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Abstract: Steganography is a vital security approach that hides any secret content within ordi-
nary data, such as multimedia. This hiding aims to achieve the confidentiality of the IoT secret
data; whether it is benign or malicious (e.g., ransomware) and for defensive or offensive purposes.
This paper introduces a hybrid crypto-steganography approach for ransomware hiding within
high-resolution video frames. This proposed approach is based on hybridizing an AES (advanced
encryption standard) algorithm and LSB (least significant bit) steganography process. Initially, AES
encrypts the secret Android ransomware data, and then LSB embeds it based on random selection
criteria for the cover video pixels. This research examined broad objective and subjective quality
assessment metrics to evaluate the performance of the proposed hybrid approach. We used differ-
ent sizes of ransomware samples and different resolutions of HEVC (high-efficiency video coding)
frames to conduct simulation experiments and comparison studies. The assessment results prove
the superior efficiency of the introduced hybrid crypto-steganography approach compared to other
existing steganography approaches in terms of (a) achieving the integrity of the secret ransomware
data, (b) ensuring higher imperceptibility of stego video frames, (3) introducing a multi-level security
approach using the AES encryption in addition to the LSB steganography, (4) performing randomness
embedding based on RPS (random pixel selection) for concealing secret ransomware bits, (5) succeed-
ing in fully extracting the ransomware data at the receiver side, (6) obtaining strong subjective and
objective qualities for all tested evaluation metrics, (7) embedding different sizes of secret data at the
same time within the video frame, and finally (8) passing the security scanning tests of 70 antivirus
engines without detecting the existence of the embedded ransomware.

Keywords: ransomware hiding; multimedia steganography; encryption; embedding; IoT; HEVC;
AES; LSB; quality assessment; multi-level security; antivirus; confidentiality and integrity

1. Introduction

The revolution of IoT systems has been growing significantly through the development
of daily life applications in various fields, including smart cities, education, healthcare,
and considerably more. IoT systems primarily consist of sensors and electronic devices,
which collect data and perform required actions accordingly [1]. Many advanced IoT
devices, specifically smartphones and smartwatches, are built on the Android platform
due to its high resilience and hardware support [2]. These Android-based IoT devices
provide the user a convenient way to interact and control other IoT devices such as smart
TV, cameras, and refrigerator through special applications. Thus, the Android operating
system (OS) is essential for communication and data exchange in IoT devices. However, the
continuous emergence of Android IoT devices increases malicious attacks. In 2019, the total
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Android malicious software detected globally reached 10.5 million, whereas the malware
development increased by 480,000 in 2020 (https://www.statista.com/statistics/680705
/global-android-malware-volume/ accessed on 1 September 2021). Such malicious attacks
may trespass the victim device to affect other connected nodes on the network, resulting in
violating the whole IoT ecosystem.

Among the most notorious harmful malware that threatens Android devices is ran-
somware. Ransomware is a subset of malicious software which takes control over the
victim’s device by blocking access to the system resource or encrypting sensitive data. The
victim gets the control back only if a ransom is paid to the attacker. According to [3], ran-
somware targets individual users, governmental parties, and business companies resulting
in significant financial loss. Mainly, ransomware is classified into two main categories,
locker-based ransomware, and crypto-based ransomware. In the locker-based ransomware,
a lock screen is displayed on the user device blocking access to the system resources. Hence,
a ransom is requested to remove the lock window [4]. On the other hand, the crypto-based
ransomware encodes the system data requesting a ransom to retrieve the decryption key.

Even though several works have been proposed on implementing ransomware detec-
tion systems [5–8], studies have discussed that such systems might not be sufficient enough
in detecting the malicious software that implements steganography and encryption tech-
niques [9]. Steganography is the art of concealing the presence of secret data by embedding
it within a cover object [10]. The applied techniques of steganography are mainly classified
into three categories based on how covert communication is established [9]. In the first
technique, the malicious software is concealed by simulating the network traffic of a benign
app. While in other types of steganography methods, parts of the malicious software
components are embedded within the network traffic. However, in media steganography
techniques, the malicious software is embedded within a media file. Among several media
files that can be utilized as a carrier object, the high-efficiency video coding (HEVC) is
gaining increasing interest due to its high embedding capacity [11,12].

Additionally, attackers might combine the implementation of steganography algo-
rithms with encryption techniques to increase the undetectability levels of malicious soft-
ware. In this case, even if a detection system revealed the hidden ransomware application,
it will not be classified as malware due to the implemented encryption technique. However,
in the scope of IoT devices, the limited resources and restricted energy consumption means
that the encryption algorithm must be carefully selected and implemented in IoT-based
solutions [13]. Consequently, the authors in [14] compared current encryption algorithms
such as AES, RSA, RC6, 3DES, and blowfish regarding energy consumption. The Advanced
Encryption Standard (AES) encryption algorithm is widely utilized by IoT security so-
lutions due to its low power consumption [15–17] compared to other ciphers, especially
asymmetric ciphers like RSA. AES is suitable when security and complexity concern the
applied security solution. AES is a symmetric encryption algorithm used with a minimum
128-bit key and 128-bit initial value (IV) [18]. Symmetry indicates that for both encryption
and decryption process, the same cipher key is used.

In this work, an offensive algorithm is presented in which the ransomware is firstly
encrypted and then concealed within HEVC video streams. The main contributions of this
paper are listed below:

(a) Study the related state-of-the-art research to examine any introduced efforts to
conceal ransomware apps within video streams.

(b) Summarize the recent literature approaches employing steganography algorithms
in concealing malicious software within multimedia data.

(c) Propose a novel, efficient hybrid crypto-steganography approach to conceal en-
crypted ransomware apps using AES encryption and LSB (least significant bit)-based
HEVC steganography.

(d) Achieve randomness embedding for a proper selection of cover media pixels for
hiding secret ransomware bits.

https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/
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(e) Employ objective and subjective simulations in detail to comprehensively assess the
proposed multi-level security approach.

(f) Achieve superior performance in the objective-based results for all examined 19 as-
sessment metrics used to evaluate the HEVC stream quality after ransomware
embedding, compared to recent related works.

(g) Obtain extraordinary similarity in the subjective-based results between the original
HEVC stream and stego HEVC stream resulting after ransomware embedding.

(h) Succeed in bypassing 70 famous antivirus engines as part of the security analysis
for the concealed ransomware within the HEVC stream.

(i) Extract secret ransomware apps successfully with high performance.

The primary threat model presented in this research exploits that most of the existing
detection approaches take ransomware as an input to their systems. They assume that
ransomware is always a visible app that can be scanned through their prediction systems.
Even if the victim’s detection system can detect the existence of the hidden ransomware,
assuming they have the original cover video, it still needs to extract it. If the system manages
to extract the hidden ransomware, it will find it encrypted, and the system requires the key
to decrypt it, which is also challenging. This paper’s main contribution is to bring attention
to the ransomware detectors from an offensive point of view that ransomware could be
distributed using cryptography & steganography. Cryptography encrypts the ransomware
to ensure that even if the steganography approach is broken (in case the detectors know
the steganography approach and original cover video), the detectors still cannot recognize
that this app is ransomware.

The rest of the paper is structured as follows. Section 2 presents a literature review
on the related work on ransomware detection and hiding techniques in the IoT devices
that were recently investigated. Section 3 discusses the proposed crypto-steganography
approach. Section 4 provides the results analysis and discussion. Finally, the paper is
concluded and future work is presented in Section 5.

2. Literature Review

Due to the explosive expansion of IoT systems, the number of connected nodes is
increasing dramatically. However, from this current IoT era and its related applications
have arisen several security attacks including denial of service (DoS) and malware control
which alarms real threats for any IoT device [19]. To overcome the main vulnerabilities of
Android IoT devices, several solutions have been proposed to detect IoT Android malicious
software using machine learning [1,20], neural network [2], and deep learning [21].

In [2], the authors developed a multi-layer deep learning model that provides deci-
sions via analyzing the previous malware features. Initially, the features of the malicious
software were divided into clusters. Subsequently, the detection system applied a unique
deep learning model on each separated feature set. Finally, it combined the results in
order to generate the final decision. Furthermore, they have stored the resulting deci-
sions in a blockchain to be further utilized in training specialized clusters. Another IoT
malware detection approach was proposed by [1]. The proposed scheme conducted a
vulnerability prediction analysis on Android IoT applications by implementing machine
learning algorithms. Even though the system provided recommendations on reducing
the risk vulnerabilities, it lacks large dataset samples that might affect the performance
of machine learning algorithms that generate the security measures. The authors of [21]
implemented a deep learning approach to develop two malware detection algorithms.
The proposed methods consume few resources; hence they were sufficient to be used by
Android IoT devices.

Kumar et al. proposed a run-time permission-based IoT malware detection scheme [22].
Initially, the detection algorithm performed a permission ranking and feature selection
based on the permission similarity. Then, it applied permission mining utilizing association
rules. Besides employing permissions in developing the IoT malware detection system,
the authors of [23] utilized the application programming interface (API) calls to develop
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an event-driven detection system. By creating vent groups that describe behaviors of the
application, the proposed system was able to classify new types of malicious software. An-
other testing framework was proposed by [24] which also aims to perform security analysis
on IoT devices for new malware families using machine learning algorithms. Furthermore,
the proposed test-learning framework implements genetic algorithms to generate Android
malware applications for IoT devices.

The authors of [25] developed an IoT malware detection framework that combines
several machine learning algorithms along with the advanced technology of blockchain.
The proposed framework extracted the malicious information and fed it to the blockchain
by utilizing a classification algorithm, and consequently, improving the efficiency of the
malware classification process since all the malicious information is stored in the blockchain.
An additional proposed framework that uses the machine learning approach was proposed
by [26]. The authors developed a subset of features based on examining the performance
of various feature selection algorithms. However, the machine learning approach can be
further utilized in detecting encrypted malware. Azmoodeh et al. presented a ransomware
detection algorithm that monitors the power consumption of Android IoT devices by
implementing machine learning algorithms [27]. The system classifies the ransomware by
calculating the energy consumption of the running processes.

Despite the advanced proposed solutions for IoT malware detection, malware steganog-
raphy is still considered a challenge that requires further investigation [9]. In [28], the
authors investigated the effect of embedding malicious software within a media file. Ini-
tially, they embedded a Metasploit malware within an image. After that, they performed
two detection scenarios before and after implementing the steganography algorithm using
Open Source Intelligence Tools such as VirusTotal. However, the results showed that several
anti-virus engines could not detect the hidden malware. Nevertheless, the hidden malware
was detected by some other anti-virus scanners. Another malware steganography attach
was presented by [29]. In the proposed steganography system, the identity of the malware
was hidden by generating fake network traffic, which mimics benign application traffic.
Furthermore, steganography techniques can be utilized to create covert communication
channels between the attacker and the malware. In [30], the authors developed a covert
channel using the StegBlocks technique, which enables text communication between the
active malware and its developer. However, the communication text file is limited to 23 KB.

In several research works, stenography techniques are combined with other cryptog-
raphy algorithms to enhance the security and privacy of hidden secret data. In [31], the
authors combined cryptography and stenography techniques to obtain a high security
standard. Initially, the data was encrypted using an AES algorithm. Subsequently, the
resulting encrypted data was concealed in 3D cover images. Arraziqi et al. have also
employed the AES algorithm as an additional security layer to their proposed stenography
scheme [32]. Furthermore, the authors of [33] have also adopted the AES algorithm as a
security technique to encrypt the data before hiding it with the carrier file. However, in [31],
two schemes were proposed in which LSB stenography is applied along with image pro-
cessing and cryptography in order to secure sensitive data. Moreover, the authors of [34]
have proposed a new embedding algorithm in which they apply sequential multiples
for LSB real-time data hiding algorithm. Additionally, they apply a visual cryptography
algorithm for security robustness.

In IoT platforms, a successful ransomware attack does not just result in compromising
the victim’s personal data, but also leads to hijacking the device functionality. Thus,
ransomware can be considered a devastating threat with consequences of compromising
billions of interconnected IoT devices. Frantic Locker is an example of a locker ransomware
that hijacks smart TVs which blocks the display screen and disables the reset option.
The ransomware is activated when the user runs a malicious movie application. Frantic
Locker requests a ransom of $500 USD to be paid within three days [35]. In the research
field, some ransomware applications have been developed to demonstrate the threat
ransomware can cause to the IoT networks. Android Simplocker is locker ransomware
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developed by Symantec researchers [36]. The proposed ransomware penetrates the Android
wearable device once the device is connected to a smartphone. Consequently, Android
Simplocker locks the display of the wearable device. A proof of concept was proposed
by Nassi et al. [37] to infiltrate the damage of ransomware on IoT devices in business
organizations. A smart bulb was hijacked by utilizing an Android smartphone from a close
car. The proposed attack proofs that ransomware can compromise and control the entire
IoT network.

Based on the above discussion, it can be concluded that most of the proposed detection
systems assume that the ransomware is visible to be analyzed. Furthermore, the related
works lack investigating the threat of encrypted malicious software. Therefore, in this paper,
a novel offensive algorithm is proposed in which malware in general, and ransomware
specifically, is encrypted and hidden in media streams.

3. Proposed Crypto-Steganography Approach

This section introduces the crypto-steganography approach that composes three main
processes: AES encryption, random pixel selection process, and LSB-based steganography.
The major advantage of employing the LSB-based steganography process is achieving high
imperceptibility. This is why recent works [38,39] have utilized LSB to hide benign data.

LSB steganography can hide the secret ransomware bits inside the LSBs of the cover
video frames without causing a noticeable difference between the cover and stego frames.
Therefore, by altering the LSBs of the color components of the input cover video frame
to a particular target binary value, the pixel’s color is slightly changed without making
discrepancies in the resulting stego frame that human eyes can recognize.

To achieve and develop a secure and robust ransomware hiding within HEVC frames,
both symmetric AES encryption and random pixel embedding processes are implemented
during the LSB steganography process. The associated secret key employed in the ran-
somware embedding process must be the same in the ransomware extraction process. In
contrast, the embedding bits in the video cover frame are changed randomly during the
hiding process. Therefore, without knowing and utilizing the original secret key, it is
challenging and not possible to recover and retrieve the concealed ransomware data in
the video frame. Thus, the decoder side needs to know the right secret key to rescue the
hidden ransomware data within the stego video frame.

The proposed crypto-steganography approach is established based on the introduced
image steganography algorithm presented in [40]. The crypto-steganography approach
comprises two algorithms; Algorithm 1: the ransomware hiding process, and Algorithm 2:
the ransomware extraction process as indicated in Figure 1. Firstly, a user-defined secret key
is used to control the random pixel embedding process to hide the encrypted ransomware
in the cover video frame. Additionally, this secret key is used to generate the initial
parameters to run the AES encryption algorithm and control the operation of the employed
random number generator (RNG). The secret encrypted ransomware bits are randomly
concealed within the HEVC frame to preclude the non-dedicated and undefined decoders
from identifying the concealed secret data. One of the main contributions of the crypto-
steganography approach is its capability to hide any size and amount of ransomware
samples within the HEVC frame, constrained merely by the cover video frame size.

The ransomware hiding algorithm takes as an input the cover HEVC frame (cover_frame),
the user-defined secret key (user_SK), and the ransomware sample. Initially, the user_SK is
forwarded to a hashing algorithm (SHA-256) to produce a secret hash code (hash_code) with
256 bits. The obtained hash_code is utilized to control the employed AES-128 encryption
algorithm as follows:

(a) The first part of the generated hash code (128 bits) is used as an initialization vector
(IV) for the applied AES-128 encryption algorithm.

(b) The second part of the generated hash code (128 bits) is used as a symmetric secret
key (ASE_SK) to encrypt the ransomware using AES-128 encryption algorithm.
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Figure 1. Proposed hiding/extraction stages of the crypto-steganography approach.
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Algorithm 1 Ransomware Hiding Process.

1: procedure RANSOMWARE_HIDING
2: Input: cover_frame, user_SK, ransomware
3: Output: stego_frame
4: Initialisation:
5: Initialize hash_code: 256 bits
6: Initialize IV: 128 bits
7: Initialize AES_SK: 128 bits
8: hash_code = SHA2 (user_SK)
9: IV = First_Part (hash_code)

10: AES_SK = Second_Part (hash_code)
11: encrypted_RW = AES-128 (ransomware, IV, AES_SK)
12: num_encodable_bits= (M× N) – N
13: First_Part (cover_frame, R0) = encrypted_RW.length
14: hop_num = RNG (num_encodable_bits, hash_code)
15: hop_binary = Convert_Binary (hop_num)
16: round = 1
17: cover_frame_modified = cover_frame
18: while (encrypted_RW.data 6= 0) do
19: if (hop_binary.pixel = 1) and (round = 1) then
20: cover_frame_modified.LSB = Embed (encrypted_RW, 3 bits)
21: end if
22: if (hop_binary.pixel = 0) and (round = 2) then
23: cover_frame_modified.LSB = Embed (encrypted_RW, 3 bits)
24: end if
25: if (cover_frame.end = True) then
26: round = 2
27: end if
28: end while
29: setgo_frame = cover_frame_modified
30: end procedure

Furthermore, the whole generated hash code (256 bits) is utilized as an input to the
random number generator (RNG) to generate the hop number (hop_num). The RNG further
requires as an input the total number of encodable pixels (num_encodable_bits). Hence, this
is calculated from the cover video frame ((M×N)-N), where M and N are the dimensions of
the cover video frame. The generated hop number (hop_num) has the same binary size as
the total number of encodable pixels, where each one of the encodable pixels requires to
be characterized by a one-bit of the generated random hop number. It is noticed that the
total encodable pixels are calculated by subtracting the length by one row from the video
frame size (M×N), where this first row (row 0) is reserved to be the video frame header.
This reserved video frame header has a length of 10 pixels that encompasses the length of
the encrypted ransomware data in binary. The length of the encrypted ransomware data is
an essential parameter to be stored within the video frame. The steganography approach
exploits this length to decide where to finish the embedding and extraction processes.

Prior to starting the embedding step, the generated random hop number (hop_num) is
converted into a binary sequence format (hop_binary). Consequently, this binary sequence
is considered as the prominent secret control key for randomly hiding the encrypted
ransomware data within the HEVC frame. The embedding step starts from the first pixel
of row 1 of the cover HEVC frame (cover_frame). The embedding step is repeated for
several rounds until all the data of the encrypted ransomware (encrypted_RW) is fully
concealed in the cover frame. For the first round, three bits of encrypted ransomware data
(encrypted_RW) are embedded in each LSB pixel of the colored HEVC frame only if this
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pixel maps to 1 in the random binary sequence. Nevertheless, in this initial round, the pixel
is skipped if the pixel maps to 0 in the random binary sequence.

Algorithm 2 Ransomware Extraction Process.

1: procedure RANSOMWARE_EXTRACTION
2: Input: stego_frame, user_SK, hop_num
3: Output: ransomware, original_frame
4: Initialisation:
5: Initialize hash_code: 256 bits
6: Initialize IV: 128 bits
7: Initialize AES_SK: 128 bits
8: Initialize decrypted_file_length: 10 pixels
9: hash_code = SHA2 (user_SK)

10: IV = First_Part (hash_code)
11: AES_SK = Second_Part (hash_code)
12: num_decodable_bits = (M×N) – N
13: decrypted_file_length = First_Part (cover_frame, R0)
14: hop_binary = Convert_Binary (hop_num)
15: round = 1
16: while (decrypted_file_length 6= 0) do
17: if (hop_binary.pixel = 1) and (round = 1) then
18: encrypted_RW = Extract (stego_frame, 3 bits)
19: end if
20: if (hop_binary.pixel = 0) and (round = 2) then
21: encrypted_RW = Extract (stego_frame, 3 bits)
22: end if
23: if (stego_frame.end = True) then
24: round = 2
25: end if
26: end while
27: ransomware = AES-128 (encrypted_RW, IV, AES_SK)
28: end procedure

However, if the end of the cover HEVC frame is reached while there is still encrypted
ransomware data that need to be embedded, the embedding step is repeated for a second
round. Starting from row 1 of the cover HEVC frame, the residual pixels in the encrypted
ransomware data are embedded in the pixels of the cover HEVC that were initially skipped.
Therefore, each pixel of the cover video frame maps to 0 in the random binary sequence
is currently embedded with the residual of encrypted ransomware secret data. Finally,
the stego video frame is obtained by collecting the encoded pixels resulted from the
embedding process.

It is demonstrated from the steps of Algorithm 1 that the whole pixels of the cover
HEVC frame are potentially exploited for embedding the encrypted ransomware data as
desirable based on its length. Furthermore, the most crucial advantage is that the encrypted
ransomware data is widely spread throughout the cover video frame, which is considered
a type of robustness and security against intruders. This is because by checking the LSBs of
the pixels within the stego video frame, it is difficult to differentiate or guess whether or not
these pixels have been modified or not. This is due to ciphering and scrambling the secret
ransomware data utilizing the AES algorithm. So, the original LSBs of the pixels within the
cover video frame may have identical values to the encrypted bits of the secret ransomware
data being hidden. Consequently, no alteration would be observed in the resulting stego
video compared to the original video frame.

Algorithm 2 presents the ransomware extraction process that takes as an input the
stego HEVC frame (stego_frame), user-defined secret key (user_SK), and the generated
hop number (hop_num). The extraction process implements the same steps described in
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the embedding process but in a reverse manner. Initially, all the required credentials (IV
and AES_SK) are generated to be further used in the AES decryption algorithm. Then,
the encrypted ransomware data is extracted from the cover video frame. Finally, the
accumulated encrypted ransomware data is decrypted using AES algorithm to get the
original ransomware data.

4. Results and Comparisons

This section validates the proposed crypto-steganography approach by testing its
performance on different resolutions of HEVC frames (cover media) and different sizes of
ransomware files (secret data) to assess its hiding and extracting efficacy. This demonstrates
the superiority of the proposed approach in hiding and extraction competence in the
case of using different ransomware sizes within cover frames while preserving the video
frame imperceptibility without affecting its visual quality and without recognizing the
presence of ransomware data. Tables 1 and 2 show the examined stream resolutions and
ransomware sizes, respectively. We comprehensively utilized subjective and objective
assessment metrics to evaluate the proposed crypto-steganography approach.

Table 1. Resolution of the tested video streams.

HEVC Stream Resolution

GTFly 3840 × 2160
Microworld 2560 × 1600

Shark 1920 × 1088
Kimono 1280 × 720
Balloon 640 × 480

Table 2. Size of the tested ransomware samples.

Test Sample Size

Ransomware 1 1.036 MB
Ransomware 2 734 KB
Ransomware 3 390 KB
Ransomware 4 171 KB
Ransomware 5 60 KB

For subjective evaluations, the visual results in terms of the cover/stego frames are
presented, in addition to the difference between them as will be demonstrated in Section 4.1.
Moreover, the visual outcomes of the histograms and Gaussian Laplacian edges of the cover
and stego frames are offered in Section 4.2. Furthermore, for objective evaluations, more
and different 19 quality assessment metrics that are listed in Table 3 with their optimal
values were utilized to test the efficacy of the proposed approach.

4.1. Visual Results Analysis

Visual analysis is used to check the amount of modification resulting in the stego frames
after hiding the ransomware within the cover frames. Table 4 presents the visual outcomes of
the examined cover and stego frames in case of utilizing various sizes of secret ransomware
data. Furthermore, Table 4 presents the acquired difference between the stego and the
cover frames (Entropy). From the obtained outcomes, it is noticed that the proposed crypto-
steganography approach successes in hiding more ransomware samples (different sizes)
inside the cover media frames (different resolutions) while preserving the perceptual quality
(imperceptibility). Besides, the similarity assessment between the stego and cover frames can
be evaluated using the estimation of the bit error rate (BER). BER estimates the error rate in
the pixel bits between the stego and cover frames, which is represented in Equation (1) [41]:

BER =
∑M

m=1 ∑N
n=1|x(m, n)− x′(m, n)|

M× N
(1)
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where x(m, n) refers to the cover frame, x′(m, n) refers to the stego frame, and M and
N are the width and height of the video frame, respectively. Thus, the BER metric can
be determined as the actual number of bit positions that are modified in the stego video
frame compared to the cover video frame. It is recommended to achieve lower BER for
accomplishing higher steganography performance. The results reveal that the stego frames
were completely similar to the cover frames by obtaining zero BER values. Additionally,
the diminutive difference in the entropy values for all examined HEVC streams proves the
proposed steganography approach’s high concealing performance and efficacy.

Table 3. The employed visual objective quality assessment metrics.

Metric Definition and Recommended Value (Cover/Stego) Optimal Value

Mean Square Error (MSE) [42] Calculate error percentage between cover and stego frames. Low MSE value
is recommended. 0

Peak Signal-to-Noise Ratio (PSNR) (dB) [43] Measure the quality of the stego frame referring to the cover frame. High value
is recommended. >20 dB

Signal-to-Noise Ratio (SNR) (dB) [44] Estimate the average power of the cover frame referring to the one of the difference
between the stego and cover frames. High value is recommended. >20 dB

Weighted Signal-to-Noise Ratio (WSNR) (dB) [45]
Determine the amount of average weighted power of the cover frame referring to
the one of the difference between the stego and cover frames. High value
is recommended.

>20 dB

Noise Quality Measure (NQM) (dB) [46]
Estimate the amount of distortion in terms of local luminance, contrast perception,
and frequency shift between the stego and cover video frames. High value
is recommended.

>20 dB

Structural Content (SC) [47] Estimate the amount of power for the cover frame referring to the amount of
power for the stego frame. Low value is recommended. 1

Maximum Difference (MD) [48] Estimate the difference between the stego and cover frames. Low value
is recommended. <5

Normalized Absolute Error (NAE) [43] Estimate the absolute difference value between the stego and cover video frames
referring to the absolute value of the cover frame. Low value is recommended. 0

Laplacian Mean Square Error (LMSE) [48] Determine the edges difference between stego and cover frames. Low value
is recommended. 0

Structural Similarity Index (SSIM) [49] Assess the visual structural similarity between the stego and cover frames. High
value is recommended. 1

Multi-Scale SSIM index (MS-SSIM) [50] Evaluate the multi-scale structural similarity between the stego and cover frames.
High value is recommended. 1

Feature Similarity Index (FSIM) [51] Estimate the feature similarity between the stego and cover frames. High value
is recommended. 1

Universal Quality Index (UQI) [52]
Evaluate the universal not local similarity in terms of
correlation/contrast/luminance quantities between the stego and cover video
frames. High value is recommended.

1

Normalized Cross Correlation (NK) [53] Compare the stego frame with the reference cover frame. High value
is recommended. 1

Average Difference (AD) [54] Estimate the average difference between cover and stego frames. Low value
is recommended. 0

Pixel-based Visual Information Fidelity (VIFP) [55] Compare the similarity information of pixels content of the stego and cover frames.
High value is recommended. 1

Bit Error Rate (BER) [41] Estimate the pixel error rate between the stego and cover frames. Low value
is recommended. 0

Edge detection ratio (EDR) [48] Determine the Gaussian Laplacian difference at the edges. Low value
is recommended. 0

Entropy (E) [48] Estimate the amount of information in the video frame. It is recommended to get a
lower value of difference entropy between the cover/stego frames (∆E). (∆E) = 0

Additionally, we calculated the computational CPU time of the proposed approach
as indicated in Table 4 (Column 2, next to the Entropy value). The results confirm that
the proposed stego-cryptography approach has satisfied complexity in embedding the
encrypted ransomware file inside a video frame. This also shows the complexity of the
extraction process, which is an identical inverse of the embedding process.
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Table 4. The employed objective quality assessment metrics.

HEVC Stream Cover Frame Stego Frame Difference Frame

Balloon (Frame 5) (Ransomware 5)

(Entropy = 7.4830) (Entropy = 7.4934, CPU time = 1.3749 s) (Entropy = 0.5758 and BER = 0)

Kimono (Frame 10) (Ransomware 4)

(Entropy = 6.8912) (Entropy = 6.8924, CPU time = 1.7652 s) (Entropy = 0.4649 and BER = 0)

Shark (Frame 15) (Ransomware 3)

(Entropy = 7.2341) (Entropy = 7.2383, CPU time = 2.4907 s) (Entropy = 0.5324 and BER = 0)

Microworld (Frame 20) (Ransomware 2)

(Entropy = 7.6303) (Entropy = 7.6318, CPU time = 3.1012 s) (Entropy = 0.4992 and BER = 0)

GTFly (Frame 25) (Ransomware 1)

(Entropy = 6.9411) (Entropy = 6.9429, CPU time = 3.8416 s) (Entropy = 0.3746 and BER = 0)

4.2. Histogram and Edge Results Analysis

Histogram analysis shows a relationship between the pixel frequency and its intensity
value of the video frame. Table 5 presents the outcomes of the pixel intensity distributions
(histograms) of the stego/cover video frames introduced in Table 4. These obtained
histograms substantiate and verify the high-performance accomplishment of the proposed
approach, where both stego/cover video frames have roughly identical pixel distributions.
Furthermore, the acquired histograms of the difference frames between stego/cover frames
are around the zero value, thus there are no pixel distributions for them. To further verify
the efficiency of the proposed approach, the visual outcomes of the Gaussian Laplacian
edges are introduced as shown in Table 6. These Gaussian Laplacian edges can be obtained
by estimating the value of the Laplacian operator for the whole pixels within the stego and
cover video frames. The Laplacian operator can be represented by L(x(m, n)), where x(m, n)
is the input stego or cover video frame, and (m, n) refers to the spatial location of the video
frame pixels. This operator can be mathematically represented as in Equation (2) [56].

L(x(m, n)) = x(m + 1, n) + x(m− 1, n) + x(m, n + 1) + x(m, n− 1)− 4x(m, n) (2)

Furthermore, the edge similarity between the stego and cover frames can be evaluated
using the calculation of edge differential ratio (EDR). EDR estimates the pixel error rate in
edges between the stego and cover frames. Therefore, a low EDR value is recommended. It
is represented in Equation (3) [57].
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EDR =
∑K

m,n=1 |B(m, n)− B̄(m, n)|
∑K

m,n=1 |B(m, n) + B̄(m, n)|
(3)

where the binary pixel value of the cover frame edges is estimated by B(m, n), and the
related binary pixel value of the setgo frame edges is estimated by B̄(m, n). It appears
from the results shown in Table 6 that both stego/cover video frames have identical edge
distributions for their whole included objects by achieving zero EDR values for all examined
HEVC streams. This verifies the hiding efficiency of the proposed approach for maintaining
the same edge distributions of the stego frames compared to the cover frames.

Table 5. Histogram outcomes of the tested HEVC frames in case of using different ransomware samples.

HEVC Stream Cover Frame Stego Frame Difference Frame

Balloon (Frame 5)
(Ransomware 5)

Kimono (Frame 10)
(Ransomware 4)

Shark (Frame 15)
(Ransomware 3)

Microworld (Frame 20)
(Ransomware 2)

GTFly (Frame 25)
(Ransomware 1)

In addition, a comparative analysis study is conducted to compare the proposed crypto-
steganography approach with recent steganography approaches as presented in Section 4.3.
This study employed 17 objective-based metrics to apply fair and deep comparison with
the related works.

From a security perspective, the encrypted ransomware embedding performance is
validated using antivirus scan analysis as indicated in Section 4.4. Seventy well-known
antivirus engines were used to scan the ransomware before embedding and after embed-
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ding (stego frame & infected video). Finally, the integrity of the hidden ransomware was
examined and proved in Section 4.5.

4.3. Objective Quality Assessment Analysis

To further ensure the superiority of the proposed crypto-steganography approach, we
compared its accomplishment with recent related steganography algorithms that are in-
troduced in [38,39,58]. These introduced algorithms are based on only one stage of LSB
steganography without employing further security stages like encryption or random embed-
ding strategy as investigated in our proposed work in this paper. Table 7 shows the objective
outcomes of the comparative analysis between the proposed approach compared to the related
algorithms [38,39,58] in terms of all quality assessment metrics that were presented in Table 3.

Table 6. Gaussian Laplacian edges of the tested cover and stego HEVC frames in case of using
different ransomware samples.

HEVC Stream Cover Frame Stego Frame

Balloon (Frame 5) (Ransomware 5)

(EDR = 0)

Kimono (Frame 10) (Ransomware 4)

(EDR = 0)

Shark (Frame 15) (Ransomware 3)

(EDR = 0)

Microworld (Frame 20)
(Ransomware 2)

(EDR = 0)

GTFly (Frame 25) (Ransomware 1)

(EDR = 0)

As elaborated in Table 3, some of these objective quality metrics must have lower values,
and others must have higher values to achieve the recommended and appreciated performance
for the proposed crypto-steganography approach. In this perspective, it can be concluded
from Table 7 that our proposed crypto-steganography approach outperforms almost all of the



Sensors 2022, 22, 2281 14 of 20

objective quality assessment metrics in comparison with the related works. This is obvious by
obtaining lower values of the MSE, NAE, AD, LMSE, MD, SC, and ∆E metrics and higher
values of PSNR, NK, SSIM, FSIM, MS-SSIM, UQI, SNR, NQM, WSNR, and VIFP metrics for
the proposed approach compared to the related steganography approaches.

Table 7. Comparison results of objective quality assessment of tested video streams.

Metric Approach Balloon Kimono Shark Microworld GTFly

MSE This work 0.1765 0.0972 0.0955 0.0795 0.0473
[58] 0.4657 0.0984 0.1172 0.0874 0.1136
[38] 0.3625 0.1038 0.1273 0.0817 0.1208
[39] 0.2976 0.0992 0.0983 0.0901 0.0892

PSNR (dB) This work 55.6638 58.2528 58.3326 59.1297 61.3848
[58] 51.45 58.1309 57.4431 58.7163 57.5758
[38] 52.718 56.3341 57.6728 57.9571 57.9781
[39] 53.6103 57.4051 57.0187 58.5707 58.6273

SNR (dB) This work 34.5556 36.9058 37.3517 38.2439 40.6255
[58] 29.0289 36.8942 35.8633 35.8633 35.651
[38] 30.8278 34.8641 35.8934 36.8679 36.8997
[39] 32.2409 35.9647 36.7639 37.6817 37.9534

WSNR (dB) This work 62.207 59.2711 64.5086 66.1695 67.0911
[58] 50.5367 55.203 56.6973 60.5513 54.9348
[38] 50.0891 55.3927 55.9894 60.7813 55.8397
[39] 51.4831 56.7161 57.4387 61.4637 56.5974

NQM (dB) This work 41.0328 47.1413 33.7515 42.4614 42.2109
[58] 33.7358 46.694 31.0799 40.9216 35.9405
[38] 33.7352 45.6712 31.8274 40.7618 36.0081
[39] 34.9856 46.8674 32.1127 41.2064 37.1346

SC This work 1.0001 1.0002 1 1 1
[58] 1.0006 1.0004 1.0001 1 1.5002
[38] 1.0008 1.0006 1.0005 1.0003 1.1201
[39] 1.0004 1.0003 1.0003 1.0002 1.081

MD This work 2 1 1 1 1
[58] 6 4 3 3 5
[38] 4 3 2 3 4
[39] 3 2 2 2 3

NAE This work 0.0013 0.0016 0.00075 0.00065 0.00049
[58] 0.0018 0.0019 0.00077 0.00067 0.00083
[38] 0.0017 0.002 0.0024 0.0071 0.0073
[39] 0.0015 0.0018 0.002 0.0068 0.0067

LMSE This work 0.0065 0.0037 0.0037 0.0011 0.002
[58] 0.0081 0.0058 0.0051 0.0079 0.0043
[38] 0.0079 0.0053 0.0049 0.0057 0.0067
[39] 0.0072 0.0049 0.0043 0.0034 0.0054

SSIM This work 0.9986 0.9996 0.9994 0.9997 0.9997
[58] 0.9971 0.9993 0.9992 0.9995 0.9995
[38] 0.9973 0.9991 0.9987 0.9991 0.9991
[39] 0.9979 0.9994 0.9989 0.9994 0.9993

MSSIM This work 0.9983 0.9997 0.9985 0.9998 0.9999
[58] 0.995 0.9995 0.9967 0.9997 0.9997
[38] 0.9974 0.999 0.9971 0.9989 0.999
[39] 0.9979 0.9992 0.9979 0.9991 0.9995

FSIM This work 0.9999 1 0.9999 1 1
[58] 0.9986 0.9997 0.9996 0.9998 0.9996
[38] 0.9991 0.999 0.9971 0.9989 0.9993
[39] 0.9994 0.9992 0.9979 0.9991 0.9995

UQI This work 1 0.9997 1 1 1
[58] 1 0.9995 1 0.9998 0.9998
[38] 0.9997 0.9992 0.9997 0.9995 0.9993
[39] 1 0.9994 0.9999 0.9997 0.9996

NK This work 0.9999 0.9999 1 1 1
[58] 0.9997 0.9998 0.9999 0.9998 0.9998
[38] 0.9994 0.9993 0.9995 0.9992 0.9996
[39] 0.9996 0.9996 0.9997 0.9996 0.9997

AD This work 0.0022 0.0056 −0.0016 −0.003 −0.0031
[58] 0.0548 0.006 0.0064 0.0022 0.0076
[38] 0.0427 0.0089 0.0071 0.0064 0.0083
[39] 0.0292 0.0071 0.0059 0.0048 0.0067

VIFP This work 0.9994 0.9998 0.9997 0.9998 0.9997
[58] 0.9972 0.9997 0.9988 0.9993 0.9988
[38] 0.9979 0.9991 0.9991 0.9991 0.9987
[39] 0.9984 0.9995 0.9993 0.9994 0.9991
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Table 7. Cont.

Metric Approach Balloon Kimono Shark Microworld GTFly

(∆E) This work 0.5758 0.4649 0.5324 0.4992 0.3746
[58] 0.6725 0.4922 0.5794 0.5375 0.4242
[38] 0.6913 0.4937 0.6108 0.5798 0.5221
[39] 0.6149 0.4706 0.6098 0.5578 0.497

Therefore, the proposed crypto-steganography approach is highly recommended for
ransomware hiding applications due to: (a) ensuring ransomware data integrity, (b) achiev-
ing high imperceptibility, (c) adding an extra level of security by applying AES encryption
incorporated with steganography algorithm, (d) the capability of randomness in ransomware
embedding process (e), accurate ransomware extraction, and (f) the capability of embedding
different sizes of secret data within various video streams with different features.

4.4. Ransomware Security Scanning Analysis

As part of the security test, ransomware scanning analysis was performed utilizing the
VirusTotal platform (https://www.virustotal.com/ accessed on 1 August 2021). VirusTotal
is an online detection system that provides scanning services for any data type. Virus-
Total utilizes over 70 anti-virus engines to perform malware detection and classification
services [59]. Moreover, to ease the scanning process for large-scale databases, VirusTotal
provides an API service in which researchers can upload the entire dataset and perform
the scanning process without using a web interface. As a result, business companies have
widely used the VirusTotal platform to diagnose their products’ false negatives and pos-
itives. Furthermore, its scanning services have been heavily used by researchers in the
security field to detect several malware families [60].

In our experiment, ransomware scanning analysis was implemented on three different
files. Before the hiding process, the original ransomware APK file was fed as an input
to VirusTotal engines. Subsequently, the scanning process was performed again on the
stego frame (PNG file) resulting after applying the hiding process. Finally, the stego frame
was merged with the original video frames and the entire infected video (AVI file) was
scanned. The results of applying ransomware scanning analysis on the three files (APK,
PNG, AVI) are illustrated in Figure 2. As Figure 2a demonstrates, performing the scanning
on the original ransomware APK alerted 34 out of 64 antivirus engines about the malicious
behavior of this APK. However, after applying the proposed approach, none of the antivirus
engines were able to detect the concealed ransomware within the cover frame (Figure 2b).
Additionally, the hidden ransomware within the infected video was also undetectable by
any of the VirusTotal engines (Figure 2c).

(a) (b) (c)

Figure 2. VirusTotal scanning results. (a) Ransomware scan result. (b) Stego frame scan result.
(c) Infected video scan result.

https://www.virustotal.com/
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4.5. Original/Extracted Ransomware Analysis

The comparison between the original and extracted ransomware APK files was per-
formed on two levels, APK-level and code-level. The APK-level comparison was performed
using version 1.0 of Apkcompare tool (https://github.com/linsea/ApkCompare accessed
on 1 August 2021). The tool takes as an input the two APK files and generates a file
listing the differences between the provided APK’s. However, in our tests, the generated
comparison files were empty, indicating identical APKs. On the other hand, in order to im-
plement a code-level analysis, the ransomware APK files were decompiled using Apktool
(https://ibotpeaches.github.io/Apktool/ accessed on 1 August 2021)) to retrieve the origi-
nal source code. Therefore, decompiling the original and the extracted ransomware APK
files resulted in retrieving the manifest files and the small files of each APK, respectively.
Subsequently, the retrieved source code files were compared using the Diffchecker tool
(https://www.diffchecker.com accessed on 1 August 2021). The comparison analysis of the
source code files reveals no difference between the original and the extracted ransomware
files.This proves the optimal extraction of the embedded encrypted ransomware from the
HEVC streams.

Furthermore, to ensure the integrity of the proposed approach, the hash function
SHA256 has been applied on the ransomware samples before the embedding and after
performing the extraction algorithm. Table 8 shows the digest of the original ransomware
samples matches the digest of the resulting ransomware succeeding the extraction pro-
cess. Thus, it can be concluded that the ransomware samples were recovered completely
and correctly.

Table 8. Hash-256 values of ransomware samples before and after implementing the extraction
algorithm.

Ransomware Sample Original Extracted

Ransomware 5 0b996d80d1c721c5ddc5991d45a
84b27906619524a9a7518d12 47dfafda3f15a

0b996d80d1c721c5ddc5991d45a
84b27906619524a9a7518d12 47dfafda3f15a

Ransomware 4 4c82672ee77ac1229e8de9a33ec22
33d650ee3b2133cc30569822 adae50bc0ed

4c82672ee77ac1229e8de9a33ec22
33d650ee3b2133cc30569822 adae50bc0ed

Ransomware 3 3fb373be488bd20f5055e413824b4
5d2ab56e1949c58a867a9a6 8118d119c97e

3fb373be488bd20f5055e413824b4
5d2ab56e1949c58a867a9a6 8118d119c97e

Ransomware 2 01b7fafdd11276012f5480c7ea4215
22c287bda88b756d77521157 65bcbb2b19

01b7fafdd11276012f5480c7ea4215
22c287bda88b756d77521157 65bcbb2b19

Ransomware 1 72f87a4199d3a295d45ca7eda532d
41842687813f4c6ea22a716 bec66d4f5288

72f87a4199d3a295d45ca7eda532d
41842687813f4c6ea22a716 bec66d4f5288

As can be observed from the above results, the mission of anti-steganography technol-
ogy against our approach is very challenging due to the following reasons:

• The difficulty of knowing the original cover media, mainly when it is in the format
of video streaming. The attacker can utilize any trending video to hide ransomware
there. It is not easy and maybe not be possible for the anti-steganography to be aware
of the original video to detect the presence of the hidden data.

• The randomness of choosing the video frames and bits to embed the ransomware.
This makes it even more difficult to recognize where the ransomware is hidden.

• Even if the above two conditions are satisfied and the anti-steganography techniques
manage to locate the hidden ransomware within a video stream, the extracted data
will be encrypted, and the key is needed to decrypt it and then analyze it, which is
also very challenging as only the attacker knows the key.

Therefore, our proposed approach is robust against the most common antivirus soft-
ware even though they are equipped with up-to-date malware detection solutions.

5. Conclusions

This paper demonstrated that the available and modern ransomware detection sys-
tems have critical weaknesses because they do not consider the ransomware hiding pos-

https://github.com/linsea/ApkCompare
https://ibotpeaches.github.io/Apktool/
https://www.diffchecker.com
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sibility. Additionally, they do not check how to detect, extract, and analyze the con-
cealed ransomware apps inside multimedia data. In this work, an efficient hybrid crypto-
steganography approach has been introduced for ransomware hiding based on AES encryp-
tion and LSB-based HEVC steganography. Consequently, this paper has exploited the video
steganography process and tested its performance to hide encrypted ransomware apps
inside high-resolution video streams. Comprehensive objective and subjective assessment
metrics were utilized extensively to examine the proposed hybrid approach compared
to related research works. In addition, various HEVC streams with different resolutions
were tested to explore the hiding performance of various ransomware apps with diverse
sizes. The experimental analysis disclosed that the proposed hybrid approach succeeded in
hiding ransomware and bypassing all security and quality tests. Thus, it was concluded
and noticed from the obtained results that the key advantages of the proposed crypto-
steganography approach are (1) building a multi-level security framework for ransomware
hiding using both encryption and steganography processes, (2) ensuring the ransomware
privacy to avoid detection possibility even when screened by standard antivirus engines,
(3) achieving strong embedding performance by preserving the quality and the main
characteristics of the cover video stream after ransomware concealing, (4) performing the
embedding process in a randomness manner to mitigate attack possibility, (5) choosing
the best pixel location to embed the ransomware apps to maintain video imperceptibility,
(6) extracting the complete hidden ransomware samples successfully, (7) verifying the
integrity of the transmitted ransomware by calculating and comparing the hash values of
the ransomware; before the embedding and after the extraction, and (8) achieving superior
performance in terms of all investigated subjective and objective tests.

The proposed crypto-steganography approach can be used in different offensive and
defensive cybersecurity applications, such as (a) achieving high confidentiality of the secret
data, whether benign or malicious, (b) malware/ransomware distribution through online
communications, (c) Android mobile systems, (d) security of multimedia communication
systems, (e) malware detection applications, and (f) the confidentiality of Android IoT data.

As future work, various lightweight encryption algorithms compatible with IoT de-
vices’ resources can be investigated to encrypt the ransomware samples before embedding
them in the multimedia content. Moreover, different multimedia files (e.g., audio and
image) may be utilized as cover media. Furthermore, we intend to develop deep learning
algorithms to check if they could detect the concealed ransomware samples inside the video
streams. Additionally, more steganalysis techniques can be examined to investigate the ro-
bustness performance of the proposed crypto-steganography approach. These steganalysis
techniques assume that the original video used to hide the ransomware is known to the
detectors. Additionally, the detector needs to break the key/algorithm used to encrypt the
ransomware. Then the ordinary scanning approaches used by different antivirus systems
can be applied.
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