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Abstract: Recommender systems help users filter items they may be interested in from massive
multimedia content to alleviate information overload. Collaborative filtering-based models perform
recommendation relying on users’ historical interactions, which meets great difficulty in modeling
users’ interests with extremely sparse interactions. Fortunately, the rich semantics hidden in items
may be promising in helping to describing users’ interests. In this work, we explore the semantic
correlations between items on modeling users’ interests and propose knowledge-aware multispace
embedding learning (KMEL) for personalized recommendation. KMEL attempts to model users’
interests across semantic structures to leverage valuable knowledge. High-order semantic collab-
orative signals are extracted in multiple independent semantic spaces and aggregated to describe
users’ interests in each specific semantic. The semantic embeddings are adaptively integrated with
a target-aware attention mechanism to learn cross-space multisemantic embeddings for users and
items, which are fed to the subsequent pairwise interaction layer for personalized recommendation.
Experiments on real-world datasets demonstrate the effectiveness of the proposed KMEL model.

Keywords: collaborative filtering; user interest; knowledge graph; recommender system

1. Introduction

In the era of big data, people are surrounded by ubiquitous information. This has
created the urgent need to filter the content that users require from the massive amount of
available content. Personalized recommender systems help users find candidate content
to meet users’ requirements, thereby alleviating the problem of information overload.
Recommender systems have been widely applied in personalized music radio, e-commerce,
multimedia platforms and other fields. As a core strategy, collaborative filtering refers to
users’ historical interactions to predict users’ interests for personalized recommendation.
However, it is difficult to capture their personalized preferences relying only on extremely
sparse historical interactions. Personalized recommendation meets a significant challenge
from sparsity, and cold start issues [1].

Fortunately, abundant semantic correlations exist among items that explain knowl-
edge clues on users’ interests. For example, in the online movie application domain, the
semantic relationship between both director and actor are crucial for capturing users’ inter-
ests. It is intuitive to involve semantic relations upon user–item interactions to alleviate
the performance limitations from data sparsity and cold start issues. Some current stud-
ies [2–5] embed semantic associations in interest mining, which performs effectively for
capturing users’ interests. Their success inspires us to think about the role of rich semantic
correlations on recommendation tasks. As a hot topic, semantic correlation extraction has
been actively studied in the field of knowledge graphs [6,7]. A knowledge graph, as an
auxiliary structure, provides additional semantic correlations among items. Knowledge
graphs also play a role to assist matching pairwise user–items by naturally integrating
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semantic correlation between items [8–11] strive to model users’ interests with high-order
user–item semantic associations on the knowledge graph. Since knowledge graphs include
huge-scale entities and diverse semantic relations, high-order mining may get lost in se-
mantics for personalized recommendation; however, the semantic clue associated with the
target user–item pair is worth noting.

We argue that the semantics in knowledge graphs make more sense than the large-
scale entities on users’ interests. In this work, we investigate semantic correlations among
items in view of multispace learning and propose knowledge-aware multispace embedding
learning (KMEL) for personalized recommendation. We extend the user–item interaction
graph with a specific semantic relation among items in a knowledge graph, resulting a
semantic-specific user–item–item hybrid graph. With multiple semantics in the knowledge
graph, the proposed KMEL derives multiple semantic spaces. In each semantic space,
items are connected with the corresponding semantic relation; therefore, the connections
vary in different semantic spaces. Due to the independence of semantics, it is intuitive to
explore the embedding compensation among the semantic spaces, including the interaction
space. KMEL attempts to model users’ interests across semantic structures to leverage
the valuable knowledge information. It extracts the positive impact of semantics from
multiple independent semantic spaces. Specifically, the high-order semantic correlation
between items is built respectively in multiple independent semantic spaces, aggregated
by propagating semantic correlation to embed users’ interests in each semantic space.
Then, users’ interests in multiple semantic domains are adaptively integrated as a whole to
recommend items. The contributions of this work are summarized as follows.

• We leverage diverse semantic correlations among items to compensate users’ sparse
interaction records to mine users’ interests for recommendations;

• We propose a knowledge-aware multispace embedding learning model that respects
users’ interests on each semantic and learns user embedding in a manner of divide-
and-conquer across multiple semantic spaces;

• We demonstrate the effectiveness of the proposed KMEL model by experiments and
corresponding analysis on two real-world datasets.

2. Related Work

The proposed KMEL model is related to collaborative filtering, graph-based recom-
mendation, and knowledge-aware recommendation models. We review the literature and
highlight the difference to the proposed KMEL model.

2.1. Collaborative Filtering

Collaborative filtering [12–14] as a core strategy has been widely applied in recommen-
dation scenarios due to its simple and practical effectiveness. CF-based recommendation
models exploit users’ interaction records to mine users’ interests and recommend items to
users having similar interests to their owners, which do not require additional prior knowl-
edge for personalized recommendation. Matrix factorization (MF) [12] pioneers a learnable
CF model that performs recommendation by interacting user and item embeddings. MF
is further developed by involving deep architecture in embedding learning [15–18] and
interaction function [19]. Despite its effectiveness, CF models meet obstacles in capturing
users’ interests since the personalized recommendation faces severe data sparsity and
cold-start problems. In order to alleviate the problem, related studies [20–22] introduce
diverse side information to enrich the clue for interest mining, such as social networks [20],
knowledge graphs [2,10], and item content information [22], aiming at enhancing the se-
mantic association when interacting between users and items. This work emphasizes the
role of higher-order semantic associations between items and strives to leverage semantic
knowledge to promote interest mining and personalized recommendation.
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2.2. Graph-Based Recommendation

Subsequent studies figure out that rich collaborative signals remain in users’ inter-
actions which naturally forms a heterogeneous graph with user and item nodes. With
this hypothesis, graph-based recommendation models [15–17] propagate user and item
characters layer-by-layer on the interaction graph and naturally integrate higher-order
collaborative signals to model users’ interest. GCMC [15] models the effect of interactions
on users and items using a graph convolutional layer on the interaction graph to encode
their embeddings. PinSage [16] applies multiple graph convolutional layers on the graph to
perform image recommendation. DGCF [18] builds the fine-grained user–item relationship
concerning users’ intents to perform graph convolution for recommendation. NGCF [17]
recursively performs information propagation on the user–item interaction graph to extract
higher-order collaborative signals hidden in interactions for personalized recommendation.
A light graph convolution [23] is proposed on interaction graph to model users’ interests
by simplifying transformation, nonlinear activation in graph learning. Wu et al. [24] ex-
plored a context-aware graph convolution on the user–item interaction graph to digest the
collaborative signals among users, items, and contexts into interaction estimation. These
models aim to use heterogeneous collaborative signals hidden in users’ interactions as
much as possible to embed users and items for personalized matching. Inspired by their
success, this work strives to further investigate users’ interaction graph with an additional
knowledge graph to deal with the interaction sparsity issue on capturing users’ interests.

2.3. Knowledge-Aware Recommendation

The rich semantics among items have been actively explored to mitigate cold-start
and data sparsity issues. Knowledge graph, as a piece of standard auxiliary information,
is introduced to bridge the semantic gap among interactions [10,11,25]. Ripplenet [11]
propagates users’ interests along with the high-order paths on the user–item–entity graph
by extending heterogeneous interaction graph with a knowledge graph to model seman-
tic collaborative signals into embeddings of users and items. It employs user-interacted
items as seed nodes to propagate users’ interests layer-by-layer on the knowledge graph
to learn users’ embeddings. KGAT [10] utilizes a knowledge-aware neighbor-aggregation
mechanism to encode user interests and introduces an attention mechanism to aggre-
gate neighbors adaptively. Zhu et al. [26] built history interest and potential intent re-
spectively from users’ clicked sequence and path connectivity in KGs to jointly embed
users. It investigates signals from both item space and their connection space of KG. Since
knowledge graph takes hybrid semantics, the diverse knowledge hidden in the graph is
required to be addressed elaborately. High-order mining is easily hindered by complex
semantics for personalized recommendation. The role of semantics rather than high-order
user-item semantic associations on the knowledge graph should be taken into account.
AIMN [25] performs pairwise user-item matching in multiple knowledge-aware attribute-
level and merges the attribute-level interactions to the final score for personalized ranking.
Huang et al. [27] explored multityped user–item interactive patterns with coupled graph
learning on both social-aware user space and knowledge-aware item space. Users are built
by the interacted items with the specific pattern and items are aggregated on all the related
interactive patterns. Differently, this work strives to mine users’ interests from interac-
tion space and multiple semantic spaces of independent relations in KG for personalized
recommendation.

3. Methodology

Though there are redundant semantic correlations among items, involving item se-
mantics shows promise as a way of explaining users’ interests. Therefore, we attempt to
investigate semantic correlations among items to compensate interactions and model users’
interests. Mining users’ interests is implemented by embedding users relying on given his-
torical records. As a promising auxiliary reference, an existing knowledge graph provides
abundant semantic relations that relate to items’ attributes. It provides a valuable clue to
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reveal the interests of users who have interacted with them. In this work, we construct
interest mining across semantic structures in view of multispace learning and propose
knowledge-aware multispace embedding learning (KMEL) for personalized recommenda-
tion. It extracts collaborative signals over users’ high-order interaction paths in multiple
independent semantic spaces and comprehensively models users and items using a siamese
attention mechanism. Figure 1 shows the framework of the proposed KMEL model for
personalized recommendation. Specifically, the high-order semantic correlation between
items is extracted in multiple independent semantic spaces and aggregated by propagating
semantic correlation to embed users’ interests by graph convolution in each semantic space.
Then, users’ interests in multiple semantic domains are adaptively integrated as a whole to
interact with items for recommendation. This section describes collaborative embedding
learning on the user-item interaction graph, semantic embedding learning on the user-item-
item graph in multiple independent semantic spaces, cross-space multisemantic fusion
based on target-aware attention, and nonlinear interaction and recommendation as follows.

Figure 1. Framework of the proposed knowledge-aware multispace embedding learning (KMEL) for
personalized recommendation.

3.1. Collaborative Embedding Learning

The items that a user has interacted with provide evidence of the user’s personalized
interests, while the users interacting with a specific item reflect the item’s audience character.
The user-item interactions form a heterogeneous graph that contains rich collaborative
signals. It is promising to model users and items by graph propagation for personalized
recommendation. As illustrated in Figure 1, We capture the positive impact of high-
order collaborative signals using a layer-by-layer interest propagation mechanism on the
heterogeneous user–item interaction graph. Considering that users have varying interest
degrees for items, it is necessary to take varying contributions of neighbors in building
users and items with graph propagation. We adopt an attention-based graph convolutional
layer to encode users and items by performing neighbour aggregation.

Following current mainstream recommendation strategies, we initialize user ID and
item ID with high-dimensional embeddings e(0)u , e(0)i ∈ Rd, where Rd is a d-dimensional
interest embedding space. The collaborative interest propagation from interacted item i to
user u is defined as

m(1)
u←i = f

(
e(0)u , e(0)i , αui

)
(1)

where mu←i is the collaborative signals propagated from item i to user u, f () represents the
interest propagation function, and αui denotes the learnable contribution parameter of item
i to user u. The propagation function f () is defined as

m(1)
u←i = αuiWe(0)i , αui =

exp(σ(attT
[
We(0)u ⊕We(0)i

]
))

∑k∈Nu exp(σ(attT
[
We(0)u ⊕We(0)k

]
))

(2)
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where αui is learned by a single-layer attention network with parameter att. The propaga-
tion layer performs a softmax normalization to produce the neighbor contribution degree
αui for the following embedding aggregation. W is a learnable linear transformation matrix,
⊕ represents concatenation operation, and σ() is the LeakyReLU activation function. The
propagated collaborative signals from interacted items i ∈ Nu of user u are aggregated to
update its embedding as

e(1)u = σ(m(1)
u←u + ∑

i∈Nu

m(1)
u←i) (3)

where e(1)u represents the first-order collaborative embedding of user u. We stack multi-
ple propagation layers to model higher-order collaborative embedding for user u. The
higher-order collaborative embedding attempts to capture the effect of long-path user-
item collaborative signals hidden in users’ interactions on user interest modeling. We
stack L interest propagation layers to propagate collaborative signals for user u in its
L-hop neighbors.

e(l)u = σ(m(l)
u←u + ∑

i∈Nu

m(l)
u←i) (4)

where l = 1, 2, . . . , L indexes the embedding on layer l. We perform the same operation on
item i to derive the higher-order collaborative embedding of item i correspondingly as

e(l)i = σ(m(l)
i←i + ∑

u∈Ni

m(l)
i←u) (5)

The collaborative embeddings of users and items on the Lth layer of the interest
propagation network are represented as Uc and Ic. The collaborative embedding reflects the
metainterest of users and items, i.e., behavior of users with similar interests and audience
of items with similar attributes. We utilize the collaborative embedding Uc and Ic to guide
the subsequent modeling of semantic interest embedding of users and items.

3.2. Semantic Embedding Learning

This work investigates semantic correlations among items as a knowledge clue to aid
users’ interactions and mine users’ interests for personalized recommendation. Considering
the complex and diverse semantics in the knowledge graph, the proposed KMEL model
constructs users’ interests across semantic spaces to leverage valuable knowledge infor-
mation. It extracts semantic positive effects from multiple independent semantic spaces
s1, s1, . . . , sK. We align the interaction graph to the corresponding knowledge graph form-
ing a hybrid graph and explore the user–item–item semantic structure in each independent
semantic space to capture a semantic embedding for users and items.

In each semantic space sk, we extract semantic collaborative signals in the hybrid
graph to model users and items on the specific semantic domain. Since the items located in
the same semantic space appear to be relatively compact in terms of semantics, we employ
a naive graph convolution to aggregate neighbors in the hybrid graph to learn the semantic
embeddings for users and items. On the hybrid graph, embeddings are also initialized with
the same ID in Section 3.1, as h(0)u = e(0)u , h(0)i = e(0)i . The semantic interest propagation is
defined as

h(l+1)
u = σ( ∑

i∈N (u)

1
ciu

h(l)i W(l) + b(l)) (6)

h(l+1)
i = σ( ∑

j∈N (i)

1
cji

h(l)j W(l) + ∑
u∈N (i)

1
cui

h(l)u W(l) + b(l)) (7)

where h(l+1)
u and h(l+1)

i are the updated semantic embeddings of user u and item i at layer
l + 1 in semantic space k, respectively, N(u), N(i) represents the neighbor set of user u and
item i, respectively, b(l) represents the bias coefficient of the lth layer propagation network,
cji is the product of the square root of node degrees cji =

√
|N (j)|

√
|N (i)|. On each layer,
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interest propagation aggregates neighbor users u ∈ N (i) from the interaction graph and
neighbor items j ∈ N (i) from the knowledge graph to update embedding hi for item i. For
user u, the propagation aggregates the neighbor items j ∈ N (u) the user interacts with to
update the embedding hu.

In each semantic space sk, we capture high-order semantic collaborative signals be-
tween user-items by performing multi-layer interest propagation on the hybrid graph.
We use Uk

s and Ik
s to represent the semantic embeddings of user u and item i on the Lth

layer in the semantic space sk, which reveals the corresponding semantic preference of
users and attribute distribution of items. Semantic embeddings from different semantic
spaces reflect the diverse semantic preferences of users. With the same semantic interest
propagation on the semantic-specific hybrid graph structures, the proposed KMEL derives
a set of knowledge-aware semantic embeddings U1

s , U2
s , . . . , Uk

s for users and I1
s , I2

s , . . . , Ik
s

for items.

3.3. Cross-Space Multisemantic Fusion

Till now, the proposed KMEL builds collaborative embeddings Uc and Ic, and semantic
embeddings U1

s , U2
s , . . . , Uk

s and I1
s , I2

s , . . . , Ik
s . Multiple semantic embeddings capture

users’/items’ preferences/attributes in different semantic spaces. As illustrated in Figure 1,
we utilize the collaborative embedding Uc and Ic to guide the cross-space embedding
fusion to learn an integrated embedding for users and items.

Considering that the various importance of these semantics for modeling users’ in-
terests varies from user to user, we introduce a target-aware attention mechanism to
learn the contribution of different semantics for modeling users’ interests, referred as
importance degree.

αu
k = so f tmax(ReLU(Watt(Uc ⊕Uk

s ) + batt)) (8)

αi
k = so f tmax(ReLU(Watt(Ic ⊕ Ik

s ) + batt)) (9)

where αu
k represents the importance of user u’s semantic embedding Uk

s in semantic space
sk on modeling his/her complete interests. Similarly, αi

k represents the importance of
item i’s semantic embedding Ik

s in semantic space sk to model its entire attribute. Watt
and batt are the learnable weights and bias coefficients of a single-layer attention network.
We perform a so f tmax operation to normalize the importance degree of semantics. The
collaborative embeddings Uc and Ic of users/items participate in the importance estimation
of embeddings in other semantic spaces with their semantic-specific embeddings U1

s , U2
s ,

. . . , Uk
s and I1

s , I2
s , . . . , Ik

s , resulting in varying importance degrees on semantics. Then,
we aggregate the semantic embeddings across multiple spaces to construct an integrated
embedding for users and items.

hu = ∑
Uk

s∈{Uc ,U1
s ,U2

s ,...Un
s }

αu
k Uk

s (10)

hi = ∑
Ik
s∈{Ic ,I1

s ,I2
s ,...In

s }
αi

k Ik
s (11)

where hu and hi represent the integrated embeddings of user u and item i across multiple
semantic spaces.

3.4. Nonlinear Interaction and Recommendation

For the pairwise matching of user u and item i, we concatenate their embeddings
hu and hi as the pairwise interaction feature. The interaction feature contains matching
information between user preferences and item attributes. We leverage a typical MLP
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network to filter further the nonlinear interaction correlation between user u and item i and
predict the interest degree of user u on item i.

ŷui = MLP(hu ⊕ hi) (12)

where ŷui represents the predicted interest degree of user u on item i, MLP() is a standard
nonlinear interaction function. The proposed KMEL ranks the items i with the highest
interest degree and recommends top-K items for user u.

For the model optimization on user/item initialization and model parameters, we
employ conventional log loss [28,29] and Adam optimizer to train the model as follows.

L =
−1

|R+|+|R−|

 ∑
(u,i)∈R+

log(ŷui) + ∑
(u,i)∈R−

log(1− ŷui)

+ λ‖θ‖2 (13)

where R+ and R− represent all positive and negative samples in the training set, respec-
tively, |R+| and |R−| are the number of positive and negative samples. During optimization,
we employ L2 regularization and dropout strategy to prevent model overfitting.

4. Experiments

We conduct experiments to verify the effectiveness of the proposed KMEL model for
personalized recommendation. With the experiments, We aim to answer the following
research questions.

• RQ1 Compared to advanced recommendation models, how does the proposed
KMEL perform?

• RQ2 How does knowledge signals extracted from multiple semantic spaces affect
the performance?

• RQ3 How does the model hyperparameters work in KMEL?

4.1. Experimental Settings
4.1.1. Dataset Description

Experiments are performed on Amazon-Book [30] and Yelp2018 [10] datasets for per-
sonalized recommendation, which have varying sparsity and domain knowledge. Table 1
summarizes the statistics of the experimental datasets.

• Amazon-Book. We selected Amazon-book from the widely used product dataset
Amazon-review, which has a relatively high sparsity. We kept the users and items
with at least 10 interactions to guarantee the reliability of the dataset. Considering the
possible significance to a specific domain, three relations Subjects, Author, Character
were selected from those given by the dataset to construct semantic spaces. With the
three relations, the entity size aligned from the knowledge graph to items is large
enough to mine semantic signals for modeling users’ interests.

• Yelp2018. Yelp2018 is a dataset sampled from the field of music applications. Similarly,
we kept the users and items with at least 10 interactions for experiments. Relations
Categories and Music were employed to construct semantic spaces. The relations also
provided enough entity to items for modeling users’ interests.

In addition to user–item interactions, the proposed KMEL model builds multiple
independent semantic spaces on the hybrid interaction–knowledge graph. The interaction–
knowledge graph includes a large number of user–item–item triples, each of which is
composed of an interacted user–item pair and an item–item pair taking the same semantic
relation in the given knowledge graph. We built item–item connections with specific
knowledge associations in the datasets. On Amazon-book and Yelp2018 datasets, two
items are connected in a specific semantic space when they take the same tail entity
in the knowledge graph with the semantic relation. We randomly selected 80% of the
user-interacted items as positive samples in the training set, and the remaining 20% as
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the test set [10]. In the training set, we randomly matched a negative sample for each
positive sample to participate in the model optimization [10]. In the test set, we randomly
selected 100 negative samples for each positive sample of users to test the recommendation
performance [28].

Table 1. Statistics of the datasets in experiments.

Amazon-Book Yelp2018

#Users 70,679 45,919
User-Item Interactions #Items 24,915 45,538

#Interactions 847,733 1,185,068

#Entities 88,572 90,961
Knowledge Graph #Relations 39 42

#Triplets 2,557,746 1,853,704

4.1.2. Evaluation Metrics

The performances were evaluated with the commonly used Normalized Discounted
Cumulative Gain at rank K (NDCG@K) and Recall@K on Top-K recommendation lists.
We set K to be 10 without specification, i.e., we mainly evaluated the recommendation
performance on the Top-10 items in the recommendation lists of users. For the datasets, we
show the average recommendation performance based on both metrics on all the users in
the test set.

4.1.3. Baselines

We compare the proposed KMEL model with ID-based (NCF [28]), graph-based
(NGCF [17], GCMC [15]), and knowledge-based (CKE [2], RippleNet [11], KGAT [10])
models for personalized recommendation.

• NCF [28] constructs a multilayer deep network to perform nonlinear user–item inter-
actions, aiming to capture hidden nonlinear collaborative signals between users and
items for recommendation. It represents a simplified KMEL model with only ID and
nonlinear interaction function;

• GCMC [15] utilizes a graph convolutional encoder to embed users and items and
feeds them into a nonlinear decoder to predict users’ interests in items. It performs
the same as the collaborative embedding channel in KMEL;

• NGCF [17] recursively performs interest propagation on users’ interaction graph
to extract higher-order collaboration signals for embedding users and items. It It
additionally encodes relations to GCMC, however, only the interaction relation is
investigated;

• CKE [2] investigates knowledge base of items to enrich latent embeddings of items
and performs interaction between the enhanced item embedding with the naive
latent embedding of users for pairwise matching. Knowledge enriches only item
representation in CKE, but both users and items in KMEL;

• RippleNet [11] treats the items interacted by users as seeds and aggregates high-order
semantic signals through path propagation of the seeds over a knowledge graph to
learn embeddings.It involves neighbors in KG to help propagate interests while KMEL
investigate both neighbors and the corresponding various relations;

• KGAT [10] designs knowledge-aware attention on neighbors by graph convolution
to involve semantic collaborative signals of the knowledge graph into embeddings.
Compared to the fine-grained attention of KGAT, the proposed KMEL applies only
semantic attention to each space.

4.1.4. Parameter Settings

We implemented the proposed KMEL model with the deep learning framework
pytorch. The embedding size of users and items was fixed to 64, and the batch size was set
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to 1024. All model parameters were initialized with Gaussian distribution. We adjusted the
learning rate in the range [0.0001, 0.001, 0.01, 0.1] and searched L2 regularization strength
in the range

[
10−6, 10−5, . . . , 10−1, 1

]
to prevent overfitting. The interest propagation depth

of graph convolution in the proposed KMEL model were tuned in {1, 2, 3, 4}. Without
specification, all the comparison models adopted the same hyperparameter settings to
compare their recommendation performance for fairness.

4.2. Performance Comparison (RQ1)

The proposed KMEL is compared with NCF, GCMC, NGCF, CKE, RippleNet and
KGAT on the Amazon-Book and Yelp2018 datasets by NDCG@10 and Recall@10. Figure 2
shows the performance comparison of the Top-K recommendation lists of the proposed
KMEL and its comparisons. Table 2 provides a detailed comparison among them by
NDCG@10 and Recall@10, which can be observed from the performances:

• The performance of KMEL w.r.t NDCG and Recall consistently outperformed its
comparisons on the Amazon-Book and Yelp2018 datasets. By NDCG@10, the pro-
posed KMEL achieved 2.79% and 0.94% improvement over the strongest baseline on
the Amazon-Book and Yelp2018 datasets, respectively. Such performance improve-
ment proves the effectiveness of the proposed KMEL in modeling users’ interests.
The proposed KMEL is capable of finding semantic correlations among items to aid
collaborative embedding learning and alleviating the data sparsity issue for personal-
ized recommendation.

• The poor recommendation performance of NCF on the two datasets compared to other
models proves the effectiveness of graph-based interest propagation and even knowl-
edge propagation for mining users’ interests. In detail, the performance improvement
of GCMC and NGCF over NCF demonstrates the significance of collaborative sig-
nals hidden in the interaction graph on revealing interests. The performances of
CKE and RippleNet further illustrate the valuable role of knowledge to enrich users’
representations and comprehensively model users’ interests.

• NGCF performed better than GCMC on both datasets, demonstrating the positive
role of high-order collaborative signals in modeling users’ interests. Both NGCF and
KGAT explore higher-order collaborative signals to embed users, with a difference of
knowledge extension in KGAT. KGAT introduced a knowledge graph to aggregate
higher-order knowledge structures. Compared with NGCF, KGAT achieved better
performance, which verifies the positive impact of semantics in knowledge graph to
mine users’ interests.

• CKE, RippleNet, and KGAT showed an improved recommendation performance
compared to NCF, GCMC, NGCF, due to the valuable knowledge structure information
from the knowledge graph in building users’ interests. RippleNet outperformed CKE
on both datasets, which indicates that introducing multihop neighbor items in a
path-propagation manner is relatively effective for learning users’ interests, while
the regularization-based method may not fully utilize the rich semantics of items.
Compared with RippleNet, the performance of KGAT on both datasets shows that
the embedding propagation method can utilize the rich semantics of items more
effectively than the path-based and regularization-based models. Further, the attention
mechanism in KGAT not only improves the interpretability of the recommendation
results and further improves the recommendation performance.

• Compared with GCMC and NGCF, the excellent performance of the proposed KMEL
on both datasets demonstrates the capability of semantic correlations among items
to promote learning users’ interests. Meanwhile, KMEL outperformed RippleNet
and KGAT, proving the effectiveness of the cross-space multisemantic structures in
modeling users’ interests for personalized recommendation.
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Figure 2. Performance comparison of Top-K recommendations by NDCG@K on Amazon-Book and
Yelp2018 datasets, K = 1, 2, . . . , 10.

Table 2. Performance comparison by NDCG@10 and Recall@10.

Amazon-Book Yelp2018
NDCG@10 Recall@10 NDCG@10 Recall@10

NCF 0.4451 0.5105 0.5204 0.4163
GCMC 0.4609 0.5274 0.5302 0.4354
NGCF 0.4785 0.5419 0.5517 0.4401

CKE 0.4631 0.5206 0.5351 0.4408
RippleNet 0.4739 0.5391 0.5458 0.4502

KGAT 0.4804 0.5493 0.5647 0.4532

KMEL 0.4938 0.5581 0.5709 0.4593

%Improve 2.79% 1.6% 0.94% 1.36%

4.3. Knowledge-Aware Semantics (RQ2)
4.3.1. Impact of Independent Semantic Structures

Here, we attempt to evaluate the role of multiple independent semantic structures on
modeling users’ interests for recommendation. MLP, as the base model, performs interac-
tion on IDs of users and items, which is employed subsequently to explore the increment of
each independent semantic structure on interest learning. Specifically, we first conducted
recommendation by MLP, i.e., the castrated KMEL, removing the graph convolution layer
and all semantic structures. Then, we introduced the aforementioned collaborative em-
bedding learning with graph convolution (+Gconv) and semantic embedding learning on
semantic structures (+Character, +Author, +Subjects, +Categories, +Music), respectively.
Figure 3 shows the recommendation performance of the relevant submodels (+Gconv,
+Character, +Author, +Subjects, +Categories, +Music) compared to that of MLP (+None) by
NDCG@10. On both datasets, it can be observed that the recommendation performance
gradually improved by involving more semantics, and the proposed KMEL attained the
best performance on recommendation when all the semantic structures were introduced.
This demonstrates the complementary role of collaborative and knowledge embeddings on
mining users’ interests. Additionally, the performance also illustrates the varying impact of
semantics on recommendation. This is reasonable, since the importance of semantics varies
in revealing users’ interests. Some semantics derive a relatively apparent improvement on
performance, while others bring a relatively small improvement. Taking the Amazon-Book
dataset as an example, the semantics of book author greatly improves the performance
compared with other semantics. This coincides with the reality that readers tend to prefer
books written by their favorite authors.
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Figure 3. Recommendation performance of relevant submodels (+Gconv,+Character, +Author, +Sub-
jects, +Categories, +Music) compared to that of MLP (+None) on Amazon-Book and Yelp2018 datasets
by NDCG@10.

4.3.2. Impact of Target-Aware Multispace Fusion

Experiments were performed to measure the impact of the multispace fusion mech-
anism on mining users’ interests. We compared the recommendation performance of
KMEL with linear average aggregation (ave) to that with target-aware attentive aggrega-
tion (att). Figure 4a shows the experimental performance of the proposed KMEL with
average and target-aware aggregation mechanisms on Amazon-Book and Yelp2018 datasets
by NDCG@10. The results show that the target-aware attention-based aggregation outper-
formed linear aggregation on both datasets, demonstrating the advantage of the target-
aware attention mechanism to aggregate multiple spaces on embedding learning adaptively.
Since users’ interests are inherently complex, global linear aggregation cannot fit users’
varying personalized interest distribution. The target-aware attention mechanism can
model the importance of semantics on revealing users’ interests, which helps effectively
improve the recommendation performance.

(a) Aggregation mechanism (b) Importance degree

Figure 4. Performance comparison on aggregation by NDCG@10 with (a) linear (ave) and target-
aware (att) aggregation mechanisms, and (b) importance degree of collaborative embeddings (CE)
and semantic embeddings of semantics (SE-character, SE-author, SE-subjects) for users #139, #20478
and #34235 from Amazon-Book dataset.

The importance degrees of semantics are evaluated by the attention mechanism.
Additionally, in order to further track the effect of attention mechanism on user embedding
learning, we randomly select users #139, #20478 and #34235 from Amazon-Book dataset
to show the importance degree of spaces in Figure 4b. We observe the variation among
these users on semantics. For user #139, collaborative embedding (CE) contributes more
to modeling the user’s interests than other semantics. The other two users have relatively
strong preferences on different semantics, respectively. The importance degree varies
among semantics even varies among users. The varying importance degrees support the
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conclusion that semantics contribute different to a specific user, and the proposed KMEL is
capable of building adaptive aggregation with the target-aware attention mechanism.

4.4. Study of KMEL (RQ3)

To measure the impact of hyperparameters on model recommendation performance,
we perform experiments on interaction manner and propagation depth on Amazon-Book
and Yelp2018 datasets.

4.4.1. Effect of Nonlinear Interaction

User interests and item attributes are diverse and complex, making their interac-
tion hard to predicte. To measure the role of interaction manner on recommendation
performance, we performed KMEL with linear and nonlinear interaction functions on
Amazon-Book and Yelp2018 datasets. The inner product of user–item pair conducted
standard linear interaction and the MLP layer performed typical nonlinear interaction.
Figure 5 shows the recommendation performance of KMEL with linear and nonlinear
interaction functions by NDCG@10. It can be seen that the nonlinear interaction function
performed better than the linear interaction. This proves that the nonlinear correlation
inherently exists between users and items in interaction. The proposed KMEL leverages
the advantage of MLP on nonlinear mapping to perform complex user–item interactions
for personalized recommendation.

Amazon-Book Yelp2018
0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

N
D
C
G
@
10

KMEL-linear
KMEL-nonlinear

Figure 5. Performance of the proposed KMEL with linear and nonlinear interaction on Amazon-Book
and Yelp2018 datasets.

4.4.2. Effect of Propagation Depth

We adjusted the propagation depth of graph convolution on both collaborative signals
and semantic signals in the range of {1, 2, 3, 4} to explore the effect of propagation depth of
the embedding learning layer. We used KMEL-1 to characterize the model with single-layer
propagation and KMEL-2,3,4 to characterize models with more depths. Table 3 summarizes
the performance of the proposed KMEL with varying propagation depth by NDCG@10 and
Recall@10. It shows that as the propagation depth increases, the recommendation perfor-
mance gradually increases until it reaches the optimal. The optimal depths of the proposed
KMEL on Amazon-Book and Yelp2018 datasets are at 3-layers for KMEL-3 and 2-layers for
KMEL-2, respectively. This difference is attributed to the varying characters of the datasets,
especially the difference in data sparsity. Deep propagation is required on the relatively
sparse Amazon-Book dataset to capture relatively more collaborative signals on embedding
users’ interests. Meanwhile, we observe that KMEL-1 outperformed other baselines in most
cases, further demonstrating the positive effect of semantic knowledge on modeling users’
interests. Considering effectiveness and efficiency, the proposed KMEL adopts 2-layer
propagation with graph convolution to learn embeddings for recommendation.
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Table 3. Performance of the proposed KMEL with varying propagation depth by NDCG@10
and Recall@10.

Amazon-Book Yelp2018
NDCG@10 Recall@10 NDCG@10 Recall@10

KMEL-1 0.4751 0.5244 0.5515 0.4344
KMEL-2 0.4938 0.5581 0.5709 0.4594
KMEL-3 0.4970 0.5584 0.5701 0.4580
KMEL-4 0.4941 0.5564 0.5694 0.4583

5. Conclusions

We have proposed a knowledge-aware multispace embedding learning model for
personalized recommendation. The proposed KMEL extracts collaborative signals from
multiple independent semantic structures and adaptively integrates collaborative and
semantic signals to predict users’ interests with a target-aware aggregation. The proposed
KMEL uses the semantic correlation among items to learn users’ interests, which coincides
with the reality that knowledge systems exist and impact users’ interests. Extensive experi-
ments on two real-world datasets demonstrate the effectiveness of the proposed KMEL on
modeling users’ interests with multiple semantic knowledge. Personalized recommenda-
tion tasks have always faced heavy data sparsity and cold-start issues. Existing knowledge
acts to explain various relations in the view of causal or codependent relationships. For ex-
ample, a user likes a movie due to the famous actor. This movie–actor knowledge provides
a significant clue to explain users’ interests. Valuable knowledge helps a comprehensive
understanding of the world, which would be a promising way to mine and build users’
interests as a future direction.
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