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Abstract: In the era of the “Industry 4.0” revolution, self-adjusting and unmanned machining
systems have gained considerable interest in high-value manufacturing industries to cope with the
growing demand for high productivity, standardized part quality, and reduced cost. Tool condition
monitoring (TCM) systems pave the way for automated machining through monitoring the state
of the cutting tool, including the occurrences of wear, cracks, chipping, and breakage, with the
aim of improving the efficiency and economics of the machining process. This article reviews
the state-of-the-art TCM system components, namely, means of sensing, data acquisition, signal
conditioning and processing, and monitoring models, found in the recent open literature. Special
attention is given to analyzing the advantages and limitations of current practices in developing
wireless tool-embedded sensor nodes, which enable seamless implementation and Industrial Internet
of Things (IIOT) readiness of TCM systems. Additionally, a comprehensive review of the selection
of dimensionality reduction techniques is provided due to the lack of clear recommendations and
shortcomings of various techniques developed in the literature. Recent attempts for TCM systems’
generalization and enhancement are discussed, along with recommendations for possible future
research avenues to improve TCM systems accuracy, reliability, functionality, and integration.

Keywords: tool condition monitoring; machine learning; sensor fusion; milling process; signal
processing; feature extraction

1. Introduction

The benefits of advances in digital technologies, along with the development of the
Industrial Internet of Things (IIoT) have expanded at a rapid rate over the last two decades.
This is due to the development of smart sensing technologies and data storage capacities
that has led to the ‘Industry 4.0’ revolution, where advanced manufacturing techniques are
combined with IIoT systems to drive further intelligent action back in the physical world,
motivating unmanned manufacturing. This drives competitive industrial advantages
in terms of reducing cost, increasing productivity, improving quality, and preventing
damage to machined parts during processing. An intelligent tool condition monitoring
(TCM) system is a building block in this framework to achieve such automated machining
systems. It provides a digitalized feedback estimation of the tool condition based on
analytical or sensor-based models to safeguard the machined part, and to enable process
optimization and quality control in real-time. Therefore, tremendous efforts have been
exerted towards developing new methods and implementing innovative technologies to
improve the performance of TCM systems and to introduce solutions to the challenges
facing manufacturers.
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Tool condition monitoring systems can be applied offline, online, or in real-time. An
offline TCM system entails interrupting the machining process and examining the tool
health state using inspection equipment such as an optical microscope at unregulated
periods [1]. In online TCM systems, the machining process is not interrupted, but the moni-
tored parameters are measured and related to the tool health state at regulated intervals
without constraints on either the acquisition time intervals or the time needed to process
the captured data to take a corrective action [2]. Real-time TCM systems continuously
acquire process data at fully regulated time intervals without interrupting the machining
process, but with limited latency. This enables taking corrective action to avoid cutting tool
failure and workpiece damage, and can be employed in an adaptive control (AC) system
to execute dynamic tool compensation to improve the accuracy and economics of the
machining process [3,4]. However, it allows a short time span for acquiring and processing
the monitored signals and predicting the tool health state, which requires algorithms with
low computational cost [2]. A real-time intelligent TCM system commonly consists of four
stages, as illustrated in Figure 1, namely, signal acquisition, signal pre-processing, features
construction and selection, and tool health model. The system is trained offline at first
to optimize the selected sensors and the extracted indicative features. Later, the selected
sensors and features are used during the real-time system implementation to define the
level of tool failure. Corrective actions such as cutting feedrate optimization or tool change
can be executed based on the tool health state. Acquired data can be categorized, according
to their measurement techniques, into direct and indirect techniques. The utilization of
machine vision [5,6] and optical microscopy [7] to directly measure the amount of tool wear
are generally reliable. Despite this, they are neither efficient, cost-effective, nor feasible,
compared to the indirect methods [8] owing to the harsh machining environment and the
required process interruptions to identify the tool health state [8]. Furthermore, direct
techniques are unable to identify any unexpected cutting tool damage (chipping and/or
breakage) during the tool/workpiece engagement. Thus, indirect measurement techniques
have been developed for real-time monitoring to take immediate action when it is necessary.
In these techniques, auxiliary measured variables, such as cutting forces, torque, vibration,
acoustic emission, and power signals are correlated to the tool health state. Despite the
applicability and cost-effectiveness of the indirect measurement techniques, they are less
accurate and heavily dependent on process parameters, and their signals are noisy, and
affected by the machining environment. Hence, advanced signal processing techniques
are needed to overcome these challenges by extracting indicative features that accurately
represent the tool health state from the acquired signals. This increases the reliability and
robustness of the TCM, which would help in avoiding false alarms and poor performance
of the process control algorithms.

Many techniques have been presented to model the tool health states in TCM sys-
tems, which can be classified into two categories: physics-based, and data-driven models.
Physics-based models usually simplify the cutting processes using a semi-empirical law or
mechanistic model [9]. They can be extrapolated for usage in untested machining situations
and provide insight into the internal functioning of the machining process. Due to the com-
plex nonlinear nature of the cutting process, several factors impacting the cutting process
are neglected, e.g., the cutting temperature and the lubrication conditions, which limit the
prediction accuracy [2]. As a result, physics-based models developed in the literature, such
as the Taylor model [10], the generic tool wear model [11], and others [12,13], cannot be
used for accurate real-time TCM. Hence, data-driven models have received much attention
for tool wear modeling in which the monitored signals are correlated to the tool health state
through conventional and deep machine learning techniques, which are subsets of artificial
intelligence (AI) techniques. As part of the Industry 4.0 revolution, the rapid advancements
in computing systems have facilitated the day-by-day utilization of such models because
of the massive computation required as the number of input features in the model grows.
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High-performance machining involves overall process optimization through fully
utilizing the machine capabilities to minimize production costs, boost productivity, meet
pre-defined component quality characteristics, and maximize tool life. It encompasses
continuous optimization of the cutting speed, feedrate, and strategies, either offline or
online. Therefore, a real-time autonomous TCM system with high degree of generaliza-
tion and robustness is essential to accommodate this continuous change with minimum
calibration efforts and without process disturbance. In this paper, more than 200 recent
publications have been analyzed to furnish the knowledge of recent advancements in
TCM. Furthermore, research gaps and limitations of the recently developed approaches
are highlighted. Despite the numerous literature reviews on the development of TCM
systems [2,14–18], there is a lack of discussion and analysis on dimensionality reduction
techniques that represent a crucial stage in the identification of features that are highly
sensitive to the tool health state only and independent of change in process parameters.
Additionally, to the best of the authors’ knowledge, a review of the development of wireless
tool-embedded TCM systems has not been presented in the literature yet. Therefore, this
work aims to provide an in-depth analysis and discussion of various designs of wireless
TCM tool-embedded sensor nodes found in the literature.

The article is organized as follows: Section 2 discusses the challenges and benefits
of the most common indirect sensors used for TCM. In addition, it analyzes the recent
trials to design a universal wireless sensor node with a focus on tool-embedded sensors,
wireless transmission protocols, and power management techniques. The needed signal
pre-processing techniques and the subsequent signal processing algorithms to generate
informative features for the decision-making stage are evaluated in Sections 3 and 4,
respectively. Sections 5 and 6 presents the literature related to implementing cutting tool
wear monitoring and recent advances in detecting and preventing tool chipping/breakage,
respectively, followed by a conclusion for main research gaps and possible opportunities to
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develop an accurate, robust, and generalized TCM system that meets the requirements of
the industry.

2. Sensing and Data Acquisition

As indicated earlier, indirect methods are preferred, as real-time tool health indicators,
by establishing a correlation between the measured process parameters and the tool health
state. Commonly monitored indirect parameters in TCM systems include cutting forces [19],
vibrations [20], acoustic emissions AE [21], and spindle motor feedback signals [22]. In
addition, other parameters such as cutting-edge temperature [23] and the spindle rotational
speed can be monitored to detect the tool health state, but with lower feasibility in industrial
applications. The conventional approach is to mount desired sensors on the spindle or
workpiece. Recently, an approach was proposed to increase the reliability and universality
of TCM systems by mounting sensors on the tool holder to have a universal wireless sensors
node, which comes with its own challenges and benefits, as will be discussed in Section 2.2.

2.1. Conventional Means of Sensing
2.1.1. Cutting Force Signal

Due to its high sensitivity to tool conditions, the cutting force signal is the most reliable
and stable variable in machining operations, which makes it the most commonly utilized
signal to detect tool wear [24,25]. As the machining process progresses, the cutting tool
loses its sharpness and becomes dull, leading to a rise in the friction force between the
tool and workpiece and the cutting force needed to remove chips from the workpiece
material under the same cutting conditions [26]. The increase in cutting forces can also
be attributed to other factors, including the cutting conditions, the material of the cutting
tool, and the material of the workpiece. Therefore, a normalizing approach is necessary to
accentuate the tool wear effect on the acquired signals and mask out all other factors [27].
For difficult-to-cut material such as Ti6Al4V, the cutting force might not increase at a certain
limit due to the thermal softening mechanism that competes with the strain hardening
effect [28]. This can create a false alarm by the TCM system when it operates under varying
cutting conditions. Cutting forces can also be utilized in chatter detection if the used sensor
bandwidth can cover the chatter frequencies [29]. The table dynamometer is a very popular
sensor for force measurements in indirect TCM developments in academia due to its high
sensitivity and reliability as it is placed under the machined part, resulting in detecting
small load changes [16]. However, it is impractical to use in industrial facilities owing to its
high cost and the need to protect it from overloads [30]. Moreover, the table dynamometer
limits the size of the machined part and reduces the machining system rigidity [31,32].
To overcome most of these weaknesses, integrating the force sensors into the tool holder
has been suggested as a way to increase the practicality of such a technique for industrial
applications but at even higher cost [33].

2.1.2. Vibration Signal

The cutting tool vibrations are measured by piezoelectric or micro-electromechanical
system MEMS accelerometers to predict the tool edge wear and the surface roughness of
the machined surface, among others [34,35]. Sharp cutting tools create modest amount
of vibrations that rise as the tool condition deteriorates [36]. Tool vibrations result in
undesired displacements of the cutting tool, which have a strong relationship with the
roughness and waviness of the machined surface [37]. Vibrations generated during metal
cutting may be classified into cutting-dependent and cutting-independent vibrations [17].
Cutting-dependent vibrations demonstrate the characteristics of the cutting process, such as
interrupted cutting, while cutting-independent vibrations include forced vibrations caused
by machine components, such as unbalanced rotating parts. It is highly important to process
the signal to distinguish between both types of vibrations for an accurate representation of
tool wear [25]. A vibration sensor is easy to install and less expensive compared to other
sensors, such as AE sensors and dynamometers. However, the signals are notoriously
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difficult to filter, making them prone to delivering inaccurate information [36]. Moreover,
the transmission path of the signal from the vibration source to the location of the vibration
sensor, and the cutting fluid have direct impact on the vibration signal.

2.1.3. Acoustic Emission Signal

Acoustic emission AE sensors are used to capture the radiation of the acoustic waves
released from irreversible processes within a material, such as wear, chipping, and breakage
of the cutting tool, chip formation, and thermal reaction. Since the frequency bandwidth
of the AE waves (100 kHz–1 MHz) is higher than that of machine vibrations and ambient
noises (1 Hz–10 kHz), the AE signal is widely considered as one of the most effective
methods for detecting tool wear and breakage [38]. In addition, the AE signal can antici-
pate incoming events by monitoring acoustic waves generated during the unstable crack
propagation in the prefailure stage, offering the chance to take precautions for unexpected
and undesirable events [39,40]. In this way, the AE technique may be utilized as an early
warning system, particularly for preventing failures, which can be beneficial in practice
for lowering production cost [41]. Depending on the source of the signal, AE signals in
the cutting process are composed of both continuous and transient signals. Shearing in
the primary shear zone and wear on the tool flank face create continuous signals, whereas
transient or burst AE signals are generated by tool engagement and disengagement with
the workpiece, tool fracture, or chip breakage, among others [42]. In the open literature,
reported data on the effectiveness of the AE sensor in monitoring the tool condition are
contradictory when it comes to the two suggested locations for mounting the AE sensor;
either on the spindle or on the workpiece. However, it produces more reliable signals when
mounted on the spindle due to the closeness to the signal source at the cutting zone and the
short signal transmission path [43,44]. While AE sensors are relatively inexpensive and easy
to integrate on the machine, they must be calibrated properly as the signal transmission
path, the reflective surfaces between the cutting zone and the sensor, and the machine
condition, can influence the quality of the AE signal [17].

2.1.4. Motor Current Signal

The primary source of energy in cutting operations is the spindle motor current, which
is linked to changes in the cutting zone, including the tool health state. With the progression
in the tool edge wear, the cutting forces increase, which increases the drawn current [45].
The inertia of the motor rotor acts as a low-pass filter, which limits the bandwidth of
the detected signal and the detection of the high-frequency change in cutting forces [38].
Therefore, if the motor frequency is lower than the tool-pass frequency, the captured signal
may lose some information [46]. Nonetheless, modern computer numerical control (CNC)
machines are equipped with 400 Hz two-pole induction motors, allowing for frequency
ranges of up to 24,000 rpm [47,48]. Compared to other sensors, the use of current sensors in
the TCM systems reported in the literature is minimal [16]. However, it is the main signal
used by commercial TCM systems, where dynamic threshold approaches are commonly
used to define the tool condition [49]. This threshold varies according to the cutting
conditions and the workpiece material. Although motor current sensors are economical
and easy to install without interfering with the cutting zone [50], the signal is not sensitive
to the cutting force fluctuations at high spindle speeds and is influenced by the machine
condition and the viscous damping of the feed system [51,52].

2.1.5. Temperature Signal

Despite being able to monitor the tool wear level, temperature sensors utilization
in real-time TCM systems is rare owing to the high thermal inertia, the low response
of the embedded conventional thermocouples [23], and the difficulty of embedding the
temperature sensor in a rotating tool close to the cutting edge, e.g., in milling processes.
Utilizing a thermal imaging camera is another approach that can be used to measure
the concentrated heat at the cutting zone of Ti6Al4V [19]. However, such a technique
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is not appropriate in the harsh machining environment. To overcome the low response
of the conventional thermocouple, He et al. [53] utilized a temperature signal from a
thin-film thermocouple embedded into a cutter in turning operations to monitor the tool
wear. Under varying cutting conditions, the authors have reported high predictions levels,
which highlights the robustness of such signals to improve the wear predictions. In the
milling operations of hard-to-cut materials, monitoring the cutting zone temperature is
important due to the varying wear mechanisms that are triggered by the high cyclic thermal
loading [54].

2.1.6. Spindle Rotational Speed Signal

The repetitive shocks and friction between the cutting tool and the workpiece are the
primary source of the spindle speed fluctuations [55]. Very few studies relied on this signal
to detect chatter and to monitor tool wear and breakage [55–57], by using the spindle motor
encoder to monitor the instantaneous spindle speed but with a low resolution of less than
150 Hz. A higher resolution can be achieved by embedding a gyroscope sensor on the tool
holder [58]. Along with the cutting torque signal, an accurate measurement of the cutting
power can be made in real-time, which can provide instantaneous feedback about the tool
health state and the cutting process for AC systems compared to the motor current.

2.1.7. Multi-Signal Approach

A multi-sensor approach, in which the TCM system considers monitoring several pro-
cess and machine parameters, is preferable to increase the TCM accuracy and reliability [59].
This has been reflected in the progressive growth of the number of studies focusing on
equipping the TCM systems with multi sensors for milling operations [1,60–64]. Apart from
the externally mounted sensors, modern CNC machines allow real-time data acquisition
from their internal sensors and control system, such as spindle speed, feedrate, and spindle
motor power feedback that can be used in TCM systems [65]. Despite their high reliability,
their utilization in TCM systems is limited. This is due to the low sampling frequency
that is commonly < 250 Hz, which does not cover the machining frequency bandwidth in
high-performance machining applications [66]. The multi-sensor approach increases the
system robustness, spatial and temporal information resolution, and the ability to cover a
wider range of phenomenon frequencies [28,67]. The number of sensors utilized in TCM
systems must not be excessive to avoid the associated increase in the expenses of manufac-
ture and maintenance, the interference with the machining process, and the redundant data
that might degrade the detection accuracy [25,66]. Therefore, an in-depth investigation
to define and optimize the essential sensors and their features based on the monitored
process is required [68]. One of the few studies that investigated various combinations of
signals, including forces, vibrations, AE, sound, and current for tool wear monitoring was
carried out by Ghosh et al. [69]. Based on performance and economic feasibility, the study
suggested the current and sound-based TCM system for the general machining industry,
and the current and force-based TCM system for the high-value machining industry. The
work conducted by Duo et al. [66] on the predictive capacity of a group of time domain
features for various internal and external signals in drilling operations concluded that the
externally measured feed force and the internally measured spindle torque are the most
sensitive signals to monitor the tool health state. Based on the surveyed literature, previous
works lack such investigation, and sensors selection is always determined by scientists
based on experience, ease of integration, and availability, among others.

When designing a multi-signal TCM system, the acquired data are fused at either
the raw signal, feature, or model levels [70], as shown in Figure 2. Fusing the acquired
signals at the feature level is used in most TCM research, where different features from
multiple signals are selected and employed in the tool wear prediction model [25,64]. By
fusing the data at the model level, two or more tool wear classifiers are merged to generate
a more confident decision using a voting function [71]. Few studies have fused the raw
data acquired from multiple sensors, e.g., the study carried out by Kuljanic et al. for the
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face milling operations [72], in which the torque and cutting force signals are divided to
introduce a new variable called the torque-force distance indicator (TFD). The TFD showed
a strong correlation to the tool wear and was independent of the cutting parameters
compared to the normalized cutting forces. Investigating the fusion of acquired data at
different levels might explore new variables and features that are only highly sensitive to
the tool health state and independent of the cutting parameters.
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2.2. Universal Sensor Node Approach

Wireless TCM systems provide high implementation flexibility, accessibility, and
connectivity compared to wired sensor-based systems. Wireless sensor networks (WSN)
provide an efficient and effective solution for TCM systems and other condition monitoring
applications [68,73–75]. Along with the obvious benefits of cheap installation and operating
cost, WSN also offers low power consumption, and remarkable universality when used
with different machine setups [76,77]. WSN is an ad hoc local area network that consists of
one or several wireless sensor nodes. Generally, a wireless sensor node is composed of a
mean of sensing, data acquisition, data processing, wireless communication, and power
units, as shown in Figure 3 [75]. In machining processes, a sensor node can be mounted on
the tool holder, as shown in Figure 4, close to the source of the signal at the cutting zone
to provide a better quality of the detected signal than the conventional sensor mounting
approach on the machine spindle or worktable [78]. This requires the sensor node to be
able to operate in a harsh and confined space close to the signal source with minimum
intervention in the workspace for successful integration into TCM systems [79]. It should
also provide the required high-resolution data sampling for accurate and reliable tool
state health decisions. Additionally, such a system should have the potential to integrate
multiple sensors to increase the TCM system accuracy [79]. The universal sensor node
concept is still in the proof-of-concept stage and has been utilized in very few studies to
estimate either the tool wear or the surface roughness of the machined part [80,81]. The
following subsections discuss the design considerations and challenges in developing a
robust universal sensor node for TCM systems.
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2.2.1. Sensory Integration

Mounting the sensing unit at a far physical distance from the signal source weakens the
acquired data and introduces attenuation and noise to measurements by other components
of the machine, such as spindle bearings and collet interfaces [78,82]. For instance, vibration
signals measured at the tool holder and the machine spindle were compared to reveal the
deterioration in the signal quality caused by the damping effects experienced in the spindle
assembly [43,83,84]. Integrating accelerometers within the TCM sensor node is relatively
a straightforward task. Researchers usually pick a commercial piezoelectric senor [84]
or MEMS sensor [78] with appropriate bandwidth and mount it on the rotational axis
of the tool holder. In terms of cost, weight, and volume, MEMS sensors are superior to
piezoelectric sensors, but their signal-to-noise ratio and bandwidth are limited [85].

More reliable AE signals can be gained by mounting the AE sensor on the tool holder
close to the signal source, which avoids multiple acoustic wave reflections and shortens the
transmission path [86]. To the best of the authors’ knowledge, no study has successfully
embedded the AE sensor into a wireless sensor node in a rotating tool. One unavoidable
obstacle to the practical application of AE in rotating machine fault detection is the fre-
quency range of the AE signal, which is typically between 100 kHz and 1 MHz [86,87].
The microcontroller clock should be synchronized at least at 1 µs accuracy to achieve an
adequate sampling rate between 1 and 10 MHz, which requires powerful hardware with
high power consumption [88]. In addition, the available wireless communications protocols
cannot handle this massive stream of data in real time. For instance, acquiring an AE signal
at a sampling rate of 5 MHz using a 16-bit analog-to-digital converter (ADC) requires a
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communication protocol with practical data transmission rate of 80 Mbps, which is a cum-
bersome task using the available wireless communication protocols. Another limitation for
embedding the AE sensor in the TCM sensor node is the size of the commercially available
signal conditioners, which may be replaced by a miniature electronic circuit tailored for
TCM systems [89]. Available commercial AE wireless monitoring systems are limited to
off-line data transmission with a low-frequency range [90]. Additionally, the space and
weight required to accommodate such systems impede the integration of this sensor on a
rotating tool.

To overcome the limited practicality of commercial dynamometers, tool-embedded
thin-film force sensors have been proposed within the wireless tool-embedded sensor
node concept [91]. Numerous embedded sensors have been used to measure cutting
forces and torque, including strain gauges [84,92], piezoelectric polyvinylidene fluoride
(PVDF) [93–95], semi-conductive strain gauge [96,97], fiber Bragg grating [98], surface
acoustic wave [99], capacitive sensor [100], and piezoresistive microelectromechanical
systems (MEMS) [91,101]. Based on the reviewed literature, strain gauge and PVDF sensors
are the mainstream for detecting cutting forces. However, the PVDF sensor possesses
unique characteristics, such as a broad bandwidth with resonance over 10 MHz, high strain
sensitivity, high dynamic range [93,94,102]. However, PVDF sensors suffer from charge
leaks and are not proper for measuring static forces [103]. Mounting force sensors on the
tool holder provides accurate torque measurement [104,105]. For accurate calculation of the
cutting power, a gyroscope sensor can be added to the tool holder to monitor the changes
in the spindle speed [58]. The gyroscope should have a wide measurement range to be
applicable for high-speed milling operations. Several approaches have been proposed
for force sensor integration on rotating tools to accommodate differences in the available
measuring techniques. Thin force films have been bonded on the tool [93,94], under the
inserts [102], on a reduced diameter of the tool holder [106], or on an integrated flexible
body [91], as shown in Figure 5. Usually, modifications of the tool holder are made to
increase the measurement sensitivity [91]. The desired tool holder modifications should
have a simple structure and preserve the system stiffness and the tool compliance with
minimum interference with the working space [82,100]. Mounting the film sensors behind
the cutting inserts or on the tool directly can comply with most of these requirements.
However, the sensors can be deteriorated by the elevated temperature at the cutting zone
when milling difficult-to-cut material. In terms of the system stiffness, integrating a flexible
body into the system degrades the stiffness to a great extent.
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Several wireless sensor nodes have been integrated with multiple sensors, as provided
in Table 1, to increase the reliability of the TCM system in the high dynamic environment
of the milling process. Xie et al. embedded capacitive sensors and a one-axis MEMS
accelerometer into a modified tool holder to measure the triaxial cutting forces, torque, and
cutting vibration [79]. A safe operating range of the spindle speed up to 4600 rpm was
defined for a tool with two inserts based on the reduction in the system stiffness and the
achieved sampling rate. However, the system was tested in the milling of a steel workpiece
at a spindle speed up to 2200 rpm only. The wireless sensor node developed by Rizal et al.
can monitor up to six variables, including triaxial forces, torque, axial vibration, and tooltip
temperature [84,107]. The force sensing element consists of 36 strain gauges that were
mounted on a flexible element inside the tool holder. Based on the achieved sampling rate
of 5000 Hz of the used telemetry system and the tool holder stiffness, the wireless sensor
node can work safely and without distorting the data at spindle speeds up to 5000 rpm for
one insert cutter. The proposed wireless sensor node was relatively large and intrusive to
the operating field. The industrial wireless sensor nodes on the tool holder are very rare
and can measure certain quantities without decision-making systems regarding the tool
state. Recently, Pro-Micron has developed a wireless sensor node (SPIKE), which is capable
of measuring the torque and two bending moments at a sampling rate of 2500 Hz, as shown
in Table 1 [108]. This system has been used to collect cutting force data to monitor the tool
wear in [109], chatter [110], and surface roughness in [80]. Another model available in the
market has been developed by Schunk GmbH that can measure only the cutting vibrations
using a MEMS accelerometer [111]. This sensor node was employed in a TCM system to
monitor the cutting tool edge chipping events in the milling process [112]. In terms of the
system stiffness and the quantities measured, the developed designs are still limited, and
further improvements are necessary.

Table 1. Comparison of several wireless TCM tool-embedded sensor nodes.

Author
Forces Vibrations Temperature Wireless Protocol

Axis 1 Design Sensors Axis (Data Rate)

Zhou et al. [20] - - - x, y, z - Wi-Fi
(40,000 S/channel)

Luo et al. [102] Fx, Fy, Fz Under inserts PVDF - - Wi-Fi
(20,000 S/channel)

Xie et al. [79] Fx, Fy, Fz, Mz
Modified tool

holder Capacitive x - Wi-Fi
(5000 S/channel)

SPIKE [80,108] Mx, My, Mz Unknown Unknown - - Wi-Fi
(2500 S/channel)

Wu et al. [106] Fz, Mz
Modified tool

holder Strain gauge - - Wi-Fi
(1000 S/channel)

Nguyen et al. [95] Mz
On the tool

holder PVDF - - Bluetooth
(13,000 S/channel)

iTENDO [81,111] - - - x - Bluetooth
(9500 S/channel)

Qin et al. [91] Fz, Mz
Flexible
element MEMS x - Zigbee

(250 Kbps)

Rizal et al. [84] Fx, Fy, Fz, Mz
Flexible
element Strain gauge z

√ Telemetry
(5000 S/channel)

1 Fx, Fy, and Fz are cutting forces and Mx, My, and Mz are moments in x, y, and z-directions, respectively.

2.2.2. Data Transmission and Power Management

The common wireless technologies, utilized to transmit data to the host computer in
TCM systems, include Wi-Fi [78,79,106,113–116], Bluetooth [82,95,117,118], and
ZigBee [91,93,119,120]. Table 2 provides the specifications of the available wireless commu-
nication protocols used in the TCM systems [121,122]. It is worth noting that the typical
data speed is much lower than the theoretical one because of, for instance, the packet
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overhead and delay between packets [123,124]. Based on the presented specifications, Wi-Fi
networks have the potential to be strong competitors of other wireless communication
technologies for remote and real-time TCM, considering their relatively low latency and
high transmission rate but with high power consumption. As shown in Table 1, a maximum
sampling rate of 40,000 Hz/channel has been achieved using Wi-Fi networks in [20], which
is much lower than their typical transmission rates due to the associated latency and the
limited capabilities of the used microcontroller [78,106]. It is recommended to set the
sampling rate 5–10 times the maximum frequency of the detected signal to avoid the signal
distortion [88,91], which limits the operating range of the spindle speed reported in the
literature. Other wireless protocols used for TCM data transmission (Table 1), but with a
total sampling rate lower than Wi-Fi protocols due to their limited theoretical transmission
capacity, are presented in Table 2. Other limiting factors that control the sampling rate
are the speed of the microprocessor and the wired transmission protocols between the
analog–digital converter (ADC) and the microcontroller. Therefore, the maximum trans-
mission capacity of wireless networks is commonly not gained in most of the previous
work [79,80,106,118]. The high sampling rate achieved in [20] (Table 1) can be attributed to
the utilization of the Serial Peripheral Interface SPI transmission protocol, which achieves
high speeds compared to the Universal Asynchronous Receiver/Transmitter UART and
the Inter-Integrated Circuit I2C protocols used in other designs.

Table 2. Specifications of wireless communication protocols for TCM sensor nodes.

Technology
Data Speed
Theoretical

(Mb/s)

Data Speed
Typical
(Mb/s)

Latency
(ms)

Range
Indoor

(m)

Trans.
Power
(mW)

Sleep
Power
(mW)

Author

Wi-Fi n/g 75 54 1.5 50 350 300 [20,78,114]
Bluetooth 1–3 0.7–2.1 6 30 - - [81]

Bluetooth LE 0.125–2 0.27–1.37 2.5 10 60 8 [125]
Zigbee 0.25 0.15 140 30 72 4 [119,120]

Rechargeable batteries are widely used as a power source for wireless sensor nodes.
The wireless module and the microcontroller are the dominant power consumers com-
pared to the sensing unit, which usually has the least power consumption at levels of
milliwatt [126]. The power consumption of the microcontroller heavily depends on the
instructions processed per second. The most critical characteristics of recharged batteries
for a TCM sensor node are energy density, fast-charge time in hours, charge/discharge
cycle, cell voltage/voltage stability, size, self-discharge rate, and cost. Table 3 compares
some of the characteristics of the most common types of batteries that include lead-acid,
nickel–cadmium, nickel–metal hydride, and lithium-ion [127]. Each battery type has sev-
eral advantages and drawbacks when used to power the wireless TCM sensor node. Since
no battery technology currently exists that satisfies all these requirements, a trade-off must
be made. Lithium-based batteries are the most sophisticated technology and are commonly
utilized, as they have high energy density and moderate self-discharge rates compared
to other types [78,79,106,119]. However, the voltage stability curve is steep during the
discharge compared to other batteries. TCM tool-embedded sensor nodes reported in the
literature use DC-DC conversion circuits to power all the node components at different volt-
age levels using a single battery [78,79,106,119]. It should be noted that batteries represent
dead weights that need to be balanced due to the high revolution of the cutting tool, and
any error might deteriorate the quality of the machining process and the acquired signals.
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Table 3. Characteristics of rechargeable batteries.

Technology Lead Acid Nickel–Cadmium Nickel–Metal Hydride Lithium-Ion

Energy density (Wh/kg) 35–50 30–60 60–80 80–180
Self-discharge/month 2–8% 5–15% 15–25% 2–10%

Fast-charge time (hour) 8–16 1 2–4 1–4
Charge/discharge cycles 250–1000 1000–50,000 300–600 3000

To reduce the needed battery sizes and prolong its cycle life, energy harvesting tech-
niques have been utilized to continuously charge the utilized battery based on mechanical
vibration energy [128–130], electromagnetic energy [120], or utilizing an inductive power
transmission system [84,107]. However, the application of such systems is restricted. In
the turning and milling operations, the approach offered by Ostasevicius et al. [128,129]
to harvest the mechanical vibration energy using a piezoelectric energy harvester was
restricted by the narrowness of the frequency bandwidth. Another solution proposed by
Chung et al. [120] depends on attaching four magnets on the rotating spindle on the milling
machine to induce a current by the coil around the tool holder. Such a system requires at
least a speed of 1650 rpm to generate enough energy and it interferes with the working
zone. A very relevant approach with the same degree of intrusiveness has been proposed
by Rizel et al. [84,107], who used a telemetry condition monitoring system to transfer the
energy and data using two inductive near-field coils. Such sources of electromagnetic
energy are not favorable for the signal quality, and they require special wiring between
sensors and microcontroller [126]. Thus, practical design requirements for designing robust
TCM sensor nodes for industrial application necessitate optimized solutions for the power
supply and the utilized wireless transmission protocols.

3. Signal Pre-Processing

Signal pre-processing is typically needed and executed by a sensor-specific conditioner
before or after signal digitalization due to sensor characteristics and the interference caused
by mechanical, electrical, and ambient disturbances. The common signal conditioning
approaches adopted in the signal pre-processing stage are:

• Amplification: At an early step, the signal is typically amplified due to the low-level
output signal of the used sensor, which increases the signal-to-noise ratio and reduces
the unwanted interference. The maximum voltage range of the signal should meet the
maximum input range condition of the analog–digital converter to achieve the best
level of accuracy [17].

• Sampling: After amplifying the signal, the acquired signal should be sampled at a
sampling rate more than two times the highest frequency of interest seen in the signal
according to the Nyquist–Shannon sampling theorem [88]. In practice, the sampling
rate should be 5–10 times the highest frequency of interest for better representation of
process variables [20].

• Filtering: Digital or analog filtering is used to exclude the undesired signal frequencies
while preserving the correlation between sensor data and process variables, such
as studying the cutting force signals at the tool-pass frequency [84]. Filtering is
also commonly used to avoid aliasing from high frequency signals, which can be
accomplished by attenuating signals above the Nyquist frequency with an anti-aliasing
filter. Anti-aliasing filters are appropriate for vibration signals since accelerometer
readings are typically evaluated in the frequency domain [88]. In general, the obtained
signal can be filtered using high-pass, low-pass, or band-pass to exclude undesired
signal frequency components.

• Segmentation: As an optional technique for pre-processing sensor data, segments of
the signal are extracted when the tool is engaged with the workpiece material as only
these segments include information about the tool condition [8,131]. The most basic
and widely used technique of signal segmentation is the detection of a signal value
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surpassing a predefined threshold in a user-defined time window [8,132,133]. An ex-
perimental definition of the threshold value is required because it is determined as part
of the maximum signal value. Another segmentation approach can be implemented
per tool rotation to produce repeating patterns of the extracted segments [22], where
an overlapping time moving frame was applied to avoid disruption of data continuity.

4. Signal Processing Techniques

In machining processes, the acquired signals are nonlinear and nonstationary, as well
as noisy [134]. Moreover, data are collected continuously at an ever-increasing size with
extremely high dimensions, which requires massive storage and computational resources.
Retrieving useful and understandable information for the decision-making stage becomes
a great challenge [135]. Therefore, representative features are constructed during the
signal processing stage as a compact and informative representation for the monitored
variables. Incorporating all of the constructed features increases the classification problem
dimensionality, with the possibility of including potentially irrelevant, noisy, or redundant
features [136]. This can be tackled by implementing dimensionality reduction techniques
to select the most informative features to be employed in the decision-making algorithm.
In the next subsection, the feature construction approach in the three domains of the time,
frequency, and time–frequency domains is discussed, followed by an analysis of the-state
of-the-art of dimensionality reduction techniques in Section 4.2.

4.1. Features Construction

One of the most crucial stages in TCM systems is feature construction, which deter-
mines the success of any classification model [137]. Physical and statistical features that
express the input data characteristics are usually constructed in the signal processing stage
and are optimized during the dimensionality reduction stage [138]. Most of the monitored
variable characteristics can be expressed through extracting representative features in the
time, frequency, and time–frequency domains.

Time domain features are the most common and simplest features in terms of extrac-
tion and required computations. The most common time-domain statistical features are
the average, maximum/minimum, root-mean-square, and peak-to-peak amplitude of the
signal. In addition, the probabilistic distribution of acquired data are usually represented
through extracting the variance, crest factor, skewness, and kurtosis [139,140]. Moreover,
coefficients of time series modeling, such as auto regressive (AR), moving average (MA),
and auto-regressive moving average (ARMA), were utilized for TCM [17,25]. Time domain
features are commonly used with features from other domains as they are vulnerable to
noise and do not provide information about signal frequencies [25,141].

Frequency domain features are constructed by transforming time-series signals into
the frequency domain to evaluate the dominant frequency component. The fast Fourier
transform (FFT) or its enhanced variants, the discrete Fourier transform (DFT), and discrete
cosine transform (DCT) have been commonly used and reported in the literature [142–144].
Extracted features include the peak frequency, peak amplitude, spectral crest factor, as
well as the mean, variance, skewness, and kurtosis of the band power. The FFT averages
the signal frequency contents over the signal time with fixed resolution over the whole
frequency spectrum, which makes it inappropriate for the nonstationary signals acquired
in milling operations.

Time–frequency domain features can evaluate the signal localization in both time and
frequency domains. This domain has attracted considerable attention for TCM systems
compared to the aforementioned domains [2,18,25]. Time–frequency representation of
the acquired data is constructed using the continuous wavelet transform (CWT), discrete
wavelet transform (DWT), wavelet packet transform (WPT), short-time Fourier transform
(STFT), or empirical mode decomposition (EMD) algorithms [29,34,145,146]. Extracted
features include the average energy of wavelet coefficients and their wavelet domain
statistics (RMS, mean, and variance, etc.) [147]. The CWT is computationally expensive and
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contains plenty of redundant information compared to the DWT [25]. On the other hand, the
frequency domain sampling is fixed in the DWT or the WPT, which lead to low resolution,
frequency aliasing and insufficient shift-invariance that cause wavelet distortion [2,148].
These shortcomings can be alleviated or avoided by using the tunable Q-factor wavelet
transform (TQWT) technique, which is an overcomplete DWT variant [149]. A sparse
wavelet energy feature, constructed using the TQWT, showed high-resolution concentrated
energy that improved the failure detection of a faulty rolling bearing compared to DWT-
and WPT-based features [150]. Based on the surveyed literature, the TQWT has not been
applied yet in TCM systems.

One of the most effective methods for time–frequency domain analysis is the empirical
mode decomposition EMD that was developed explicitly for nonlinear nonstationary sig-
nals using an adaptive data-driven approach [151–153]. EMD can adaptively decompose
the input signal into a collection of intrinsic mode functions (IMFs) via a signal sifting
process, resulting in meaningful instantaneous frequency estimations [154]. However, the
noisy and intermittent nature of the acquired data in machining operations can deteriorate
the analysis quality by producing mode mixing (a single IMF contains different scales) and
mode splitting (the existence of one scale in one or two IMFs) [155]. Newly developed EMD
variants have been developed to address mode mixing, such as the ensemble empirical
mode decomposition (EEMD) [156], the complementary EEMD [157], the noise assisted
multivariate EMD (NA-MEMD) [158], the complete EEMD [159], the partly EEMD [160],
and the fast multivariate EMD (FMEMD) [161]. Following the same treatment of the input
signal, iterative filtering techniques have been developed to iteratively decompose the
input signal using moving average computation, which can guarantee its stability and con-
vergence [162]. This guarantees the elimination of the mode mixing, but alleviating mode
splitting requires experimental tuning of the stopping criterion of the sifting process [163].
Iterative filtering techniques include the fast iterative filtering [164] and the adaptive local
iterative filtering methods [165]. Although the capabilities of these techniques have enabled
their use in a wide variety of applications [163], their use in TCM has not emerged yet [166].

4.2. Dimensionality Reduction

The values of constructed features change as a result of variation in cutting conditions,
cutting tools and workpiece materials, the type and units of various signals and features,
as well as the deterioration of the cutting tool health, among others [167]. They are
also sensitive to different sensor sensitivities and performance. Therefore, the ability
to construct generalized tool condition descriptive features has been limited, resulting
in TCM systems that lack certainty and generalization [168]. It is crucial to isolate all
causes of candidate features variation while retaining variations due to the tool health
state, and minimizing the time required for the learning process [22,167]. To address
these issues, feature normalization techniques have been suggested to provide features
highly sensitive to the tool health state using mean, standard deviation, or extreme values
of candidate features or using empirical formulas for cutting conditions [167,169–171].
Another approach has been adopted by eliminating features that are highly dependent on
cutting conditions and less sensitive to the tool health state using ANOVA and f-test [22].

High-dimensional data are another issue in TCM systems that results from construct-
ing features in multiple domains, which increases the computational cost in the training
stage and degrades the classifier’s accuracy if insignificant noisy features are included [2].
A model trained on a large number of features becomes excessively dependent on the
data, resulting in overfitting and poor performance on the new dataset [172]. There-
fore, dimensional reduction methods are adopted in TCM systems through mapping the
high-dimension data to a lower dimension space by selecting and extracting the most
discriminative and dominating features out of the initial global feature set. During the
offline model training, a limited number of features that are highly indicative of the tool
state should be carefully identified to develop an accurate and computationally efficient
TCM system during the online implementation stage [38]. In multi-sensor based TCM
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approaches, numerous advantages can be gained by employing dimensionality reduction
techniques on the full feature set: (1) significant reduction in the computational time and the
needed data storage space; (2) more efficient and accurate AI classifiers can be developed
by eliminating noisy and misleading features; and (3) the ability to evaluate and visualize
patterns in data and outliers, leading to a better understanding of the classification prob-
lem [38,135,137]. Dimensionality reduction can be implemented through two approaches,
namely feature selection and/or feature transformation.

4.2.1. Feature Selection

Subset feature selection techniques are used to select the most discriminative features
of the tool health state to minimize the computational effort and to increase the accuracy of
the classification model. No relevant information can be lost during the feature selection
process. Typically, conventional feature selection techniques rank the extracted features
based on their sensitivity to tool condition and then choose the top-ranked features. The
feature selection techniques can be categorized as follows [173]:

• Filter techniques are open-loop computational methods that only consider the rela-
tionship between features and class label without involving the subsequent tool wear
classification model, as shown in Figure 6. They evaluate the usefulness of features
subsets based on their intrinsic properties using evaluation measures, such as depen-
dency, consistency, or information, to eliminate low-ranking features [171,174,175].
The ranking measure is determined using statistical measures, such as Pearson’s corre-
lation coefficient, the coefficient of determination, minimum redundancy maximum
relevance (mRMR), or analysis of variance ANOVA [171,174,176–178]. A detailed dis-
cussion on various performance measures is available in [179]. Filter techniques have
relatively low computational cost and high scalability to large feature datasets. Their
major drawback is the non-involvement of the decision-making algorithm, which
makes its accuracy data-dependent.

• Wrapper techniques are closed-loop techniques, in which the tool wear model is used
for selecting the most discriminative features by minimizing the misclassification
error of the model, as shown in Figure 7 [180]. Several models have been developed
by training the classification algorithm using different subsets of features in order to
define the optimum subset with minimum classification error. In terms of classification
accuracy, wrapper techniques outperform filter techniques. Additionally, they consider
the dependencies among selected features [137]. However, the primary downsides
of this technique are the expensive computational effort to achieve convergence, and
being more prone to overfitting, compared to filter techniques. Feature subsets are
usually generated using heuristic or random search strategies [181,182]. Forward and
backward sequential selection methods are used by sequentially adding or removing
one feature at a time, respectively, until a local maximum accuracy is achieved [183].
Because both methods ignore the inter-dependency of features, sequential floating
forward selection (SFFS) and sequential floating backward selection (SFBS) were
developed [184]. The genetic algorithm (GA) [185] and the ant colony algorithm [186]
are among the most representative methods of random search strategies that have been
used to optimize the constructed features and to select features with a high correlation
with the tool health state [187].

• Hybrid techniques are the result of merging a wrapper technique and a filter technique
to inherit the complementary strengths of both models, as shown in Figure 8 [137]. For
model-independent techniques (wrapper and embedded techniques), the size of the
candidate feature dataset should be kept modest; otherwise, a significant amount of
training data will be required [188]. Therefore, the filter technique using the mRMR is
applied to remove irrelevant features and to alleviate redundancy among features. It
has been successfully applied to reduce the feature dataset size by 1000-fold in grinding
operations [177]. This preselection stage is followed by applying the wrapper tech-
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nique through assessing the model performance using the coefficient of determination
and root-mean-square error (RMSE).

• Embedded techniques are built-in feature selection techniques, in which the feature
selection and the model training processes are merged [181]. During the model
training, a scaling factor is assigned to each candidate feature, and it is optimized
to reflect its relative relevance [189]. Embedded techniques have the merits of the
filter and wrapper techniques. They are computationally efficient while maintaining
a classification accuracy comparable to wrapper techniques owing to omitting the
repeated execution and evaluation of each feature subset by the learning algorithm.
However, they are classifier dependent, and their performance might degrade if the
initially constructed dataset has several irrelevant features [137]. A gradient boosting
decision tree (GBDT) is an example of embedded techniques in TCM systems that were
used to optimize the size of the initially constructed feature dataset from 198 features
to 40 discriminative features in tool wear monitoring application [190]. Abubakr et al.
used a random forest (RF) classifier, in which out-of-bag (OOB) samples are utilized to
reduce the constructed feature pool from 152 to 15 features while maintaining a high
level of classification accuracy [139].
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4.2.2. Feature Transformation

The feature transformation methods implement algebraic feature transformation to
the input feature set, according to some optimization criteria, to develop a low-dimensional
representation to reduce the required computational resources [191]. The output of the
process is a dataset of artificial features that retains the characteristics of the input feature
set without losing information. In contrast to feature selection algorithms, the size of the
constructed features can be reduced with minimal sacrifice of the information stored in
the initial feature dataset [192]. However, the original characteristics in the transformed
features are inexplicable, and information about the contribution of each original feature
is frequently lost [193]. A wide variety of feature transformation algorithms has been
developed, but the selection of a certain algorithm is highly dependent on the characteristics,
quality, and quantity of the data [135].

Algorithms for feature transformation can be classified as linear or nonlinear algo-
rithms [135]. Linear algorithms transform a high-dimensional feature space into a lower
dimensional feature space with a linear combination of the original dimensions. Principal
component analysis (PCA) [61,194,195], singular value decomposition (SVD) [196], lin-
ear discriminant analysis (LDA) [197], Fisher discriminant analysis (FDA) [198], Fisher
discriminant ratio (FDR) [199], factor analysis (FA) [200], and independent component
analysis (ICA) [201] are examples of linear feature transformation algorithms. On the other
hand, nonlinear algorithms, such as kernel PCA (KPCA) [202,203], probabilistic kernel
FA (PKFA) [200], kernel Fisher discriminant analysis FDA (KFDA) [204], and isometric
mapping (ISOMAP) [205], nonlinearly transform a high-dimensional feature space into
a lower space. Feature transformation algorithms can be categorized according to the
need for pre-existing class labels into supervised algorithms, such as LDA and ICA, and
unsupervised algorithms, such as PCA, KPCA, SVD, and ISOMAP.

PCA is a popular linear unsupervised feature transformation algorithm that orthogo-
nally projects features into a synthetic feature domain, based on their variances in which
features with low variance are disregarded [61,179,206]. Its objective is to extract critical
information from the data and represent it as a collection of new orthogonal variables (prin-
cipal components). Caggiono et al. have conducted two-stage dimensionality reduction
approach through applying Spearman’s rank order correlation (filter technique), followed
by PCA to represent the tool wear level using only two features with high accuracy [206].
The final extracted features are linear combinations of the original feature constructed from
multiple signals, which preserves the sensor fusion approach with minimum computa-
tional cost. PCA helps in the removal of noise from datasets and makes it easier to explore
and visualize a low-dimension dataset. However, it was primarily employed to extract
linear features, resulting in the loss of valuable nonlinear features. KPCA was proposed to
investigate the nonlinear relationship between variables using the kernel function. KPCA
is an unsupervised feature transformation algorithm that can handle non-Gaussian, non-
linear, and nonstationary signals [202]. Lee et al. [68] demonstrated that the accuracy of
KPCA is superior to the accuracy of PCA, decision tree (DT), K-nearest neighbors (KNN),
Naive-Bayes classifier (NBC), and quadratic discriminant analysis (QDA). The linear factor
analysis FA and its nonlinear variant PKFA are Gaussian latent variable algorithms. In an
investigation conducted by Wang et al., PKFA was found to outperform PCA, KPCA, and
FA, when used in conjunction with a support vector regression (SVR) model in TCM [200].
Isometric mapping ISOMAP is a nonlinear unsupervised algorithm that retains the distance
between points and considers the neighboring data distribution, unlike the PCA algorithm.
ISOMAP has been integrated with expectation-maximization PCA (EM-PCA) to reduce the
dimensionality of the constructed features on two stages to create a single health indicator
per signal that was used as an input for a SVR model to predict cutting tool wear level [205].
LDA can be used as either a supervised linear feature transformation algorithm or a linear
classifier [22,197]. In feature transformation applications, LDA determines a new feature
space by projecting the input features with the objective of maximizing the separability of
classes [197]. For non-Gaussian and small sample size data, LDA is ineffective. Therefore,
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subclass discriminant analysis (SDA) [148] and mixture subclass discriminant analysis
(MSDA) [207] have been proposed to overcome these issues [208]. Because most of the
transformation algorithms create new features without interpretable physical meaning,
FDA can be used to keep the physical meaning of the constructed features, which assists
in promoting the data interpretability based on the process physics during the system
performance tuning [198].

5. Decision Making for Tool Wear Monitoring

Classifier-based machine learning algorithms have been extensively applied to support
the decision-making stage, particularly to monitor the progressive tool wear [15]. Promis-
ing results for the prediction of the tool health state have been reported to optimize the
service life of the cutting tool by preventing early replacements and limiting scraps by pre-
venting part damage [6,62]. Popular machine learning classifiers for tool wear monitoring
include artificial neural network (ANN) [209], SVM [210], Bayesian networks [211], hidden
Markov model (HMM) [212], DT [21], KNN [20], Gaussian process regression (GPR) [213],
and fuzzy logic [36]. These algorithms are commonly fed by hand-crafted features and
come with their own set of advantages and limitations, as has been extensively discussed
in [15,16,25]. Although ANN has been widely used in TCM systems due to its adaptability
and robustness, it has several drawbacks, including slow convergence, local minima, and
the need to tune multiple biases and weights [214].

In addition to the conventional machine learning techniques, researchers have em-
ployed adaptive neuro-fuzzy inference system (ANFIS) [215], relevance vector machine
(RVM) [216], and random forest (RF) [217] in TCM systems to monitor tool wear. In these
studies, fewer than ten indicative features were usually extracted by the system developer
and fed as an input to the classifier. The feature selection procedure is not only time-
consuming and requires the expertise of feature engineering, but the sensitivity of selected
features may also be lowered if the conditions, to which the model is tuned, are changed.
Additionally, these models are almost shallow with limited generalization ability, which
can be attributed to the limited capacity to simulate complicated nonlinear behavior of
machining operations [218]. To increase the robustness and the prediction accuracy of the
TCM system, the fusion of data-driven models has been proposed [71]. The final decision
is determined using a voting function over the different classifier outputs. Kannatey-Asibu
et al. improved the classification rate by 12% using a penalty-weighted voting factor for
four classifiers, which came at the cost of the computational effort [71]. Another hybrid
approach has been followed by combining a physical model with a data-driven model to
improve the predictions in [9,219]. Despite the remarkable decrease in the prediction error
by up to 50%, the computational cost increased, and the hybrid approach was tested at
very limited cutting conditions.

Recently developed advanced deep learning methods, such as convolutional neu-
ral network (CNN) [220], recurrent neural network (RNN) [221], deep belief network
(DBN) [222], and sparse autoencoder (SAE) [223], have been employed in TCM systems.
Deep learning methods can implicitly extract representative features themselves; however,
a surplus of training data is needed [92,224]. Without involving feature engineering and
the needed expertise, an online tool wear model based on CNN [222] has achieved a classi-
fication accuracy of around 78%, which can be improved further by employing indicative
features from the acquired data. The DBN has been compared to SVR and ANN and
showed superior prediction stability when used to monitor tool wear in milling operations
using force, vibrations, and AE data [225]. Four gradual wear stages of the cutting tool in
the milling operation in two different manufacturing environments were identified using
an unsupervised model based on SAE in [226]. However, a threshold value is needed at
the end of the model to scale the mean error sequence of the SAE to reflect the cutting
wear trend. To decrease the learning effort, Hassan et al. [48] trained a unified LSTM-RNN
architecture using a biased dataset taken from a single cutting condition combination,
resulting in a 75% decrease in learning effort, when compared to the previous work, and
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processing time within 1 ms. The key advantage of LSTM is the ability to capture long-term
dependencies in the monitored signal, in contrast to the previously mentioned methods.
The model was only able to categorize the state of the tool health into either fresh or worn
tools. Recently, a hybrid model based on wavelet scattering and CNN was used to select
informative features for an LDA wear classification model for a wide range of cutting
conditions and different materials [227]. The tool health condition was classified into three
stages, namely, fresh, usable, and worn status, with less learning effort and higher predic-
tion accuracy. Although the industrial requirements were met by both works in [48,227] in
terms of learning effort, accuracy, and generalization, these TCM systems lack providing a
warning stage for the tool condition to allow a tool change before the end of the tool life.
Furthermore, the real challenge is to maximize the tool remaining life so that it can finish at
least an ongoing machined feature before replacing the tool. The automation of such an
industrial approach requires synchronization between the TCM system, machine controller,
and predefined G-code sections, which is not a trivial task.

To reduce the learning effort, deep transfer learning approach has been proposed
recently in TCM applications, where a classification model that was developed for a specific
application is reused as a starting point to develop a new model for another applica-
tion [225,228–230]. The transferability of a pre-trained deep network can be achieved by
either weight update, feature transfer learning, or weight transfer [225]. Image classifi-
cation deep networks have been utilized for TCM by fine-tuning them using tool failure
data [228,230]. TCM models developed for a certain tool can also be utilized through
transfer learning to monitor unlearned tools with different geometric and material features
while minimizing the development efforts and lead time. For turning operations, Sun et al.
showed that the transfer learning capability can increase the prediction accuracy of tool
wear level, compared to developing a model from scratch, when the same training effort is
utilized [225].

AI model interpretation increases trust in the rendered decisions as they can be
logically assessed. Several conventional classification models, such as linear or tree-based
models, are easy to interpret and, hence, can be physically linked to the cutting process.
However, this comes at the expense of their biased performance, which reduces the model
accuracy. Deep machine learning algorithms overcome this performance limitation but
are difficult to interpret and, hence, are not the recommended approach in industrial
applications, where a false rendered decision could have a high cost impact on the industrial
facility. A desirable solution would use an interpretable model with low-variant key
features that are directly linked to tool wear and insensitive to the cutting conditions.

Low computational and decision-rendering times are essential for successful real-time
implementation of TCM systems. Hassan et al. benchmarked the computational time
needed by different machine learning algorithms, including SVM, LDA, ANN, and KNN
using the same set of features to define the tool condition [231]. The KNN algorithm
has utilized the maximum computational effort to render a decision, with an average
computational time of 115 µs. This shows the practicality of applying AI-based decision-
making algorithms in real-time TCM applications. However, the time needed for signal
acquisition and conditioning and feature extraction should also be considered.

Despite the utilization of the most advanced conventional and deep learning algo-
rithms, no comprehensive, reliable, and friendly solution to monitor tool wear in real-time
has been found yet in the open literature to satisfy the industrial environment requirements.
They are commonly trained and validated on a single machine tool, with a single cutting
tool-workpiece combination, and under a limited set of cutting conditions [22,232], as in-
vestigated in [34,35,146,233]. This led to the absence of generalized discriminative features
that are capable of describing the tool condition under a variety of processes and cutting
conditions [4]. In milling operations, investigating the correlation between the tool health
deterioration and cutting parameters, such as the chip segmentation characteristics, the
rubbing force, the tooth-pass frequency, and the direction of the resultant cutting force, may
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help in discovering novel variables or features. Such investigations may have the potential
of increasing the practicality of TCM systems to meet the industrial requirements.

6. Integrated Tool Breakage/Chipping Monitoring and Decision Making

High stresses and excessive heat at the tool cutting edge are the common causes for
sudden tool failures in the form of chipping or/and breakage, particularly when machining
a difficult-to-cut material [62,234]. Early detection of the tool chipping/breakage would
protect the machined part, which satisfies the increased demands for cost-effective and
high-productivity machining operations [65]. It would also ensure better product quality by
safeguarding the machine tool components and workpiece. Compared to wear monitoring
studies, few investigations have been conducted to monitor tool chipping and/or breakage
in milling operations. Using a tool holder sensor node equipped with a single-axis MEMS
accelerometer [111], the tool chipping was addressed by monitoring the change in the
cutting conditions just after the chipping occurred [112]. Different sizes of tool chipping
were artificially created on the tool inserts and detected using a fast algorithm based on
extra trees classifiers (ETC). By mounting an accelerometer at the fore bearing of the spindle,
Mou et al. [234] detected the gradual tool microchipping when milling a Ti6Al4V workpiece.
A moving average root-mean-square (MARMS) and a peak power spectral density (PPSD)
estimate based on the Yule–Walker method were utilized as indicators. In addition, to
avoid the false alarms caused by the continuous change in the cutting conditions, the
signal segments of interest were extracted by establishing a communication between the
proposed approach and the numerical control (NC) blocks. During the end-milling of
Inconel, Kang et al. [235] monitored the time between two consecutive vibration signal
peaks (peak period) to detect the radical change in the tool geometry due to chipping. A
threshold value based on the experimental results was set to define the chipping events
after masking out the tool runout and its consequences on the peak periods of the unworn
tool. The cutting forces were also used to detect the tool chipping after being estimated
from tool bending measurements using an eddy current sensor mounted on the machine
spindle to avoid the intrusiveness of the table dynamometer to the cutting zone [236]. The
estimated cutting forces were fed into a mechanical model to estimate the change in the
tool eccentricity caused by the tool chipping. All the aforementioned research can detect
tool chipping/breakage only after it has taken place. They cannot predict and prevent
the tool failure, which jeopardizes the economics of the machining operations. Duo et al.
collected several external and machine internal signals to predict the tool breakage due to
excessive tool wear in drilling operations [65]. They concluded that cutting force signals
acquired by external sensors or internal signals expressing cutting forces are accurate for
tool breakage prevention.

Very few studies have been concerned with providing an online prediction and pre-
vention of sudden tool chipping or breakage through monitoring the unstable crack prop-
agation in the pre-failure stage, which has been presented by Hassan et al. [41,237]. The
proposed failure prediction system in [41] is based on signal conditioning the bursts in
the RMS values of the AE signal due to tool cracks caused by the excessive mechanical
stresses on the tool tip in the aluminum intermittent operations. Compared to vibration
signals, AE is well recognized for its ability to detect the deformation or fracture of the
materials under stress by monitoring the transient elastic wave that emits from generating
new surfaces during unstable crack propagation [238,239]. To handle the nonstationary and
nonlinear RMS signal of the AE, a Teager–Kaiser energy operator-Hilbert–Huang transform
(TKEO-HHT) processing approach was developed. This approach correctly predicted tool
chipping within a window processing time of 2 ms, which allowed sufficient time to stop
the machine before tool failure [41]. The approach was only demonstrated during cutting
high thermal conductivity work materials, such as aluminum alloys, where the thermal
effect on the tool failure behavior and acquired signals is insignificant. The quality of
the detected signal might be affected by the signal transmission path between the cutting
zone and the AE sensor when a different machine is used. Therefore, employing a sensor
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node on the tool holder with an integrated AE sensor may be a good candidate solution
to increase the versatility of the proposed approach. Additionally, a learning function for
correlating the extracted features in the prefailure phase with the chip size is needed to
automate the threshold definition process.

7. Conclusions and Future Research Avenues

Numerous TCM systems have been developed to detect tool wear, chipping, and
breakage in laboratories around the world. Various data acquisition, processing, and
decision-making AI techniques have been proposed in an attempt to develop an industry-
oriented TCM system. Despite the fact that TCM research has made significant progress,
components of the TCM system have several shortcomings that require further investi-
gation. The following are the conclusions and future recommendations for an industry
oriented TCM system:

• Data acquisition: Until recently, previous TCM research has adopted a conventional
approach, in which the sensors are mounted on the machine spindle or the workpiece.
In this approach, vibration and acoustic emission AE sensors were preferred in indus-
trial TCM applications, since monitoring cutting forces using a table dynamometer is
impractical due to the high intrusiveness and investment cost. Although the cutting
tool temperature is correlated to tool wear in the milling operations of difficult-to-cut
materials, such as Ti6Al4V alloy, it is not widely monitored and used as an indicator
of tool wear. The quality of the vibration and AE signals are impacted by the long
signal transmission path and multiple reflective surfaces, particularly when they are
mounted on the machine spindle. This problem can be alleviated by using a uni-
versal wireless tool-embedded sensor node in the TCM system. The application of
this approach is still limited. Recently, some researchers were able to integrate force,
vibration, and temperature sensors into the tool holder to increase the universality
of the TCM system. To date, AE has not been integrated yet on a rotating tool for
milling operations, due to the complex signal conditioning electronics needed to fit
in a confined space on the tool holder. For the conventional multi-sensor approach,
optimizing the sensors’ selection and location need to be further investigated, based
on the availability and ease of integration of the sensors, as well as the TCM system
performance and economics. In the reported commercial and academic designs of
TCM tool-embedded sensor nodes, no optimization has been attempted for the selec-
tion of the sensors type, proximity, and orientation. Additionally, none of the reported
designs have been tailored for machining difficult-to-cut materials, where high cutting
forces and concentrated heat can be encountered, causing sensor drift. The sampling
rate and the reduced structural stiffness are still the main obstacles for developing
a reliable universal wireless sensor node. Furthermore, a comprehensive solution
for the power management of the senor node has not been realized yet to reduce the
interruptions and/or the intrusiveness to the machining process.

• Feature construction and dimensionality reduction: The TCM research to date has
focused on using conventional features constructed from the time, frequency, and
time–frequency domains, rather than discovering novel features that correlate to the
tool health state, while being independent of the cutting parameters. The compatibility
of such features with the most up-to-date tool wear modeling algorithms should be
investigated. The time–frequency domain has attracted attention of many researchers
in TCM applications, particularly the EMD technique and its variants due to its ability
to handle nonlinear nonstationary signals. This technique is, however, susceptible
to mode mixing and mode splitting. The fast iterative filtering technique can tackle
these issues but its application is still limited in TCM. The generality, adaptability, and
computational cost of AI algorithms can be improved by monitoring new variables or
discovering new features. Based on the reviewed literature, there has been no detailed
investigation of the tool wear impact on the chip segmentation and its consequences
on the acquired signals, rubbing force, tooth-pass frequency, and the direction of the
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resultant cutting force. Such investigation may help to explore a robust feature or
variable that decreases the learning effort and increases the generality of the developed
model. Due to the great impact of dimensionality reduction on the performance and
accuracy of machine learning algorithms, a wide variety of dimensionality reduction
strategies have been proposed in recent decades to address the problem of high-
dimensional data in TCM applications. The two main adopted techniques are feature
selection and feature transformation. However, there is currently no universal strategy
for dimensionality reduction that can be applied to all scenarios. Future TCM research
should consider developing techniques that are tailored for the nature of acquired
sensory data in machining operations to improve the accuracy and robustness of the
TCM system.

• Decision making for tool health state monitoring: A remarkable interest has been
given to tool wear monitoring with the anticipated increase in utilizing more advanced
artificial intelligence AI techniques. Conventional algorithms such as ANNs became
more popular for tool wear modeling. Choosing the appropriate algorithm is impacted
by the information content and quality of the processed signal. This necessitates
extensive research into the efficacy of various signal features and signal processing
techniques before implementing the monitoring AI algorithms needed to reduce the
learning effort and improve the TCM system generalization. The complex nonlinear
and nonstationary nature of machining processes has led to utilizing advanced deep
learning algorithms. To overcome their main limitation, few studies have recently been
conducted to propose a practical deep learning algorithms with low training efforts
to increase the possibility of adopting them for industrial TCM systems. The vast
majority of the previous research has focused on exploiting process-feedback signals
to identify changes in cutting parameters following tool chipping and/or breakage
in machining operations. However, it is crucial to predict and prevent sudden tool
failures by chipping and/or breakage before it happens. Only one research work
has been found that can monitor the unstable crack propagation stage in stationary
tools before the occurrence of chipping and/or breakage in intermittent machining
operations using an AE sensor by pre-setting a threshold based on experimental results.
A fully automated and comprehensive solution for milling operations still needs to be
developed. There is also a need for establishing a correlation between the AE bursts
and the chipped material, as well as optimizing the location of mounting the AE in
the milling machine to reduce the signal transmission path and multiple acoustic
wave reflections.

Other issues that require additional developments for the acceptance and implemen-
tation of TCM systems by industry include: (a) handling the quantity of data required to
effectively train the available data-driven models, (b) any feature selection/transformation
and threshold value pre-setting should be handled entirely by the TCM system with mini-
mum intervention from the operator, and (c) optimizing the tool remaining life so that it
can complete at least one continuous machined feature before being replaced. This can be
achieved by integrating a TCM system with an adaptive control (AC) system, in which
the signal behaviors are learnt to manipulate the operating conditions. Such integration is
effective and robust but more complex and needs further research.
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187. Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015

38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 25–29 May 2015; pp. 1200–1205.

188. Shi, D.; Gindy, N.N. Tool wear predictive model based on least squares support vector machines. Mech. Syst. Signal Processing
2007, 21, 1799–1814. [CrossRef]

189. Subrahmanya, N.; Shin, Y.C. Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding. J. Manuf.
Sci. Eng. 2008, 130, 031014. [CrossRef]

190. Li, G.; Wang, Y.; He, J.; Hao, Q.; Yang, H.; Wei, J. Tool wear state recognition based on gradient boosting decision tree and hybrid
classification RBM. Int. J. Adv. Manuf. Technol. 2020, 110, 511–522. [CrossRef]

191. Gracia, A.; González, S.; Robles, V.; Menasalvas, E. A methodology to compare Dimensionality Reduction algorithms in terms of
loss of quality. Inf. Sci. 2014, 270, 1–27. [CrossRef]

192. Ayesha, S.; Hanif, M.K.; Talib, R. Overview and comparative study of dimensionality reduction techniques for high dimensional
data. Inf. Fusion 2020, 59, 44–58. [CrossRef]

193. Janecek, A.; Gansterer, W.; Demel, M.; Ecker, G. On the Relationship Between Feature Selection and Classification Accuracy. In
Proceedings of the Workshop on New Challenges for Feature Selection in Data Mining and Knowledge Discovery at ECML/PKDD
2008, Antwerp, Belgium, 15 September 2008; pp. 90–105.

194. Yang, Y.; Hao, B.; Hao, X.; Li, L.; Chen, N.; Xu, T.; Aqib, K.M.; He, N. A Novel Tool (Single-Flute) Condition Monitoring Method
for End Milling Process Based on Intelligent Processing of Milling Force Data by Machine Learning Algorithms. Int. J. Precis. Eng.
Manuf. 2020, 21, 2159–2171. [CrossRef]

195. Wang, G.; Zhang, Y.; Liu, C.; Xie, Q.; Xu, Y. A new tool wear monitoring method based on multi-scale PCA. J. Intell. Manuf. 2019,
30, 113–122. [CrossRef]

196. Wu, X.; Li, J.; Jin, Y.; Zheng, S. Modeling and analysis of tool wear prediction based on SVD and BiLSTM. Int. J. Adv. Manuf.
Technol. 2020, 106, 4391–4399. [CrossRef]

197. Jin, X.; Zhao, M.; Chow, T.W.S.; Pecht, M. Motor Bearing Fault Diagnosis Using Trace Ratio Linear Discriminant Analysis. IEEE
Trans. Ind. Electron. 2014, 61, 2441–2451. [CrossRef]

198. Zhu, K.P.; Hong, G.S.; Wong, Y.S. A Comparative Study of Feature Selection For Hidden Markov Model-Based Micro-Milling
Tool Wear Monitoring. Mach. Sci. Technol. 2008, 12, 348–369. [CrossRef]

199. Xie, Z.; Li, J.; Lu, Y. Feature selection and a method to improve the performance of tool condition monitoring. Int. J. Adv. Manuf.
Technol. 2019, 100, 3197–3206. [CrossRef]

200. Wang, J.; Xie, J.; Zhao, R.; Mao, K.; Zhang, L. A New Probabilistic Kernel Factor Analysis for Multisensory Data Fusion:
Application to Tool Condition Monitoring. IEEE Trans. Instrum. Meas. 2016, 65, 2527–2537. [CrossRef]

201. Shi, X.; Wang, R.; Chen, Q.; Shao, H. Cutting sound signal processing for tool breakage detection in face milling based on
empirical mode decomposition and independent component analysis. J. Vib. Control. 2015, 21, 3348–3358. [CrossRef]

202. Kong, D.; Chen, Y.; Li, N.; Tan, S. Tool wear monitoring based on kernel principal component analysis and v-support vector
regression. Int. J. Adv. Manuf. Technol. 2017, 89, 175–190. [CrossRef]

http://doi.org/10.1007/s00170-021-06780-6
http://doi.org/10.3233/IDA-1997-1302
http://doi.org/10.1023/A:1008896516869
http://doi.org/10.1177/0954405419840556
http://doi.org/10.1007/s42452-019-1028-9
http://doi.org/10.1016/S0004-3702(97)00043-X
http://doi.org/10.1142/S0218001419500174
http://doi.org/10.1016/0167-8655(94)90127-9
http://doi.org/10.1007/s00170-019-03906-9
http://doi.org/10.1016/j.engappai.2009.09.004
http://doi.org/10.1016/j.ymssp.2006.07.016
http://doi.org/10.1115/1.2927439
http://doi.org/10.1007/s00170-020-05890-x
http://doi.org/10.1016/j.ins.2014.02.068
http://doi.org/10.1016/j.inffus.2020.01.005
http://doi.org/10.1007/s12541-020-00388-8
http://doi.org/10.1007/s10845-016-1235-9
http://doi.org/10.1007/s00170-019-04916-3
http://doi.org/10.1109/TIE.2013.2273471
http://doi.org/10.1080/10910340802293769
http://doi.org/10.1007/s00170-018-2926-5
http://doi.org/10.1109/TIM.2016.2584238
http://doi.org/10.1177/1077546314522826
http://doi.org/10.1007/s00170-016-9070-x


Sensors 2022, 22, 2206 30 of 31

203. Lee, W.J.; Mendis, G.P.; Triebe, M.J.; Sutherland, J.W. Monitoring of a machining process using kernel principal component
analysis and kernel density estimation. J. Intell. Manuf. 2020, 31, 1175–1189. [CrossRef]

204. Nor, N.M.; Hussain, M.A.; Hassan, C.R.C. Process Monitoring and Fault Detection in Non-Linear Chemical Process Based
On Multi-Scale Kernel Fisher Discriminant Analysis. In 12th International Symposium on Process Systems Engineering and
25th European Symposium on Computer Aided Process Engineering; Computer Aided Chemical Engineering Series; Elsevier:
Amsterdam, The Netherlands, 2015; pp. 1823–1828.

205. Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Health assessment and life prediction of cutting tools based on support
vector regression. J. Intell. Manuf. 2015, 26, 213–223. [CrossRef]

206. Caggiano, A.; Angelone, R.; Napolitano, F.; Nele, L.; Teti, R. Dimensionality Reduction of Sensorial Features by Principal
Component Analysis for ANN Machine Learning in Tool Condition Monitoring of CFRP Drilling. Procedia CIRP 2018, 78, 307–312.
[CrossRef]

207. Zhu, M.; Martinez, A.M. Subclass discriminant analysis. IEEE Trans Pattern Anal Mach Intell 2006, 28, 1274–1286. [CrossRef]
[PubMed]

208. Gkalelis, N.; Mezaris, V.; Kompatsiaris, I. Mixture Subclass Discriminant Analysis. IEEE Signal Processing Lett. 2011, 18, 319–322.
[CrossRef]

209. Chang, W.-Y.; Wu, S.-J.; Hsu, J.-W. Investigated iterative convergences of neural network for prediction turning tool wear. Int. J.
Adv. Manuf. Technol. 2020, 106, 2939–2948. [CrossRef]

210. Zhou, C.a.; Guo, K.; Yang, B.; Wang, H.; Sun, J.; Lu, L. Singularity Analysis of Cutting Force and Vibration for Tool Condition
Monitoring in Milling. IEEE Access 2019, 7, 134113–134124. [CrossRef]

211. Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N. CNC machine tool’s wear diagnostic and prognostic by using dynamic Bayesian
networks. Mech. Syst. Signal Processing 2012, 28, 167–182. [CrossRef]

212. Yu, J.; Liang, S.; Tang, D.; Liu, H. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool
life prediction. Int. J. Adv. Manuf. Technol. 2016, 91, 201–211. [CrossRef]

213. Kong, D.; Chen, Y.; Li, N. Gaussian process regression for tool wear prediction. Mech. Syst. Signal Processing 2018, 104, 556–574.
[CrossRef]

214. Serin, G.; Sener, B.; Ozbayoglu, A.M.; Unver, H.O. Review of tool condition monitoring in machining and opportunities for deep
learning. Int. J. Adv. Manuf. Technol. 2020, 109, 953–974. [CrossRef]

215. Lee, J.; Choi, H.J.; Nam, J.; Jo, S.B.; Kim, M.; Lee, S.W. Development and analysis of an online tool condition monitoring and
diagnosis system for a milling process and its real-time implementation. J. Mech. Sci. Technol. 2017, 31, 5695–5703. [CrossRef]

216. Yang, Y.; Guo, Y.; Huang, Z.; Chen, N.; Li, L.; Jiang, Y.; He, N. Research on the milling tool wear and life prediction by establishing
an integrated predictive model. Measurement 2019, 145, 178–189. [CrossRef]

217. Wu, D.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S. A Comparative Study on Machine Learning Algorithms for Smart
Manufacturing: Tool Wear Prediction Using Random Forests. J. Manuf. Sci. Eng. 2017, 139, 071018. [CrossRef]

218. Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards
Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

219. Wang, J.; Wang, P.; Gao, R.X. Enhanced particle filter for tool wear prediction. J. Manuf. Syst. 2015, 36, 35–45. [CrossRef]
220. Ma, J.; Luo, D.; Liao, X.; Zhang, Z.; Huang, Y.; Lu, J. Tool wear mechanism and prediction in milling TC18 titanium alloy using

deep learning. Measurement 2021, 173, 108554. [CrossRef]
221. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine Health Monitoring Using Local Feature-Based Gated Recurrent

Unit Networks. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [CrossRef]
222. Chen, Y.; Jin, Y.; Jiri, G. Predicting tool wear with multi-sensor data using deep belief networks. Int. J. Adv. Manuf. Technol. 2018,

99, 1917–1926. [CrossRef]
223. Shi, C.; Panoutsos, G.; Luo, B.; Liu, H.; Li, B.; Lin, X. Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition

Monitoring in Ultraprecision Manufacturing. IEEE Trans. Ind. Electron. 2019, 66, 3794–3803. [CrossRef]
224. Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent

diagnosis of rotating machinery with massive data. Mech. Syst. Signal Processing 2016, 72–73, 303–315. [CrossRef]
225. Sun, C.; Ma, M.; Zhao, Z.; Tian, S.; Yan, R.; Chen, X. Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful

Life Prediction of Tool in Manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 2416–2425. [CrossRef]
226. Dou, J.; Jiao, S.; Xu, C.; Luo, F.; Tang, L.; Xu, X. Unsupervised online prediction of tool wear values using force model coefficients

in milling. Int. J. Adv. Manuf. Technol. 2020, 109, 1153–1166. [CrossRef]
227. Hassan, M.; Sadek, A.; Attia, M.H. Novel sensor-based tool wear monitoring approach for seamless implementation in high

speed milling applications. CIRP Ann. 2021, 70, 87–90. [CrossRef]
228. Liao, Y.; Ragai, I.; Huang, Z.; Kerner, S. Manufacturing process monitoring using time-frequency representation and transfer

learning of deep neural networks. J. Manuf. Processes 2021, 68, 231–248. [CrossRef]
229. Liu, Y.; Yu, Y.; Guo, L.; Gao, H.; Tan, Y. Automatically Designing Network-based Deep Transfer Learning Architectures based on

Genetic Algorithm for In-situ Tool Condition Monitoring. IEEE Trans. Ind. Electron. 2021, 1. [CrossRef]
230. Mamledesai, H.; Soriano, M.A.; Ahmad, R. A Qualitative Tool Condition Monitoring Framework Using Convolution Neural

Network and Transfer Learning. Appl. Sci. 2020, 10, 7298. [CrossRef]

http://doi.org/10.1007/s10845-019-01504-w
http://doi.org/10.1007/s10845-013-0774-6
http://doi.org/10.1016/j.procir.2018.09.072
http://doi.org/10.1109/TPAMI.2006.172
http://www.ncbi.nlm.nih.gov/pubmed/16886863
http://doi.org/10.1109/LSP.2011.2127474
http://doi.org/10.1007/s00170-019-04821-9
http://doi.org/10.1109/ACCESS.2019.2941287
http://doi.org/10.1016/j.ymssp.2011.10.018
http://doi.org/10.1007/s00170-016-9711-0
http://doi.org/10.1016/j.ymssp.2017.11.021
http://doi.org/10.1007/s00170-020-05449-w
http://doi.org/10.1007/s12206-017-1110-4
http://doi.org/10.1016/j.measurement.2019.05.009
http://doi.org/10.1115/1.4036350
http://doi.org/10.1109/TIE.2016.2519325
http://doi.org/10.1016/j.jmsy.2015.03.005
http://doi.org/10.1016/j.measurement.2020.108554
http://doi.org/10.1109/TIE.2017.2733438
http://doi.org/10.1007/s00170-018-2571-z
http://doi.org/10.1109/TIE.2018.2856193
http://doi.org/10.1016/j.ymssp.2015.10.025
http://doi.org/10.1109/TII.2018.2881543
http://doi.org/10.1007/s00170-020-05684-1
http://doi.org/10.1016/j.cirp.2021.03.024
http://doi.org/10.1016/j.jmapro.2021.05.046
http://doi.org/10.1109/TIE.2021.3113004
http://doi.org/10.3390/app10207298


Sensors 2022, 22, 2206 31 of 31

231. Hassan, M.; Damir, A.; Attia, H.; Thomson, V. Benchmarking of Pattern Recognition Techniques for Online Tool Wear Detection.
Procedia CIRP 2018, 72, 1451–1456. [CrossRef]

232. Snr, D.E.D. Correlation of cutting force features with tool wear in a metal turning operation. Proc. Inst. Mech. Eng. Part B J. Eng.
Manuf. 2001, 215, 435–440. [CrossRef]

233. Cheng, Y.; Zhu, H.; Hu, K.; Wu, J.; Shao, X.; Wang, Y. Multisensory Data-Driven Health Degradation Monitoring of Machining
Tools by Generalized Multiclass Support Vector Machine. IEEE Access 2019, 7, 47102–47113. [CrossRef]

234. Mou, W.; Jiang, Z.; Zhu, S. A study of tool tipping monitoring for titanium milling based on cutting vibration. Int. J. Adv. Manuf.
Technol. 2019, 104, 3457–3471. [CrossRef]

235. Kang, G.-S.; Kim, S.-G.; Yang, G.-D.; Park, K.-H.; Lee, D.Y. Tool Chipping Detection Using Peak Period of Spindle Vibration
During End-Milling of Inconel 718. Int. J. Precis. Eng. Manuf. 2019, 20, 1851–1859. [CrossRef]

236. Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J.Y. Angular approach combined to mechanical model for tool breakage detection by
eddy current sensors. Mech. Syst. Signal Processing 2014, 44, 211–220. [CrossRef]

237. Hassan, M.; Sadek, A.; Damir, A.; Attia, M.H.; Thomson, V. Tool Pre-Failure Monitoring in Intermittent Cutting Operations. In Pro-
ceedings of the ASME International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016.
[CrossRef]

238. Krampikowska, A.; Pala, R.; Dzioba, I.; Swit, G. The Use of the Acoustic Emission Method to Identify Crack Growth in 40CrMo
Steel. Materials 2019, 12, 2140. [CrossRef]

239. Tandon, N.; Nakra, B.C. Comparison of vibration and acoustic measurement techniques for the condition monitoring of rolling
element bearings. Tribol. Int. 1992, 25, 205–212. [CrossRef]

http://doi.org/10.1016/j.procir.2018.03.201
http://doi.org/10.1243/0954405011515370
http://doi.org/10.1109/ACCESS.2019.2908852
http://doi.org/10.1007/s00170-019-04059-5
http://doi.org/10.1007/s12541-019-00241-7
http://doi.org/10.1016/j.ymssp.2013.02.004
http://doi.org/10.1115/imece2016-65748
http://doi.org/10.3390/ma12132140
http://doi.org/10.1016/0301-679X(92)90050-W

	Introduction 
	Sensing and Data Acquisition 
	Conventional Means of Sensing 
	Cutting Force Signal 
	Vibration Signal 
	Acoustic Emission Signal 
	Motor Current Signal 
	Temperature Signal 
	Spindle Rotational Speed Signal 
	Multi-Signal Approach 

	Universal Sensor Node Approach 
	Sensory Integration 
	Data Transmission and Power Management 


	Signal Pre-Processing 
	Signal Processing Techniques 
	Features Construction 
	Dimensionality Reduction 
	Feature Selection 
	Feature Transformation 


	Decision Making for Tool Wear Monitoring 
	Integrated Tool Breakage/Chipping Monitoring and Decision Making 
	Conclusions and Future Research Avenues 
	References

