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Abstract: With the constantly growing popularity of video-based services and applications, no-
reference video quality assessment (NR-VQA) has become a very hot research topic. Over the years,
many different approaches have been introduced in the literature to evaluate the perceptual quality
of digital videos. Due to the advent of large benchmark video quality assessment databases, deep
learning has attracted a significant amount of attention in this field in recent years. This paper
presents a novel, innovative deep learning-based approach for NR-VQA that relies on a set of in
parallel pre-trained convolutional neural networks (CNN) to characterize versatitely the potential
image and video distortions. Specifically, temporally pooled and saliency weighted video-level deep
features are extracted with the help of a set of pre-trained CNNs and mapped onto perceptual quality
scores independently from each other. Finally, the quality scores coming from the different regressors
are fused together to obtain the perceptual quality of a given video sequence. Extensive experiments
demonstrate that the proposed method sets a new state-of-the-art on two large benchmark video
quality assessment databases with authentic distortions. Moreover, the presented results underline
that the decision fusion of multiple deep architectures can significantly benefit NR-VQA.

Keywords: no-reference video quality assessment; convolutional neural network; decision fusion

1. Introduction

Measuring the quality of digital videos has been a hot and important research topic
in the literature. Namely, digital videos undergo a series of processes, i.e., compression
or transmission, before they are displayed [1]. Moreover, each process affects the video
in a certain way, and in most cases it will introduce some type of artifact or noise. These
artifacts, which can be blur, geometric distortions, or blockiness artifacts from compression
standards, degrade the perceptual quality of the digital video. In the literature, video
quality assessment (VQA) is divided into two broad classes: subjective and objective.
Specifically, subjective VQA deals with collecting quality ratings from a group of human
beings using a set of videos. The experiments can be carried out either in a laboratory
environment [2] or a crowd-sourcing process [3] via online. The quality ratings, which
were obtained from human observers, are averaged into one number—the mean opinion
score (MOS)—to characterize the perceptual quality of each considered video sequence.
In addition, subjective VQA deals with many aspects of video quality measurement, such
as the selection of test video sequences, grading scale, time interval of video presentation
to human subjects, viewing conditions, and selection of human participants [4,5]. As a
result, subjective VQA provides benchmark databases [5–7] which contain video sequences
with their corresponding MOS values. These databases are extensively applied as training
or testing data by different objective VQA methods which aim to construct mathematical
models for accurately estimating the perceptual quality of video sequences.

Objective VQA can be classified with respect to different factors. The most common
way of classification in the literature [8–11] is based on the availability of the pristine,
reference videos, whose visual quality is considered perfect for the objective VQA algorithm.
Specifically, objective VQA is categorized into three groups: full-reference (FR), reduced-
reference (RR), and no-reference (NR) ones. For FR-VQA algorithms, the entire reference

Sensors 2022, 22, 2209. https://doi.org/10.3390/s22062209 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3265-5047
https://doi.org/10.3390/s22062209
https://doi.org/10.3390/s22062209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s22062209
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062209?type=check_update&version=1


Sensors 2022, 22, 2209 2 of 17

video is available, while NR-VQA algorithms have no access to the reference videos. On the
other hand, some representative features of the reference video are available for an RR-VQA
algorithm. In the literature, the construction of an NR-VQA algorithm is considered the
most challenging [12,13] due to the complete lack of information about the reference videos
and the most useful, as reference videos are not available in many practical, everyday
applications, such as video streaming [14].

Recently, the deep learning paradigm has dominated the field of computer vision,
image, and video processing [15–19]. Moreover, the field of NR-VQA was also heavily
influenced by this trend [20–25]. The present paper’s specific contributions are a novel,
innovative deep learning based approach for NR-VQA that relies on a set of in parallel
pre-trained convolutional neural networks (CNN) to characterize versatitely the potential
image and video distortions. More specifically, temporally pooled and saliency weighted
video-level deep feature vectors are compiled from a set of pre-trained CNNs and mapped
onto perceptual quality scores independently from each other using trained regressors.
Finally, the quality scores coming from the different regressors are fused together to get the
perceptual quality of the input video sequence. We empirically corroborate that the decision
fusion of multiple deep architectures is able to significantly improve the performance of
NR-VQA. Namely, extensive experiments were carried out on two large benchmark VQA
databases (KoNViD-1k [7] and LIVE VQC [26]) with authentic distortions.

The remainder of this paper is structured as follows. In Section 2, we introduce the
status of research in NR-VQA. In Section 3, we describe the overall architecture of the
proposed method. In Section 4, we describe the applied benchmark databases that were
used to train and test the proposed architecture. Moreover, the applied evaluation metrics
and environment are also described. In Section 5, we introduce experiments designed to
evaluate performance of the method and describe the experimental results. In Section 6,
we give the conclusion and clarify the next work.

2. Literature Review

Due to the complexity of the human visual system (HVS), NR-VQA is a very challeng-
ing task. Therefore, a huge amount of studies and papers can be found in the literature
dealing with NR-VQA. Methods found in the literature can be classified into three large
groups: bitstream-based, pixel-based, and hybrid models. Specifically, bitstream-based
methods analyze the video frame headers and the decoded packets to estimate digital
videos’ perceptual quality. A typical example of this group is the QANV-PA (Quality
Assessment for Network Video via Primary Analysis) method [27]. Namely, the authors
extracted first five video frame level parameters, i.e., quantization parameter, frame display
duration, number of lost packets, frame type, and bitrate. Moreover, a pooling procedure
of the frame-level parameters was also introduced to characterize perceptual video quality.
In contrast, Lin et al. [28] built their model on three factors, i.e., quantization parameter, bit
location, and motion. Yamagishi and Hayashi [29] used a packet-layer model for estimating
the perceptual quality of internet protocol television (IPTV) videos. Specifically, the authors
analyzed the packet-headers of videos and extracted quality-aware features, such as bit
rate and packet-loss frequency. Bitstream-based methods perform well in network video
applications, such as video conferencing or IPTV, but cannot be exploited for general
applications [30].

Pixel-based NR-VQA methods take the raw video signal as input for quality prediction.
Different natural scene statistics (NSS) approaches are very popular in the literature [31–33].
The main idea behind NSS is that natural images and videos possess certain statistical
regularities that are corrupted in the presence of noise. The discrete cosine transform
(DCT) [34] domain is very popular to quantify the deviation from “natural” statistics in the
literature. For instance, Brandao and and Queluz [35] used DCT coefficients to fit different
probability density functions (PDF) on them. Specifically, the parameters of these PDFs
were estimated by maximum likelihood and were applied for local error estimation. This
was followed by a perceptual spatio-temporal weighting model to quantify overall percep-
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tual quality. In contrast, Saad et al. [36] first took the difference of consecutive video frames
and applied on these difference images local block-based DCT. Next, the DCT coefficients
were modeled by a generalized Gaussian distribution (GGD) and the parameters of the
GGD were considered as quality-aware features. Moreover, these quality-aware features
were combined with motion coherency vectors and mapped onto quality scores with the
help of support vector regressor (SVR). In contrast, Li et al. [37] utilized 3D-DCT for feature
extraction instead of frame level features but similarly to [36] the feature vectors were
mapped onto quality scores with an SVR. Similarly to the work in [37], Cemiloglu and Yil-
maz [38] utilized 3D-DCT for feature extraction but first the video content was segmented
into cubes of various sizes relying on spatial and motion activity measurement. In contrast,
Zhu et al. [39] extracted video frame level features from each video frame. Specifically, six
feature maps were generated for every video frames using DCT. Subsequently, five quality-
aware features were extracted from the feature maps and temporally pooled together to
form video-level feature vectors which were mapped onto quality scores with a neural
network. In [40], the authors improved further this method by introducing new frame
level features. Besides DCT, other transform domains are also popular in the literature,
such as shearlet [41], wavelet [42], or complex wavelet [43] transform domains. Another
line of works extracted different optical flow statistics to compile quality-aware feature
vectors. For example, Manasa et al. [44] characterized the inconsistencies in the optical
flow both at image patch and video frame level. Specifically, intra-patch and inter-patch
level irregularities were measured and combined with the correlation between successive
frames. At the frame level, the magnitude difference between two consecutive frames in the
optical flow was measured. Similarly to the previously mentioned methods, the extracted
features were mapped onto quality scores with a trained SVR. In contrast, Men et al. [45]
combined spatial features, such as contrast or colorfulness, with temporal features derived
from optical flow to compile feature vectors.

Recently, deep learning techniques have become very popular in pixel-based algo-
rithms. Moreover, deep learning has also gained significant attention in the related fields,
such as stereoscopic [46] and omnidirectional [47] image quality assessment, image su-
perresolution [48], or stereoscopic VQA [49]. For instance, Li et al. [41] trained a CNN
(convolutional neural network) from scratch on 3D shearlet transform coefficients extracted
from video blocks for perceptual video quality estimation. In contrast, Ahn and Lee [20]
fused hand-crafted and deep features to compile quality-aware feature vectors for video
frames. Next, a frame to video feature aggregation procedure was applied and the resulting
vector was regressed onto quality scores. Agarla et al. [50] applied deep features extracted
from pretrained CNNs for predicting image quality attributes, such as sharpness, graini-
ness, lightness, and color saturation. Based on these quality attributes, frame-level quality
scores were generated and used for perceptual video quality estimation using a recurrent
neural network. In [51], the authors improved further the previously mentioned method by
introducing a sampling algorithm that eliminates temporal redundancy in video sequences
by choosing representative video frames.

Hybrid methods combine the principles of bitstream-based and pixel-based algorithms.
For instance, Konuk et al. [52] combined a spatiotemporal feature vector with average bit
rate and packet loss ratio. In [53], the authors predict the perceptual quality of videos
transferred over the universal mobile telecommunication system by combining sender
bitrate, block error rate, and mean burst length in a nonlinear regression analysis. Similarly,
Tao et al. [54] investigated video quality over IP networks.

For comprehensive surveys about NR-VQA, we refer readers to the works in [55–57],

3. Proposed Method

The high-level workflow of the proposed NR-VQA algorithm is depicted in Figure 1.
As it can be seen from this figure, multiple temporally pooled video-level feature vectors
are compiled with the help of deep frame-level feature vectors extracted from each video
frame using a diverse set of pre-trained CNNs. Next, these video-level feature vectors
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are mapped onto perceptual quality scores independently from each other. Finally, these
scores are fused together to obtain an estimation for the perceptual quality of the input
video sequence.

The main properties of the applied pre-trained CNNs are summarized in Table 1.
Specifically, it can be seen that seven different architectures were utilized from which six
ones were trained on ImageNet [58] and one CNN was trained on Places-365 [59] dataset.
The main idea behind this layout is that deep features with multiple sources could better
capture possible image distortions than a single one [60]. Namely, the computer vision
research community has pointed out that internal activations of pre-trained CNNs as deep
features are able to provide powerful representations [61–63]. Moreover, CNNs can capture
spatial and temporal dependencies in an image with the help of relevant convolutional
filters [64]. Further, the first layers of a CNN capture low-level image features, i.e., edges,
colors, or blobs, while the network also captures high-level features which are important in
understanding of image semantics [65,66]. The previously mentioned dependencies and
features are obviously degraded in the presence of image noise and distortion. Therefore,
they can be utilized as quality-aware features.

As already mentioned, the temporally pooled frame-level features are mapped onto
perceptual quality scores using a regression machine learning technique. In this paper,
we show experimental results with the usage of SVRs with Gaussian kernel functions
and Gaussian process regressors (GPR) with rational quadratic kernel functions. Finally,
the quality scores provided by the regressors trained on different deep features extracted
with the help of different CNN architectures are fused together to obtain the perceptual
quality of a given video sequence.

Figure 1. High-level workflow of the proposed algorithm. Temporally pooled and visual saliency
weighted deep features are extracted from each video sequence with the help of multiple pre-trained
CNNs independently from each other. Next, the extracted deep feature vectors are mapped onto
perceptual quality scores. These scores are fused together to obtain the estimated perceptual quality
of the input video sequence.

Table 1. Applied pre-trained CNN architectures and some of their main characteristics.

Network Depth Size Parameters (Millions) Image Input Size

AlexNet [67] 8 227 MB 61.0 227× 227
VGG16 [68] 16 515 MB 138.0 224× 224

ResNet18 [69] 18 44 MB 11.7 224× 224
ResNet50 [69] 50 96 MB 25.6 224× 224

GoogLeNet [70] 22 27 MB 7.0 224× 224
GoogLeNet-Places365 [59,70] 22 24.3 MB 6.4 224× 224

InceptionV3 [71] 48 89 MB 23.9 299× 299

3.1. Frame-Level Feature Extraction

The workflow of the frame-level feature extraction is illustrated in Figure 2. As pre-
viously mentioned, a diverse set of pre-trained CNNs was applied to extract frame-level
feature vectors independently from each other. Specifically, AlexNet [67], VGG16 [68],
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ResNet18 [69], ResNet50 [69], GoogLeNet [70], GoogLeNet-Places365 [70], and Incep-
tionV3 [71] were considered for this purpose. Excluding GoogLeNet-Places365 [70], these
architectures were pretrained on ImageNet [58] which contains more than one million
images and 1000 semantic categories. On the other hand, GoogLeNet-Places365 [70] was
trained on the Places-365 [59] database which consists of 18 million training images from
365 scene categories (i.e., art studio, beauty salon, biology laboratory, etc.). To extract
frame-level features, saliency weighted global average pooling (SWGAP) layers—which
is the contribution of this study—are attached to certain modules of the base models.
As pointed out in previous works [72–75], considering multiple level of deep features is
able to improve perceptual quality estimation, as CNNs capture image features at multiple
levels. Table 2 summarizes the considered modules of the applied pre-trained CNNs and
the length of the extracted feature vectors. Specifically, it can be seen that the features of the
convolutional modules were used in case of AlexNet [67], VGG16 [68], while the features
of the residual and Inception modules were utilized in case of ResNet18 [69], ResNet50 [69]
and GoogLeNet [70], GoogLeNet-Places365 [70], InceptionV3 [71], respectively.

Figure 2. Illustration of frame-level feature extraction.

Table 2. Summary about the applied CNNs. The applied modules in feature extraction and the
length of the extracted frame-level feature vectors are given.

Base CNN Module Length of Feature Vector

AlexNet convolutional 1376
VGG16 convolutional 4224

ResNet18 residual 1920
ResNet50 residual 15,104

GoogLeNet Inception 5488
GoogLeNet-Places365 Inception 5488

InceptionV3 Inception 10,048
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Global average pooling (GAP) layers are usually used in CNNs to enforce correspon-
dence between feature maps and the number of semantic categories and by this to enable
the training of networks on images with various resolution [76]. Another common appli-
cation of GAP is extracting resolution independent visual features from images with the
help of a CNN. In this paper, we improve GAP to SWGAP for feature extraction using
visual saliency. Namely, visual saliency algorithms deal with finding the most outstanding
parts of a digital image from a perceptual point of view [77]. From the perspective of
perceptual quality estimation, it is also very essential that human beings tend to fixate on
some particular regions of the image during the first three seconds of the observation [78].
Motivated by the above observation, SWGAP is proposed for feature extraction to empha-
size those regions which are salient to the human visual system. Namely, SWGAP performs
a weighted arithmetic operation between an F(·, ·) feature map of a CNN and the resized
(bilinear interpolation is applied) S(·, ·) saliency map of the input image. Formally, it can
be written as

σ =
∑M

i=1 ∑N
j=1 S(i, j) · F(i, j)

∑M
i=1 ∑N

j=1 S(i, j)
, (1)

where σ denotes the output value of SWGAP for one feature map. Further, M and N stand
for the height and the width of the feature map, respectively. The coordinates of the feature
maps and the resized saliency map are denoted by i and j. In this study, the method of
Li et al. [79] was applied to determine the saliency map of a video frame due to its low
computational costs. Figure 3 depicts several video frames and their saliency maps.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Cont.
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(g) (h)

Figure 3. Illustration of saliency map extraction: (a,c,e,g) input video frames and (b,d,f,h) saliency
maps of the input video frames obtained by the method of Li et al. [79].

3.2. Video-Level Feature Extraction

As previously mentioned, the frame-level feature vectors obtained with the help of
a CNN architecture are temporally pooled together to compile one feature vector that
characterizes the whole video sequence. In this study, the average pooling of frame-level
feature vectors were utilized to this end. Formally, the following can be written:

V(k)
i =

1
N

N

∑
j=1

Fj
i , (2)

where N is the number of frames found in the given video, Fj
i stands for the ith entry of the

jth frame-level feature vector, while V(k)
i denotes the ith entry of the feature vector that

characterizes the whole video sequence obtained by the kth CNN architecture. The V(k)

feature vectors are mapped onto perceptual quality scores independently from each other
by machine learning techniques. Specifically, we made experiments with two different
regression techniques, such as SVRs with Gaussian kernel functions and GPRs with rational
quadratic kernel functions. To obtain the estimated perceptual quality of a video sequence,
the arithmetic mean or the median of the regressors’ outputs is taken.

4. Materials

In this section, the applied benchmark VQA databases (Section 4.1) and the applied
evaluation protocol (Section 4.2) are described.

4.1. Applied Benchmark VQA Databases

In this paper, two large authentic VQA databases—KoNViD-1k [7] and LIVE VQC [26]—
are used to evaluate the proposed method and other state-of-the-art algorithms. The videos
of KoNViD-1k [7] were collected from the YFCC100m [80] database and evaluated in a
large-scale crowd-sourcing experiment [81] involving 642 human observers who generated
at least 50 quality ratings per video. The videos’ resolution is 960× 540 and the MOS
ranges from 1 to 5.

In [26], Sinno and Bovik compiled a VQA database containing 585 unique video
sequences with authentic distortions captured by 80 different users with 101 different
camera devices. Similarly to KoNViD-1k [7], the videos were evaluated in a large-scale
crowd-sourcing experiment [82] involving 4776 human observers who produced more than
205,000 quality ratings. In contrast to KoNViD-1k [7], it contains videos with various image
resolutions and the MOS ranges from 0 to 100. Unlike KoNViD-1k [7], LIVE VQC [26] has
no fixed image resolution.

The fundamental properties of the utilized VQA databases are summarized in Table 3.
Further, the MOS distributions found in KoNViD-1k [7] and LIVE VQC [26] are depicted in
Figures 4 and 5, respectively. Figure 6 illustrates several videos from KoNViD-1k [7] VQA
benchmark database. Similarly, Figure 7 depicts several videos from LIVE VQC [26].
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Table 3. Overview about the applied VQA databases.

Attribute KoNViD-1k [7] LIVE VQC [26]

#Videos 1200 585
#Devices >164 101

#Test subjects 642 4776
Format MP4 MP4

Distortion authentic authentic
Test environment crowdsourcing crowdsourcing

Resolution 960× 540 320× 240–1920× 1080
Duration 8 s 10 s

Frame rate 23–29 fps 19–30 fps

Figure 4. Empirical distribution of MOS in KoNViD-1k [7].

Figure 5. Empirical distribution of MOS in LIVE VQC [26].
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Figure 6. Illustration of several videos from KoNViD-1k [7] VQA benchmark database.

Figure 7. Illustration of several videos from LIVE VQC [26] VQA benchmark database.

4.2. Evaluation Protocol

The evaluation of VQA algorithms is based on determining the correlation between
the ground-truth scores of a VQA database and the predicted scores given by the algorithm.
In the literature, Pearson’s linear correlation coefficient (PLCC) and Spearman’s rank
order correlation (SROCC) are applied. As already mentioned, KoNViD-1k [7] and LIVE
VQC [26] are used to assess the proposed and other state-of-the-art methods. To this end,
a VQA database is randomly divided into a training set (~80% of videos) and a test set
(~20% of videos) to train a VQA method. This process is repeated 1000 times. Further,
median PLCC and SROCC are reported in this paper. As suggested by Sheikh et al. [83],
a non-linear mapping between the predicted and the ground-truth scores is executed before
the calculation of PLCC. Specifically, a logistic function with five parameters is used to this
end. Formally, this logistic function can be given as

Q = β1

(
1
2
− 1

1 + eβ2(Qp−β3)

)
+ β4Qp + β5, (3)
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where βi, i = 1, ..., 5 stand for the fitting parameters. Between datasets A and B with
element number of m, PLCC is computed as

PLCC(A, B) = ∑m
i=1(Ai − Ā)(Bi − B̄)√

∑m
i=1(Ai − Ā)2

√
∑m

i=1(Bi − B̄)2
, (4)

while SROCC is determined as

SROCC(A, B) = ∑m
i=1(Ai − A′)(Bi − B′)√

∑m
i=1(Bi − B′)2

√
∑m

i=1(Bi − B′)2
, (5)

where Ā and B̄ are the averages of set A and B, respectively. Moreover, A′ and B′ stand for
the middle ranks of set A and B, respectively.

The proposed algorithm was implemented in MATLAB R2021a using the functions of
the Image Processing, Machine Learning and Statistics, Deep Learning, and Parallel Com-
puting Toolboxes. The details about the applied computer configuration is summarized in
Table 4.

Table 4. Computer configuration.

Computer model STRIX Z270H Gaming
Operating system Windows 10

CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)
Memory 15 GB

GPU Nvidia GeForce GTX 1080

5. Results

In this section, the experimental results and analysis are presented using the bench-
mark databases and evaluation protocol described in Section 4. Section 5.1 summarizes the
results of an ablation study so the design choices in the proposed method can be justified.
In Section 5.2, a performance comparison in terms of PLCC and SROCC is presented
against other state-of-the-art NR-VQA algorithms.

5.1. Ablation Study

In this subsection, an ablation study is presented to reason the design choices of the
proposed method with respect to different feature extraction and regression techniques.
Moreover, we demonstrate that the decision fusion of multiple deep architectures signifi-
cantly improves the performance of NR-VQA. To this end, KoNViD-1k [7] database was
applied in this ablation study using the evaluation protocol summarized in Section 4.2.
The results are summed up in Tables 5–8. From these results, it can be clearly seen that
GPRs with rational quadratic kernel function provides much higher performance than
SVRs with Gaussian kernel function in all possible cases. With regard to the decision
fusion method, we can observe that the simple average is more favorable to the estimation
performance than taking the median of the regressors’ outputs. More importantly, it can
be clearly observed that the fusion of multiple CNNs’ results improves the prediction
performance by a large margin. Further, the substitution of GAP layers with the proposed
SWGAP layers is also able to improve the performance, as SWGAP applies visual saliency
weighted average instead of simple arithmetic mean and by this those image regions can
be emphasized which are salient to the HVS. As a result, GPRs with rational quadratic
kernel functions, SWGAP layers, and arithmetic average as decision fusion were applied in
the proposed method which is code-named as SWDF-DF-VQA in the followings.
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Table 5. Performance of different base architectures and decision fusion methods using GAP layers
for feature extraction and SVRs with Gaussian kernel function for regression. Median PLCC and
SROCC were measured over 1000 random train–test splits.

Base CNN PLCC SROCC

AlexNet 0.735 0.734
VGG16 0.736 0.735

ResNet18 0.739 0.738
ResNet50 0.757 0.755

t6 GoogLeNet 0.741 0.739
GoogLeNet-Places365 0.712 0.711

InceptionV3 0.763 0.760

All—median 0.829 0.828
All—average 0.833 0.832

Table 6. Performance of different base architectures and decision fusion methods using GAP layers
for feature extraction and GPRs with rational quadratic kernel function for regression. Median PLCC
and SROCC were measured over 1000 random train–test splits.

Base CNN PLCC SROCC

AlexNet 0.785 0.781
VGG16 0.786 0.782

ResNet18 0.788 0.787
ResNet50 0.789 0.789

GoogLeNet 0.790 0.790
GoogLeNet-Places365 0.772 0.770

InceptionV3 0.794 0.793

All—median 0.848 0.847
All—average 0.853 0.852

Table 7. Performance of different base architectures and decision fusion methods using SWGAP
layers for feature extraction and SVRs with Gaussian kernel function for regression. Median PLCC
and SROCC were measured over 1000 random train–test splits.

Base CNN PLCC SROCC

AlexNet 0.741 0.740
VGG16 0.739 0.740

ResNet18 0.743 0.742
ResNet50 0.763 0.760

GoogLeNet 0.746 0.744
GoogLeNet-Places365 0.718 0.716

InceptionV3 0.769 0.765

All—median 0.833 0.832
All—average 0.838 0.836

5.2. Comparison to the State-of-the-Art

To compare the introduced SWDF-DF-VQA method to the state-of-the-art, we gath-
ered eight NR-VQA algorithms including NVIE [84], V.BLIINDS [36], VIIDEO [85], 3D-
MSCN [86], ST-Gabor [86], 3D-MSCN+ST-Gabor [86], FDD-VQA [87], and FDD+Perceptual-
VQA [87] whose source codes were released by their authors. Obviously, the above men-
tioned algorithms were evaluated exactly the same way as the proposed method which
is described in Section 4.2. Further, the performance results of eleven other methods,
such as FC Model [45], STFC Model [45], STS-SVR [88], STS-MLP [88], ChipQA [89],
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QSA-VQM [50], Agarla et al. [51], Jiang et al. [90], MLSP-VQA-FF [6], MLSP-VQA-RN [6],
and MLSP-VQA-HYB [6], were copied from the corresponding papers to give a more com-
prehensive comparison to the state-of-the-art. The results are summarized in Tables 9 and 10.
From these results, it can be concluded that the proposed method is capable to outperform
the state-of-the-art by a large margin. According to Table 9, the proposed SWDF-DF-VQA
outperforms the second best performing QSA-VQM [50] and MLSP-VQA-FF [6] by 0.046
and 0.036 in terms of PLCC and SROCC, respectively. Table 10 reports similar observations.
Namely, the proposed method exceeds the second best algorithm’s performance by 0.025
and 0.029 in terms of PLCC and SROCC. As a result, a new state-of-the-art was set to
authentic distortions.

Table 8. Performance of different base architectures and decision fusion methods using SWGAP
layers for feature extraction and GPRs with rational quadratic kernel function for regression. Median
PLCC and SROCC were measured over 1000 random train–test splits.

Base CNN PLCC SROCC

AlexNet 0.789 0.788
VGG16 0.790 0.788

ResNet18 0.793 0.794
ResNet50 0.793 0.796

GoogLeNet 0.795 0.794
GoogLeNet-Places365 0.777 0.775

InceptionV3 0.800 0.798

All—median 0.852 0.850
All—average 0.856 0.856

Table 9. Comparison of SWDF-DF-VQA to the state-of-the-art on KoNViD-1k [7]. Median PLCC and
SROCC values were measured over 1000 random train–test splits. The best results are in bold, while
the second best results are underlined.

Method PLCC SROCC

NVIE [84] 0.404 0.333
V.BLIINDS [36] 0.661 0.694

VIIDEO [85] 0.301 0.299
3D-MSCN [86] 0.401 0.370
ST-Gabor [86] 0.639 0.628

3D-MSCN+ST-Gabor [86] 0.653 0.640
FDD-VQA [87] 0.654 0.640

FDD+Perceptual-VQA [87] 0.716 0.711

FC Model [45] 0.492 0.472
STFC Model [45] 0.639 0.606

STS-SVR [88] 0.680 0.673
STS-MLP [88] 0.407 0.420
ChipQA [89] 0.697 0.694

QSA-VQM [50] 0.810 0.810
Agarla et al. [51] 0.790 0.780
Jiang et al. [90] 0.788 0.789

MLSP-VQA-FF [6] - 0.820
MLSP-VQA-RN [6] - 0.780

MLSP-VQA-HYB [6] - 0.790

SWDF-DF-VQA 0.856 0.856
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Table 10. Comparison of SWDF-DF-VQA to the state-of-the-art on LIVE VQC [26]. Median PLCC
and SROCC values were measured over 1000 random train–test splits. The best results are in bold,
while the second best results are underlined. We denote by “-” when the data are not available.

Method PLCC SROCC

NVIE [84] 0.447 0.459
V.BLIINDS [36] 0.690 0.703

VIIDEO [85] −0.006 −0.034
3D-MSCN [86] 0.502 0.510
ST-Gabor [86] 0.591 0.599

3D-MSCN+ST-Gabor [86] 0.675 0.677
FDD-VQA [87] 0.623 0.630

FDD+Perceptual-VQA [87] 0.694 0.705

FC Model [45] - -
STFC Model [45] - -

STS-SVR [88] - -
STS-MLP [88] - -
ChipQA [89] 0.669 0.697

QSA-VQM [50] 0.780 0.740
Agarla et al. [51] 0.780 0.740
Jiang et al. [90] 0.789 0.776

MLSP-VQA-FF [6] - 0.720
MLSP-VQA-RN [6] - 0.700

MLSP-VQA-HYB [6] - 0.690

SWDF-DF-VQA 0.814 0.805

6. Conclusions

In this paper, we presented a novel deep learning based approach for NR-VQA that uti-
lizes a set of in parallel pre-trained CNNs for feature extraction. The main idea behind this
layout was that a set of pre-trained CNNs can capture possible image distortions more ver-
satitely than a single network. Specifically, temporally pooled and saliency weighted deep
feature vectors were compiled with the help of multiple CNNs. Subsequently, these feature
vectors were mapped onto perceptual quality scores and a decision fusion method was
applied on them to obtain the quality rating of the whole video sequence. We demonstrated
with extensive experimental results that such a arrangement of deep feature extraction
and decision is able to improve the prediction performance by a large margin compared to
single, deep architectures. Further, the proposed method was compared to other modern
NR-VQA algorithms on two large benchmark VQA databases containing authentic distor-
tions. Extensive experiments proved that the proposed method sets a new state-of-the-art
on authentic distortions. Considering the achieved results, there are several directions for
future research. For example, it is worth studying to combine motion and deep features to
better characterize video distortions. In addition, a feature-level fusion of CNNs can be
also a beneficial direction to reduce training time and computational costs.
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The following abbreviations are used in this manuscript:

CNN convolutional neural network
DCT discrete cosine transform
DF decision fusion
FR-VQA full-reference video quality assessment
GAP global average pooling
GGD generalized Gaussian distribution
GPR Gaussian process regressor
HVS human visual system
IPTV internet protocol television
LIVE Laboratory for Image and Video Engineering
MOS mean opinion score
NR-VQA no-reference video quality assessment
NSS natural scene statistics
PDF probability density function
QANV-PA quality assessment for network video via primary analysis
RBF radial basis function
RR-VQA reduced-reference video quality assessment
SVR support vector regressor
SWDF saliency weighted deep features
SWGAP saliency weighted global average pooling
VQA video quality assessment
VQC video quality challenge
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