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Abstract: This work presents a novel landing assistance system (LAS) capable of locating a drone for
a safe landing after its inspection mission. The location of the drone is achieved by a fusion of ultra-
wideband (UWB), inertial measurement unit (IMU) and magnetometer data. Unlike other typical
landing assistance systems, the UWB fixed sensors are placed around a 2 × 2 m landing platform
and two tags are attached to the drone. Since this type of set-up is suboptimal for UWB location
systems, a new positioning algorithm is proposed for a correct performance. First, an extended
Kalman filter (EKF) algorithm is used to calculate the position of each tag, and then both positions
are combined for a more accurate and robust localisation. As a result, the obtained positioning errors
can be reduced by 50% compared to a typical UWB-based landing assistance system. Moreover, due
to the small demand of space, the proposed landing assistance system can be used almost anywhere
and is deployed easily.

Keywords: UWB; UAV; IMU; data fusion; autonomous landing; RTLS; EKF

1. Introduction

The inspection of infrastructures is a necessary task for their correct performance and
durability, especially in the case of the energetic, petrochemical, construction or transport
sectors. However, sometimes dangerous zones with difficult accessibility must be reached
by a human worker (or a group of workers), increasing the risks of the work. For this
reason, there is a growing interest in the use of drones or unmanned aerial vehicles (UAVs)
for infrastructure inspection [1–6]. One of the main advantages of UAVs is their high
adaptability to any infrastructure, as they can be used to inspect power transmission
lines [1–3], surfaces in bridges and roads [4], wind turbines [5] or rail viaduct bearings [6]
among others. As a consequence, the infrastructure inspection already makes 45% of the
total UAV market [7].

Nevertheless, the use of drones for inspection tasks also has its drawbacks as invest-
ment must be made in vehicle and staff training to pilot the UAV. Moreover, since drones
must be operated by a person, this solution is still prone to human errors, so the possibility
of using autonomous drones should be considered.

The landing manoeuvre is probably one of the riskiest situations of a flight. In the
case of an autonomous drone, knowing the real-time location of the vehicle with respect to
the landing area is crucial for a successful operation. A positioning error of a few metres
could cause significant damage to the drone. A high positioning rate is also important,
since adverse conditions such as windy weather could cause sudden velocity changes that
could not be detected on time.

In the aeronautic sector it is common to use the global navigation satellite system
(GNSS) for an autonomous landing [8]. Nevertheless, this technology is not always avail-
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able or it is sometimes incapable of giving an acceptable level of accuracy, as can happen
when the inside of a tank of a petrochemical plant is to be inspected. For this reason,
in the literature, complementary landing assistance systems (LASs) are proposed based
on computer vision techniques [9–19], a fusion between computer vision techniques and
inertial measurement units (IMUs) [20–25], computer vision, IMU and ultrasonic sen-
sors [26], computer vision and a Time-of-Flight-based height sensor [27], computer vision
and GNSS [28,29] and even an approach fusing onboard cameras and a robotic total sta-
tion [30]. The main setback of traditional vision-based systems is their strong dependency
on weather or lighting conditions. Coming back to the example of a petrochemical plant,
there is no light available inside the tanks, so vision-based systems would fail. Recently,
Refs. [12,15] proposed to use convolutional neural networks to detect a marker on the
landing area in low illumination environments. However, these networks are yet to be
implemented on a resource-limited UAV onboard platform [12,15]. Among the works that
use computer vision techniques, Ref. [19] presented really good accuracy. Nevertheless,
this work only presented results in short ranges with low velocities of the drone.

Other vision-based approaches use Time-of-Flight (ToF) cameras [31] and a fusion of
ToF cameras and ultrasonic sensors [32] for the location of UAVs. However, these proposals
install sensors on the ceiling of a room, which can be difficult to do inside the tank of a
petrochemical plant.

Recently, millimetre wave radar has been proposed by [33] to detect the presence of
UAVs. However, as in the case of [31,32] the UAV detection is undertaken on the ground
station. As this information should be sent to the drone for UAV navigation, potential
latency problems in the wireless communication link between the drone and ground station
could endanger the autonomous landing operation of the UAV.

Other proposals such as [34–36] suggest using ultra-wideband (UWB) technology for
a safe landing as a passive radar, where similar techniques to those of computer vision are
utilised. However, the developed systems are only used to estimate the roughness of the
ground where the landing will be performed.

Other recent works such as [37–39] have explored the possibility of using active
impulse-radio ultra-wideband (IR-UWB) technology to estimate the position of the drone
with respect to the landing zone. This technology uses two types of sensors: anchors and
tags. Anchors are fixed sensors placed at known locations, and they communicate with the
tags to calculate the distances between each anchor and tag. With the measured distances,
the position of each tag can be calculated. In order to localise drones for an autonomous
landing, Ref. [37] runs simulations to optimise the geometry of the infrastructure formed
by UWB anchors and to improve the accuracy of the real-time location system (RTLS). The
work of [38] goes a step further and tests the feasibility of a real UWB system to locate
UAVs and in [39] a path generation algorithm is proposed for an autonomous landing
of the drone. In all of the mentioned works, it is suggested to place the anchors around
the landing zone with a separation of tens of metres among them. Such infrastructures
are similar to those used in classic RTLSs [40]. However, one of the main drawbacks of
UWB-based UAV positioning systems is that it is sometimes impossible or impractical to
deploy those large infrastructures. For example, when inspecting off-shore wind turbines,
the drone has to land on a boat or a floating platform with little space available. Another
case can be the inspection of a tank in a petrochemical plant, where humans are not allowed
to stay inside for long time periods for safety reasons, making it impossible to deploy a big
infrastructure for a RTLS. A fast and easy deployment is crucial for the latter example.

A possible solution is to use UWB technology with a small infrastructure. In [41], the
authors demonstrate that good positioning accuracy can be achieved even if the anchors
of a UWB-based AGV (Automated Guided Vehicle) positioning system are not placed in
a fixed infrastructure with a big separation between them. Similarly, the authors of [42]
proposed to use an anchor infrastructure of around 2 × 2 m to locate a UAV. However,
according to [42], the errors of their RTLS are twice as big compared to a deployment
where the anchors make up a rectangle of 64 m2. Moreover, the experiments were run in a
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controlled environment, where the authors could easily control all the movements of the
drone. In a real environment, wind could cause sudden velocity changes to a UAV. As
a consequence, the obtained performance could further decrease because of the limited
positioning rate of UWB systems. In fact, the low positioning rate of UWB-based UAV
positioning systems poses a big limitation in the positioning accuracy of the system.

There are different methods to improve the positioning accuracy of UWB-based UAV
positioning systems. For example, in [43] a particle filter algorithm is proposed for an
enhanced performance of UWB for the localisation of drones. However, approaches fusing
data from different sensors are more popular. It is very common to fuse UWB data with
inertial measurement units, as suggested by [44–46]. A third sensor can also be added to
the UWB/IMU approach, such as a light scanner in [47], a frequency modulated continuous
wave (FMCW) radar in [48] or a real-time kinematic global positioning system (RTK-
GPS) in [49]. Another popular approach is to add visual data to the UWB-based RTLS as
in [50–53]. Laser imaging detection and ranging (LIDAR) sensors have also been used to
improve the UWB accuracy for UAV location in [54], where a drone had to fly close to a
wall. Despite the improved performance of the RTLS proposed in the mentioned works,
only one of them uses a simple infrastructure [53], where four UWB anchors are placed
around a 1.5 × 1 m pad with a system of visual fiducial tags. The UWB data are fused with
the visual and inertial data, resulting in a safe landing. However, it is not known how this
system would perform in a dark environment, since the pad must remain in the field of
view of the camera.

This paper proposes a novel LAS for autonomous drones that combines data from
UWB, IMUs and magnetometers to estimate the position of the drone when approaching or
moving away from the landing platform. In this LAS, as in the case of [42], UWB anchors
are placed around a small landing platform and two tags are placed on the drone. However,
in our case, both tags also have IMUs and magnetometers. The proposed drone positioning
algorithm takes advantage of the UWB positioning accuracy and of the higher sampling
rate of the IMUs and provides accurate estimates of the position of the drone, even when
the drone suffers from high accelerations. This positioning algorithm is executed in the
single board computer (SBC) of the drone and works in two steps. In the first step, for
each tag, the proposed drone positioning algorithm fuses the information of the IMU and
magnetometer with UWB data to estimate its position. In the second step, the positioning
estimates of each tag are combined to provide a more accurate estimate of the position
of the centre of the drone. Unlike other solutions in the state of art, our proposal neither
needs a complex infrastructure deployment, nor does it depend on lighting conditions or
availability of GNSS. Additionally, our proposed system presents high accuracy even with
sudden changes in drone velocity, as it achieves a higher positioning rate than traditional
UWB-based positioning systems. Finally, the proposed combination of tags’ positions
further improves the accuracy of our system. Higher robustness is gained because the
possible errors of a tag are compensated with the other.

The rest of the article is organised as follows: Section 2 describes how a LAS works
when only UWB data are used, Section 3 describes the proposed LAS and the main con-
tributions to the state of art, Section 4 explains the performed experiments and analysis
and the obtained results are presented in Section 5. Finally, conclusions and future research
lines are given in Section 6.

2. State of the Art of UWB-Based Systems

When UWB technology is used as RTLS, two main elements are necessary: anchors
and tags. Anchors are fixed sensors at known locations, while tags are the moving sensors
to be located. Each tag communicates with the anchors in order to calculate the distance to
all of them. With the measured distances and the known locations of anchors, the positions
of the tags can be calculated.

For the real-time location of a UAV, a single tag is usually placed on the vehicle and an
anchor infrastructure is deployed around the flying space. Ideally, the anchors should have
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a separation of tens of meters so that the calculation is optimal. This type of infrastructure
is typical in the literature, as proposed for example by [37–39]. Nevertheless, optimal
anchor infrastructures cannot always be deployed, so [42] suggests a deployment where
four anchors are placed on a 2 × 2 m square on the floor.

With an anchor infrastructure and a tag on the drone, the estimated distances can be
used in different algorithms to calculate the position of the vehicle. One of the most typical
methods to calculate the position of a tag from ranging measurements to known anchors
is the Extended Kalman Filter (EKF). An algorithm based on the EKF is used by [41,55],
which is shown in Figure 1.

EKF correc on step

..
.

EKF predic on step 

Ranging 

algorithm

Ranging 

algorithm

Ranging 

algorithm

Figure 1. Flow chart of an extended Kalman filter (EKF) with ultra-wideband (UWB) sensors
for localisation.

This algorithm needs a motion model f and an observation model h to be defined

x̃i = f(x̂i−1, ui−1, ωi−1) (1)

ỹi = h(x̃i, νi), (2)

where xi is the state vector related to the ith estimation. It contains the position of the tag to
be estimated and its first and second derivatives

xi =
[
xi ẋi ẍi yi ẏi ÿi zi żi z̈i

]T , (3)

ui is the optional input vector set to zero and f is the function representing the motion
model of the system. It relates the previous state xi−1 with the current state xi. The
observation vector is represented by yi, which contains the measured distances between
the tag and each anchor. These distances can be calculated with the state estimate xi and
the function of the observation model h. Note that x̃ and x̂ notation in (1) represents the
a priori and a posteriori state estimate, respectively. The process is characterised with the
stochastic random variables ωi and νi that represent the process and observation noise,
respectively. They are assumed to be independent, white and normal probably distributed
with covariance matrices Qi and Ri, respectively.



Sensors 2022, 22, 2347 5 of 24

The above mentioned a priori estimate of the state is calculated with the linearised
version of the motion model f

x̃i = Φ · x̂i−1 (4)

Φ = I3×3 ⊗ B (5)

B =

1 ∆ ∆2

2
0 1 ∆
0 0 1

 (6)

C̃i = Φ · Ĉi−1 ·ΦT + Qi−1, (7)

where ⊗ represents the Kronecker product of the matrices, ∆ the time difference between
two consecutive time steps and C the error covariance matrix of the state estimate.

Using the predicted estimate of the state vector, the predicted observation vector ỹi can
be calculated by means of the observation model h. For each anchor l, the distance between
the predicted position (x̃i, ỹi, z̃i)

T and the fixed sensor position (Xl , Yl , Zl)
T is calculated as

ỹi,l =
√
(x̃i − Xl)2 + (ỹi −Yl)2 + (z̃i − Zl)2. (8)

Finally, the predicted state x̃i is corrected to obtain x̂i by comparing the predicted
observation vector ỹi with the measured ranging values yr

i

x̂i = x̃i + Ki · (yr
i − ỹi) (9)

Ki = C̃i ·HT
i · (Hi · C̃i ·HT

i + Ri)
−1 (10)

Hi =
∂h
∂x

(x̃i) (11)

Ĉi = (I−Ki ·Hi) · C̃i, (12)

where Hi is the Jacobian matrix of the observation model h.
Despite the high accuracy of the UWB technology and the suitability of the EKF for a

correct performance of this type of locating systems, they still present some drawbacks for
the UAV localisation. The data rate of UWB systems is limited and may be incapable of
detecting sudden changes in the drone path due to sudden wind changes. In order to deal
with these types of conditions, it is better to add the data from an IMU that could give an
accurate estimate of the vehicle’s acceleration, track all the trajectory changes and improve
the data rate of the position estimates.

3. Proposed LAS

In this section the proposed novel LAS and its main differences compared to the
typical UWB-based systems described in Section 2 are explained. Note that the proposed
LAS is designed for a drone that inspects critical infrastructures such as off-shore wind
turbines or a tank of a petrochemical plant. After the inspection mission, the drone needs to
land on a small platform to charge its batteries. This platform is on a boat or in a confined
space, so there is not enough space or time to deploy typical UWB infrastructure. In our
proposal, a small anchor infrastructure with easy deployment is used, which also allows us
to make the UWB anchors part of the landing platform and use the same power supply for
the anchors and the battery charger. Thus, the resulting LAS needs no complex additional
infrastructure. Moreover, our LAS is not affected by changing lighting conditions because
of the day or night time, rain or fog that traditionally affect computer-vision systems. As
our system is based on UWB technology, during the landing, our LAS will present lower
positioning errors than GNSS, which can be around 2 m in the latter case [29].

In this work, data from UWB, IMU and magnetometer are proposed to be combined
to estimate the position of the drone. Figure 2 depicts the system architecture.
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Landing platform

Anchors

2 m
2 m

Drone

Tags

Centre

Figure 2. Proposed system architecture. Eight anchors are placed around the landing platform in
order to locate the tags on the drone in real-time.

Similar to [42], eight anchors are placed around the landing platform of 2 × 2 m and
two tags are installed on both sides of the drone. Taking advantage of the availability of
these sensors, a new positioning algorithm is proposed. This algorithm first fuses the UWB,
IMU and magnetometer data from each tag to obtain two independent position estimates
and then combines them to calculate the position of the centre of the drone. From the
resulting data, only the horizontal coordinates of the drone are used since the vehicle is
capable of accurately estimating its altitude with other sensors; i.e., an altimeter.

Figure 3 shows the placement of the tags on the drone.

Figure 3. Tags on the drone.

They are installed on both sides of the drone with a separation of 0.36 m. In this work,
the LAS will provide the position of the point that is in the middle of the line formed by the
two tags. We will denote the centre of the drone to this point. In the same picture, the SBC
of the drone can be seen, which receives the data from both tags and runs the necessary
positioning algorithm.

The tags employ the DW1000 chip of Decawave as UWB transceiver. This transceiver
follows the IEEE 802.15.4a standard and is configured with the parameters presented in
Table 1.
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Table 1. Configuration parameters of the UWB system.

Parameter Value Units

Carrier frequency 3.9936 GHz
Bandwidth 499.2 MHz

Channel 2 -
Bitrate 6.8 Mbps

PRF (pulse repetition
frequency) 16 MHz

Preamble length 128 symbols
Preamble code 3 -

SFD (start of frame delimiter) 8 symbols
Ranging rate 3.3 Hz

Apart from the UWB transceiver, the tags also contain the LSM6DSOTR IMU [56] and
the LIS2MDLTR magnetometer [57]. Both sensors are developed by STMicroelectronics and
they can be fused in the MotionFX library of STMicroelectronics [58] in order to subtract
the measurement of gravity from the acceleration data and obtain the orientation of the tag.
The chosen configuration parameters of MotionFX are shown in Table 2.

Table 2. Configuration parameters of MotionFX.

Parameter Value

Sampling rate 25 Hz
output_type 1

acc_orientation ENU
gyro_orientation ENU
mag_orientation ESU

LMode 1
ATime 0.9
MTime 1.5
FrTime 0.667
modx 2

Figure 4 shows the flow chart of the proposed algorithm. As described in Section 2,
the tags communicate with the anchors in order to calculate the distances between the
sensors, r(1)i,l,j, using the two way ranging (TWR) method. The subscripts i, l and j of the
ranging estimates refer to the time step, the identifier of the anchor and the identifier of the
tag, respectively. The obtained data are sent to the SBC of the drone (see Figure 3) which
runs the necessary algorithms for a correct position estimation.

Unlike the state of art, our LAS filters the ranging estimates with a parameter rmax,
which represents the maximum allowed ranging estimate. Since the objective of the
proposed LAS is to help the drone during the autonomous landing and not the rest of the
flight, any estimate ranging above rmax is discarded.

Moreover, our proposed LAS adds the data of two IMUs and magnetometers to the
algorithm, one for each tag. At time ti−1 and tag j, the measured specific force ya

i−1,j, angular
velocity yω

i−1,j and magnetic field ym
i−1,j are used by the MotionFX library to calculate the

acceleration a
(bj)

i−1 and quaternion q(w)
(bj)i−1

. The terms (bj) and (w) refer to the body frame of

tag j and world frame, respectively. The used frames are shown in Figure 5.
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Figure 4. Flow chart of the positioning algorithm.

z(in) z(w)

z(b1)

x(in)

x(w)

x(b1)

y(in)

y(w) 

y(b1)

φ

Tag T1

Landing pla orm

 North

z(b2)

x(b2)

y(b2)

Tag T2

Figure 5. Body, world and inertial frames.

Each tag contains an independent body frame, (b1) and (b2), which are fixed to the
sensors. All measurements of the IMUs and magnetometers and the resulting acceleration
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a
(bj)

i−1 are referred to their body frames. The quaternion q(w)
(bj)i−1

transforms any vector

referred to the body frame (bj) to the world frame (w), of which the x, y and z axes look
at the east, north and up, respectively. However, the inertial frame (in), which is defined
by the landing platform, does not have to be aligned with the world frame, so another
quaternion q(in)

(w)
must be defined to transform any vector referred to the world frame (w)

to the inertial frame (in). If the landing platform is on the horizontal plane, q(in)
(w)

is defined
as a quaternion that rotates any vector by an angle φ around the z axis. Both quaternions
can be combined to calculate the quaternion q(in)

(bj)i−1
that transforms any vector from the

body frame (bj) to the inertial frame (in)

q(in)
(bj)i−1

= q(in)
(w)
� q(w)

(bj)i−1
, (13)

being � the quaternion multiplication operator.
The calculated ranging data, acceleration and orientation of the tags are fused in two

parallel EKF algorithms. This way, two position estimates p̂i,1 and p̂i,2 are calculated and
finally combined to obtain the position of the centre of the drone p̂i,D. If for some reason
one of the tags does not see the anchors for a time treinit, that tag stops giving position
estimates. In this case, the position of the centre of the drone can still be calculated with
the position estimate of the other tag, its orientation and the relative position of the centre
of the drone with respect to the remaining tag. Once the UWB signal is available again in
the tag, its EKF is reinitialised. This means that all the parameters of the EKF are set to
their initial value. As the EKF algorithm needs some time to converge to the real solution,
during a time period of tconverge, the position estimates of the newly found tag are not used
in the combination algorithm. The EKF algorithm is further explained in Section 3.1 and
the combination algorithm in Section 3.2.

3.1. EKF with Fusion of Sensors

The first part of the proposed positioning algorithm consists of an EKF that takes
advantage of the availability of the data of the IMU and magnetometer. The flow chart that
summarises this part is shown in Figure 6.

Ranging lter

EKF correc on step (3.3 Hz)

..
.

EKF predic on step (25 Hz)

Ranging 

algorithm

Ranging lter
Ranging 

algorithm

Ranging lter
Ranging 

algorithm

IMU + Mag

New UWB 

rangings?

No

No

Yes

Mo on FX 

& 

orienta on 

correc on

More than treinit 

without ranging 

data?

RLS

Yes

First ranging 

data?

Yes

No

Figure 6. Flow chart of the EKF that fuses the UWB data with an inertial measurement unit (IMU)
and magnetometer.

After a reinitialisation, the first position of the tag is estimated by means of a recursive
least squares (RLS) algorithm [59] using the first received UWB data. After this first
position estimate, every time a new acceleration estimate is received, the prediction step is
performed. Since the IMU and UWB rates are different, while no new UWB measurements



Sensors 2022, 22, 2347 10 of 24

are received, the EKF algorithm keeps working with the predicted state estimate. When
new UWB data are received, the correction step is performed. The advantage of this method
is that the resulting positioning rate of the proposed LAS is of 25 Hz, much faster than
the UWB ranging rate. However, if no UWB measurements are obtained for a long period
of time, the position estimate can drift and get lost. For this reason, if not enough UWB
ranging estimates are obtained during an adjustable time interval of treinit, the proposed
LAS stops giving position estimates. Once the UWB signal is recovered, the algorithm
is reinitialised.

This algorithm is run twice in parallel, once for each tag. For simplicity, the letter j
that is used to refer to the tag is going to be skipped in this subsection.

Unlike the previous algorithm of Section 2, the state vector only contains position and
velocity data

xi =
[
pT

i vT
i
]T

=
[
xi yi zi ẋi ẏi żi

]T , (14)

with pi being the position of the tag at time step i and vi its velocity. The acceleration data
are introduced in the motion model as one of the input parameters. The inputs are the
acceleration referred to the body frame a(b) and a unit quaternion q(in)

(b) that rotates any
vector from the body frame (b) to the inertial frame (in).

The motion model f that transforms the previous state x̂i−1 =
[
p̂T

i−1 v̂T
i−1
]T to the

current predicted state x̃i =
[
p̃T

i ṽT
i
]T is defined as

x̃i = f(x̂i−1, ui−1, ei−1) (15)

ui−1 =
[
a(b)i−1 q(in)

(b)i−1

]T
(16)

ei−1 =
[
e(a)

i−1 e(φ)i−1

]T
(17)

p̃i = p̂i−1 + ∆ · v̂i−1 +
∆2

2
·R(in)

(b)i−1
·
(

a(b)i−1 − e(a)
i−1

)
(18)

ṽi = v̂i−1 + ∆ ·R(in)
(b)i−1

·
(

a(b)i−1 − e(a)
i−1

)
(19)

R(in)
(b)i−1

= q2R
(

q(in)
(b)i−1

� fq

(
e(φ)i−1

))
, (20)

where ∆ represents the time between two consecutive steps and R(in)
(b) the rotation matrix

obtained from the unit quaternion q(in)
(b) as explained in [60] with the here defined function

q2R. For any unit quaternion q =
[
qw qx qy qz

]T , its corresponding rotation matrix Rq
is calculated as

Rq = q2R(q) =

2q2
w + 2q2

x − 1 2qxqy − 2qwqz 2qxqz + 2qwqy
2qxqy + 2qwqz 2q2

w + 2q2
y − 1 2qyqz − 2qwqx

2qxqz − 2qwqy 2qyqz + 2qwqx 2q2
w + 2q2

z − 1

. (21)

The noise parameters of the motion model f are represented with e(a) for the accel-
eration data and e(φ) for the orientation data. The latter is represented as an orientation
deviation in the body coordinate frame and it is converted to a unit quaternion q(φ) with
the function fq

q(φ) = fq

(
e(φ)

)
=

 cos( ||e
(φ) ||2
2 )

e(φ)

||e(φ) ||2
sin( ||e

(φ) ||2
2 )

, (22)

being ||e(φ)||2 the euclidean norm of vector e(φ).
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Both noise parameters are determined empirically and have zero mean and covariance
QIMU , which is necessary for the prediction step of the EKF to make an a priori estimation
of the state error covariance matrix P̃i

P̃i = Fi−1 · P̂i−1 · FT
i−1 + Gi−1 ·QIMU ·GT

i−1 (23)

Fi−1 =
∂f
∂x

(x̂i−1) (24)

Gi−1 =
∂f
∂e

(ei−1). (25)

In the above equation the Jacobian matrices Fi−1 and Gi−1 of the motion model f have
been calculated with respect to the state vector x and noise vector e. The calculation process
of useful derivatives for quaternions and rotation matrices is explained in [61].

After the prediction step, the a priori estimate must be corrected with the UWB ranging
data as

x̂i = x̃i + Ki · (yr
i − ỹi), (26)

where yr
i is the vector of measured ranging values, ỹi is the predicted observation vector

calculated with (8) and Ki represents the Kalman gain matrix. The Kalman gain matrix is
calculated as

Ki = P̃i ·HT
i · (Hi · P̃i ·HT

i + Ri)
−1, (27)

where Hi is the Jacobian matrix of the observation model and Ri the measurement covari-
ance matrix. The Jacobian matrix of the observation model is calculated with (11). Finally,
the predicted state error covariance matrix P̃i must be corrected with

P̂i = (I−Ki ·Hi) · P̃i. (28)

3.2. Combination of Tags

In the last part of the proposed positioning algorithm, the two independent position
estimates p̂i,1 and p̂i,2 are combined to calculate the position of the centre of the drone
p̂i,D. If the estimates of both tags are available at time step i, then the average position is
calculated. If at some certain moment, only one of the tags gives a positioning estimate,
then the position of the centre of the drone can be calculated with the known orientation
q(in)
(bj)i

and the coordinates of the centre of the drone dj with respect to the body frame of the

remaining tag (bj). The algorithm is summarised in (29)

p̂i,D =


p̂i,1+p̂i,2

2 , if ∃p̂i,1, ∃p̂i,2

p̂i,1 + q2R
(

q(in)
(b1)i

)
· d1, if ∃p̂i,1,@p̂i,2

p̂i,2 + q2R
(

q(in)
(b2)i

)
· d2, if @p̂i,1, ∃p̂i,2.

(29)

4. Methodology

For the correct assessment of the proposed LAS, some experiments were performed by
flying the drone in a controlled indoor environment close to the landing area. Additionally,
more experiments were conducted in a real outdoor environment. In both cases, the
parameters rmax, treinit and tconverge described in Section 3 were set to 20 m, 2 s and 3 s,
respectively. In the next subsections, the experimental set-ups as well as the employed
evaluation methods are described.

4.1. Indoor Experiments

All the indoor tests were run in the Industry 4.0 Laboratory of Ceit-BRTA which
contains a motion capture system of Optitrack, which allowed us to track the drone with
millimetre level accuracy. Due to the high accuracy of the motion capture system, its
measurements were used as ground truth. A picture of the testing zone can be seen in
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Figure 7a. The developed LAS was deployed inside the observation area of the Optitrack
system, as shown in Figure 7b and the positions of each anchor are given in Table 3.

(a) (b)

Figure 7. (a) Location of the tests and (b) set-up for the measurements.

Table 3. Positions of the anchors during the tests.

Anchor Name x (m) y (m) z (m)

A0 1.998 0.0 0.145
A1 1.0 0.0 0.149
A2 0.0 0.0 0.147
A3 0.0 0.999 0.151
A4 0.0 1.998 0.155
A5 1.001 1.998 0.153
A6 1.998 1.998 0.157
A7 1.998 0.999 0.159

For safety reasons, some fences were placed around the measurement zone.
Once the set-up was prepared, 9 different flights were conducted inside the tracking

area. All of them consisted of a take-off, movements close to the landing platform and a
landing. The paths followed by the centre of the drone during the flights can be seen in
Figure 8.
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Figure 8. Horizontal trajectory of each flight. Blue line represents the movements of the drone and
the black-edged square the landing platform.

The flights can be separated into two groups: those with a mean horizontal acceleration
under 1 m/s2 and those with a mean horizontal acceleration over 1 m/s2, as shown in
Table 4.

Table 4. Measured horizontal acceleration on the centre of the drone.

Flight Mean Acceleration (m/s2) Max Acceleration (m/s2)

Flight 1 0.456 1.632
Flight 2 0.483 1.651
Flight 3 0.445 1.588
Flight 4 0.563 1.838
Flight 5 1.092 4.145
Flight 6 1.958 6.496
Flight 7 1.404 4.412
Flight 8 1.374 4.199
Flight 9 1.285 4.807

The measured accelerations correspond to the centre of the drone, so the acceleration
on each tag may be slightly different. By dividing the flights in two groups, the effect of
acceleration on the positioning accuracy can be evaluated.

4.2. Outdoor Experiments

The drone was also flown in a real outdoor environment with the proposed LAS. A
picture of the test zone is shown in Figure 9 with the prepared set-up.
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Figure 9. Set-up in the outdoor environment.

The anchors were placed in the same positions as described in Table 3. These experi-
ments were useful to test the LAS at longer distances than in the indoor environment. It
is especially interesting to test the ability of the LAS to find the drone once it reaches the
visible range of the system, when the landing is about to occur.

The chosen place contains a concrete platform of 2 × 2 m to land the drone and deploy
the LAS. There is also a wind turbine, which simulates the infrastructure that the drone
should inspect. Two different flights were performed, both of which consisted of a take-off,
a linear movement to the wind turbine reaching a height of 14 m, return and landing, as
shown in Figure 10.

(a) Flight 1 (b) Flight 2

Figure 10. Horizontal trajectory of each flight in the outdoor environment.

Because of the unavailability of a highly accurate outdoor locating system such as
Optitrack, the performance of the system in this environment was evaluated qualitatively
by comparing it to the GNSS position estimates.

4.3. Calculation of Errors

In order to evaluate the performance of the proposed system, the positioning error in
the horizontal plane XY was calculated as

εi =
√
(x̂i − xi)2 + (ŷi − yi)2, (30)
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where εi represents the error of the position estimate i, xi and yi the real 2D position
coordinates and x̂i and ŷi the estimated 2D position.

Once all the positioning errors were calculated, the system was evaluated with the
mean error µ, standard deviation σ and root mean square error RMSE [62]. Additionally,
the error below which 80% of samples are, the probability of obtaining an error under 1 m
and the maximum error εmax were calculated.

5. Results

In this section the obtained experimental results are presented and discussed. As
explained in the previous section, two types of measurements were performed. The
first group was in an indoor controlled environment with the objective of evaluating the
feasibility of the proposed LAS. The performance of the system was evaluated with only
UWB data and later with the fusion of the inertial data, so that the advantages of data fusion
could be seen. The second group of experiments was performed in a realistic environment,
and the performance of the proposed LAS was qualitatively evaluated.

5.1. Indoor Results
5.1.1. Accuracy with Four UWB Anchors

For a correct comparison with the systems of the state of art, the performance of our
LAS was evaluated using only UWB data. First, a similar set-up to that proposed by [42]
was considered; i.e., only the ranging estimates of the four anchors on the corners were
used to position the tags.

In Table 5, the accuracy data are given for both tags.

Table 5. Accuracy using only UWB data with four anchors.

Tag Flight µ
(m)

σ
(m)

RMSE
(m)

P(εp)< 80%
(m)

P(%) < 1 m
(%)

εmax
(m)

T1

Flight 1 0.233 0.144 0.273 0.346 100 0.608
Flight 2 0.245 0.148 0.286 0.384 100 0.598
Flight 3 0.214 0.176 0.277 0.336 100 0.751
Flight 4 0.273 0.161 0.317 0.407 100 0.685
Flight 5 0.264 0.279 0.383 0.356 97.46 1.609
Flight 6 0.227 0.161 0.278 0.372 100 0.681
Flight 7 0.311 0.249 0.398 0.490 97.67 1.075
Flight 8 0.339 0.245 0.418 0.566 98.12 1.214
Flight 9 0.411 0.323 0.522 0.618 94.95 1.709

All 0.293 0.238 0.377 0.461 98.39 1.709

T2

Flight 1 0.184 0.133 0.227 0.318 100 0.565
Flight 2 0.221 0.160 0.273 0.375 100 0.649
Flight 3 0.256 0.233 0.346 0.455 100 0.854
Flight 4 0.327 0.246 0.409 0.580 100 0.932
Flight 5 0.336 0.346 0.481 0.529 93.78 1.716
Flight 6 0.301 0.302 0.426 0.480 96.00 1.499
Flight 7 0.369 0.397 0.541 0.666 92.35 1.790
Flight 8 0.333 0.310 0.455 0.551 94.14 1.283
Flight 9 0.433 0.387 0.580 0.736 90.15 2.001

All 0.316 0.309 0.442 0.521 95.71 2.001

These tables show, for each flight, the mean positioning error, its standard deviation,
the root mean square error, the error below which 80% of samples are, the percentage of
errors below 1 m and the measured maximum error.

The obtained results confirm that a small anchor infrastructure of 2 × 2 m can accu-
rately locate a drone when it flies close to the landing platform. Considering all flights,
the RMSE value was 0.377 m for Tag T1 and 0.442 m for Tag T2. However, there was a
considerable difference between those flights with low horizontal acceleration (Flights 1 to
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4) and those with high acceleration (Flights 5 to 9). This is confirmed with the cumulative
distribution function plots shown in Figure 11a for Flights 1 to 4 and Figure 11b for Flights
5 to 9.
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Figure 11. Cumulative distribution function plots of (a) Flights 1–4 and (b) Flights 5–9.

When the acceleration values were low, as can be seen in Figure 11a, the obtained
results were similar to those of [42]. In this case, the authors of [42] measured a mean
horizontal acceleration of 0.67 m/s2 and a maximum of 2.35 m/s2. However, our results
demonstrate that when the drone suffered a higher acceleration (Flights 5 to 9) the accuracy
of the UWB-based LAS was reduced, so a traditional system using only UWB data could
have problems under adverse conditions.

5.1.2. Accuracy with Eight UWB Anchors

For a better performance of the LAS, our proposal adds some redundancy by using
the estimates of eight anchors instead of four. The benefit of having anchor redundancy is
that it is possible to calculate new positions even if an anchor fails to see the tags. If only
four anchors are used, the lack of a single anchor-tag distance measurement is enough to
skip a new position sample. With eight anchors, however, new positions can be calculated
even with the lack of four sensors’ measurements. We tested the effect of this redundancy
on the positioning accuracy and Table 6 shows the obtained data for the LAS using only
UWB data with eight anchors.

The added redundancy reduced the mean error, RMSE and especially the maximum
error. However, just adding more anchors could not solve the problems in the flights of
higher accelerations. These flights need a high sampling rate sensor such as an IMU, as we
propose in our LAS.

5.1.3. Accuracy with Fusion of Data

With the data of eight UWB anchors, an IMU and a magnetometer, our proposed LAS
uses the EKF algorithm presented in Section 3.1 to fuse all this information. In Table 7 the
obtained results of this algorithm are shown when it is used to estimate the position of the
two tags of the drone.
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Table 6. Accuracy using only UWB data with eight anchors.

Tag Flight µ
(m)

σ
(m)

RMSE
(m)

P(εp)< 80%
(m)

P(%) < 1 m
(%)

εmax
(m)

T1

Flight 1 0.226 0.161 0.277 0.334 100 0.720
Flight 2 0.237 0.116 0.263 0.356 100 0.528
Flight 3 0.208 0.153 0.258 0.347 100 0.774
Flight 4 0.240 0.135 0.275 0.365 100 0.581
Flight 5 0.278 0.290 0.401 0.460 96.98 1.431
Flight 6 0.259 0.205 0.330 0.498 100 0.865
Flight 7 0.265 0.196 0.329 0.450 100 0.789
Flight 8 0.343 0.238 0.417 0.571 99.38 1.067
Flight 9 0.357 0.289 0.459 0.554 95.38 1.304

All 0.280 0.222 0.357 0.445 98.86 1.431

T2

Flight 1 0.169 0.113 0.203 0.279 100 0.492
Flight 2 0.204 0.144 0.250 0.323 100 0.650
Flight 3 0.246 0.224 0.333 0.433 100 0.857
Flight 4 0.275 0.206 0.344 0.469 100 0.904
Flight 5 0.342 0.370 0.503 0.566 90.31 1.623
Flight 6 0.379 0.360 0.522 0.737 91.71 1.722
Flight 7 0.327 0.269 0.423 0.555 97.00 1.267
Flight 8 0.324 0.268 0.420 0.582 99.33 1.099
Flight 9 0.372 0.325 0.493 0.611 93.81 1.487

All 0.303 0.282 0.414 0.505 96.69 1.722

Table 7. Accuracy data fusing UWB and inertial data.

Tag Flight µ
(m)

σ
(m)

RMSE
(m)

P(εp)< 80%
(m)

P(%) < 1 m
(%)

εmax
(m)

T1

Flight 1 0.175 0.105 0.204 0.265 100 0.630
Flight 2 0.199 0.122 0.233 0.306 100 0.613
Flight 3 0.176 0.094 0.200 0.245 100 0.578
Flight 4 0.193 0.077 0.208 0.259 100 0.434
Flight 5 0.165 0.103 0.194 0.241 100 0.751
Flight 6 0.195 0.139 0.240 0.298 100 0.814
Flight 7 0.193 0.151 0.245 0.302 99.82 1.090
Flight 8 0.207 0.153 0.257 0.336 100 0.794
Flight 9 0.243 0.179 0.301 0.380 99.70 1.203

All 0.198 0.137 0.241 0.296 99.93 1.203

T2

Flight 1 0.177 0.118 0.213 0.289 100 0.496
Flight 2 0.167 0.110 0.200 0.252 100 0.523
Flight 3 0.155 0.114 0.192 0.262 100 0.577
Flight 4 0.225 0.187 0.293 0.349 100 0.941
Flight 5 0.209 0.135 0.249 0.326 100 0.791
Flight 6 0.237 0.201 0.310 0.398 99.45 1.314
Flight 7 0.218 0.137 0.258 0.346 100 0.731
Flight 8 0.236 0.185 0.300 0.368 99.49 1.269
Flight 9 0.223 0.156 0.272 0.325 99.79 1.060

All 0.210 0.159 0.263 0.329 99.82 1.314

Compared to the obtained results with only UWB data of eight anchors, the data
fusion improved the accuracy of the system, especially in the second group of flights, where
the mean horizontal acceleration was over 1 m/s2. For example, significant changes can
be noticed in Flight 5 with the data fusion algorithm: the position of Tag T1 had an RMSE
of 0.194 m and Tag T2 had an RMSE of 0.249 m. Without the proposed fusion algorithm,
these values were 0.401 m and 0.503 m, respectively, so our proposed positioning algorithm
halved the RMSE values in this case. Furthermore, the maximum error in this flight also
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had a reduction of around 50% in both tags. In general, our proposal significantly reduced
the values of the mean error, standard deviation and maximum error in all flights with
high accelerations.

Moreover, the fusion of data was also beneficial for those flights with low accelera-
tions as almost all error metrics of every flight improved. Considering all data, with our
proposed fusion algorithm, great accuracy can be obtained to locate a drone close to its
landing platform.

5.1.4. Accuracy with a Combination of Tags

Finally, our proposed LAS combines both tags of the drone for a more accurate path.
After fusing the UWB data from each tag with their IMUs, both position estimates are fused
to calculate the position of the centre of the drone. In Table 8 the accuracy of the proposed
system is shown.

Table 8. Accuracy data when combining tags.

Flight µ (m) σ (m) RMSE (m) P(εp)< 80% (m) P(%) < 1 m (%) εmax (m)

Flight 1 0.145 0.081 0.166 0.234 100 0.350
Flight 2 0.142 0.088 0.167 0.230 100 0.403
Flight 3 0.129 0.083 0.154 0.196 100 0.417
Flight 4 0.156 0.095 0.182 0.223 100 0.473
Flight 5 0.157 0.103 0.188 0.244 100 0.546
Flight 6 0.195 0.156 0.250 0.321 100 0.862
Flight 7 0.179 0.135 0.224 0.299 100 0.660
Flight 8 0.182 0.139 0.229 0.296 100 0.845
Flight 9 0.199 0.154 0.251 0.317 99.67 1.150

All 0.168 0.124 0.208 0.260 99.95 1.150

Compared to the individual results of Table 7, the accuracy was further improved. The
mean error and the RMSE were reduced in almost all cases. Moreover, there was a general
reduction of the standard deviation of the error, which means a reduction of outliers. When
only a tag was used to estimate positions, it could sometimes be with an unfavourable
orientation with respect to the anchors. In these cases, the position estimates would suffer
from high errors. With two tags, it is less likely to have a bad estimate at the same time
with both of them. Therefore, the biggest errors were compensated with the help of the
other tag. Thus, significant improvements can also be seen in the percentage of samples
with an error under 1 m and in the maximum error.

5.1.5. Summary of Results

As a summary of the improved results, Table 9 shows the key metrics obtained with a
set-up similar to [42] and with our proposed LAS.

Table 9. Comparison of all cases.

System µ
(m)

σ
(m)

RMSE
(m)

P(εp)< 80%
(m)

P(%) < 1 m
(%)

εmax
(m)

UWB as [42] 0.304 0.275 0.410 0.488 97.10 2.001
Proposal 0.168 0.124 0.208 0.260 99.95 1.150
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The first row is the result of considering all the measured errors of both tags and
all flights when positioning with only UWB data of four anchors. We can observe that
the proposed LAS has improved all performance metrics. The reduction in RMSE value
is remarkable, as it reduced from 0.410 m to 0.208 m; i.e., our novel LAS can reduce the
obtained errors by 50% compared to a typical system. Thanks to a higher accuracy and
a more frequent data rate, the task of autonomous landing becomes much safer with
our proposal.

5.2. Results in a Real Environment

In addition to the indoor measurements, the proposed LAS was also tested in an
outdoor realistic environment. In this way, it can be assessed how the LAS finds the drone
after the inspection mission and how it tracks the vehicle until the landing manoeuvre.

Figure 12 represents the estimated trajectories by the proposed LAS compared to the
GNSS. The position estimates of our proposal are shown as red points, while the GNSS
trajectories are represented as blue lines. However, these GNSS data could not be used as
ground truth, since their errors were similar to or greater than those of the UWB system.
As an example, note that in both flights the GNSS incorrectly estimated that the drone
landed out of the platform, while the proposed system is able to correctly estimate the
landing place.

X (m)

Y
 (

m
)

GPS

proposal

landing platform

(a) Flight 1

X (m)

Y
 (

m
)

GPS

proposal

landing platform

(b) Flight 2
Figure 12. Estimated trajectory in the outdoor environment by the combination of tags. Estimates
of the proposed landing assistance system (LAS) are given in red colour. Blue line represents the
trajectory given by the global navigation satellite system (GNSS) of the drone.

Due to dilution of precision, the accuracy of a UWB positioning system such as the
one proposed in [42] is degraded at large distances. However, thanks to the information
of the IMUs and magnetometers, the results in Figure 12 show that, at large distances, the
drone position estimates of our proposed system are similar to those of GNSS in outdoor
environments. This accuracy is enough to help the drone approach the platform. Further-
more, when we are near the platform, the accuracy of our system improves significantly, as
we can see in Table 8, where the drone flew as far as 4.5 m from the platform. Thus, when
the drone starts its landing operation, the accuracy of the system is good enough to help it
land on the platform.

5.3. Comparison with State of the Art Technologies

Table 10 presents a comparison of the proposed system with others in the literature.
This table shows the characteristics of a UWB-based LAS, such as the one proposed in [42],
while the accuracy indicated is the one presented in Section 5.1.1. We can observe that
this system achieved the worst accuracy of the compared LAS systems. The authors
of [19] used vision in their LAS and presented a high accuracy in indoor environments
and short ranges. However, this vision-based LAS was tested at a much lower horizontal
velocity than our proposed LAS. Our proposal combines UWB technology with IMUs and
magnetometers and, thus, achieves a high positioning rate, which is crucial for autonomous
landing. Moreover, our proposed LAS is not affected by lighting conditions, as is the case
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with vision-based systems. We have shown that it can find the landing platform from at
least 20 m and is robust in terms of high horizontal velocities and accelerations.

Table 10. Comparison with state of art the systems.

Indoor Accuracy
RMSE

Maximum
Tested
Indoor
Range

Maximum
Indoor

Horizontal
Velocity

Maximum
Tested

Outdoor
Range

Minimum
Positioning

Rate

Sensitivity
to Lighting
Conditions

X (m) Y (m) (m) (m/s) (m) (Hz)

Vision [19] 0.012 0.014 2 0.190 - 10 Yes
UWB as [42] 0.355 0.205 4.5 3.139 - 3.3 No
This work 0.177 0.115 4.5 3.139 20 25 No

6. Conclusions and Future Research

This paper presents a novel landing assistance system capable of locating a UAV for
a safe landing after its inspection mission. The proposed LAS is composed of eight UWB
anchors placed around the landing platform of the drone and two UWB tags on the vehicle.
Both tags also contain an IMU and a magnetometer, which enables the combination of real
time acceleration of the drone with the UWB data. Unlike other proposed solutions in the
literature, our LAS neither needs a large infrastructure deployment, nor does it depend on
lighting conditions or the availability of GNSS.

In a recent study, a similar deployment was proposed for a UWB-based RTLS of
an autonomous drone. In contrast to this study, our research tested several flights with
different horizontal accelerations, so that the effect of sudden changes of the movement
of the drone, which could be caused by windy weather, could be studied. It has been
concluded that higher accelerations can cause problems in UWB-based RTLSs, as their
positioning rate can be too low for correct tracking of the drone’s movements.

Our proposed LAS is more accurate than UWB-based systems when the drone suffers
from high accelerations thanks to the fusion of UWB data with different sensors, namely
IMUs and magnetometers. Our proposed algorithm takes advantage of the high sampling
rate of the IMUs to estimate the position of the drone with a higher rate. Thus, it achieves a
better tracking performance of the drone in those flights of high velocity and/or acceleration.
Moreover, the proposed combination of tags’ positions further improves the accuracy of
our LAS. Higher robustness is gained because possible errors from one of the tags are
compensated with the other. As a result, with our novel LAS, an RMSE value of 0.208 m
was obtained, compared to an RMSE value of 0.410 m of a traditional UWB-based LAS.
Thanks to the higher accuracy and sampling rate of our proposal, the decision-making of
an autonomous vehicle becomes safer.

Additionally, measurements in an outdoor relevant environment have shown that our
system is able to position the drone when it is flying close to the landing platform and
to track it accurately until the end of the flight. When the drone is flying far away from
the landing platform our system presents an accuracy similar to GNSS. However, when
the drone is near to the landing platform, our LAS presented better accuracy than GNSS.
Furthermore, compared with vision-based systems in the literature, our LAS is not sensitive
to lighting conditions. This will allow it to be used with a drone that inspects the inside of
critical infrastructures such as off-shore wind turbines or a tank in a petrochemical plant.

In conclusion, this paper has presented an accurate landing assistance system for
autonomous drones that combines UWB with IMU and magnetometer data. The system can
also be improved to obtain a higher flexibility. For example, the case of a moving platform
has not been considered, so future research lines could point towards this direction.
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