
����������
�������

Citation: Loseto, G.; Scioscia, F.; Ruta,

M.; Gramegna, F.; Ieva, S.; Fasciano,

C.; Bilenchi, I.; Loconte, D. Osmotic

Cloud-Edge Intelligence for

IoT-Based Cyber-Physical Systems.

Sensors 2022, 22, 2166. https://

doi.org/10.3390/s22062166

Academic Editors: Stefan Nastic,

Xiaoning Ding and Marjan Gusev

Received: 22 January 2022

Accepted: 3 March 2022

Published: 10 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Osmotic Cloud-Edge Intelligence for IoT-Based
Cyber-Physical Systems
Giuseppe Loseto 1 , Floriano Scioscia 2 , Michele Ruta 2,* , Filippo Gramegna 2 , Saverio Ieva 2 ,
Corrado Fasciano 2,3 , Ivano Bilenchi 2 and Davide Loconte 2

1 Department of Management, Finance and Technology, LUM University “Giuseppe Degennaro”,
Strada Statale 100 km 18, I-70010 Casamassima, Italy; loseto@lum.it

2 Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona 4,
I-70125 Bari, Italy; floriano.scioscia@poliba.it (F.S.); filippo.gramegna@poliba.it (F.G.);
saverio.ieva@poliba.it (S.I.); corrado.fasciano@exprivia.com (C.F.); ivano.bilenchi@poliba.it (I.B.);
davide.loconte@poliba.it (D.L.)

3 Exprivia S.p.A., Via A. Olivetti 11, I-70056 Molfetta, Italy
* Correspondence: michele.ruta@poliba.it; Tel.: +39-080-596-3316

Abstract: Artificial Intelligence (AI) in Cyber-Physical Systems allows machine learning inference on
acquired data with ever greater accuracy, thanks to models trained with massive amounts of informa-
tion generated by Internet of Things devices. Edge Intelligence is increasingly adopted to execute
inference on data at the border of local networks, exploiting models trained in the Cloud. However,
the training tasks on Edge nodes are not supported yet with flexible dynamic migration between
Edge and Cloud. This paper proposes a Cloud-Edge AI microservice architecture, based on Osmotic
Computing principles. Notable features include: (i) containerized architecture enabling training
and inference on the Edge, Cloud, or both, exploiting computational resources opportunistically to
reach the best prediction accuracy; and (ii) microservice encapsulation of each architectural module,
allowing a direct mapping with Commercial-Off-The-Shelf (COTS) components. Grounding on the
proposed architecture: (i) a prototype has been realized with commodity hardware leveraging open-
source software technologies; and (ii) it has been then used in a small-scale intelligent manufacturing
case study, carrying out experiments. The obtained results validate the feasibility and key benefits of
the approach.

Keywords: Cloud-Edge Intelligence; Edge AI; microservice architecture; Osmotic Computing;
Cyber-Physical Systems; Internet of Things

1. Introduction

Cyber-Physical Systems (CPSs) integrate computational, physical sensing/actuation,
environmental, and human components to implement, control, and automate complex
processes in the real world [1]. Integration has grown deeper and wider in the latest decade,
thanks to technological advances in the so-called Internet of Things (IoT): the adoption of
sensing, instrumentation, and computing capabilities in micro- and nano-devices embedded
in objects dipped in everyday environments and communicating through low-power, lossy
networks connected to the Internet. This evolution has lead to the ability to capture
unprecedented amounts of data from natural and human-made settings and processes.

The concurrent evolution of Artificial Intelligence (AI) methods and technologies
makes it possible to simulate increasingly accurate rational behavior in machines by learn-
ing from data, outperforming expert human professionals in a growing number of tasks [2].
AI techniques like deep learning [3] exploit ever larger information corpuses to train Machine
Learning (ML) models and provide inference (i.e., prediction) capabilities on measurements
with increasing accuracy. While early IoT-based AI solutions uploaded all data to Cloud
computing infrastructures for model training and inference, the increasing availability

Sensors 2022, 22, 2166. https://doi.org/10.3390/s22062166 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062166
https://doi.org/10.3390/s22062166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7995-8494
https://orcid.org/0000-0002-7859-9602
https://orcid.org/0000-0003-2125-327X
https://orcid.org/0000-0003-4162-957X
https://orcid.org/0000-0001-8598-5504
https://orcid.org/0000-0001-7813-5915
https://orcid.org/0000-0001-8294-2445
https://orcid.org/0000-0002-0182-4672
https://doi.org/10.3390/s22062166
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062166?type=check_update&version=1


Sensors 2022, 22, 2166 2 of 19

of capable processing devices on boundary nodes of local networks has led to a large
adoption of so-called Edge Computing [4] for that. Its main goal is to push computation
and communication resources from the Cloud toward the edge of networks, to supply
services and perform rapid computations, avoiding unnecessary communication latency
and enabling faster proxy responses for end users. Edge Computing has quickly grown
to a worldwide market revenue of USD 139 billions in 2019, with a forecast of over USD
250 B for 2024 (source: Statista.com (accessed on 11 January 2022)). Following this vision,
the new Edge Intelligence (EI) paradigm [5] promotes the confluence of Edge Computing
and AI. EI is currently implemented as the possibility to run AI models on Edge devices,
while the more computationally expensive task of training AI models is still carried out in
powerful Cloud data centers. Collaborative Cloud-Edge Intelligence has been identified as
the next evolutionary step [6], where model training and prediction tasks can be performed
either in Edge or in Cloud nodes, depending on application requirements. Nevertheless,
practical solutions and architectures are not available yet, due to the complexity of man-
aging resources and services dynamically across the Edge and Cloud layers. The Osmotic
Computing (OC) [7] is a recent approach aiming at distributed and federated environments
driven by increased capabilities in Edge Computing. In OC, dynamic orchestration enables
the automatic deployment and elastic migration of microservices from Edge to Cloud
infrastructure nodes and vice versa, in order to optimize availability and performance with
respect to variable workloads, network topology, and mobility of devices and resources.

This paper presents a novel Cloud-Edge AI microservice architecture for IoT-
oriented CPSs based on the OC paradigm. It supports gathering data streams from
local cyber-physical devices, preprocessing them and performing AI model training
and inference in ML classification and regression problems. Most notably, the same AI
microservices—encapsulated in containers—can be deployed either to Edge nodes or to
Cloud infrastructure opportunistically, i.e., exploiting resources available in the neighbor-
hood of the task to be completed and in the current time frame [8]. Edge AI can grant lower
prediction latency and turnaround time, in addition to inherently higher data privacy;
conversely, Cloud AI can maximize model accuracy and provide further analytics for the
end users. The proposed platform also supports hybrid Cloud-Edge AI solutions.

The main contributions of the proposal are:

• Containerized AI service architecture enabling training and inference to be performed
on the Edge, Cloud, or a combination of the two, exploiting available computational
resources opportunistically with different trade-offs between computational/storage
requirements and prediction accuracy.

• Microservice encapsulation of each architecture module with an exact characterization
of roles, responsibilities, and interactions, allowing a direct mapping with Commercial-
Off-The-Shelf (COTS) components, in order to increase feasibility as well as to reduce
development costs and time to market.

• A fully functional platform prototype implemented on commodity hardware by
integrating off-the-shelf open-source software technologies and tools.

• A case study on Cloud-Edge AI in an intelligent manufacturing scenario, with an
experimental campaign to validate key value propositions of the approach.

The remainder of the paper is organized as follows. Section 2 discusses on related
work, while the proposal is described in Section 3, focusing on the overall architecture, its
individual components, and selected available open-source tools to implement it. Case
study and experiments are presented in Section 4, before the conclusion.

2. Related Work

The authors in [6] extended the EI definition as a paradigm that fully exploits the
available data and resources across the hierarchy of end devices, Edge nodes, and Cloud
data centers to optimize the overall performance of training an AI model and inferencing.
The AI models can work in a Cloud–Edge device coordination, according to a six-level
classification of EI architectures. Moving from “Cloud Intelligence” to “All On-Device”,

Statista.com


Sensors 2022, 22, 2166 3 of 19

the amount and path length of data offloading decrease, as well as the transmission latency
and bandwidth cost, while data privacy increases. As a consequence, Cloud and Edge
resources should be exploited opportunistically when designing complex IoT-oriented
computing systems.

The majority of the most recent Cloud-Edge AI platforms belong to the “In-Edge
co-inference” level of the above classification: model training occurs only in the Cloud, then
inferencing (prediction) is carried out to the Edge. The GEM-Analytics platform for energy
management [9] is a relevant specimen of this category: models are Cloud-trained and
validated, and then periodically sent to Edge nodes, where they are used for day-to-day
operations in power plants.

The Osmotic Computing is one of the most actively studied approaches to overcome
the difficulty to execute AI tasks coordinating Edge and Cloud layers. An in-depth analysis
of current perspectives can be found in [10], presenting main issues and challenges in
developing and deploying AI-based applications in an OC environment.

Several works have adopted the OC paradigm in a wide range of scenarios. The trust
management framework for Pervasive Online Social Networks (POSNs) in [11] exploits
OC for an efficient computational offloading among the many users of a POSN. An OC
architecture is also proposed in [12] for a smart classroom where deep learning models
are tested to recognize entities and chalkboard handwriting, and to control IoT devices.
Adopted OC features, however, are quite rudimentary, as microservices are not container-
ized and a dynamic orchestration is missing. The Apollon OC platform proposed in [13]
for pollution monitoring, enables opportunistic filtering and integration of data coming
from heterogeneous mobile and IoT devices deployed in urban environments. Analogously,
the RAPTOR [14] osmotic platform allows the creation, deployment, and integration of
flexible data analysis applications, through the orchestration of microservices based on the
R open-source statistical software.

The latest works extend the core OC properties with more advanced capabilities. The
reference architecture in [15], named Osmosis, focuses on microservices deployment across
Cloud, Edge, and IoT environments. Design principles of an osmotic smart orchestrator
are investigated, capable of migrating MicroELements (MELs) composed of microservices
along with microdata they work on. The above architecture is exploited in [16] to define a
distributed healthcare system. A Body Area Network (BAN) case study highlights system
potentialities. In [17] further architecture and orchestration mechanisms are proposed
to implement a Message-Oriented Middleware (MOM) for IoT environments based on
OC principles. The framework En-OsCo [18] aims towards an energy-aware manage-
ment of resources. It adopts an extended Kalman filter to monitor Edge data centers and
hyper-heuristics for an optimal dispatch of services on incoming workloads. The Mobile
Augmented Reality Network (MARN) architecture in [19] exploits OC for migrating and
effectively scheduling various services across multiple servers. Key requirements of low
latency, robustness, and tolerance are monitored, as they are essential to support distributed
mobile augmented and virtual reality applications.

Table 1 summarizes relevant features of the above frameworks with respect to the
approach proposed here. In particular, our solution is the only one using both osmotic
orchestration of containerized microservices and Cloud-Edge Intelligence, allowing data
mining with predictive ML models trained and executed on Edge and on Cloud.



Sensors 2022, 22, 2166 4 of 19

Table 1. Comparative table of frameworks (3: supported, 7: not supported).

Reference Containerized
Services

Osmotic
Orchestration

AI Model Training

Pacheco et al. [12]—2018 7 7 3 Pre-Trained
Apollon [13]—2018 3 3 3 On Cloud
Grzelak et al. [14]—2018 3 3 3 7

Carnevale et al. [16]—2019 3 3 7 7

En-OsCo [18]—2019 3 3 7 7

Osmosis [15]—2019 3 3 7 7

Sharma et al. [19]—2020 7 3 7 7

Tovazzi et al. [9]—2020 3 7 3 On Cloud
This work 3 3 3 On Cloud and Edge

3. Osmotic Cloud-Edge Architecture

The proposed approach is based on the architecture depicted in Figure 1. Microservices—
marked with little green cubes—are encapsulated in containers and opportunistically
deployed to devices. A container includes only well-defined components of the operating
system (OS), middleware, and application-level software, as required to run a specific
(micro)service. Exploiting OS-level virtualization, containers lead to significantly lower
distribution overhead and higher density of instances per device than using a hypervisor.
Therefore, the new container-based approaches allow the implementation of lightweight
services on resource-constrained programmable Edge devices such as gateways, network
switches and routers; in the same way, they increase the performance of the dynamic
management of microservices within Cloud data centers.

Sensor 
Data

Edge Node

Local ML Output

Edge
Node

Data Producer

Edge Intelligence

Data Processing
Local 

Storage

Data Consumer

Data Analytics

Cloud Node

Cloud
Node

Global 
ML 

Output
Cloud Intelligence

Event 
Feedback

Data Stream Management System Orchestrator

Orchestrator Node

Figure 1. Reference Architecture.

In the reference architecture, the orchestration and provisioning of different containers
on the available devices follow the Osmotic Computing principles. Strategies for service
orchestration take into account the requirements of both the infrastructure (such as load bal-
ancing, reliability, and availability) and applications (such as sensing and actuation capabil-
ities, context awareness, topological proximity, and Quality of Service—QoS—parameters),
both changing over time. For this reason, it is necessary to manage a bi-directional flow
of microservices between Cloud and Edge. Due to the high heterogeneity of physical
resources, the provisioning of containers must adapt the virtual environment to the des-
tination hardware equipment. Furthermore, the migration of services in the Cloud-Edge



Sensors 2022, 22, 2166 5 of 19

system needs dynamic and efficient administration of virtual network resources to avoid
application failures or QoS degradation. To address these issues, the management of data
and applications (data plane) is separated from the control of network and security services
(control plane). The OC paradigm supports this approach, providing a flexible infrastructure
for the automatic and secure provisioning of microservices.

As shown in Figure 1, the proposed architecture spans two main infrastructural layers:
Cloud and Edge. In the Cloud, data centers host different types of services composed
according to high-level application requirements. The Edge level identifies the computing
environment at the border of the local network, between local IoT devices and the Internet.
It includes data acquisition points and gateway nodes, capable of performing computations
on data produced by end devices. The latter gather raw data with a frequency that depends
on a variety of factors, including:

• Rate of change of the observed phenomenon;
• Environment and context constraints;
• Ability of the device itself to collect or record data;
• Operational system requirements to be met.

Due to computational resource constraints, minimal or no data preprocessing is possi-
ble on Edge components. They basically act on the raw data collected in the environment,
preparing for mining workflows:

• Decrypting incoming data streams and encrypting outgoing ones, for security;
• Transcoding data streams between different formats;
• Combining multiple data streams from groups of devices;
• Preprocessing and filtering streams to eliminate spurious data, noise, and artifacts;
• Summarizing raw data to reduce volumes with minimal information loss.

In conventional architectures, the most advanced and computationally complex tasks
are reserved to the Cloud infrastructure, including all the steps to train and use ML models:

• Advanced preprocessing of input data streams, including e.g., function transforms to
frequency domain representations;

• Feature extraction and selection for data dimensionality reduction;
• Model training from features;
• Prediction using the trained model.

On the contrary, in the architecture proposed here, Edge nodes can perform either
prediction by means of pre-trained models or even the full feature extraction—training—
prediction workflow. Due to the different requirements and capabilities of Cloud and Edge
systems, it makes sense to devise a heterogeneous architecture where different types of
resources are distributed on the two layers. In particular, the Edge level typically includes
components with significantly more restricted processing and memory. As a consequence,
model training and prediction should be deployed at the Edge when prediction accuracy
has lower priority than other requirements, such as minimizing response latency or pre-
serving data locality due to privacy concerns; in those cases, sub-optimal accuracy is an
acceptable trade-off.

For these reasons, it is essential to characterize the way composite microservices must
be automatically adapted to deployment sites, considering the location and the context
of distribution, since containers performance is closely related to the capabilities of the
physical host. Additionally, the orchestrator binds at runtime each microservice to its
reference location, based on constraints identified by the specific application and by the
infrastructure provider. Therefore, as shown in Figure 1, a dynamic service orchestration,
based on a feedback loop to detect changes in infrastructure performance and QoS metrics,
is achieved using the following logical components:

• One or more Edge nodes programmed to acquire raw data and to process them locally
using machine learning algorithms for classification or regression tasks.

• One or more Cloud nodes able to receive aggregate data from the Edge nodes and
perform classification/regression tasks by operating on a larger and more articulated



Sensors 2022, 22, 2166 6 of 19

data set, while also being able to act as backup hosts for Edge microservices in the
case of unavailability of Edge nodes.

• A Data Stream Management System (DSMS) capable of conveying data coming between
the Edge of the network towards the Cloud components, while also providing support
for data storage operations.

• An Orchestrator, following the OC paradigm to manage different containers imple-
menting the required functional blocks as microservices.

Individual components are detailed in the next subsection, while technological choices for
their reference implementation and integration are explained in the subsequent one.

3.1. Microservices

The proposed framework leverages a collection of lightweight services, which are
loosely coupled and enable granular scalability and flexible composition patterns to cater
to both requirements and constraints of applications. In more detail, the following services
are proposed.

Local Storage: Stores locally and temporarily the data gathered from IoT field devices.
Due to latency and bandwidth optimization, centralized and shared data storage should
be avoided. Each data processing microservice requires the data to be located as close as
possible. This service provides simple access mechanisms like RESTful (REpresentational
State Transfer) APIs (Application Programming Interfaces) or event-driven interaction.

Data Processing: Performs preprocessing for subsequent ML model training tasks. For
complex and high-volume CPSs, the overall task is distributed among Edge nodes to spread
the computational load and exploit data locality. In fact, data from the local storage service
are accessed directly, thereby reducing bandwidth consumption and latency, while also
mitigating common issues of typical Edge devices, such as power and connectivity outages.

Data Stream Management System (DSMS): Acts as Message Broker (MB) for the
platform, forwarding data and event streams from Edge to Cloud and vice versa. It adopts
the publish/subscribe pattern, enabling efficient event-driven asynchronous communication.
This paradigm is particularly well suited for microservice architectures [17]. Each Edge
node can send messages to unique topics marking different information types. Each topic
has zero to many consumers subscribing to it, and refers either to raw or preprocessed
data streams, or to events and control messages. The DSMS allows also the discovery of
available topics, published by data producers at the Edge. Furthermore, it is an event
stream processor, by combining and possibly converting input data from multiple selected
topics to produce an output flow which is subsequently processed by the Cloud Intelligence
modules to train a global model. It is also crucial for the DSMS to be interoperable with
the most widespread IoT communication protocols, such as MQTT (Message Queuing
Telemetry Transport) [20] or CoAP (Constrained Application Protocol) [21], as many kinds
of commercial IoT devices cannot be upgraded to support new protocols due to proprietary
firmwares as well as computational resource and deployment capability limitations.

Data Producer: Sends data from an Edge node to other Edge or Cloud nodes. The
message broker supports the connection.

Data Consumer: Receives data sent by a data producer. It is typically deployed on
Cloud nodes to get preprocessed information from Edge nodes, in order to be mined.

Edge Intelligence: Executes algorithms on Edge devices for ML problems like clas-
sification and regression. This microservice is also able to provide model training and
validation, based on the data provided by the local storage. The following benefits ensue:
(i) privacy and security, as the transfer of sensitive data across the Internet can be avoided;
(ii) low latency, as the local model can be trained without waiting data upload to the Cloud
and prediction or model download from it; (iii) scalability, as distributed learning is able to
manage high volumes of data produced in real IoT-based CPSs.

Cloud Intelligence: The Cloud counterpart of the Edge Intelligence service. It runs
ML algorithms on data streams produced at the Edge. For example, the Cloud node can
train a classification or regression model on streamed sensor data, collected from multiple



Sensors 2022, 22, 2166 7 of 19

data producer instances. This approach enables a feedback control loop to update the
model and improve its quality progressively; a less accurate model can be trained and used
on Edge devices, while a more accurate one is trained in the Cloud by collecting larger
amounts of data and is then transferred to the Edge. This loop can be repeated periodically
when new data are collected.

Data Analytics: Carries out further business intelligence analytics on data gathered at
the Cloud layer. In particular, it provides functionalities and tools to support a presentation
layer, e.g., a dashboard where aggregated statistics as well as predictions and performance
of trained models can be reported.

Orchestrator: Manages the aforementioned microservices by means of a container-
based approach. In particular, it schedules the migration of services from Edge to Cloud
and vice versa, based on real-time resource conditions and availability. For example, the
orchestrator can reassign containers in case of network infrastructure changes, high service
demand, or Edge node failures.

3.2. Technologies

One of the key goals of the proposed platform architecture is to enable the realization
and integration of autonomous microservices by exploiting Commercial-Off-The-Shelf
(COTS) software components to implement both system functionalities and basic applica-
tion modules, allowing for lower platform development time and effort.

Table 2 illustrates the mapping of each architecture component (Figure 1) with the
corresponding selected technology. An extensive and in-depth market research has been
carried out to select tools suitable for each microservice, evaluating functionalities, tech-
nological characteristics, costs, licenses, and hardware and software requirements. COTS
components with the following features have been preferred:

• Open source software license with an active developer community;
• Proven track record of reliability, security, and performance;
• Full compatibility with container technologies;
• Interoperability with widespread IoT technologies and protocols;
• Support for multiple hardware architectures;
• Support for innovative functional and architectural methodologies of software engineering.

The following technologies were selected to implement and integrate the pro-
posed platform:

balenaOS: (https://www.balena.io/os (accessed on 11 January 2022)) A lightweight
operating system based on the Yocto project (https://www.yoctoproject.org (accessed
on 11 January 2022)) for Linux distribution customization. balenaOS is tailored to run
application containers on single-board computers and embedded devices. The OS provides
robust networking functionalities as well as virtualization and provisioning support. For
container management balenaOS includes balenaEngine, a Docker (https://www.docker.
com (accessed on 11 January 2022))-compatible daemon optimized for application service
images, and containers and volumes deployed on resource-constrained devices. With
respect to other existing container technologies, this tool overcomes common virtualization
problems related to embedded scenarios such as resource overhead and lack of hardware
support, as balenaOS is available for several device types and different CPU architectures.

openBalena: (https://www.balena.io/open (accessed on 11 January 2022)) A balenaOS-
based provisioning and orchestration platform to deploy and manage containers on fleets
of devices. It is exploited to configure application containers, push updates, share network
parameters and distribute container images on each device according to multiple strategies.

https://www.balena.io/os
https://www.yoctoproject.org
https://www.docker.com
https://www.docker.com
https://www.balena.io/open


Sensors 2022, 22, 2166 8 of 19

Table 2. Reference COTS tools.

Service/Module Technology Version License Release Date

Container technology balenaOS 2.54.2 Apache 2.0 12 August 2020

Orchestrator openBalena 3.1.1 GNU Affero GPL 3.0 10 November 2020

Data Stream Management
System

Apache Kafka 2.5.0 (with Scala 2.12) Apache 2.0 15 April 2020

Data Producer Kafka Producer API 2.0.1-python Apache 2.0 19 February 2020

Data Consumer Kafka Consumer API 2.0.1-python Apache 2.0 19 February 2020

Local Storage Redis 6.0.9 3-Clause BSD 26 October 2020

Data Processing Python scripts 3.9.0 PSF & Zero-Clause BSD 5 October 2020

Edge/Cloud Intelligence TensorFlow
Keras API

2.3.1
2.4.3

Apache 2.0
MIT

12 Sepember 2020
25 June 2020

Data Analytics &
Visualization

Streamlit 0.72.0 Apache 2.0 2 December 2020

Apache Kafka: (https://kafka.apache.org (accessed on 11 January 2022)) A dis-
tributed event streaming platform for communication among several devices and ap-
plications, characterized by horizontal scalability, high throughput, low latency, and inter-
operability with existing IoT communication protocols through an ecosystem of plug-ins
and connectors. Kafka has been adopted as DSMS for sending/receiving streams of event
data collected by the container applications. Messages can also contain event feedback
forwarded to Edge nodes and the outputs of the ML algorithms exchanged between Cloud
and Edge modules.

Kafka Producer/Consumer API: (https://kafka.apache.org/documentation/#api
(accessed on 11 January 2022)) Each microservice can produce (i.e., send) or consume
(i.e., receive) data through the Kafka API. The producer API allows containers to send data
to other services subscribed to the same topics, whereas the consumer API can be exploited
to retrieve information marked with specific topics in the Kafka platform. Both APIs are
available for several programming languages; Python was chosen as it facilitated inte-
gration with other Python-based platform components, like the ML APIs and the custom
scripts developed for the Data Processing microservice.

Redis: (https://redis.io (accessed on 11 January 2022)) In-memory data store used to
collect information coming from sensors and field devices according to a key-value data
model. Several features make it appropriate for Edge computing scenarios: (i) low CPU and
memory requirements; (ii) lightweight data structures particularly appropriate for time-
series data; (iii) simple but versatile data model, useful to store information produced by
heterogeneous devices; and (iv) append-only storage options optimized for flash memories
usually endowing IoT devices.

TensorFlow: (https://www.tensorflow.org (accessed on 11 January 2022)) An open
source machine learning library, exploited to process the collected data on both Edge
devices and Cloud nodes. The Keras (https://keras.io (accessed on 11 January 2022)) high-
level API has been used to define and train classification and regression models based on
deep neural networks, as well as to make predictions on data.

Streamlit: (https://www.streamlit.io (accessed on 11 January 2022)) Python-based
library used to create interactive Web applications able to: (i) plot sensor data, also highlight-
ing basic statistics and patterns; (ii) support exploratory data analysis; and (iii) visualize
performance results of ML predictive models.

4. Case Study: Intelligent Manufacturing

Intelligent manufacturing is a challenging cyber-physical system case study. The increas-
ing adoption of IoT and AI technologies, spurred by policy initiatives like Industry 4.0 [22],

https://kafka.apache.org
https://kafka.apache.org/documentation/#api
https://redis.io
https://www.tensorflow.org
https://keras.io
https://www.streamlit.io


Sensors 2022, 22, 2166 9 of 19

is transforming manufacturing with significant organizational, economic, and societal
impacts. Plants are shifting from collections of big monolithic machines and robots to
large networks of smaller, individually controllable sensing and actuation components,
with multiple continuous data streams feeding various distributed decision points, either
autonomous or under human supervision.

The reference scenario considered here concerns impurity prediction on iron concen-
trate in the mining industry: An iron extraction plant operates in an industrial area. Process
variables and surrounding air flow must be continuously monitored, carrying out an autonomous
intelligent manufacturing task to maximize mineral quality. Mining activities face a constant
decrease in ore concentration. Several processing techniques are currently used to increase
the recovery of ore from raw materials and represent fundamental operations of modern
separation processes used in the mining industry. Flotation is one of the most widely used
techniques, allowing the separation of gangue from ore. However, since the impurity
(silica) in iron ore is commonly measured every hour, being able to predict the amount of
impurity could constantly support the activity of engineers and technicians, by providing
useful information in advance to promptly improve the extraction process.

A monitoring platform prototype was developed, based on the proposed architecture.
Sensors and actuators embedded in the extraction plant were simulated by means of the
reference dataset in [23]. Inspection features include starch and amina (reagents) flow,
ore pulp flow, ore pulp pH, and ore pulp density, which are the most important variables
for the final mineral quality. Further data include level and air flow inside the flotation
columns, i.e., cylinders where mineral slurry and air flows are introduced from above and
from below, respectively, in order to induce mixing. The proposed architecture is able to
aggregate these data opportunistically and predict the amount of silica in the extraction
process by means of Cloud-Edge Intelligence algorithms.

4.1. Prototype

Following the architecture described in Section 3, a prototypical testbed was developed
to prove the feasibility of the proposal and to evaluate its performance and capabilities. The
main components are depicted in Figure 2. It is an industrial IoT-based CPS environment
consisting of two Edge nodes (i.e., two independent plant sectors), an Orchestrator and
Message Broker (MB in the following), and a Cloud node. Edge devices and the MB are
connected through an IEEE 802.11 wireless local network, and the MB is the only module
communicating with the remote Cloud node through an Internet connection.

As depicted in Figure 3, different single-board computers were employed on the
Edge side. With reference to Figure 2, each microservice was deployed on a different
board: this shows how, in the proposed framework, logically related microservices can
be distributed across multiple hardware devices instead of being confined in a single
node. The system scales horizontally according to available devices within the target
environment. For example, devices with limited computational resources may be used as
Storage modules, i.e., to collect data from physical sensors, whereas boards with higher-
performance CPUs can be exploited for more compute-intensive tasks. High modularity
and scalability are the main benefits of the adopted OC approach.

A Raspberry Pi 4 Model B (https://www.raspberrypi.org/products/raspberry-pi-4-
model-b (accessed on 11 January 2022)) (RPi4) was used as the MB, running an instance
of Apache Kafka , a MQTT to Kafka connector, and the Orchestration service in different
balenaOS-based containers. It is equipped with a quad-core 1.5 GHz ARM64 CPU, 4 GB
of RAM, and 32 GB of Secure Digital (SD) storage memory. As per the publish/subscribe
pattern, each message published by any node to a topic is received by all subscribers for
the topic. The following topics have been defined: control, used to transmit messages re-
garding the (dis)connection of Sensor nodes, or data availability in a Storage module; data,
used to share messages related to data processing and results of the inference algorithms.

https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://www.raspberrypi.org/products/raspberry-pi-4-model-b


Sensors 2022, 22, 2166 10 of 19

Sensor Device Storage Device

Local DB 
(Redis)

Processing Device

Edge Intelligence
(TensorFlow + Keras)

Edge Node

Control Data

Apache Kafka Platform
Orchestrator

and
Message 
Broker Edge

Node

Edge
Node

Cloud Intelligence
(TensorFlow + Keras)

Dashboard
(Streamlit)

Sensor Data
Control Topic
Data Topic Cloud

Node

Sensor 
Module

MQTT

MQTT Redis

Kafka Kafka

Kafka

Kafka

Kafka

Figure 2. Components of the proposed prototype.

Figure 3. Message Broker/Orchestrator and Edge devices in the platform prototype.

Each Edge node from Figure 2 is composed of two devices running different con-
tainerized modules on balenaOS. The first Edge node (E1) includes a Raspberry Pi 3 Model
B+ (https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus (accessed on
11 January 2022)) (RPi3+) to perform Edge Intelligence tasks (E1a), and a local Storage
module running on a Raspberry Pi 1 Model B (RPi) (E1b). The RPi3+ is equipped with
a quad core 1.4 GHz ARM64 CPU, 1 GB RAM, and 32 GB storage memory, whereas
the RPi has a single-core ARM11 CPU at 700 MHz, 512 MB RAM, and 8 GB SD stor-
age memory. Similarly, the second Edge node (E2) was configured using a Raspberry Pi

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus


Sensors 2022, 22, 2166 11 of 19

3 Model B (https://www.raspberrypi.org/products/raspberry-pi-3-model-b (accessed on
11 January 2022)) (RPi3) equipped with a slightly slower quad core 1.2 GHz ARM64 CPU,
1 GB RAM, and 32 GB SD storage memory (E2a), which runs the Edge Intelligence service,
and an RPi acting as a second Storage device. Additionally, two RPi devices (E1c and E2c)
with similar specifications were used to simulate a sensor network, sending raw data to the
Storage devices via dedicated MQTT topics.

The Cloud node containers were deployed to a remote Microsoft Azure D32as v5
virtual machine, configured with an Intel Xeon CPU E5-2673, 32 GB of RAM and 128 GB
of storage. The Internet connection between the local network (including the Message
Broker) and the Cloud is an asymmetric Fiber To The Cabinet (FTTC) small office link with
downstream and upstream nominal bandwidth of 100 Mbps and 30 Mbps, respectively.

Different message formats have been used for communication. Simulated Sensor
devices communicate with the MB to discover available Storage modules, then they start
transmitting data serialized in the Apache Arrow (https://arrow.apache.org (accessed on
11 January 2022)) format, a language-independent standard proposed for general-purpose
serialization and data transfer. Since it is based on a column-oriented layout, the Arrow
format is particularly suitable for tasks requiring fast data processing and information
sharing between Storage devices. On the other hand, all messages transmitted through the
MB via the control and data topics are serialized in JSON (JavaScript Object Notation)
(https://www.json.org (accessed on 11 January 2022)) format. In particular, control
messages have the following attributes, summarized in Table 3:

• id: Unique message identifier;
• type: Indicates the kind of control message. Acceptable values are:

– storage_connected (SC): A new Storage module is available on the network;
– storage_disconnected (SD): A Storage module is currently unreachable or down;
– sensor_data (SDT): A Sensor measurement is available on a storage module for

running a prediction algorithm;
– dataset (DS): A Sensor dataset, including several sensor measurements, is available

on a Storage module for training or updating the ML models;
– query (QR): Used to list available Storage modules and related data;
– response (RS): Indicates a response to a query message.

• host: Contains the reference module IP address;
• data_key: Unique identifier used to retrieve data from a specific Redis datastore;
• query_type: Used to retrieve information about a single measurement (sensor_data), a

subset of data (dataset) or the whole collection (storage);
• query_id: Message id of the query originating current response;
• storage_id: Unique identifier of the Storage module containing the data.

Table 4 summarizes the attributes of data messages:

• type: Indicates the kind of data notification:

– input: Contains data samples for which an inference task is requested;
– output: Contains results of a prediction task;
– model: Returns information about the performance of the trained ML models.

• id: Identifies the processed sensor data (in case of input and output messages) or the
Cloud/Edge Intelligence module providing the prediction model;

• data: An array of raw information;
• module_id: Identifies the Intelligence node running the predictive algorithm;
• result: Output of the prediction task;
• time: Prediction time in milliseconds;
• r2: Coefficient of determination (R2), used as a performance metric for a regres-

sion model;
• mse: Mean squared error, i.e., the average squared difference between predicted and

real values;

https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://arrow.apache.org
https://www.json.org


Sensors 2022, 22, 2166 12 of 19

• download_time, training_time, and evaluation_time: Time spent by the Intelligence node
to retrieve the whole dataset, train the model, and evaluate performance, respectively.

Table 3. Attributes of control messages.

Type Id Host Data Key Query
Type Query ID Storage ID

SC X X
SD X

SDT X X X
DS X X X
QR X X
RS X X X

Table 4. Attributes of data messages.

Type Id Data Module ID Result Time

input X X
output X X X X
model X

R2 MSE Download
Time

Training
Time

Evaluation
Time

input
output
model X X X X X

An ore purity monitoring and prediction process was developed with a regression
model through the above prototype. Basically, it entails the sequence of interactions
reported in the UML (Unified Modeling Language) diagram of Figure 4 and described in
what follows:

1. When a Storage module is available on the network, it sends a storage_connect control
message to notify all Sensor modules subscribed to the control topic (blue messages
in Figure 4). As an alternative, each Sensor module can explicitly perform a query to
retrieve all the available Storage devices.

2. The Sensor module collects data during its observation period and sends it to Storage
devices through a dedicated MQTT topic. The Apache Arrow data format is used for
message serialization (red color in Figure 4).

3. A dataset notification is sent to advertise the availability of new data. Datasets can be
used to train or update prediction algorithms on active Cloud/Edge modules, but also
to plot information on a remote dashboard. Intelligence modules can autonomously
query the MB to obtain information about available datasets.

4. Data are retrieved from one or more Storage devices and used to train a regression
model. Performance results are then exposed through a model message on the data
topic (drawn in orange in Figure 4).

5. Subsequently collected sensor data represent the input of the prediction model and
are forwarded through the MB to the subscribed Intelligence nodes. Results of the
regression process are finally returned through an output notification.

Final prototype specification concerns the ML model trained in the Intelligence nodes
for the case study: It is a multi-layer perceptron regressor [3] with 5 hidden layers and
200 neurons per layer, with a Rectified Linear Unit (ReLU) activation function. The network
is trained for 10 epochs using the Keras implementation of the Adam [24] optimizer, with
default parameters and mean squared error loss function. This model was selected be-
cause it generally provides satisfactory prediction performance, while being sufficiently
lightweight to run in a timely manner on resource-constrained devices.



Sensors 2022, 22, 2166 13 of 19

Sensor
Module

Storage
Message
Broker

Edge
Intelligence

storage_connect

query << storage >>

response << storage info >>

save sensor data

query << dataset >>

dataset

[explicit request]

[notification]alt

alt [notification]

[explicit request]

retrieve datasets

<< datasets >>

train

notify_subscriber << storage info >>

notify_subscriber << dataset info >>

input << sensor data >>
notify_subscriber << sensor data >>

predict
output << prediction results >>

[for each collected data]loop

model << training results >>

response << dataset info >>

Figure 4. Sequence diagram for Edge-side prediction.

4.2. Experiments

An experimental campaign was carried out to assess the prototype performance.
The whole set of data [23] adopted to simulate the intelligent manufacturing use case
contains N = 737453 samples, collected in a 7-month time span, for a 160 MB total size.
The deployed architecture is the one described in Section 4.1, where each logical node is
composed of two devices: Edge Intelligence and Storage. In order to test the dependency of
performance on dataset size and to simulate deployments on a larger scale than what was
allowed by available physical devices, four scenarios were configured, with data dimension
set to N, N

2 , N
4 , N

8 , respectively, and samples extracted randomly. In each configuration, a
validation set was obtained by holding out 1/7 of the dataset, and the remaining 6/7 were
used to train the predictive models, with 3/7 for the two simulated Sensor devices, E1c
and E2c. With regards to all experimental results, each reported value is the average of five
cold runs.

Data gathering. The first test simulated data upload by Sensor devices to Storage. To
reduce network load and memory usage, due to Redis being an in-memory store, data were
first compressed using the zlib format [25]. Basically, compression increases CPU usage
on both Sensor and Edge devices, while a range of network bandwidth and RAM to CPU
usage trade-offs can be achieved by tuning the compression parameters, or by replacing
the format altogether, so as to meet scenario requirements. Data upload was carried out
according to steps 1–3 of the sequence in Section 4.1. Elapsed times have been reported in
Figure 5 for each above scenario. The results show linear dependence of import time on the
number of samples.



Sensors 2022, 22, 2166 14 of 19

Figure 5. Time required for data import.

Model training and validation. The second test involved measuring training times
and the related network load. As explained in steps 4–5 of the sequence in Section 4.1,
each Intelligence module needs to fetch data from the Storage before training. On training
completion, it performs predictions on the validation set. Table 5 reports on network loads
for this phase, with device labels referring to Figure 3. Predictably, the busiest modules
from the network point of view are the Storage ones, which both receive information
from Sensors and upload them to requesting nodes. This seemingly inefficient approach,
however, decouples data production of field devices from data consumption of Edge
Intelligence modules, which is useful as they may have significantly different velocity
and/or variability.

Table 5. Training: Network activity.

Node Device Label Download (kB) Upload (kB)

Broker broker MB 4768 7603

intelligence E1a 33,386 993
Edge 1 storage E1b 35,951 36,043

sensor E1c 2379 35,259

intelligence E2a 33,685 1142
Edge 2 storage E2b 35,522 35,858

sensor E2c 2193 35,088

In order to compare the performance of the proposal against a centralized Cloud solu-
tion, the same Intelligence container used in the Edge nodes was deployed on the Cloud via
the OC Orchestrator on the MB. The Cloud node first downloads the full dataset by query-
ing all the Edge storage devices, then proceeds to train a predictive model. Turnaround
times and model validation results are reported in Table 6. Considering that Edge nodes
use half of the samples to train their models, it can be noticed how Storage data retrieval
takes a comparable amount of time for both Cloud and Edge nodes, while training time
is significantly shorter on the Cloud (almost an order of magnitude), as expected due to
its more powerful hardware. While this may be mitigated by deploying Edge Intelligence
services on more capable devices, it is not a crucial issue, as training on the whole dataset
only happens once, or at worst periodically, depending on the use case. Actually, in real
applications it is advisable to train models periodically and incrementally, using small-size
datasets. As explained in Section 3, the prototype also allows for Cloud-Edge cooperation in



Sensors 2022, 22, 2166 15 of 19

model training: while Edge components can train models “on-the-fly” on smaller datasets,
retaining their independence from the Cloud albeit with sub-optimal accuracy, a Cloud
node may aggregate more data coming from multiple local networks in order to train better
models, finally feeding them back to the Edge.

It is also important to point out that the prototype represents a rather optimistic
setting for the Cloud node, where it is both available and mostly idle w.r.t. hardware and
network resources. In a realistic industrial scenario, where the premise’s Internet connection
towards the Cloud is shared by a large number of devices, the uplink may be temporarily
unavailable or may be saturated by sensor data and inference requests, making it a potential
bottleneck. Similarly, the full processing resources of the Cloud node(s) will be shared
across highly heterogeneous workloads, and company budget pressures will induce IT
officers to seek a relatively high utilization baseline [26]. In such settings, Edge Intelligence
capabilities can improve both the availability and the timeliness of predictions, by scaling
the workload across multiple relatively capable boards located near data generators.

Table 6. Training time and validation results.

Node R2 MSE Download
Time (s)

Training
Time (s)

Validation
Time (s)

Cloud 0.983 0.0222 50.788 437.986 3.081
Edge 1 0.972 0.0348 24.603 2086.653 25.415
Edge 2 0.971 0.0337 33.085 2574.005 28.976

Dataset size dependency. Table 7 reports on training times and validation metrics
(R2 and MSE) for different dataset sizes on the Edge Intelligence node E1a. The results
indicate there is an acceptable trade-off between model accuracy and training time in Edge
Intelligence applications, in agreement with existing evidence suggesting how fractional
datasets do not induce a large degradation in prediction accuracy if their distribution
is representative of the whole dataset [27]. This outcome supports the aforementioned
claims about Cloud-Edge Intelligence cooperation. Additionally, it is important to note
that the prototype was set up with separate devices for data storage and model training for
experimentation purposes. In real scenarios, the OC Orchestrator may eliminate download
latency by deploying Edge Intelligence and Storage microservices on the same component,
provided it has enough resources; this would both eliminate download time and reduce
the overall network load.

Table 7. Training: Reduced datasets.

Samples R2 MSE Download
Time (s)

Training
Time (s)

Validation
Time (s)

737,454 0.983 0.021 42.451 5155.740 32.072
368,727 0.972 0.035 24.603 2086.653 24.608
184,363 0.959 0.055 10.688 1066.539 10.688
92,182 0.931 0.088 5.087 564.569 5.087
46,090 0.894 0.135 2.815 263.953 2.815

Prediction performance. Further experiments have been carried out to evaluate
both computational and network performance in prediction tasks. Sensor device E1c was
configured to send 10 input messages on the data topic. Subscribed Intelligence nodes
compute predictions and return output response messages. Table 8 shows data exchange
for this step is minimal, as expected. Sending individual data samples through the MB
incurs in some network bandwidth overhead, though this can be mitigated by publishing
multiple samples together, if possible. The last experiment assessed prediction time and
latencies both at the Edge and on the Cloud. Outcomes are reported in Table 9:

• Inference time: The time elapsed in predicting the regression value for a sample locally,
as measured by the Intelligence module.



Sensors 2022, 22, 2166 16 of 19

• Communication latency: The time required for sending and receiving messages between
the different components of the architecture in the prediction phase. As Table 9 shows,
it is made of four components: (i) from Sensor to Message Broker (S to MB), (ii) from
Message Broker to Intelligence (MB to I), (iii) from Intelligence to Message Broker (I to
MB), (iv) and from Message Broker to Sensor (MB to S). (In the prototype the last two
components simply concern the prediction values, but in general scenarios they could
concern set points for appropriate actuators in a control feedback loop, computed on
the basis of the ML predictions);

• Turnaround time: The overall time between input sample upload and prediction,
evaluated on the Sensor node uploading the samples.

Table 8. Prediction: Network activity.

Node Device Label Download (kB) Upload (kB)

broker broker MB 42 78

Edge 1 intelligence E1a 26 26
sensor E1c 36 34

Edge 2 intelligence E2a 26 26

Table 9. Prediction: Time and latency.

Node Inference Time Communication Latency (ms) Turnaround Time
(ms) S to MB MB to I I to MB MB to S (ms)

Cloud 31.377 91.510 19.752 42.549 44.970 230.158
Edge 1 230.598 87.259 4.362 19.461 37.773 379.453
Edge 2 301.887 84.812 7.590 22.844 30.555 447.688

While prediction time is significantly lower on the Cloud, the Edge nodes have notably
lower communication latencies. Although the overall turnaround time is lower in the
Cloud case, the actual availability of a stable connection is far from certain in a real
industrial plant. In fact, whenever bandwidth availability decreases due to other computing
and/or control activities deriving from thousands of devices interacting with the Cloud—a
condition which is not replicated in our experimental setup— transferring training and
prediction to the Edge may improve the overall system performance by alleviating some of
the outbound network pressure.

Osmotic microservice allocation. In order to assess the capability of the proposed
architecture to dynamically adapt to variable workloads and node availability by migrating
microservices between the Edge and the Cloud, two alternative scenarios to the baseline
behavior described in Section 4.1 were tested:

1. A Sensor module looks for an available Storage service, but the Orchestrator is unable
to meet the request due to the unavailability of Storage microservices instances and
to the lack of a suitable device to host them. The Orchestrator therefore pushes
the Storage container to the Cloud, which—once ready—announces itself through a
storage_connect message. The Orchestrator is now able to notify the Sensor module,
which can then upload its data. At some point in time, a new Edge device with
the required capabilities to act as a Storage host connects to the network. For load
balancing purpose, the Orchestrator hangs the Storage microservice to the new device,
which can take over the role of Sensor data collector.

2. In case of a shortage of Edge Intelligence nodes (e.g., due to device failure), the
Orchestrator pushes the Intelligence microservice to the Cloud, as it can resume its
customary learning and inference tasks, albeit with higher network latency. Eventually,
a new device connects to the Edge, and the Orchestrator assesses it as being able to
host an instance of the Edge Intelligence service. The microservice is therefore linked
to the new device, thus offloading the Cloud and restoring normal operation.



Sensors 2022, 22, 2166 17 of 19

The main difference from the baseline essentially consists of the Orchestrator pushing
containers to Cloud and Edge nodes, while the rest of the system keeps working as usual.
Microservice deployment times and bandwidth usage are reported in Table 10: The load
time column reports on the time taken to address the container from the Orchestrator to
the target node and load it in the Balena engine. Conversely, startup time refers to the time
it takes to bootstrap the container after it has been loaded. Both load and startup times
are higher for Edge nodes, as expected due to being significantly less capable than the
Cloud, but still within one order of magnitude. Times for the Intelligence container are
much closer, which is likely due to the allotted Edge device being a RPi3+, versus a RPi for
the Storage container; this hints at the dominance of container loading time in the Balena
engine over network transfer time for slower devices. Bandwidth usage has been measured
on the Orchestrator, and it is generally lower for the Edge node; this is due to the size
of container images being different between the target devices, as reported in the image
size column.

Table 10. Microservice deployment performance.

Node Service Load
Time (s)

Startup
Time (s)

Broker Bandwidth (MB) Image
Size (MB)Download Upload

Cloud Storage 71.163 2.983 4.144 255.726 239.974
Intelligence 224.451 2.768 12.648 765.300 718.205

Edge Storage 314.577 23.424 1.713 149.924 137.782
Intelligence 244.422 3.108 3.424 718.291 694.802

Finally, Figure 6 shows dataset upload and download times when the Storage mi-
croservice is deployed to the Edge and Cloud nodes, representing Sensor data compression
and upload in the first scenario, and dataset download and decompression by Edge Intelli-
gence nodes in the second scenario, respectively. Processing time is mostly noticeable in
the upload phase, as data is compressed by an RPi device before uploading them to the
Redis data store, while it is negligible when an RPi3 device decompresses the downloaded
dataset. Transfer time is significantly higher for the Cloud, which is due to the network
connection being asymmetrical, with much higher downlink than uplink bandwidth. In
any case, transfer time is consistently higher when the Storage microservice is deployed
to the Cloud, as expected, though again in the same order of magnitude. This confirms
that the elastic—osmotic—allocation of the Storage microservice between the Edge and
the Cloud is a viable solution which can be carried out without significant impact on the
overall system performance.

465.251 473.953

546.693

1042.234

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

Edge Cloud

Processing (s) Transfer (s)

(a) Upload

3.418 0.617

47.981
56.186

0.000

10.000

20.000

30.000

40.000

50.000

60.000

Edge Cloud

Processing (s) Transfer (s)

(b) Download

Figure 6. Dataset transfer times.

5. Conclusions and Future Work

This paper presented a novel Cloud-Edge Intelligence distributed framework, mainly
targeted at IoT-based Cyber-Physical Systems. It adopts a microservice architecture and



Sensors 2022, 22, 2166 18 of 19

follows the Osmotic Computing paradigm to allow opportunistic resource exploitation
by means of dynamic flexible deployment of service modules to various devices at the
Edge of the network and/or in the Cloud. Clear encapsulation of logical components
with well-defined roles and responsibilities enhanced modularity, further enabling a direct
mapping with COTS technologies to increase feasibility and reduce development costs
and time to market. In the proposed approach, model training and prediction tasks can
be performed in Edge or Cloud nodes, but also through Cloud-Edge collaboration. Less
sophisticated models are trained and used at the Edge for early response, while Cloud
devices periodically train larger and more accurate models, feeding them back to the Edge.
Core claims were supported by experiments carried out on a public domain industrial
dataset with a full prototypical platform implementation integrating several open source
off-the-shelf tools.

Future work concerns:

• Exploiting knowledge representation and reasoning in the orchestrator to dynamically
discover the best deployment configuration via context-aware semantic matchmak-
ing [28] between ontology-based annotations of microservices and devices.

• Investigation of more advanced IoT-oriented AI algorithms, by enhancing machine
learning with semantic technologies [29] and computational argumentation.

• Further development of the analytics and visualization component, not described in
detail in this paper as it is currently at an early stage, even though relevant for the
usability of the overall solution.

• Integration of the platform prototype with real sensors and actuators in a manufactur-
ing setting, followed by new experiments,

• Additional case studies in challenging IoT-based CPS scenarios, such as (tele)-healthcare,
environmental monitoring and urban safety control.

Author Contributions: Conceptualization, M.R., F.S., S.I. and C.F.; methodology, G.L., F.G., S.I. and
F.S.; software, G.L., F.G., C.F., I.B. and D.L.; validation, M.R. and F.S.; formal analysis, G.L., S.I. and
F.G.; investigation, G.L., C.F., S.I., I.B. and D.L.; resources, M.R. and C.F.; data curation, I.B., C.F. and
D.L.; writing—original draft preparation, all authors; writing—review and editing, G.L., F.S. and
M.R.; visualization, G.L., C.F., D.L. and I.B.; supervision, M.R.; project administration, C.F.; funding
acquisition, M.R. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by Digital Future grant, co-funded by Exprivia S.p.A. and
European Regional Development Fund for Apulia Region 2014/2020 Operating Program, and by
Italian PON project NGS (New Satellites Generation Components).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Code and data derived from the research are under non-disclosure
agreement (NDA) with Exprivia S.p.A.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Serpanos, D. The Cyber-Physical Systems Revolution. Computer 2018, 51, 70–73. [CrossRef]
2. Brown, N.; Sandholm, T. Superhuman AI for multiplayer poker. Science 2019, 365, 885–890. [CrossRef] [PubMed]
3. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016.
4. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2017, 5, 450–465.

[CrossRef]
5. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: the Confluence of Edge Computing and

Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
6. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge

Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
7. Villari, M.; Fazio, M.; Dustdar, S.; Rana, O.; Ranjan, R. Osmotic Computing: A New Paradigm for Edge/Cloud Integration. IEEE

Cloud Comput. 2016, 3, 76–83. doi: [CrossRef]

http://doi.org/10.1109/MC.2018.1731058
http://dx.doi.org/10.1126/science.aay2400
http://www.ncbi.nlm.nih.gov/pubmed/31296650
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/MCC.2016.124


Sensors 2022, 22, 2166 19 of 19

8. Li, W.; You, X.; Jiang, Y.; Yang, J.; Hu, L. Opportunistic computing offloading in edge clouds. J. Parallel Distrib. Comput. 2019,
123, 69–76. [CrossRef]

9. Tovazzi, D.; Faticanti, F.; Siracusa, D.; Peroni, C.; Cretti, S.; Gazzini, T. GEM-Analytics: Cloud-to-Edge AI-Powered Energy
Management. In International Conference on the Economics of Grids, Clouds, Systems, and Services; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 57–66.

10. Morshed, A.; Jayaraman, P.P.; Sellis, T.; Georgakopoulos, D.; Villari, M.; Ranjan, R. Deep Osmosis: Holistic Distributed Deep
Learning in Osmotic Computing. IEEE Cloud Comput. 2017, 4, 22–32. [CrossRef]

11. Sharma, V.; You, I.; Kumar, R.; Kim, P. Computational Offloading for Efficient Trust Management in Pervasive Online Social
Networks Using Osmotic Computing. IEEE Access 2017, 5, 5084–5103. [CrossRef]

12. Pacheco, A.; Cano, P.; Flores, E.; Trujillo, E.; Marquez, P. A Smart Classroom based on Deep Learning and Osmotic IoT Computing.
In Proceedings of the 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogota, Colombia, 3–5
October 2018; pp. 1–5.

13. Longo, A.; De Matteis, A.; Zappatore, M. Urban pollution monitoring based on Mobile Crowd Sensing: an osmotic computing
approach. In Proceedings of the 2018 IEEE 4th International Conference on Collaboration and Internet Computing, Philadelphia,
PA, USA, 18–20 October 2018; pp. 380–387.

14. Grzelak, D.; Mey, J.; Aßmann, U. Design and Concept of an Osmotic Analytics Platform based on R Container. In Proceedings of
the International Conference on Foundations of Computer Science, Las Vegas, NV, USA, 30 July–2 August 2018; pp. 29–35.

15. Villari, M.; Fazio, M.; Dustdar, S.; Rana, O.; Jha, D.N.; Ranjan, R. Osmosis: The Osmotic Computing Platform for Microelements
in the Cloud, Edge, and Internet of Things. Computer 2019, 52, 14–26. [CrossRef]

16. Carnevale, L.; Celesti, A.; Galletta, A.; Dustdar, S.; Villari, M. Osmotic computing as a distributed multi-agent system: The Body
Area Network scenario. Internet Things 2019, 5, 130–139. [CrossRef]

17. Rausch, T.; Dustdar, S.; Ranjan, R. Osmotic Message-Oriented Middleware for the Internet of Things. IEEE Cloud Comput. 2018,
5, 17–25. [CrossRef]

18. Kaur, K.; Garg, S.; Kaddoum, G.; Ahmed, S.H.; Jayakody, D.N.K. En-OsCo: Energy-aware Osmotic Computing Framework using
Hyper-heuristics. In Proceedings of the ACM MobiHoc Workshop on Pervasive Systems in the IoT Era, Catania, Italy, 2 July 2019;
pp. 19–24.

19. Sharma, V.; Jayakody, D.N.K.; Qaraqe, M. Osmotic computing-based service migration and resource scheduling in Mobile
Augmented Reality Networks (MARN). Future Gener. Comput. Syst. 2020, 102, 723–737. [CrossRef]

20. Banks, A.; Briggs, E.; Borgendale, K.; Gupta, R. MQTT Version 5.0; Technical Report; OASIS: Burlington, MA, USA, 2019.
21. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); Technical Report; RFC 7252; IETF: Wilmington,

DE, USA, 2014.
22. Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [CrossRef]
23. Magalhães Oliveira, E. Quality Prediction in a Mining Process. Available online: https://www.kaggle.com/edumagalhaes/

quality-prediction-in-a-mining-process (accessed on 2 November 2021).
24. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings.
25. Deutsch, P.; Gailly, J.L. RFC1950: ZLIB Compressed Data Format Specification Version 3.3; Technical Report; Internet Engineering

Task Force: Fremont, CA, USA, 1996.
26. Bond, J. The Enterprise Cloud: Best Practices for Transforming Legacy IT; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
27. Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Dris, A.B.; Alzakari, N.; Abou Elwafa, A.; Kurdi, H. Impact of Dataset Size on

Classification Performance: An Empirical Evaluation in the Medical Domain. Appl. Sci. 2021, 11, 796. [CrossRef]
28. Scioscia, F.; Ruta, M.; Loseto, G.; Gramegna, F.; Ieva, S.; Pinto, A.; Di Sciascio, E. Mini-ME matchmaker and reasoner for the

Semantic Web of Things. In Innovations, Developments, and Applications of Semantic Web and Information Systems; IGI Global:
Hershey, PA, USA, 2018; pp. 262–294.

29. Ruta, M.; Scioscia, F.; Loseto, G.; Pinto, A.; Di Sciascio, E. Machine learning in the Internet of Things: A semantic-enhanced
approach. Semant. Web 2019, 10, 183–204. [CrossRef]

http://dx.doi.org/10.1016/j.jpdc.2018.09.006
http://dx.doi.org/10.1109/MCC.2018.1081070
http://dx.doi.org/10.1109/ACCESS.2017.2683159
http://dx.doi.org/10.1109/MC.2018.2888767
http://dx.doi.org/10.1016/j.iot.2019.01.001
http://dx.doi.org/10.1109/MCC.2018.022171663
http://dx.doi.org/10.1016/j.future.2019.09.008
http://dx.doi.org/10.1007/s10845-018-1433-8
https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process
https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process
http://dx.doi.org/10.3390/app11020796
http://dx.doi.org/10.3233/SW-180314

	Introduction
	Related Work
	Osmotic Cloud-Edge Architecture
	Microservices
	Technologies

	Case Study: Intelligent Manufacturing
	Prototype
	Experiments

	Conclusions and Future Work
	References

