-latency data packet transmission. For each station, a 3G/4G router was used
to transmit the ground-motion data recorded by the network to a processing server. The
records obtained by the sensors were compared with the ones of classic earthquake stations,
showing a good consistency, even for sensors at more than 150 km from the epicenter, thus
proving that this low-cost solution can be used for dense Earthquake EW system and allows
drastic reduction of the investment required to cover the region of interest. The system is
also able to produce ‘shake-maps’, which are also useful for post-disaster response. When
the seismic network in the earthquake source region is sparse, there are large system biases
when computing the shake-map. Moreover, usually more than ten minutes are needed for
generating a shake map, while the deployed high density network computed shake-maps
with good accuracy and almost in real time.

MEMS sensors are installed in most smartphone devices, so the information from
a large number of devices can be used to create a widespread seismic network. This is
called mobile crowd-sensing paradigm, or MCS. An MCS architecture is the one proposed
by Zambrano et al. [68] which consists of three layers: layer 1 collects data from the low-
cost smartphones network, including the users’ position using the devices’ GPS units,
and detects seismic peaks, achieving synchronization between devices with different
time references using the NTP; layer 2 determines if there is an actual seismic event to
notify and it ensures the global reliability of the system; layer 3 is the control center, and
it communicates with emergency management centres. The high heterogeneity of the
sensor network also requires standardization of the sensor data and its collection, which is
achieved at the second layer by the Sensor Web Enablement framework and specifically by
its Sensor Observation Service component. The architecture also takes into account battery
saving and memory consumption for the user device, reaching good battery performances
thanks to the use of the lightweight MQTT protocol. The seismic detection was also
validated using real data, showing that the solution anticipates the seismic peak by 12 s.

The MyShake Platform is an operational framework that can provide Earthquake
EW system using smartphones developed by Allen et al. [69] and that has been working
as a phone application since 2016. Alerts can be generated by either detecting p-waves
using the sensors embedded in the user’s smartphones or mining data from regional
seismic networks (for example, it currently receives data from the ShakeAlert system in
the US). While the smartphones approach makes the deployment of the network very easy,
characterizing the parameters of the earthquake (location, magnitude, and origin time)
is dependent on the number and geographic distribution of phones with the MyShake
app around the event. An ANN embedded in the smartphone app is used to distinguish
between earthquake-like ground motions and everyday motions. When an earthquake
event is triggered on the phones, the MyShake server looks for space–time clusters of
triggers to confirm that an earthquake is underway. While the app can provide earthquake
detection, location, magnitude estimation, and shake maps, current effort is on improving
its early warning capabilities. A simulation platform was created to test the early warning
capabilities of the system. The simulation showed that an issue can be alerted 15.6 s before a
densely populated area is reached by the earthquake, but there are 2.8 s of delay to forward
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the alert from the MyShake server to the cellphones, and it is not clear how this delay
would scale with a large number of devices in a real scenario. The predicted magnitude
was lower than the observed one. The new version of the app MyShake2.0 will issue and
receive earthquake early warning alerts and improve the overall characteristics of the app.

Klapez et al. [67] began the development of a low-cost, low-power and cloud-based
earthquake alert system called Earthcloud which uses geophones instead of MEMS ac-
celerometers, claiming they offer less noise at lower sampling frequency. When variations
in ground motion are detected, sensors send data to a server and also produce a first
alarm if the motion is strong enough. Specifically, the data is encapsulated into an MQTT
packet and forwarded to the Amazon Web Services (AWS) IoT Core which processes and
then sends them to Amazon Kinesis. Amazon Kinesis is used for pre-processing but also
to forward data in real-time to both connected devices (which would receive a second
confirmation alarm or a first alarm if the sensors initially did not trigger any alarm by
themselves) and Amazon S3, a data storage service. The developed solution was tested
using a three-unit network in the city of Modena, Italy, and only one out of the three sensors
failed to detect an earthquake event, while the others were successful.

D’Errico et al. [35] propose the architecture of an EW system that uses the 5G network
to achieve low latency in transmitting data from a Structural Health Monitoring WSN
to a server for data processing. By providing certain services with dedicated resources
(“network slicing”), the 5G New Radio is able to support URLLC services that allow de-
vices to send data with delays below 1 ms and with high reliability. Software Defined
Networking, Network Function Virtualization and Mobile Edge Computing further en-
hance performance by being able to allocate resources dynamically to each service and
deploy computational resources nearer to the end users.

Hung et al. [70] also developed an Earthquake EW system based on SHM, but with a
focus on energy efficiency, which remains a key constraint in Earthquake EW, too. A sentry
node was integrated into the gateway unit of a WSN that used the IEEE 802.15.4 standard.
The sentry node is composed of a P-wave detector, a Wake-on Radio (WoR) transmitter,
and a data sink radio. The WoR devices mounted on each node monitor the channel for
wake-up signals, which are used to reduce the energy consumption in Rendezvous phases,
i.e., when a receiver must wake-up when a transmitting node on a higher layer initiates
a communication. The use of WoR devices allows the main processor of each node to
go completely into sleep when no transmission is required. The proposed architecture
consists of: (i) a sensor gateway based on 3G/Wi-Fi access point, (ii) a p-wave detector
connected to the gateway, and (iii) wireless sensor nodes with WoR-Receivers organized
hierarchically. The P-wave detector triggers the more reliable and accurate WSN system
through the WoR devices when a P-wave is detected. The study shows a 229 ms delay to
the wake-up command, but the proposed scheme has a shorter wake-up delay and is more
energy efficient (with power consumption 350 µA) than IEEE 802.15.4 (which has power
consumption in beacon mode from 1.43 mA to 2.51 mA, depending on parameters set).

5.2. IoT Architectures for Earthquake EW Systems

Table 4 summarizes the technologies used on each layer of the reference architecture
for the Earthquake EW use cases reviewed.
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Table 4. Technologies and solutions used for each layer in the reviewed papers related to Earth-
quake EW.

Article Perception Layer Communication
Layer Application and Edge Layer Edge/Fog

Computing

[53] Inclinometers CANopen SWEDA Algorithm (on-site P-Wave
detection) Yes.

[62] GPS Stations, seismometers Not Specified Machine Learning classifiers both at sensor
and central server level Yes.

[63] Seismometers Model based on
TDMA

Crosscorrelation-based multi-station
algorithm to locate epicenters No.

[64] MEMS Accelerometers Ethernet, 3G/4G P-Wave detection algorithm and processing
at remote server No.

[65] MEMS Accelerometers 3G/4G
P-Wave detection algorithm and processing
at remote server; real-time Shake Maps
computation

No.

[67] Geophones Ethernet
Cloud Based solution based on AWS IoT for
data storage processing and P-Wave
detection

No.

[68] Smartphone MEMS sensors,
GPS modules. Wi-Fi, 2G/3G/4G

Smartphone application with classification
algorithm; Machine Learning prediction
algorithm at central server

Yes.

[69] Smartphone MEMS sensors Wi-Fi, 3G/4G
Smartphone application with ANN-based
detection algorithm; cluster-based EW
algorithm at central server

Yes.

[35] Optic fibre, MEMS and
piezoelectric sensors.

MBUS radio
169 MHz, 5G

Threshold-based sentinel node; SHM-based
event monitoring Yes.

[70] SHM sensors, P-Wave
Detector.

IEEE 802.15.4,
3G/Wi-Fi

P-Wave Detector on-site node; SHM-based
event monitoring Yes.

Most of the reviewed systems monitor ground motion to detect earthquakes, and
as such accelerometers are the most widely used sensors. Other methods like using GPS
displacement data can be also useful for real-time monitoring and early warning [6].
Structural Health Monitoring systems that use MEMS sensors to measure building motion
can also be used as data sources for the evaluation of ground motion and its effects on
buildings at an affordable price [71,72]. MEMS sensors are widely spread and cheap
solutions and, while the quality of data they provide is less accurate than dedicated seismic
devices, they can be used to collect large amounts of data from different sources and they
allow to make predictions with the right data processing and conditioning. Since denser
networks proved to be more effective in predicting earthquakes, using MEMS sensors can
be a valuable asset to be able to install more sensors while keeping low costs.

The reviewed solutions use both short range protocols such as Wi-Fi and long range
cellular protocols, while some solutions also use wired local area communication solutions
(Ethernet), even though wireless communications have proven to be the most effective
in case of emergencies [38]. With the advent of 5G, communications could be further
improved, and URLLC services satisfy two of the main requirements of Earthquake EW,
latency and data reliability. Earthquakes can be particularly damaging to network infras-
tructures, cutting off entire areas from communication networks and making it difficult to
send data from wireless sensor networks, that could also be damaged by the earthquake
itself. Moreover, network traffic usually rises after an earthquake, requiring operators to
employ schemes to handle congestion and high traffic. Satellite communication provides
wide coverage and it is not affected by ground disasters, so they can guarantee good
communications in cases of paralysis of primary communication networks [28].
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When it comes to detection algorithms and data processing, P-Wave detection is
usually the easiest method to be implemented. Moreover, it allows to run earthquake
detection algorithms on memory constrained devices to create on-site warning systems
and to implement faster Edge solutions. Fast algorithms should be used to avoid adding
data processing latency to the system.

On-site methods are useful for detection of earthquakes near a seismogenic zone [66].
In particular, STA/LTA algorithms are especially suited for real-time monitoring and early
warning, especially when the devices have limited memory or processing power [73]. Other
methods such as Machine Learning can also be effectively used. Compared to the other
use cases reviewed in this article, the papers for Earthquake EW made a larger use of Edge
solutions, which are essential to reduce the latency of the system to the minimum, for
example allowing the nodes to detect earthquakes and send warnings without processing
the ground motion data at a central server or Cloud, where the data can still be used for
more accurate estimations later without reducing the overall speed of the alert. Moreover,
employing an Edge Computing approach, particularly a distributed one like the system
proposed in [62], could be useful to avoid issues deriving from network outages during
large earthquakes by distributing the earthquake detection capabilities over various devices
disseminated on the territory.

5.3. Systems Requirements and Constraints for Earthquake EW Systems

Because of the moderate seismicity across Europe, the main focus and requirement for
European Earthquake EW has been on speed rather than source characterization, though
research on this aspect is increasing [6]. Meantime, low latency (in terms of both data
processing, chosen prediction algorithms, and data transmission) should always be a
focus as to provide warnings before the main earthquake event occurs. In particular, data
latency is often the most important factor contributing to the delay of an Earthquake EW
system [60], and as such the packetization format, data serialization and compression
methods, the structure of the seismic network and datalogger, etc., should be optimized.

An Earthquake EW system generally has limitations in terms of accuracy of prediction
and detection, which may lead to both false alarms and missed warnings. An alerting
threshold lower than the damaging threshold (or multiple thresholds) will produce more
false alarms, but it will minimize the missed alerts and possible damage to the user [74].

Other aspects that came to light from the reviewed papers were: (i) the essential
role played by synchronization and the subsequent need for synchronization protocols in
the deployed WSNs; (ii) the need for fault tolerant sensor networks; (iii) the correlation
between node density and performance, both for quality of prediction and resilience, since
WSNs show less data corruption after some nodes fail [63]. Many efforts in the reviewed
literature were focused on the design of low-cost sensor networks that could allow a denser
deployment of seismic networks in this regard. Density also plays a factor in the overall
latency of the system [60]. Redundancy for both devices and communication channels
should be considered while retaining low costs [67], and improved battery life should also
be an objective. Since latency is a very essential requirement, Fog/Edge computing can
be exploited to reduce data transmissions and computational times at the main server, for
example embedding Machine Learning models or prediction algorithms in sensing devices
or gateways to make a first prediction on a lower layer.

6. Tsunamis

Tsunamis are large waves in a body of water generated by different events, such
as earthquakes, volcanic eruptions, landslides impacting the water, or underwater ex-
plosions. Tsunami prediction involves seismic event detection and sea water levels and
wind-waves measurements. Other methods can also be used in a Tsunami EW system,
such as hydro-acoustic waves measurement, pressure measurements or camera based
methods. In tsunamis generated by seismic events, the initial warning could be given by
earthquake measurements, to locate the epicenter and make a prediction on the tsunami
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time of arrival, then other measurements can take place, such as hydro-acoustic waves
detection [75]: earthquakes or, more generally, movements in the sea bottom, generate
hydro-acoustic waves that propagate at the speed of the sound in water (1500 m/s) and,
since their propagation speed is much faster than that of the surface waves, they can be
used to predict tsunamis deploying underwater acoustic sensors. Similarly, underwater
pressure sensors have also been widely used to detect tsunami waves [76].

Generally, Underwater Wireless Sensor Networks can be used to collect and record
data from large geographical settings and forward it to a central hub for data processing and
generation of an EW. UWSNs are used for many applications, and Internet of Underwater
Things (IoUT) is a paradigm that allows detection and prediction of events that could
lead to disasters. A UWSN usually consists of the following components: (i) underwater
static or mobile nodes equipped with sensing units and acoustic modems; and (ii) sink
nodes (on autonomous surface vehicles, buoys or ships) equipped with acoustic and radio
modems [77], used to gather data from the underwater sensors and forward it to a remote
server or monitoring center, usually through an IP network [78]. The use of acoustic
modems instead of radio units is usually the better choice because of the propagation
conditions in an underwater environment. Figure 4 illustrates a generic implementation
of an underwater Tsunami Early Warning System based on the aforementioned basic
UWSN architecture.

Figure 4. Example implementation of a Tsunami Early Warning System based on the IoT and
underwater sensors.

6.1. Reviewed Use Cases for Tsunami EW

Table 5 contains reviewed articles on Tsunami EW systems, including both proposed or
tested solutions and methods to evaluate and optimize sensors deployments, especially for
the more critical underwater solutions. Non-UWSN systems and designs are also reviewed.
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Table 5. Reviewed Articles in Tsunami EW.

Article Focus and Objectives Results

[79] The study focuses on characterizing an underwater
communication link for Tsunami Early Warning

The tested link showed high reliability with a 350 bps data
rate, while higher rates, even if still achievable, provide a

less reliable connection. The 1 s latency for the receiver
alongside the good data rates makes this solution feasible

for real-time tsunami warning.

[80]
Method to determine an optimal array configuration of

offshore sensors for near-field Tsunami EW, also in terms
of deployment costs.

The study was able to prove that a 3-sensor configuration
is able to provide accurate estimations. It also highlighted
some factors that influence predictions, such as depth, time

of arrival and position of the sensors.

[81]
Method for near-real time tsunami forecasts using the

S-Net network. It classifies sensors based on their distance
from the uplift region and then computes the region’s area.

The technique was successfully validated on two previous
tsunamigenic events, and it required 1 min to run the
classification algorithm and not more than 10 min to

estimate the source area of the tsunami.

[82]
Proposal of a framework for a WSN to produce Tsunami

EW system detecting magnetic field, animal behavior and
tide behavior changes and using an ML model.

The tested ML model showed that the most interesting
features in terms of prediction were tide level changes and

migration pattern changes.

[83]
Proposal of an EW system to improve the performance of
existing Tsunami EW systems, particularly in terms of cost

and compromised communications.

The produced vehicles have low mobility and a mostly
passive operational mode, allowing low power

consumption. The use of satellite communications and
offline back-ends would allow the system to survive

communications fails in case of disaster.

[84]

Design of a device for wave height monitoring using an
ultrasonic sensor placed above water, directly on the shore
line. When the water level rises, a GSM module also sends

an SMS with a warning message.

The prototype was successfully tested but the sensor
cannot work at heights above 3.19 from seawater, and as

such it requires a careful installation.

[85]

Development and deployment of a buoys system that uses
buoys positioning measurements to monitor the motion of
sea surface, also sending other data such as sea level. An
acoustic system was also deployed to monitor the ocean’s

bottom motion.

Field experiments showed centimeter precision in buoys
positioning. An experiment showed data gaps, possibly

due to the tilting of the buoy degrading the
communication, which led to the implementation of a

system to stabilize the antenna.

[86]
Design of a floating IoT device for early warning and wave

anomalies detection, using Fuzzy Logic for accurate
prediction.

The Fuzzy Logic algorithm had high accuracy (98% to
100%) in testing phase. The LoRa communication showed

4.6279 s of delay and minimal error rate.

Freitag et al. [79] designed and tested the performance of an acoustic underwater
system to develop a near-field Tsunami EW in the Mentawai Basin, between West Sumatra
and Indonesia. In this application the distance between sensors (pressure sensors) is large
(tens of kilometers) and the distance to shore even larger, so a lower frequency is used for
communication. The system was deployed close to the bottom at different heights and
with variable receiver ranges. The communication link demonstrated a high reliability
with a 350 bps data rate, showing that it is feasible for a tsunami alert system. Higher
data rates could be achieved but they would have a lower reliability (which could require
re-transmissions of sent packets). The latency is of about 1 s, so the time needed for data
to be available to the user or to be ready to be transmitted to another node (in multi-hop
configurations) is the duration of the packet plus 1 s, which is a good result for early
warning in this context.

The study by Meza et al. [80] presents a method to determine an optimal array config-
uration of offshore tsunami sensors for near-field tsunami early warning. The methodology
was tested in Northern Chile. The main issue with near-field tsunamis is that there is a
short time interval between the tsunami generation and arrival, so it might be difficult
to determine the tsunami source in time. Sensor cost might also be an issue so the study
wants to find the minimal number of sensors for an EW system to get optimal performance.
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Factors that influence a prediction include: position of the sensor compared to the main
wave energy beam (parallel or orthogonal to the wavefront); time of arrival of the pres-
sure wave to the sensor (sensors closer to the event have a smaller observation time and
therefore less data available for predictions); depth of the sensor (must be high enough
as to ignore non-linear effects); position of the sensors relative to each other (the network
granularity is chosen so that it is higher than the tsunami’s wavelength). Results showed
that a three-sensor configuration can provide accurate estimations of the tsunami arrival
time and peak amplitudes for the first wave.

Already existing national underwater stations or sensor networks (both wireless and
wired) can be used to collect data (for example, about ocean bottom motion) and use it
for predictions and to issue warnings. S-net is a dense cabled underwater observation
network deployed along the Japan trench. It consists of 150 observation units, including
both seismometers and bottom pressure sensors, connected by cables at 30 km intervals. All
the data arrive to land in real time using optic fiber communications [87]. Inoeu et al. [81]
developed a method for near-real time tsunami forecasts using the S-Net sensor network
data, observing the wave-forms obtained from the pressure sensors. The method is able to
classify the sensors of the S-Net in terms of distance from the uplift region of the earthquake
by observing the registered pressure wave-forms, and, by observing which sensors are
near, outside or far from said region, it is able to compute the area of the uplift region. This
technique can be used to estimate both the source region of the tsunami and the earthquake
magnitude. Since earthquake waves and hydro-acoustic waves are also detected by the
network, filtering is required to obtain only the pressure data. The considered time-window
for computing the estimation is of about 500 s after the initial earthquake, and only 1 min
is required to classify the sensors, and about 10 min to compute the source area of the
tsunami after the earthquake, without the need of complex simulations. The technique was
successfully validated on two past large earthquakes in that region.

Jain et al. [82] propose a framework and a prediction algorithm for Tsunami Early
Warning in the Pacific Ocean that measures different kinds of parameters that are effected
by tsunamis and monitors marine wildlife behaviour. Since changes in the magnetic field
are generated by a tsunami wave, magnetic sensors can be used to detect said changes as
precursors of tsunami waves; the wave itself exhibits particular waveform patterns that
can be measured by a Tide Gauge; count sensors and motion sensors are used to monitor
wildlife which is also affected by changes in magnetic fields from tsunamis. This data
would be sensed by a WSN on the sea bed, then transmitted to a base station, and then
processed at the main server. Predictions are computed by a Machine Learning Algorithm
(logistic model trees) and the study had shown that the most relevant features for the
prediction are tide levels changes and migration pattern changes.

Gardner-Stephen et al. [83] propose a model for Tsunami EW to improve some aspects
of existing warning systems, especially for what it concerns the cost of the solution (which
can be prohibitive for certain countries) and the communication in compromised situations.
The proposed solution includes both an EW system (based on autonomous underwater
vehicles), a platform that acts as a ‘Warning Decision Support System’ and is able to
work offline (when disastrous events cut off standard internet communications), and an
alert distribution system. The EW system makes use of low cost vehicles (which were
produced and designed by one of the authors) that are characterized by low mobility, a
mostly passive operational mode with very low power consumption (1 Watt, allowing
weeks of operation before recharge) and the possibility to sense tsunamis remotely using
acoustic detection (hydrophones). The vehicles network can also cooperate with traditional
fixed tsunami sensors and they are equipped with a GPS unit and satellite connectivity.
Satellite communications are also used in the Alert Distribution and Support System
for the aforementioned possibility of standard IP based connections failing during the
disastrous events.

Underwater sensor networks are not the only available solution for Tsunami EW.
Adi et al. [84] designed an IoT device for wave height monitoring using an ultrasonic
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sensor. The device is supposed to be installed on the shore line, directly above water. When
the distance between the sensor and the water raises above a certain threshold, the GSM
module mounted on the IoT devices sends an SMS with a warning message before the
water level becomes dangerously high. A sound indicator is also installed on the device to
alert nearby people. The prototype was successfully tested but the ultrasonic sensor cannot
read any water level data if put at a distance higher than 3.19 m from seawater, and as such
specific data about seawater conditions are needed before installation.

Kato et al. [85] designed a buoys satellite system for ocean monitoring and tsunami
early warning. The first deployed system consisted of a buoy equipped with a Global
Navigation Satellite System (GNSS) antenna able to transmit data to the coast before the
wave reaches it. The received data (sea level, buoys position) allows users to visualize
the motion of the sea surface at the buoys in real time. The development of this solution
began in 1997, with subsequent deployments in 2001–2003, 2004–2006, and 2011. These
previous solutions showed that buoys placed 20 km from the coast did not provide enough
time to warn the coast and evacuate it. They also provided data to address some critical
issues about buoys design, with the goal of each buoy surviving for at least 10 years.
Since the required buoy distances could be of above 100 km, the Precise Point Positioning
algorithm is proposed to know the position of the buoys alongside satellite communications.
Field experiments showed accuracy of a few centimeters in buoys positioning. One early
experiment showed data gaps, possibly due to the tilting of the buoy degrading the
communication, so a mechanism to stabilize the antenna was used in subsequent ones. The
paper also proposes the use of buoys to make ocean bottom motion measurements, which
provides less accuracy than solutions such as S-Net but better resolution. The experiment
used three transponders placed on the bottom of the ocean and communicating with
the buoys with an acoustic link. Ocean crust motion measurement can be obtained by
estimating the transponders position.

Darmawan et al. [86] designed an IoT device to generate early warnings when anoma-
lies in wave behavior are detected, using Fuzzy Logic for accurate predictions. The sensor
node consists of a gyroscope, an accelerometer, and a LoRa module for data transmission.
The sensor floats in the sea and senses and processes data to obtain information on wave
height and wave speed. These two parameters are then used to classify the wave using the
Fuzzy Logic algorithm embedded in the sensor unit. Sensed data is then sent to a server
using the LoRa module. The classification algorithm provides both a danger label (safe,
standby, dangerous) and a danger level (a value from 0 to 100) by computing height and
speed of the waves. The Fuzzy Logic algorithm bears a 98% to 100% accuracy in testing
phase. The LoRa communication was also tested, with 4.6279 s of delay and minimal
error rate.

6.2. Iot Architectures for Tsunami EW Systems

Table 6 lists the main technologies used in Tsunami EW reviewed literature for each
layer of the reference IoT architecture.

Detection of wave heights and anomalies on the sea surface can also be used for
early detection of tsunami waves. Wave measurements can be obtained from offshore
buoys, but while they are very accurate, they can also be very costly. Low-cost, low-
power MEMS sensors, such as accelerometers and gyroscopes, can also be used to obtain
wave characteristics such as height, period, direction and speed by deploying them on
floating buoys.
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Table 6. Technologies and solutions used for each layer by the reviewed papers for Tsunami EW.

Article Perception Layer Communication
Layer Application and Edge Layer Edge/Fog

Computing

[79] Pressure Sensors. Acoustic
communications.

Not yet implemented, the goal is to use the
optimized network for real-time detection. No.

[80] Methodology independent of
the type of sensor Not specified

Tsunami forecasting based on "Inversion for
initial sea-Surface Height" method to
determine tsunami source

No.

[81] Optic Communications Pressure Sensors. Classification of sensor nodes at central
server No.

[82]
Magnetic sensors, tide gauge,
count sensors and motion
sensors

GSM Machine Learning model at central server No.

[83] Autonomous underwater
vehicles

Acoustic signals
processing; Satellite
communications

Warning support decision platform able to
work offline No

[84] Ultrasonic Sensor GSM Threshold-based SMS alarm system at
sensor level Yes.

[85] Satellite Communications GNSS system,
acoustic sensors

Coordinates estimation at buoy level; buoy
data processing and dissemination at central
station; web server user interface

No.

[86] Gyroscope, accelerometer LoRa Fuzzy logic algorithm at sensor level; data
processing and storage at central server Yes.

The use of sensor networks in underwater environments comes with associated chal-
lenges related to the communication layer. Because of the harsher conditions and related
higher costs, but also because this environment comes with propagation scenarios that make
radio-frequency communications difficult to use, the acoustic channel is preferred com-
pared to radio communication [76,78], with typical data rates from 31 kbps to 125 kbps [88],
or even up to 300 kbps in the solution by Freitag [79]. Optical communications are also a
solution, and they provide faster, low energy communications with lower delays, but they
require a line-of-sight unlike acoustic sensors. Some existing underwater sensor networks,
such as S-Net in Japan, use wired optic communications. The most used communication
choice for underwater wireless solutions is certainly the acoustic channel. Reviewed papers
that used UWSN did not deal with ‘onland’ communications, which is usually carried out
by an IP network such as a cellular network. Only [83] took into account the possibility
of terrestrial communications failing in case of disaster, and as such considered the use of
satellite communications to deal with that event. Satellite communication is also particu-
larly suited to cover the large distances required in some solutions. Solutions such as LoRa
and GSM have also been employed for tsunami warning devices.

Most TEWs based on a UWSN use a basic architecture which uses a central server
connected to the sink nodes through an IP network. As such the main computing is
done at said server, and there are different methods to detect the tsunami and its point of
origin (inversion, Machine Learning, underwater sensors classification, etc.). Non-UWSN
systems can also use simple threshold methods or other algorithms such as the Fuzzy
Logic algorithm developed by [86]. These relatively simple systems also allow to move the
prediction at the edge of the network and closer to the monitored area, making alerts faster.

6.3. Systems Requirements and Constraints for Tsunami EW Systems

An underwater acoustic network needs to be both reliable and energy-efficient. Ac-
curate energy budgets/lifetime estimations are necessary since sensors replacement is
more difficult, and energy harvesting techniques (wave motion harvesting, microbial fuel
cells [89]) are suggested to enhance the life of the sensors deployed underwater [78]. The
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correct positioning of the sensors can help reduce costs and increase accuracy of predictions.
The positioning of the central hub and terrestrial receivers is also important, since they
could be compromised by earthquakes or tsunamis [85].

While the acoustic channel is a better solution for UWSN than the radio channel, it
also comes with its own limitations: frequency dependent attenuation, multipath and
high and variable delays. Specific modulation schemes are also suggested for the acoustic
channel to enhance the overall communications and reduce multipath effects [89]. Routing
protocols also play an essential role in UWSNs since acoustic communications are very
energy consuming and therefore they require energy optimized routing, which has often
been achieved at the expense of higher delays [78]. In IoUT, data aggregation is made
more difficult by the fact that the overlap of multiple routing paths will increase packet
collisions in the area and it will require re-transmissions, increasing energy consumption,
and decreasing reliability [76]. When making use of mobile sensor nodes, such as under-
water vehicles or sea gliders, further challenges in terms of routing, node localization and
synchronization, and energy consumption are introduced [78].

Like for UWSN, buoys solutions for wave detection come with challenges compared
to on-land deployments, since the connectivity between neighboring nodes can be affected
by wave height, and as such dedicated routing protocols and processing algorithms are
required [90], and the tilting of the buoys can also degrade the communications.

7. Landslides

Landslides are a recurring hazardous event consisting of the down slope movement
of soil, rock, and organic material. There are different triggering factors to landslides, such
as rainfall and changes in ground water levels, rapid snow melts, or earthquakes, and
therefore different quantities can be monitored to detect and predict landslides, primarily
displacement but also weather parameters in rainfall triggered landslides [18]. A Landslide
EW system can be deployed at different scales (regional, national, or a more local scale),
and IoT and MEMS based systems can be used to reduce costs and allow the installation of
denser sensor networks. Rainfall is often a triggering factor for landslides, and as such it
is useful to integrate available weather data or weather forecasts with the data obtained
using the on-site sensors. Figure 5 illustrates an example implementation of a landslides
Early Warning System for rainfall induced landslides.

Figure 5. Example implementation of a Landslides Early Warning System based on the IoT and
underwater sensors.
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7.1. Reviewed Uses Cases for Landslide EW

Table 7 summarizes the articles reviewed for Landslide Early Warning, while a more
detailed review is included below.

Table 7. Reviewed Articles in Landslide EW.

Article Focus and Objectives Results

[91]

Development and testing of a threshold-based Landslide
EW system that uses a mix of tree topology and star
topology to achieve a good trade-off between energy

consumption and reliability.

The system was implemented and it showed better power
saving than previous work thanks to the mixed network

topology and to the possibility to switch the sensors
between a warning mode and a normal mode. LoRa is

suggested for long range communication instead of Zigbee
if needed. The system requires a geotechnical investigation

to determine thresholds.

[92]
Development of a landslides warning system that uses
MEMS tilt sensors and water sensors with a focus on

avoiding false alarms through on-site parameters.

The system was tested and the tilt sensors were successful
in monitoring slow ground monitoring for EW; it was
observed that tilt variations are not always related to
rainfall levels and that local site conditions should be

considered besides thresholds based on rainfall.

[93]

Design of low-cost LoRa sensor nodes to be used alongside
more classic ground monitoring sensors. A central station
gathers data from the LoRa network and the other sensors
and sends it to a Cloud solution called Inform@Risk which

processes data to generate alarms.

The low cost sensors that were developed can allow a
wider and more flexible sensor network. A problem of the

system is that it might not be able to detect small
landslides or issue warnings if there are not significant
surface deformation, as it is a shallow system. A larger

installation of 130 sensors will soon be tested in Colombia.

[94]
Camera-based Landslide EW system that uses a simple
image processing algorithm that can be implemented

on-site to limit images transmission.

The developed system was able to send a warning to the
developed application 5–6 s after the event was detected to

alert users.

[21]

Development of a Machine Learning-based warning
system and analyses of Landslide EW architecture to

improve their performance and reliability. The predictions
are obtained from two algorithms: a nowcasting algorithm

and a forecasting one.

The nowcasting algorithm had a 95% accuracy in a real
scenario and it was a valid solution in case of data

acquisition or transmission failures. The forecasting
algorithm also implemented allows extra early warning

time when the sensor data is available.

[95]

Proposal of an Edge AI architecture to limit transmissions
towards the Cloud and the amount of data to be

transferred on the network through processing of sensor
data in a local Edge cluster

Network latency was reduced from 208 ms to 53 ms, and
bandwidth consumption from 2.63 Mbps to 249.5 kbps, but

data processing lasted up to 12 s.

[96] Proposal of an Edge computing early warning solution
which allows Edge nodes to run ML models on-site.

The system increases reliability by making the Edge Nodes
predictions independent from the Cloud, but the

developed Edge nodes are unable to train models by
themselves.

[97]

Development of 5G Landslide EW system that monitors
rainfall, ground fissure, and surface deformation in real

time, and generates warnings based on slope deformation,
and also provides other communication channels for

reliability.

The implemented communication system allows
transmission up to 100 km and it includes redundant

channels. The system is able to produce both user
interfaces and warnings.

Quoc et al. [91] developed and tested a WSN-based Early Warning System for land-
slides that uses a soil moisture sensor, accelerometers, and a Pore Water Pressure (PWP)
sensor. To find a good trade-off between fault tolerance and battery saving, the sensors
network uses a mixture of tree topology and star topology. Since a tree topology reduces
energy consumption but it is more prone to failures because of clustering node failures
(for example, during a landslide event), a star topology is also used in which nodes send
data directly to a sink node. When the slope is not considered to be in a safe state then
the network switches to a star topology; otherwise, the network uses a tree topology in
which cluster nodes send data to a sink node placed in a safe location. The paper also takes
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into account synchronization and routing for the network. The data from the sensors is
collected by a sink node and then sent to a central station for analysis, warning generation
and decision making on the network topology, depending on the state of the landslide. The
central station uses a thresholds-based system to determine a warning level using data
from both a rain gauge station and the WSN.

It is not always easy to identify the right thresholds for a Landslide Early Warning
System, even when historical data is available. Abraham et al. [92] developed a Landslide
EW system in the Himalayas based on MEMS tilt sensors and water sensors embedded in
the soil. They also studied the correlation between rainfall levels and on-site conditions to
obtain better thresholds and avoid false alarms. The monitoring system they developed
consisted of six low-cost units each equipped with antennas to send measurements to a data
logger placed near the sensor nodes, with 10 min sleep intervals after each transmission.
The tilt sensors were able to measure slow ground displacement, showing they are viable
to predict failures. They also showed that rainfall is not always directly correlated with
tilting variations and that both short-term and long-term rainfall should be considered to
develop regional thresholds.

Gamperl et al. [93] developed a MEMS-based system that uses LoRa for communi-
cation. The lower layer of the Landslide EW system consists of: (i) a multi-sensors LoRa
network with three types of sensor nodes and at least two LoRa Gateways serving each
node for redundancy; and (ii) a Continuous Shear Monitor, piezometers, and extensometer
systems, which require more space and are harder to install compared to the LoRa nodes.
The LoRa nodes are therefore used to cover a large area and to monitor a wide array of
environmental parameters at lower costs. A central station gathers data from the LoRa
nodes and the other systems and forwards it to a central Cloud server called Inform@Risk.
The Cloud manages and combines the data from the various sensors to produce Early
Warnings and danger levels based on thresholds which are currently still being determined.
Warnings are issued through an App and sirens installed locally, but alarms are immedi-
ately sent only when at least two neighboring nodes display strong accelerations at the
same time and a data analysis algorithm has been run; otherwise, an expert is tasked to
control the data to prevent false alarms.

Aggarwal et al. [94] proposed a landslide EW system that uses cameras to detect
motion. They use a fairly simple motion detection algorithm so that it can be implemented
on a Raspberry Pi connected to the cameras to detect landslides on-site. This way, the only
transmissions are related to the images corresponding to a detected landslide event. The
paper did not specify the preferred communication method. They also implemented a
storage of events data on a Cloud database that can be accessed through a user application.

Thirugnanam et al. [21] developed a Landslide EW system that uses ML for predictions,
an they also analyzed different factors to enhance the reliability of the system. They divide
the system into five main components: (i) data collection, (ii) data transmission, (iii)
forecasting, (iv) warning, and (v) response. By using Machine Learning algorithms in
the system, they are able to obtain good results even if the first two layers fail, and they
also stressed how not all current Landslide EW systems take into account improving
the reliability of data transmission or adding redundancy. They consider two types of
prediction: “nowcasting”, which uses rainfall forecast information instead of sensor data
to still be able to produce a prediction when communications or sensors fail; forecasting,
which provides extra lead-time for early warning in the fourth component by using data in
the first two components when available.

Elmoulat et al. [95] proposed an Edge AI architecture for Landslide EW that can
significantly reduce the latency of the system by doing the training of the ML model at
the edge of the IoT network. The network consists of two types of LoRa nodes (Weather
nodes and Ground nodes [98]) connected to a gateway, which communicates to an Edge
AI cluster linked to a Cloud solution for storing and further processing using additional
computing power. Compared to a Cloud-only approach, the developed solution allowed to
reduce latency, bandwidth consumption, and amount of data transferred, even though the
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whole architecture had not been tested with a real event yet. A further improvement [99]
was to introduce Federate Learning to the system, which is a distributed learning for
Edge/Fog nodes which allows to continuously improve learning at this level and with
different node resources.

Another Edge solution is the one by Joshi et al. [96], who proposed an architecture
called Reliable LEWS. The goal of their architecture is to maintain the system working even
if the connection to the Cloud server is interrupted by implementing Edge nodes that are
able to run the ML model created and trained in the Cloud. While the Edge nodes in this
solution are unable to train the ML models by themselves, they can still provide predictions
when the connection to the Cloud is gone by using the previously stored trained model
and the data from the sensor nodes, which communicate with the Edge nodes using Wi-Fi.

The study by Li et al. [97] developed a 5G Landslide EW system in China that mon-
itors rainfall, ground fissure, and surface deformations in real time. Their solution uses
two complementary modes for data transmission: (i) mesh mode, which enhances fault
tolerance and reliability, and (ii) linear mode, which instead allows a more effective long
range communication. The system also improves data reliability by using a dual communi-
cation mode with the BeiDou satellite module and GPRS for data transmission. The data
from GNSS stations (used to track surface displacement), ground monitoring stations, and
weather stations is continuously transmitted to a central server. They also developed a web
interface that allows to visualize and monitor the data in real time. There are four levels for
warnings which are chosen based on the tangent angle of the slope deformation.

7.2. IoT Architectures for Landslide EW Systems

Table 8 reports the main technologies used and developed for each layer of the refer-
ence IoT EW architecture.

As already mentioned, there are many different factors that can contribute to land-
slides, and as such different sensors can be used to detect them, and the right parameters to
be monitored and sampling rates should be carefully chosen [91]. MEMS systems can be
useful to reduce the cost of installations, and tilt sensors are particularly interesting because
they do not need to be installed deep in the soil like inclinometers, and they require less
expertise in installation than extensometers [92]. Since there could be the need to monitor
wide areas, sensor placement should be evaluated carefully and based on previously per-
formed risk analysis [93]. Rainfall is usually the main triggering factor for landslides [92],
so rainfall historical data, if available, and its measurement through weather stations or
radar systems should be integrated in such a system.

Some of the reviewed papers did not specify the communication protocols used, nor
did they all plan for redundancy in case of data transmission failures, even though more
than one paper underlined the importance of taking into account possible network outages
and planned accordingly. Using new technologies such as 5G could improve data reliability,
coverage, and speed.

Many Early Warning mechanisms for landslides are based on thresholds that can be
obtained from both empirical or probabilistic models [18], and they need to be optimized
to avoid raising false alarms. When it comes to Landslide EW systems, most solutions
adopted a Cloud or central server based approach to data processing and did not process
data directly at sensor or gateway level, but more recent articles such as [95,96] started
to integrate Edge solutions into their Landslide EW system to reduce latency and also to
provide better reliability in case the connection to the Cloud fails.
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Table 8. Technologies and solutions used for each layer of the reviewed papers for Landslide EW.

Article Perception Layer Communication
Layer Application and Edge Layer Edge/Fog

Computing

[91]
PWP sensors, accelerometers,
soil moisture sensor, rain
gauge station

Zigbee, GSM/GPRS Threshold-based warnings at central station No.

[92] Tilt Sensors, volumetric
water content sensors

Not specified wireless
communication

Data aggregation into local datalogger;
processing and analysis at remote server No.

[93]

Continuous Shear Monitor,
piezometers and
extensometer, inclination
sensor, water sensor.

LoRa, GSM

Data analysis and threshold-based warnings
at Cloud Server; alarms through
Smartphone Application and local sound
systems

No.

[94] Camera Sensor Not specified
Landslide detection performed locally;
storage of images to database; alarms
through Smartphone Application and SMSs

Yes.

[21] Rainfall, pore water pressure
sensors Not specified Data analysis at central server; forecasting

and nowcasting ML models. No.

[95]

Weather nodes (temperature,
humidity pressure, rainfall,
wind speed), ground nodes
(GPS, soil moisture,
accelerometer, gyroscope)

LoRa
Edge AI implementation for prediction and
monitoring; Cloud server for storage and
additional processing power

Yes.

[96] Moisture, porepressure and
displacement sensors Wi-Fi, GSM ML model training at Cloud server; ML

model prediction at Edge node. Yes.

[97]
GNSS station; ground crack
monitoring station; rainfall
monitoring station.

5G, GPRS Web platform to analyze data and issue
warnings based on slope deformation No.

7.3. System Requirements and Constraints for Landslide EW Systems

The reviewed literature highlighted the following constraints and aspects that should
be taken into consideration when developing a Landslide EW IoT solution: (i) importance
of avoiding false alarms (ii) minimizing costs, for example using MEMS sensors, which
also reduce the difficulty of installation; (iii) optimization of sensors placement through
risk analysis, the choice of the right parameter to monitor and the right sampling rates for
each sensor; (iv) limiting battery consumption; (v) enhancing resilience in case of extreme
events, also for communications through redundancy or other methods [21,93]; and (vi)
planning for failure for both the communication channel and data acquisition.

It is very important to avoid false alarms, for example optimizing thresholds or defin-
ing multiple thresholds based on different parameters [21,91]. Gamperl et al. also added
the prospect of using data fusion techniques to reduce the effect of human interference on
measurements. Some articles also considered asking experts to check the collected data if
the warning level is not high enough to issue an immediate alarm.

Battery consumption can be limited both using simple sleep modes in between trans-
missions, which are the most energy consuming operation for a sensor node, or employing
network topologies that allow to reduce the number of transmissions for each node.

Lastly, landslide systems can be damaged by the events they monitor and as such
one should plan accordingly, for example placing sink nodes further from the monitored
area, or using more than one gateway to serve each sensor, or planning for redundant
communication, since a failure on the data acquisition or transmission levels could lead to
a system unable to predict dangerous events [21].
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8. Recommendations and Future Work

Table 9 lists some possible solutions and recommended options to satisfy the require-
ments that were previously defined for an IoT Early Warning System, based on the reviewed
literature. It is to be noted that some of these suggestions still require careful planning
before the final implementation, for example evaluating link budgets or received signal
strength when using a specific communication solution, or measuring energy consumption.

While the requirements for each use case (floods, earthquakes, tsunamis, landslides)
are widely different, for example in terms of latency, the table shows how Edge solutions
can be used to satisfy different needs and as such should be taken into consideration during
the development of an Early Warning system based on the IoT, regardless of the specific
application. Edge Computing might also consist in the deployment of AI at the edge of the
architecture. When using ML, learning at the Cloud might not be the best solution for wide
monitored sites, geographically dispersed locations or rapidly changing environmental
conditions [95], and as such Edge AI could be integrated into the architecture, keeping in
mind possible additional processing time depending on the complexity of the ML model
and the resources of the Edge devices. Besides ML, simpler algorithms or threshold based
methods can also be employed on-site if the devices are limited in terms of computational
capabilities. In conclusion, Cloud Computing should not be completely replaced by Edge
Computing, but they should work in tandem to provide a better overall system.

Table 9. Recommended solutions for each of the main EW constraints.

Requirement Recommendations and Possible Solutions

Battery Saving

• Employing smart sleep procedures in-between transmissions, keeping short wake-up and transmission
windows [50,70], or dynamically switching to sleep mode based on the event probability of occurrence
in the area [26].

• Choosing the right network topology or employing multiple topologies in the same solution [91].
• Using energy harvesting modules [49].
• Distinguishing between a "normal" mode of operation and a "danger" mode with higher sampling

frequencies [49,91].
• Using Edge implementations and on-site warnings to limit the amount of transmissions towards higher

layers of the EW architecture [62,95].

Fault Tolerance

• Using mesh topologies and self-repairing/self-organizing networks [44,54].
• Planning for redundancy in communication [93] or for non-terrestrial satellite back-ends or communica-

tion links [83].
• Employing a higher nodes density, also to limit prediction corruption from faulty nodes [63].
• Implementing "nowcasting" procedures, if possible for that use case [21].
• Using Edge implementations to be able to issue warnings even if the connection to the Cloud is down [96]

or to distribute the data processing at different locations [62].

Coverage

• Using ad hoc networks when cellular infrastructures or communications are inefficient [46,48].
• Making use of satellite communications to reach difficult locations that are not served by cellular

communication [37].

Latency

• Integrating 5G technologies into the project, particularly its low latency services [35].
• Using on-site methods and Edge implementations to be able to limit response time in time critical

applications [39].

Moreover, we give the following recommendations for future work and research, also
taking into account some of the gaps or trends that were found in the reviewed literature:

• Optimization of MEMS sensors and widening of their employment. Since cost is an
important factor in EW and IoT systems, they provide a valuable help in reducing
costs while allowing to obtain dense sensor networks and the related benefits. MEMS
sensors do not provide the same accuracy as other “standard” sensors, but they can
still be used effectively in EW, and further research on sensors design and sensor
signal conditioning can help improve their performance.
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• Moving towards new cellular solutions such as 5G or NB-IoT, since some of the
reviewed papers still relied on GSM or generally older cellular technologies. The use
of new cellular solutions specifically designed to support IoT device and machine to
machine communication (such as EC-GSM, NB-IoT or LTE-M) could provide better
coverage, battery saving, data rates and latency performances in this context.

• Employment of non-terrestrial-networks and satellite communications. Satellites do
not only allow to reach geographically distant locations and overcome the problem of
missing terrestrial infrastructures [37], but they can also provide an essential back-end
in case of disasters affecting the terrestrial communication infrastructures.

• Optimization of the prediction algorithms and data processing speed, especially for
use cases such as earthquakes. Data analysis can become the bottleneck of an EW
system and data latency is the main component of EEW latency [60], and as such
efforts should be focused on its reduction for the use cases that particularly value
speed. Besides the signal processing algorithms, packetization and data serialization
formats should also be evaluated in terms of their impact on the system speed, and
these aspects alongside others such as data logging management should become part
of the system design.

• Employment of multi-parametric monitoring and modeling to enhance the accuracy
of predictions, reduce false alarms and enhance the resilience of the system if some
data collection modules experience faults. Rainwater forecasts, satellite ground mo-
tion data, satellite imagery, and terrestrial sensor networks provide data that can be
used together to provide better forecasting models and thresholds optimizations. A
semantic approach can help improve the performance of a system with a wide array
of different data sources [11].

9. Discussion

The review showed that an IoT solution in the context of Early Warning can be very
effective in the tasks of data collection, transmission, and disaster prediction, all the while
retaining cost-effectiveness. As such, Wireless Sensor Networks, Cloud solutions, Machine
Learning, and other components of the Internet of Things should be used when deploying
Early Warning Systems, or integrated into already existing ones. This would allow a denser
presence of alert systems on the territory and would therefore provide timely warnings and
essential data and instruments to the authorities, assuring economical and societal benefits
by reducing risks associated with disastrous events. Moreover, many of the requirements
of an IoT-based Early Warning system can be completely or partly satisfied by adopting an
Edge Computing solution, possibly alongside a Cloud one. This would bring the system
resources closer to the end devices of the network with the aim of reducing latency, number
of transmissions, and data processing at centrals servers. The review showed some already
existing trends in this regard, with examples of Edge solutions, on-site predictions and
Edge AI implementations, as well as other technological trends such as the more and more
frequent adoption of low-cost MEMS systems and Machine Learning prediction algorithms.

The article also showed how an accurate choice of the network topology, or the imple-
mentation of mesh and adaptive solutions can be effective in satisfying other constraints
such as coverage, reliability and battery management. The selection of the right communi-
cation protocol is also essential, both for the energy consumption and the coverage aspects.
Ad hoc solutions such as LoRa or other Unlicensed protocols can be effective in areas
where there is not good cellular coverage, but in this case the limits due to the shared radio
resource need to be taken into account. Non-terrestrial-networks are also an important
alternative to consider, since they could provide a more reliable back-end than terrestrial
networks, which are more prone to failure in case of natural disasters, and can generally
provide better coverage in areas that do not have good cellular infrastructures.

Some gaps in the recent literature were also found, particularly the lack of fault tolerant
solutions, both in terms of communications and sensing node failures, and the use of non-
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state-of-the-art communication protocols, since, for example, some solutions still used older
cellular technologies such as GSM.

The recommendations provided aim at filling these gaps and giving a meaningful
contribution to the future research on EW systems, particularly regarding topics such
as very low-latency communication, real-time monitoring and control of environmental
parameters, very low-cost sensors, and high density sensor networks. Moreover, another
important recommendation concerns the potential benefits of widespread sensor networks,
since density can provide better fault tolerance but also improve the effectiveness of
predictions and event detection.

10. Conclusions

This article reviewed papers that dealt with the proposal, development, testing, and
optimization of Early Warning Systems for natural disasters that are based on the Internet
of Things. In particular, four different use cases were taken into consideration: floods,
earthquakes, tsunamis, and landslides. For all the four scenarios a reference three-layered
architecture was used to better extrapolate the IoT solutions adopted in each paper, and
to highlight the objectives, final results, and possible limitations of each work. Based on
the reviewed literature, it was found that the use of the Fog/Edge computing in the devel-
oped architecture allows to reduce latency, number of transmissions, and data processing.
Another finding was that in new IoT-based Early Warning systems more focus should
be put into the fault tolerance capabilities of the deployed solutions, in terms of sensor
networks and communications resilience. Moreover, some recommendations regarding
battery consumption optimization, latency, communication efficiency and reliability should
be taken into account for the improvement of existing systems or for future research.
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AWS Amazon Web Services
ANN Artificial Neural Network
BLE Bluetooth low energy
DL Deep Learning
DNN Deep Neural Network
EC-GSM-IoT Extended Coverage GSM IoT
EW Early Warning
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EWS Early Warning System
GNSS Global Navigation Satellite System
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile communications
IoT Internet of Things
IoUT Internet of Underwater Things
ISM Industrial, Scientific and Medical
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network
MCS Mobile Crowd Sensing
MEMS Micro-ElectroMechanical System
ML Machine Learning
MQTT Message Queue Telemetry Transport
NB-IoT NarrowBand Internet of Things
NLoS Non-Line-of-Sight
NTP Network Time Protocol
PWP Pore Water Pressure
SHM Structural Health Monitoring
SVM Support Vector Machine
SWEDA Seismic Wave Event Detection Algorithm
TPSN Tyming-synch Protocol for Sensor Networks
URLLC Ultra Reliable Low Latency Communication
UWSN Underwater Wireless Sensor Network
WoR Wake-on-Radio
WSN Wireless Sensor Networks
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
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