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Abstract: The cyclic alternating pattern is the periodic electroencephalogram activity occurring
during non-rapid eye movement sleep. It is a marker of sleep instability and is correlated with
several sleep-related pathologies. Considering the connection between the human heart and brain,
our study explores the feasibility of using cardiopulmonary features to automatically detect the cyclic
alternating pattern of sleep and hence diagnose sleep-related pathologies. By statistically analyzing
and comparing the cardiopulmonary characteristics of a healthy group and groups with sleep-related
diseases, an automatic recognition scheme of the cyclic alternating pattern is proposed based on the
cardiopulmonary resonance indices. Using the Hidden Markov and Random Forest, the scheme
combines the variation and stability of measurements of the coupling state of the cardiopulmonary
system during sleep. In this research, the F1 score of the sleep-wake classification reaches 92.0%. In
terms of the cyclic alternating pattern, the average recognition rate of A-phase reaches 84.7% on the
CAP Sleep Database of 108 cases of people. The F1 score of disease diagnosis is 87.8% for insomnia
and 90.0% for narcolepsy.

Keywords: cyclic alternating pattern; cardiopulmonary resonance indices; sleep-related pathology;
machine learning

1. Introduction

Sleep, which accounts for nearly a third of human life, is an important function that
helps the body to recover. It has been proven that sleep could help to reduce stress, regulate
hormone balance, stabilize appetite and cardiovascular function [1–3]. At the same time,
sleep is essential for the recovery of the brain function, which is closely related to brain
development, learning, memory and mental health of human beings [4]. A lack of sleep
will cause different degrees of harm to the body and mind [5]. The monitoring of sleep and
the detection of sleep-related diseases are of great significance in people’s daily life as well
as in clinical treatment.

Sleep is known to rhythmically regulate autonomic nervous system activity. Quiet
sleep is associated with increased parasympathetic arousal and activity, while rapid eye
movement (REM) sleep is relevant to the increased sympathetic activity [6]. The sleep
structure is based on the cyclical alternation of two main neurophysiological states: REM
and NON-REM (NREM) sleep [7]. The alternations of non-REM and REM sleep constitute
the sleep cycle, and its recurrence during the night determines the classical progressive
sleep mode.

Many researchers suggest that both slow and fast electroencephalogram (EEG) acti-
vation complexes are involved in the structural organization of sleep [8]. Deep sleep is
established and maintained through a process of periodic EEG instability accompanied by
mild autonomic fluctuations in the wake state [9]. In contrast, the breakdown of slow-wave
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sleep and the introduction of REM sleep are mainly associated with EEG desynchronization
and strong activation of muscle and autonomic nerve functions [10].

The Cyclic Alternating Pattern (CAP) is the periodic EEG activity occurring during
NREM sleep. It is characterized by cyclic sequences of cerebral activation (phase A) fol-
lowed by periods of deactivation (phase B) which separate two successive phase A periods
with an interval <1 min [11]. Phase A period together with the following phase B period
define a CAP cycle [12]. Detailed investigation has ascertained that the spontaneous EEG
fluctuations of CAP are implicated in the subtle mechanisms that regulate the production
and attenuation of slow-wave activities during sleep [13]. Different components of CAP
have a sculpturing effect on the profile of the sleep cycle.

Phase A periods are subdivided into three subtypes. The abundance of A1 subtype
in the descending branches and grooves may be an EEG expression of brain mechanisms
involved in release activity, while the dominance of A2 and A3 subtypes in the ascending
branches reflects the REM-on drive [14]. Therefore, in addition to a variety of EEG features,
the activation complex also has non-random distribution characteristics at night, and has
obvious periodicity in NREM sleep within the CAP framework, e.g., [15–17]. CAP is
regarded as the main expression of sleep microstructure. CAP can be recognized in the
sleep of both adults and children and it is a sensitive tool for studying sleep disorders
throughout the life cycle [18,19].

Several efforts have been made to develop a reliable automatic CAP-scoring algo-
rithm [20–23]. Most of these methods rely on the extraction of spectral features from the
EEG and on the application of machine-learning algorithms, such as the k-nearest neigh-
bor, support vector machine, artificial neural network, decision trees, and deep neural
network [24,25]. However, EEG acquisition needs to be carried out under the guidance
of experts, and the wearing of the equipment will also affect the sleep state of the sub-
jects [26]. The preprocessing [27], recognition [28] and analysis [29] of EEG signal are
complicated [30].

Some researchers and institutions have tried to classify sleep stages by physiological
signals instead of EEG. As physiological signals that contain the physiological characteris-
tics and autonomic nerve status information of the human body, Electrocardiograph (ECG),
respiration and the three-axis acceleration signals on the chest have attracted much atten-
tion [31–33]. Wilhelm Daniel Scherz et al. used Heart Rate Variability (HRV) characteristics
of three transformation domains to determine sleep stages [34]. Mourad Adnane et al.
attempted to extract heart rate variability features from time domain, frequency domain,
detrend fluctuation analysis and window detrend fluctuation analysis, and used a support
vector machine to classify sleep and wake stage, with an average accuracy of 79.3% [35].
Martin Oswaldo Mendez et al. extracted HRV and body movement using a time-varying
auto-regression model, and classified REM and NREM using hidden Markov model [36],
and the time-varying relationship between EEG and HRV are studied [37]. Eline R.de Groot
et al. researched on the value of cardiorespiratory parameters for sleep state classification
in preterm infants [38].

Considering the connection between the heart and brain of people [39–41], the CAP,
which derives from the transformation of EEG, affects the excitability of human nerves
and then reflects not only in body movements and changes of heart rate, but also in
respiration [42,43]. Cardiopulmonary characteristics of people show diverse manifestations
in different stages of the sleep. Inspired by the causality analysis of the modulation of heart
rate form respiration, cardiopulmonary resonance indices (CRI) are defined to measure the
status of the cardiopulmonary resonance system by adopting the cardiopulmonary system
circuit model based on the causality analysis in frequency domain [42].

In this research, we first expanded the index system of CRI, combined with the
physiological significance of the cardiopulmonary coupling model. CRI in different sleep
stages of different people were analyzed in detail in this paper. Inspired by the results of
the statistical analysis of the cardiopulmonary characteristics of healthy people and patients
with sleep-related diseases, we proposed an automatic recognition and disease diagnostic
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scheme of CAP based on CRI. The scheme combines the variation and stability of CRI
using Hidden Markov [44] and Random Forest model [45]. In addition to the recognition
of CAP, this scheme can also diagnose sleep-related diseases through the cardiopulmonary
characteristics. Compared with the features of the directly acquired signals, such as ECG,
three-axis acceleration signals, etc., the proposed method explores the deep rhythm in the
cardiopulmonary system during human sleep, and is effective to conquer the weaknesses
in signal acquisition and processing in clinical trials. At the same time, this study also
proves the existence of the mind-brain connection in the human body.

In this paper, for materials and methods, Section 2 describes the database used in the
study and the data preprocessing before calculating CRI. Section 3 describes the CRI and
expands the index system, and statistical analysis of the cardiopulmonary characteristics
of people with non-pathology and patients with sleep-related diseases, then gives the
classification and recognition scheme. Sections 3 and 4 give the details and effects of the
methods. The last section is the conclusion and future work.

2. Materials and Methods
2.1. Data

This section describes the data set and the data processing in this research.

2.1.1. Data Set

The experimental data used in this study is obtained from the CAP Sleep Database [46]
in MIT-BIH database. The CAP Sleep Database is a collection of 108 polysomnographic
recordings registered at the Sleep Disorders Center of the Ospedale Maggiore of Parma,
Italy. The waveforms include at least three EEG channels, Electro-Oculogram (EOG) (two
channels), Electromyography (EMG) of the submentalis muscle, bilateral anterior tibial
EMG, respiration signals, the acceleration and gyroscope signals in the chest and ECG [47].

The database includes 108 cases of people with non-pathology and several sleep-
related pathologies. Expert neurologists who trained at the Sleep Center provided the
scoring of the sleep macrostructure, according to the Rechtschaffen & Kales rules [48],
including SLEEP−REM, SLEEP−S0, SLEEP−S1, SLEEP−S2, SLEEP−S3, SLEEP−S4, while
the CAP was detected in agreement with Terzano’s reference atlas of rules [49], including
MCAP−A1, MCAP−A2 and MCAP−A3 in the NREM period every 30 s. Sleep stages S0,
S1 and S2 are collectively called light sleep stage, while S3 and S4 are referred to as deep
sleep stage.

The Figure 1 below is an example of the EEG in sleep stage 2. Phases A1, A2 and
A3 are framed in the diagram according to the labels from experts. As shown in Figure 1,
the Phase A periods are subdivided into three subtypes [50]: Subtype A1: synchronized
events with low impact on autonomic and somatomotor activities; Subtype A2: mixed
synchronized–desynchronized EEG events with an intermediate influence on the autonomic
and somatomotor activities; Subtype A3: predominantly desynchronized EEG events with
heavy effects on the autonomic and somatomotor activities.

2.1.2. Data Selection and Preprocessing

The ECG and respiration signals of people with non-pathology, insomnia and nar-
colepsy are used in this study. For the signals in the database, stationary signals are selected
for analysis.

Wavelet analysis is used to remove the baseline drift of the signal and a Pasteur band-
pass filter is used to remove the noise. Then, for respiratory signals, we define the signal
quality function as follows:

Q =

0.5
∑

0.03
psd(res)

∑ psd(res)
(1)

where res represents the respiratory signal, psd represents power spectral density function.
Q value expresses the concentration degree of the power spectrum of respiratory signal, and
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the stability of respiratory frequency. Considering the respiratory signal is concentrated in
the frequency domain from 0.03 Hz to 0.5 Hz [51], the signals which meet the requirement
that Q > 0.85 are chosen [43,52]. This process ensures the quality of the respiratory signal to
be representative of the breathing condition of the subject.
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Figure 1. An example of the EEG in cyclic alternating pattern (CAP) in sleep stage 2. The horizontal
axis represents the sampling point, and the vertical axis represents the amplitude of the signal. The
shapes of the EEG signals in red, blue, and green boxes correspond to the CAP−A1, CAP−A2, and
CAP−A3, respectively.

As for the ECG, to ensure RR intervals (intervals between adjacent R waves) in the
normal range and without a mutation because of premature beat or other physiological
phenomena [53], we use interpolation as a substitute for points that do not meet the
following conditions based on the Gaussian model [54]:∣∣RRIi − RRI

∣∣< 1.5 ∗ Std(RRI)
0.7 ∗ RRIi−1 < RRIi < 1.3 ∗ RRIi−1

(2)

where RRI is the RR intervals, RRIi−1 and RRIi are adjacent intervals.
After processing ECG and respiratory signals, we calculated CRI sequences taking the

step size of 10 s with the window of 120 s.

2.2. Methods
2.2.1. Cardiopulmonary Resonance Indices (CRI)

Cardiopulmonary interaction is important in the circulation system to ensure efficient
delivery of oxygen and nutrients, and that the efficiency is optimized at the state of
cardiopulmonary resonance. Cardiopulmonary resonance indices (CRI) come from the
bivariate autoregressive model of respiration series and RR intervals. The model could
calculate respiratory along with the non-respiratory component effects on RR intervals in
the frequency domain based on G-causality [42].

In the model, the change process of RRI was regarded as a Markov process, ignoring
other factors affecting heart rate in the short term, the RRI and RSP (both of length T) were
described by a bivariate auto-regressive model [43]:

RRI(t) =
p
∑

j=1
A11,jRRI(t− j) +

p
∑

j=1
A12,jRSP(t− j) + ε1(t)

RSP(t) =
p
∑

j=1
A21,jRRI(t− j) +

p
∑

j=1
A22,jRSP(t− j) + ε2(t)

(3)

where p is the maximum number of lagged observations included in the model (the model
order, p < T). A contains the coefficients of the model, and ε1, ε2 are the residuals for each
time series.
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By the definition of G-causality, the magnitude of RSA can be measured by the log
ratio of the prediction error variances for the restricted (R) and unrestricted (U) models:

G2→1 = ln
var(ε1R(12))

var(ε1U)
(4)

where ε1R(12) is derived from the model omitting the A12,j (for all j) coefficients in the first
equation and ε1U is derived from the full model [21]. In order to describe the effect of
respiration on heart rate better, and to compare the model with Heart Rate Variability
(HRV), the model conducted the operation above in the frequency domain. Thus, through
the model, we obtained a curve G(f) which measures the cardiopulmonary interaction in
the frequency domain.

Based on G(f) in the frequency domain, CRI are defined to measure the status of
the cardiopulmonary resonance system by adopting the cardiopulmonary system circuit
model [42,55,56] (Figure 2).
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Figure 3. CRA represents the coupling depth of the cardiopulmonary system, CRB rep-
resents the width of the coupling frequency band, and CRQ represents the current quali-
ty of the cardiopulmonary system. CRI are the quantitative measurements for respirato-
ry sinus arrhythmia (RSA) in the frequency domain [42]. Reflecting the modulation ef-
fect of breathing on heart rate changes, CRI well represent the degree of cardiopulmo-
nary resonance and parasympathetic nerve activity level. They have been proved valid 
in the classification of NON-REM (NREM) and REM sleep [42] and in the antepartum 
autonomic nervous care in pregnant women [43]. 

Figure 2. Schematic diagram of cardiopulmonary system and its circuit model. Interaction between
lung and heart resembles the energy flow between inductor and capacitor. The non-respiration factors
are equivalent to resistor, damping the resonance.

CRI include cardiopulmonary resonance amplitude (CRA), cardiopulmonary reso-
nance bandwidth (CRB) and cardiopulmonary resonance quality factor (CRQ) shown in
Figure 3. CRA represents the coupling depth of the cardiopulmonary system, CRB repre-
sents the width of the coupling frequency band, and CRQ represents the current quality
of the cardiopulmonary system. CRI are the quantitative measurements for respiratory
sinus arrhythmia (RSA) in the frequency domain [42]. Reflecting the modulation effect
of breathing on heart rate changes, CRI well represent the degree of cardiopulmonary
resonance and parasympathetic nerve activity level. They have been proved valid in the
classification of NON-REM (NREM) and REM sleep [42] and in the antepartum autonomic
nervous care in pregnant women [43].
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Figure 3. Cardiopulmonary Resonance Indices (CRI). CRA is the maximum amplitude of the curve,
and CRB is the bandwidth of the curve. FA is the cardiopulmonary resonance frequency.

CRQ is defined to measure the merit of the cardiopulmonary resonance system by
adopting the quality factor measure for inductor, capacitor, and resistor LCR oscillator.
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Combined with the physiological significance of the cardiopulmonary coupling model,
we expanded the index system with non-respiration factors, which is an analogy with
the energy consumption element in the circuit model, as cardiopulmonary resonance
resistance (CRR).

In the oscillating system, the quality factor of a circuit is the ratio between the reactance
power and the average power consumed by the resistor, namely the ratio of reactive power
and active power. In the non-radiative system, the capacitive reactance is equal to the
inductive reactance at resonance, then we can deduce [57]:

CRQ =
1

2πFACR
(5)

where FA represents the cardiopulmonary resonance frequency. Then we define the car-
diopulmonary resonance resistance (CRR) as follows [57]:

CRR = 2πFACR (6)

Cardiopulmonary resonance resistance (CRR) represents the physiological phenomena
of people that exist in the heart rate variability excluding the respiratory modulation, and
is related to pathological state of the subject.

CRA, CRB, CRQ and CRR jointly constructed the evaluation index system of cardiopul-
monary coupling. In the following analysis, we constructed the sleep analysis scheme
by using the performance of the four indicators (including CRQ, CRR, CRB and CRA)
in different groups. The significant difference of the CRI in A-phase and non-A phase
(NA-phase) period were detected by the repeated one-way ANOVA test.

2.2.2. CAP Recognition and Disease Diagnostic Scheme

Inspired by the results of the statistical analysis of the cardiopulmonary characteristics
of healthy people and patients with sleep-related diseases, we propose an automatic
recognition and disease diagnostic scheme of CAP based on CRI. Using the Hidden Markov
and Random Forest model, the scheme combines the values and stability of characteristics
which measure the status of cardiopulmonary system of people during sleep. Precision
and recall rates will be calculated in the next section.

The flow of the classification and diagnosis scheme is shown in the Figure 4 above.
In our work, movement characteristics and cardiopulmonary characteristics are extracted
every 30 s, along with improved Hidden Markov and Random Forest model, to classify the
sleep stages. Support Vector Machine (SVM) is then used to diagnose diseases.

The classification algorithm in this paper uses a total of 21 features, consisting of three
body movement (BM) features, 12 heart rate variability (HRV) features and six CRI features.
Each kind of data is preprocessed.

Body movement (BM) features [58] include the variance, approximate entropy and
sample entropy of three cycle acceleration signals. HRV features used in this paper can
be split into three categories following existing research [59]. Three time-domain features:
SDNN, RMSSD, pNN50. Four frequency-domain features: VLF power, LF power, HF
power, LF/HF ratio. Five nonlinear features: SD1, SD2 and SD1/SD2 from Poincare plot,
as well as sample entropy and approximate entropy. CRI features include follows: CRR,
CRB, CRQ, CRA, the variance of CRA, the entropy of CRA.

During the training process, to improve the effectiveness of the extracted features, for
the sleep stage WEAK, LIGHT SLEEP (stages S1 and S2) and DEEP SLEEP (stages S3 and
S4), 20 consecutive tagged data is selected as the training data, that is, the data remaining
unchanged in sleep status within 10 min is selected as the initial training data. For the
identification of A1-phase, A2-phase and A3-phase, all the data are used. When the value
of the calculated feature exceeds the normal range, the data fragment is preprocessed again,
and the outliers are compensated until the eigenvalue is normal.
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The scheme adopts the combination of Hidden Markov and Random Forest model to
fully utilize the variation and stability of features.

The Hidden Markov Model is used to characterize both the stability and the variation
of CRA between different sleep stages, and the final recognition scheme is realized by the
Random Forest Model.

The Hidden Markov Model is a probabilistic model of timing sequences. It can
learn the implicit characteristics of states by observing phenomena. The transformation
process between sleep stage is a Markov process with implicit temporal information. The
physiological signals and sleep states can be observed, while the numerical characteristics
of physiological significance of the state transitions are unclear. Therefore, we choose the
hidden Markov model as the initial model. In this study, for each subject, the transformation
between the sleep stages and phases is a Markov chain.

We take the CRA sequence as the observation sequence and the label of the sleep stages
as the state sequence. There are 18 kinds of sleep stages in this study, including WEAK, S1
(A1, A2, A3 and NA), S2 (A1, A2, A3 and NA), S3 (A1, A2, A3 and NA), S4 (A1, A2, A3
and NA) and REM. I is the state sequence of 18 dimension, and O is the corresponding
observation sequence of CRA.

I = (i1, i2, . . . , i18) (7)

A is the probability matrix of the observation transition:

A =
[
aij

]
18×18 (8)

aij = P(Ot+1 = qj
∣∣Ot = qi), i = 1, 2, . . . , 18; j = 1, 2, . . . , N (9)

where aij is the probability of the transformation to qj at time t + 1, given qi at time t.
In the CAP classification scheme, firstly, we train the HMM [44] for CRA and corre-

sponding sleep stage tags. Then, the values along the diagonal of A and the sum of each
column are calculated as the new eigenvalues of the states of the corresponding columns
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to represent the stability of CRA. Finally, we put the two new features and the 21 features
mentioned earlier as the inputs of the Random Forest Model.

The Random Forest Model has natural advantages for classification tasks with many
features and incomplete sample size, with high accuracy and fast training speed. It is
suitable as our final classifier. The training and classification work are carried out in two
layers, the first layer is carried out for identification stage WEAK, stages REM, S1, S2, S3
and stage S4, while the second layer is carried out for identifying A1-phase, A2-phase
and A3-phase in S1/S2/S3/S4, respectively. The clarification of the two layers both used
Random Forest Model.

SVM [60] is used in the scheme to diagnose insomnia and narcolepsy. The output of
the Random Forest Model and the 23 characteristics above are used for training of the SVM.
For subjects diagnosed with sleep-related disorders, their eigenvalues will be recalculated
and retained in the training library.

3. Results
3.1. Results of the Statistical Analysis of CRI in People with Non-Pathology, Insomnia
and Narcolepsy

This section describes the statistical analysis of the cardiopulmonary characteristics of
people with non-pathology and several sleep-related pathologies.

The deep sleep stage period (including stages S3 and S4) during the whole sleep, in
which the human body is least affected by external noise and voluntary activities, shows
more remarkable physiological significance in analyzing statistical results [61]. Previous
studies have shown that CRI characteristics are stable and have statistical significance
during deep sleep stage [43].

Therefore, CRI characteristics (including CRQ, CRR, CRB and CRA) in people with
non-pathology, insomnia and narcolepsy during the DEEP SLEEP period were analyzed.
The results are shown in the Figure 5 below. The values of CRI are normalized in the figure
for convenience of comparison. The blue bar shows the results of group with non-pathology.
The red bar shows the results of group with insomnia. The green represents the results in
subjects with narcolepsy.
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In the bar chart Figure 5, we can see that, compared to people with non-pathology,
insomniacs have higher CRQ and lower CRR, while narcolepsy patients show the opposite
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manifestations. The CRB of the healthy group is significantly higher than the CRB of
insomniacs and narcolepsy. At the same time, the CRA of insomniac patients is higher,
while the CRA of narcolepsy patients is significantly lower than the CRA of the healthy
group. The overall coupling of depth and width of narcolepsy patients are low.

For the analysis of CAP mode, the repeated one-way ANOVA, followed by Dunnett’s
post hoc test [62] is used to represent the significant difference of CRA in the A-phase and
non-A phase (NA-phase) period during the sleep stages S3 and S4 in Table 1 below as
an example.

Table 1. Repeated one-way ANOVA and Dunnett’s post hoc test. If the value of difference of the
mean > LSR, there is a significant difference between the groups being compared (p = 0.004 < 0.05).

CRA
in Deep Sleep

S3 S4

Difference of the Mean LSR
(p < 0.05) Difference of the Mean LSR

(p < 0.05)

A and NA 0.134 0.047 0.216 0.096

It is a method of comparing means in analysis of variance to judge whether the
influence of CRA on the sleep stage is significant [62]. For repeated one-way ANOVA, if
p < 0.05, there is significant difference between the groups. We calculated the p value of
CRA in S3 and S4: p = 0.004. For Dunnett’s post hoc test, if the value of difference of the
mean > LSR, there is a significant difference between the groups being compared.

In the Table 1, it can be seen that CRA, as a measure of coupling depth, has significant
differences between A-phase and NA-phase. For the different groups, measurements of
people with non-pathology, insomnia and narcolepsy were analyzed and compared to each
other below.

In the groups with non-pathology, insomnia and narcolepsy, by comparing the perfor-
mance of CRA in period A1-phase, A2-phase and A3-phase in sleep stages S1, S2, S3 and
S4 shown in Figure 6, the following results are obtained.
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Figure 6. The change line diagram of CRA of different people in CAP. CRA in period A1-phase,
A2-phase, A3-phase and NA-phase in sleep stages S1, S2, S3 and S4 are shown for every group.

In the non-pathology group, in stage S4, there is a significant drop in CRA from A2 to
A3; in stage S3, there is a huge drop between A1 and A2, whereas S1 and S2 are inherently
less coupled. CRA of A3 in stages S3 and S4 is lower than in stages S1 and S2 in the
NA-phase. In insomniacs, CRA of A3-phase in stage S3 is very low, while it is very high in
the NA-stage. We can see that CRA fluctuates greatly between phase A and non-Phase A.
This may be a compensatory mechanism of the autonomic nervous system in insomniacs.
In narcolepsy, the CRA in S3 and S4 is small regardless of whether they are in an A-phase
or NA-phase period.
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To facilitate the analysis and comparison between three groups, Figure 7 is drawn.
From Figure 7, compared with the healthy group, the cardiopulmonary performance of
insomniacs fluctuates greatly with the generation of A-phase. The value of CRA is very
large in the non-A phase period and very small in the A-phase period. However, the value
of CRA of narcolepsy patients is generally small. Combined with the overall analysis
of CRB and CRR, it can be concluded that the cardiopulmonary coupling damping of
narcolepsy patients is relatively high.
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during the whole sleep.

Overall, from the detailed analysis of the cardiopulmonary characteristics of different
groups during the sleep period, we could see that CRI characteristics (including CRQ,
CRR, CRB and CRA) in people with non-pathology, insomnia and narcolepsy are different
during the whole sleep. The CRI could help diagnose insomnia and narcolepsy. In the
CAP mode of different groups, both the variation and stability of CRA characteristics are
significantly different. Constructing a classifier combining variation and stability can help
us to recognize CAP more accurately.

3.2. Results of the Recognition and Disease Diagnostic Scheme

To illustrate the classification performance and generalization ability of the scheme,
we conducted the 7-fold cross-validation [63]. We proved the validity of the sleep stage
classification method by comparing our estimates with the expert diagnosis results.

The sleep stage classification results are shown in the confusion matrix Table 2. Each
value in the table represents the number of samples. Each column represents the prediction
category. Each row represents the actual category the data belong to. The results include
18 categories: Wake, REM, S1, S2 and S3, S4. In the S1, S2, S3 and S4, there are A1, A2, A3
and NA in every stage. According to Table 2, the accuracy and recall rates of the different
classes could be calculated.
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Table 2. The confusion matrix of the sleep stage classification.

Pre S1 S2 S3 S4

W R NA A1 A2 A3 NA A1 A2 A3 NA A1 A2 A3 NA A1 A2 A3

Act W 3622 102 57 48 72 316 112 70 58 49 2 3 3 22 3 1 4 20

R 70 824 20 28 45 40 32 23 19 26 1 3 3 12 2 1 2 4

S1

NA 52 16 2789 138 164 119 293 3 2 2 1 1 14 18 1 1 13 30

A1 73 28 5 383 81 48 3 4 7 21 1 1 1 3 1 1 1 3

A2 79 30 18 68 403 39 2 2 4 24 0 1 1 3 0 0 1 4

A3 86 30 6 13 17 309 1 1 4 27 0 0 1 4 0 0 0 5

S2

NA 55 26 250 9 3 1 2894 87 64 56 2 13 10 4 2 4 8 14

A1 52 23 27 4 2 0 20 243 42 16 0 2 3 2 1 1 2 2

A2 49 20 17 10 3 1 6 32 200 26 1 1 3 2 1 1 3 3

A3 64 33 14 15 2 1 8 17 21 268 1 1 1 3 0 1 1 5

S3

NA 3 0 8 1 0 0 6 2 0 0 161 14 8 1 19 1 1 0

A1 2 2 3 1 0 0 1 1 1 0 4 46 5 2 7 1 0 0

A2 1 0 2 1 0 0 1 1 1 0 2 4 31 3 6 1 0 0

A3 1 4 1 1 1 0 1 2 0 0 1 2 3 33 6 1 1 1

S4

NA 2 1 7 0 0 0 15 1 0 0 19 2 0 0 151 11 10 5

A1 1 1 3 0 0 0 3 0 0 0 6 1 1 0 2 44 3 1

A2 1 1 2 1 0 0 1 1 0 0 2 3 1 1 2 4 31 2

A3 1 3 1 1 0 0 1 1 0 0 2 3 2 2 1 1 4 37

The value of row i and column j represents the number of the sections whose truth value is class i and is predicted
to be class j. Each column represents the prediction category; Each row represents the actual category of data
belonging to. ‘W’ represents Wake, ‘R’ represents REM. ‘Act’ represents the number of actual sleep stage; ‘Pre’
represents the number of the predicted sleep stage.

In order to express classification accuracy and generalization performance form Table 2,
the F1 score is defined as the average of accuracy and recall rates of all the eighteen
classes [64].

F1i = 2 ∗ precisioni ∗ recalli
precisioni + recalli

(10)

In this formula, i stands for class i, including WEAK, REM and A1, A2, A3 and NA
from stage 1 to stage 4. The precision refers to the specific gravity of the positive sample in
the positive example determined by the classifier; recall refers to the proportion of the total
positive cases that are predicted to be positive. Then the final F1 score in CAP experiments
is [64]:

F1 =

18
∑

i=1
F1i

18
(11)

According to the Table 2, we could calculate that F1 score of sleep-wake classification
is 92.0%. F1 score in the sleep stage classification (WEAK, REM, S1, S2, S3 and S4) is 83.8%,
while the F1 score in the CAP experiments is 80.4%.

In detail, about the identification of A-phase, the accuracy in stages S1, S2, S3 and S4
are 84.4%, 90.1%, 84.2% and 79.9% respectively. The average recognition rate of A-phase
reaches 84.7%. Similarly, in terms of disease diagnosis, the F1 score of diagnosis and
recognition is 87.8% for insomnia and 90.0% for narcolepsy. For real cases, this table could
help to analysis differences between the results of sleep classification and the actual sleep
structure easily.
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4. Discussion

CRI characteristics (including CRQ, CRR, CRB and CRA) in people with non-pathology,
insomnia and narcolepsy are different in all stages during the whole sleep.

Compared to people with non-pathology, insomniacs show higher CRQ and lower
CRR, while narcolepsy patients have the opposite manifestations. The CRB of the healthy
group is significantly higher than the CRB of insomniacs and narcolepsy. At the same
time, the CRA of insomniac patients is higher than the healthy group, while the CRA of
narcolepsy patients is significantly lower than that of the healthy group. This phenomenon
can be considered as a compensation of autonomic nerve of insomniac patients. Meanwhile,
the coupling depth CRA and coupling width CRB of narcolepsy patients are always low
during the whole sleep.

In the CAP, in stage S4, there is a significant drop in CRA from A2 to A3; in stage S3,
there is a sharp drop between A1 and A2, whereas S1 and S2 are inherently less coupled.
CRA of A3 in stages S3 and S4 is lower than in stages S1 and S2 in the NA-phase. These
performances support the conclusions including the presence of heart-brain connection [39]
and the EEG performance of A2 and A3 type [50]. Compared to people with non-pathology,
the cardiopulmonary performance of insomniacs fluctuates greatly with the generation of
A-phase. The CRA is very large in the non-A phase period and very small in the A-phase
period. However, the CRA of narcolepsy patients is generally low. Combined with the
analysis of CRB and CRR, it can be concluded that the cardiopulmonary coupling damping
of narcolepsy patients is relatively high.

In the CAP mode of different groups, both the variation and stability of CRA are
significantly different. Our scheme using improved HMM and RF combines these two
points well. The average recognition rate of A-phase reaches 84.7% and the F1 score in the
CAP experiments reaches 80.4%.

In order to illustrate the role of CRI features in the scheme, as the control group, the
features related to CRI were removed while the remaining features were used. After the
training of the Random Forest Model and 7-fold cross-validation test, the F1 score of CAP
classification is 73.8%. The F1 score of disease diagnosis is 71.6%. Besides, as comparison,
features in references [34–38] are used in our scheme instead of CRI. Meanwhile, research
on the feature extraction methods of ECG in recent ten years [65–68] are also considered.
The results are shown in Table 3.

Table 3. The F1 scores of CRI and features of other studies in experiments of sleep stage classification
and disease diagnosis.

Method Sleep-Wake
Classification

S1, S2, S3, S4 and Wake Stage
Classification

CAP
Recognition

Disease
Diagnosis

Heart rate spectrum analysis [34,65] 77.6% 72.6% 66.7% 70.5%
detrended fluctuation analysis [35] 78.6% 71.4% 66.3% 64.7%

time-varying spectral features [36,37] 82.0% 76.6% 70.3% 72.5%
Heart rate fluctuations [38,66] 79.9% 73.1% 66.7% 70.5%

wavelet filter bank [67,68] 90.1% 82.6% 76.7% 80.9%
Removing CRI 85.9% 77.7% 73.8% 71.6%

CRI 92.0% 83.8% 80.4% 88.9%

It can be seen that the performance of the CRI surpasses that of the features in other
studies in sleep stage classification, especially in CAP pattern recognition. In the diagnosis
of sleep-related disorders, CRI significantly outperforms other features.

The performances of ‘removing CRI’ and ‘CRI’ are better than the other benchmark
papers, such as [34–38]. These papers start with the heart rate and body movement signals,
try to find features that can characterize sleep stages. The HRV features in our classifying
framework, include: three time-domain features: SDNN, RMSSD, pNN50; four frequency-
domain features: VLF power, LF power, HF power, LF/HF ratio; five nonlinear features:
SD1, SD2, SD1/SD2, sample entropy and approximate entropy. Body movement features
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include the variance, approximate entropy and sample entropy of three cycle acceleration
signals. These are more comprehensive than those in these papers. ‘CRI’ performances
better than [67,68], which uses wavelet filter bank to analysis the heart rate characteristics.
The wavelet analysis could dig out heart rate characteristics in depth, which are closely
related to the activities of cardiopulmonary system, to some extent. Compared with the
features of the directly acquired signals, such as ECG, three-axis acceleration signals, etc.,
CRI deeply explores the degree of cardiopulmonary coupling in different stages of sleep,
shows the physiological significance of the autonomic nerve regulation.

CRI characteristics quantify the coupling status in the cardiopulmonary system, and
could express the activity characteristics of autonomic nerve regulation. These autonomic
nerve regulation characteristics are determined by EEG, and ultimately manifest as tiny
periodic changes in sleep stages. At the same time, using Hidden Markov and Random
Forest model, the scheme proposed combines the values and stability of these characteristics
during sleep. This makes the results of classification more accurate. For the groups with
non-pathology, insomnia and narcolepsy, CRI show significant differences in various stages
of sleep and express the pathological features of the disease. Thus CRI make the framework
more effective in diagnosing diseases.

The results of the scheme, on the one hand, prove the existence of a heart-brain
connection, and on the other hand, verify the validity of CRI in the expression of the
cardiopulmonary coupling and autonomic nervous activity of human being. The scheme is
also helpful to identify insomniac patients and narcolepsy patients.

5. Conclusions

Cyclic Alternating Pattern (CAP) is a sensitive tool for studying sleep disorders
throughout the life cycle. Several efforts have been made to develop a reliable automatic
CAP-scoring algorithm. Most of these methods rely on the extraction of spectral features
from the EEG.

Considering the connection between the heart and brain of people, we analyze the
cardiopulmonary characteristics of cardiopulmonary resonance indices (CRI) in people
with non-pathology, insomnia and narcolepsy under the CAP mode. We analyze and
identify key fields that contribute to insomnia and narcolepsy. The results show that CRI
have different manifestations in different groups. The conclusion is drawn that CRI are
capable of representing the cardiopulmonary coupling degree, autonomic nerve state and
sensitivity of the subjects, and thus are able to measure the health status of human body.

Inspired by the results of the statistical analysis of the cardiopulmonary characteristics,
our CAP Recognition and Disease Diagnostic scheme uses CRI in the frequency domain as
the feature to recognize the A-phase stage during the whole sleep.

There are many trials in pattern recognition using Hidden Markov and Random Forest
model. Different methods have shown superiority in different applications. The scheme
in this article takes both variation and stability of measurements of coupling state of the
cardiopulmonary system during sleep into account. The precision and recall show the good
performance of the scheme.

The proposed method is effective to conquer the weakness about the signal acquisition
and processing in clinical trials, particularly when we consider the stress of the examinee
and the cost of measurements using the conventional Rechtschaffen & Kales rules [50].
Results show that the scheme could automatically recognize the Cyclic Alternating Pattern
accurately, and hence help to diagnose insomnia and narcolepsy. Further, we would
conduct more clinical trials to validate and improve our model.

To develop a classification and diagnosis scheme for a specific hospital, the clinical
data and expert opinions should be added into the scheme. It could be interesting to see
how these contribute to the prediction accuracy.

Furthermore, the meaning and application of CRI are also worth exploring, such as
the psychological stress, inflammation, etc.
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