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Abstract: Temperature field calculation is an important step in infrared image simulation. However,
the existing solutions, such as heat conduction modelling and pre-generated lookup tables based on
temperature calculation tools, are difficult to meet the requirements of high-performance simulation
of infrared images based on three-dimensional scenes under multi-environmental conditions in
terms of accuracy, timeliness, and flexibility. In recent years, machine learning-based temperature
field prediction methods have been proposed, but these methods only consider the influence of
meteorological parameters on the temperature value, while not considering the geometric structure
and the thermophysical parameters of the object, which results in the low accuracy. In this paper,
a multivariate temperature field prediction network based on heterogeneous data (MTPHNet) is
proposed. The network fuses geometry structure, meteorological, and thermophysical parameters
to predict temperature. First, a Point Cloud Feature Extraction Module and Environmental Data
Mapping Module are used to extract geometric information, thermophysical, and meteorological
features. The extracted features are fused by the Data Fusion Module for temperature field prediction.
Experiment results show that MTPHNet significantly improves the prediction accuracy of the tem-
perature field. Compared with the v-Support Vector Regression and the combined back-propagation
neural network, the mean absolute error and root mean square error of MTPHNet are reduced by at
least 23.4% and 27.7%, respectively, while the R-square is increased by at least 5.85%. MTPHNet also
achieves good results in multi-target and complex target temperature field prediction tasks. These
results validate the effectiveness of the proposed method.

Keywords: three-dimensional scene; temperature field; intelligent prediction; network; geometry
structure; meteorological parameters; thermophysical parameters

1. Introduction

Infrared imaging technology has the characteristics of high penetration, strong anti-
interference, good concealment, and high precision, which can significantly compensate for
visible-light imaging technology’s lack of night vision capability. With the rapid develop-
ment of infrared imaging technologies, infrared imaging systems have been widely applied
to military, industrial, and civilian applications [1]. To develop such systems, it is essential
to obtain the appropriate system parameters in advance. This requires a large number of
sample images under different lighting conditions for testing and evaluation. However, ow-
ing to the complex influences of region, scenery, time-of-day and meteorological conditions,
obtaining a sufficient number of samples often requires extensive re-sources and labor.
Under extreme conditions, it is impossible to obtain a sufficient number of test samples. To
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overcome this limitation, infrared simulation has been proposed. It obtains infrared images
by simulating actual infrared imaging processes by traversing three-dimensional (3D) scene
construction, temperature field and radiation calculations, atmospheric radiation transmis-
sion calculation, and imaging instrument simulation. Among these, the temperature field
calculation is the most important.

Research on temperature field calculations has undergone a remarkable evolution.
Initially, researchers used empirical or semi-empirical models to calculate a temperature
field. For instance, Jacobs [2] used a one-dimensional thermal model to calculate the
temperatures of simple geometries. Biesel and Rohlfing [3] obtained an object’s surface
temperature by setting a series of assumptions for the heat balance equation. Curtis and
Rive-ra [4] established an empirical surface temperature model that comprehensively
considers the influences of time, material type, meteorological conditions, and object
orientation. Balfour and Bushlin [5] established a general expression of surface temperature
with respect to the sun, sky, air temperature and wind speed. However, these models are
labor- and resource-intensive. Moreover, they cannot adapt to changes in details, and their
accuracy is low.

To meet the requirements of accuracy, first-principle models were used for temperature
field calculations. This model is based on the principle of heat transfer. The heat balance
equation is established by considering various factors that affect the temperature change
of the object; the temperature value is calculated by numerical calculations. For instance,
Gonda et al. [6] introduced the temperature prediction model, which uses a hot node
network method to calculate the temperature field distribution on the surface of an object.
Sheffer and Cathcart [7] developed a thermal calculation model using a first-principle
model, which considers factors, such as solar and sky radiation, mass transfer process,
fluid transmission, occlusion, and multiple reflections, and can more accurately obtain
the temperature change of the object. Currently, several commercial temperature field
calculation software programs, such as TAITherm (https://thermoanalytics.com/taitherm,
accessed on 27 February 2022) [8], Fluent (https://www.ansys.com/zh-cn/products/
fluids/ansys-fluent, accessed on 27 February 2022), and Vega, which are based on first-
principle models, have been developed. They realize high-precision target temperature
field calculations by setting thermophysical and meteorological parameters. However,
for calculating a temperature field to deter-mine a target, it is usually necessary to input
several parameters, such as material, thickness, shape, atmospheric temperature, and wind
speed and direction. This impedes calculations at different periods and under varying
meteorological conditions, and over-whelms the current GPUs. Hence, it cannot support
real-time infrared simulations.

Considering the first-principle models’ calculation speed bottleneck, Hu et al. [9]
proposed a scheme that uses the temperature field calculation method to generate the
temperature data of a typical target scene under typical environmental conditions in
advance and save it in a database lookup table. The temperature value is then obtained
using database interpolation. A look-up table significantly increases the simulation speed,
but it is limited in its ability to accommodate sampling resolution design and interpolation
methods with numerous input meteorological parameters. Moreover, accuracy cannot be
guaranteed if only the main input parameters are considered.

The temperature field calculation method proposed in this study is based on machine
learning and is designed to meet real-time, high-precision and flexible infrared simulation
requirements. It uses a data-driven approach to establish a mapping of parameters affecting
the model’s temperature field distribution to the model temperature, which essentially fits
the heat-balance equation established by the first-principle model. Huang and Wu [10]
proposed a similar method based on a combined back-propagation (BP) neural network
to establish a relationship between model temperature and meteorological parameters.
Huang et al. [11] screened meteorological parameters using the heat balance equation and
used the ν-support vector regression (v-SVR) model [12] to fit the model temperature.
This meets the real-time requirements of simulations. However, contemporary machine
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learning models only consider the influence of meteorological parameters on temperature
and ignore the influence of other factors, which affects accuracy.

This study provides a novel temperature field calculation method based on machine
learning for high-precision real-time prediction of temperature field under the influence
of multiple environmental variables in the real-time simulation of a 3D scene’s infrared
im-aging. It addresses the limitations of the contemporary models by comprehensively
considering geometry structure, meteorological, and thermophysical parameters, which
meets the requirements of real-time and accurate temperature field prediction. The main
contributions of this study are as follows:

(1) A multivariate temperature field prediction network based on heterogeneous data
(MTPHNet), which combines the characteristics of heterogeneous thermo-physical
and meteorological data as 3D model parameters to predict temperature using fusion
features and to improve model generalizability;

(2) To solve the problem of memory explosion when the Transformer (http://nlp.seas.
harvard.edu/2018/04/03/attention.html, accessed on 27 February 2022) structure
deals with 3D model thermophysical parameters, we propose the PointNet (https:
//github.com/charlesq34/pointnet, accessed on 27 February 2022) structure as the 3D
model thermophysical feature extraction module and imitate the parameter sharing
idea of a convolutional neural network to extract local and global features separately.
The final fitting effect proves the effectiveness of the method;

(3) We used a multilayer perceptron (MLP) module to map the meteorological parameters
to fuse the meteorological and thermophysical parameters so that the mapped features
and thermophysical parameters have the same size, which is convenient for the
subsequent fusion process.

The experimental results validate the effectiveness of our proposed algorithm. The
remainder of this article is organized as follows: Section 2 describes our analysis process
and the proposed method in detail. In Section 3, the data formats, evaluation metrics, and
training methods used for training are introduced. In Section 4, corresponding experiments
are designed to verify the effectiveness of this method, and the experimental results are
analyzed and discussed. Section 5 draws some conclusions about our method.

2. Materials and Methods
2.1. Analysis of the Parameters That Affect the Temperature Field Distribution of the 3D Model in
the Natural Environment
2.1.1. Calculation Principle

A series of heat transfer processes with different mechanisms occur between the
surface of a 3D model in a natural environment and the atmospheric boundary layer. A 3D
model comprises different materials; the methods and speeds of heat exchange between
different materials and the external environment are different.

Figure 1 illustrates the energy interactions between an object and the external en-
vironment, which ultimately results in thermal equilibrium. For example, temperature
differences between objects cause heat transfer (Figure 1A). Energy can also be transmitted
directly to objects by solar radiation (Figure 1B). Atmospheric particles can also transfer
energy to objects after absorbing external radiation (Figure 1C). Heat energy can be trans-
ferred from surrounding objects to the target object (Figure 1D). Fluid flow also contributes
to energy transfer (Figure 1E). Lastly, energy transfer can be caused by the evaporation of
water, water vapor condensation, and migration (Figure 1F).

Based on the law of the conservation of energy and the processes illustrated, the heat
balance equation of an object’s surface is as follows:

ki
∂T
∂n

∣∣∣∣
i
= asEsun + alEsky +

M

∑
j=1

Qrj − εσT4 ±Qc ±Qec (1)

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
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where ki
∂T
∂n

∣∣∣ is the heat conduction of the object, asEsun denotes the ability of an object to
absorb solar radiation, alEsky denotes the ability of an object to absorb radiation from the sky,
M
∑

j=1
Qrj denotes the radiative heat transfer from other objects around, εσT4 denotes the self-

radiation of the object, Qc denotes convective heat transfer, and Qec denotes hidden heat.
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particles, energy flows from a high-temperature object to a low-temperature object. For a 
temperature change caused by heat conduction, the main influencing factors are the prop-
erties of the object itself, including thermal conductivity, thickness, shape, etc. 
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Figure 1. A 3D model of processes of energy interactions to reach thermal equilibrium under natural
conditions: (A) heat transferred by temperature differences between objects; (B) energy directly
transmitted to objects by solar radiation; (C) energy transferred by particles to objects after absorbing
external radiation; (D) heat radiation energy transferred from surrounding objects to the target object;
(E) energy transferred by fluid flow; and (F) energy transferred by water evaporation, water vapor
condensation and migration.

With Equation (1), when the boundary conditions at each moment are known, the
temperature field distribution at each moment can be calculated. The calculation result at
the current moment is also the boundary condition at the next moment. By analyzing the
above-mentioned energy transfer process, we can filter the variables that play a key role in
the calculation of the temperature field distribution.

By analyzing the above-mentioned energy transfer process, we can filter out the
variables that play a key role in the calculation of the temperature field distribution:

(A) Heat conduction: Owing to the collision of numerous molecules and subatomic
particles, energy flows from a high-temperature object to a low-temperature object. For
a temperature change caused by heat conduction, the main influencing factors are the
properties of the object itself, including thermal conductivity, thickness, shape, etc.

(B) Sun radiation: Objects absorb radiant energy from the sun, which is a form of
radiant heat transfer. When the object is on a clear and cloudless level surface, the formula
is as follows:

Es0 = [1− A(U∗, β)](0.349E0)sinβ +

(
1− ρ0

1− ρ0ρg

)
(0.651E0)sinβ (2)

where E0 denotes the solar radiation of the entire waveband, A(U∗, β) denotes the ab-
sorbable coefficient, which is a function of relative humidity, air temperature, and solar
altitude, β denotes the solar elevation angle, ρg denotes the reflectivity of the ground,
and ρ0 is the Rayleigh reflectivity of the atmosphere, which is a function of the solar
elevation angle.
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Considering the cloudy sky, Equation (2) is modified to obtain the following formula:

E f sun = Es0·CF (3)

where CF is a function related to cloud coverage.
Therefore, the main factors influencing the temperature changes caused by solar

radiation are relative humidity, air temperature, solar altitude angle, and cloud coverage.
The solar altitude angle is related to the longitude, latitude, time zone, and date. In this
study, it is assumed that the temperature field is calculated in a fixed scene; hence, the
longitude, latitude, and time zone are invariant. Therefore, the main influencing factors of
temperature changes caused by solar radiation are relative humidity, air temperature, date,
and cloud coverage.

(C) Sky radiation: Atmospheric particles, such as carbon dioxide and water vapor,
are present in the atmosphere. These particles absorb external radiation; thus, they have
a certain temperature. Therefore, sky radiation is essentially generated by the thermal
radiation of atmospheric particles, and it affects objects on the ground. The formula for sky
radiation is as follows:

Esky =
(
a + b

√
e
)
σT4

a (4)

where Ta is the sky temperature, which can be calculated from cloud coverage, atmospheric
temperature, humidity, and altitude; a and b are related to the location and time of the
measurement, and e is a function of relative humidity and atmospheric temperature.

Because altitude and location are constant in this study, the temperature changes
caused by sky radiation are related to cloud coverage, atmospheric temperature, humidity,
and time.

(D) Radiation from other objects: When the temperature of an object is higher than
absolute zero, it spontaneously radiates energy. Therefore, when there are other objects
around it, it is affected by their radiation. Hence, it is necessary to obtain the surrounding
objects’ temperature data.

(E) Convection heat transfer: Fluid flow further affects temperature changes. For
ground objects, the main influencing factors of temperature changes caused by convective
heat transfer are wind speed and direction, and air temperature.

(F) Latent heat is the energy transfer caused by the evaporation of water; and conden-
sation and migration of water vapor. The object studied in this study does not involve heat
exchange in this area.

2.1.2. Determination of the Parameters That Affect the Surface Temperature Field of
the Object

Because this study focuses on the calculation of a 3D target’s temperature field at a
fixed altitude and location, the main meteorological parameters are date, atmospheric tem-
perature, solar radiation, wind speed, relative humidity, cloud cover, and wind direction.
The main thermophysical parameters are space coordinates, density, specific heat, conduc-
tivity, thickness, convection method, emissivity, absorptivity, and initial temperature.

2.2. Design of 3D Target Temperature Field Prediction Model Based on Heterogeneous Data Fusion

Predictive modelling of temperature fields based on machine learning is essentially a
fitting of first-principle models of thermodynamics. According to the analysis in Section 2.1,
this mainly includes three heat transfer processes: heat conduction, heat radiation, and
heat convection.

In the first-principles model, the factors affecting the temperature of the model can
be divided into two categories: the first category is meteorological parameters, which are
time series data that record meteorological indicators at each moment, such as atmospheric
temperature, wind speed, and direction, which characterizes the energy exchange between
the object and the atmosphere, mainly reflects the heat radiation process and the heat
convection process in the heat transfer process; the other is thermophysical parameters.
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If the object is regarded as composed of countless particles, then the thermophysical
parameters can be regarded as a kind of point cloud data, which record the emissivity,
thickness, and specific heat of each particle, which characterizes the energy exchange
between points in the object and mainly reflects the heat conduction process in the heat
transfer process. In addition, the spatial location distribution will cause occlusion and
other phenomena and will also affect the exchange of energy. Therefore, the geometric
structure information will also affect the distribution of the temperature field. Although
it is not a thermophysical parameter, it corresponds to each point, so we classify it as a
thermophysical parameter. These two types of data are heterogeneous and determine the
temperature field distribution of the 3D model.

The existing temperature field prediction model based on machine learning only
considers the influence of meteorological parameters on the temperature of the target
model, while ignoring the influence of thermophysical parameters, which is equivalent to
considering only the thermal convection and thermal radiation models in the first principle,
while ignoring heat transfer. This results in poor prediction accuracy. We introduced a
Transformer [13] to solve this problem.

The Transformer is a classic work by Google. It completely abandons the traditional
neural network structure and uses an attention module [14] to process data. The use of
self-attention to process data, which can effectively integrate is effective for integrating
heterogeneous data.

This study comprehensively considers the thermophysical and external meteorological
parameters that affect the temperature of a 3D target model. The proposed MTPHNet
method improves the structure of the Transformer model using meteorological parameters
as the input of the encoder, and thermophysical parameters as the input of the decoder. It
uses the self-attention module to fuse the two parts of data to improve the generalization
ability of the model. The structure of MTPHNet is shown in Figure 2.
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The use of MTPHNet to predict the model temperature field can be expressed by
Equation (5):

Ytemp = ψt

(
φ(Enc(xobj), Dec(xenv) )

)
(5)

where xobj denotes the thermophysical parameters of the 3D model, such as space coordi-
nates, thermal conductivity, and reflectivity; xenv denotes meteorological parameters, such
as atmospheric temperature, wind speed, and direction; φ denotes the fusion process of
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thermophysical parameters and meteorological parameters to obtain fusion features; and
ψt represents the regression prediction process, which calculates the temperature value to
be predicted.

In this study, the 3D target model is represented as point cloud data. Each data point
is considered an object in space and has its corresponding attribute information, such as
material, thickness, and thermal conductivity. Therefore, xobj ∈ RP×A, where P denotes
the number of points in the 3D target model, and A denotes the number of attributes
corresponding to each data point. Meteorological parameters are time-related, and each
moment corresponds to a set of meteorological data. Therefore, xenv ∈ RT×E, where T
denotes the duration, which is obtained by sampling at a fixed step in a period, and E
denotes the number of attributes used to describe the external environment.

It is evident that thermophysical and meteorological parameters are two sets of hetero-
geneous data with different dimensions. However, in the natural environment, meteorolog-
ical parameters act on the thermophysical parameters of the 3D model. Simultaneously,
the temperature of each data point is affected by the temperature of other points around it.
Therefore, the thermophysical parameters of the 3D target model affect each other. These
highly coupled heterogeneous data determine the temperature of the 3D target model;
therefore, this complexity cannot be handled by general data fusion methods. Thus, we use
the thermophysical parameters of each point as input to the Transformer encoder. A point
corresponds to a token, and the interaction between the points of the 3D target model is
simulated using the encoder’s calculation. Subsequently, the meteorological parameters
are used as input to the Transformer’s decoder for feature mapping. Finally, the two parts
of the features are fused, and the fused features are regressed to calculate the predicted
value of the 3D target temperature field.

2.2.1. Point-Cloud Feature Extraction Module (PCEM)

In the real environment, objects can be envisioned as a composition of countless
particles, and different points have different materials and spatial positions. Different
materials will often have very distinct emissivity, absorption, and scattering [15] properties,
which can result in a variety of particle energy absorptions and releases. Different spatial
positions will lead to phenomena, such as occlusion and shadows, resulting in uneven
energy distributions. Therefore, the thermophysical parameters of the 3D object are crucial
to the establishment of a temperature field. To improve the accuracy of temperature field
prediction, we must extract the object’s thermophysical parameters.

The thermophysical parameters include spatial coordinates, emissivity, and specific
heat, which can be regarded as point cloud data with additional attributes. Temperature
field prediction requires the calculation of the entire 3D target model, and each point
interacts with all other points, implying that the thermophysical parameters of each are
dot-produced with the thermophysical parameters of other points. The computational
complexity of the original Transformer is proportional to the square of the length of the
input sequence [16]; however, the number of 3D point cloud points is large, which is
unsuitable for most hardware.

To solve this problem, we apply PointNet [17], a feature extraction layer for point-
cloud data of the 3D target model. PointNet, proposed by Qi et al. (2017), can be directly
used to process point cloud data. The model extracts features via feature mapping and
maximum pooling of point cloud data and satisfactorily completes the classification task.
However, because the model extracts features from single points and does not consider the
relationship between points, its local feature extraction ability is weak [18]. Therefore, it is
impossible to analyze complex scenes.

In this study, the 3D target model is assembled from different parts. First, we group
the point clouds of the 3D target model according to the types of parts. The point cloud
attributes of the same part are similar; however, the point cloud attributes of different
parts are different. Subsequently, the point cloud data are organized according to the part
category and each group of point cloud data are first sent to a self-attention module for
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calculation to obtain the relationship between points. The calculation results are sent to
the PointNet for local feature extraction. The feature extraction process for the point cloud
data of the 3D target model is shown in Figure 3.
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Figure 3. Flow chart of feature extraction of 3D target model.

Figure 3 indicates that we do not configure a self-attention module and PointNet,
respectively, for the point cloud data of each group of parts to extract features. We rather
refer to the convolution kernel of weight sharing in convolutional neural network [19] and
use a unique self-attention module and PointNet which perform feature extraction on the
point cloud data of different parts. Each group of parts is extracted as a local feature vector;
the feature items extracted from all the parts are formed into a new sequence; and are then
sent to a new self-attention module and PointNet to extract global features. This way, all
features for the 3D target model are extracted.

2.2.2. Environmental Data Feature Mapping Module (EMM)

Meteorological parameters directly affect the temperature of objects. Rain reduces the
surface temperature of objects, the shielding effect of clouds weakens solar radiation, and
wind accelerates the heat transfer between the air and the surface of the object [20].

The thermophysical parameters of the 3D target model are mapped into a fixed-size
feature block after passing through the PCEM. The thermophysical and meteorological
parameters of the 3D model are heterogeneous data from different sources. To achieve the
integration of heterogeneous data, we introduced a multi-layer perceptron (MLP) module
to map meteorological parameters to a high-dimensional space through feature mapping
and map them to a fixed size to match the feature block of the thermophysical parameters.
The EMM is illustrated in Figure 4.
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2.2.3. Data Fusion Module (DFM)

In the natural environment, meteorological and thermophysical parameters undergo
complex physical interactions to determine the temperature field distribution of objects. In
this study, we use a self-attention module to fuse the thermophysical and meteorological pa-
rameters. We use the feature block output by the encoder as the K and V of the self-attention
module, and the feature block output by the decoder as the Q of the self-attention module.
This process simulates the interaction between meteorological parameters and the 3D target
model in the natural environment. A schematic of the integration of thermophysical and
meteorological parameters is shown in Figure 5.
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2.2.4. Pseudocode

Based on the above analysis, the pseudocode of MTPHNet shown in Figure 2 is
summarized, and the algorithm is given in Algorithm 1.

Algorithm 1 program pseudo code of MTPHNet.

Input
xt

env: meteorological parameter at the current moment.
xt

obj: thermophysical parameter at the current moment.

Yt−1
temp: the target temperature value at the last moment.

Output Yt
temp: the target temperature value at the current moment.

1 For t = 1 to tmax

2 Replace: xt
encin = dimension_replace

(
xt

obj, Yt−1
temp

)
3 For i = 1 to P
4 xt

encin[i] = attn_ f eature
(

xt
encin[i], xt

encin[i], xt
encin[i]

)
5 xt

encin[i] = pointnet_ f eature
(

xt
encin[i]

)
6 End for
7 xt

encout = pointnet_ f eature
(

attn_ f eature
(

xt
encin, xt

encin, xt
encin

))
8 xt

dec in = MLP
(
xt

env
)

9 Yt
temp = Linear

(
attn_ f eature

(
xt

decin, xt
encout, xt

encout

))
10 End for

Algorithm 1 shows that tmax is the maximum duration of temperature field prediction,
and P is the number of parts in the 3D model.

In line 2, the algorithm replaces the dimension representing temperature in xt
obj with

Yt−1
temp. From lines 3 to 6, the algorithm extracts the local features of the 3D model using

attn_ f eature and pointnet_ f eature for each part. In line 7, the algorithm uses attn_ f eature
and pointnet_ f eature to extract the global features of the 3D model. In line 8, the algorithm
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uses MLP to make a feature map of xt
env. Finally, the algorithm uses attn_ f eature to fuse

xt
dec_in and xt

enc_out, and Linear to obtain the temperature value.

3. Experimental Details and Data Exploitation
3.1. Experimental Environment and Index Design

The experiment was conducted on an AMD Ryzen 7 CPU 5800H with 16 GB of RAM,
NVIDIA GeForce RTX 3090 with 24 GB of memory, Python 3.7.2, and PyTorch 1.9.0 for
network model training and testing.

To evaluate the effect of temperature field prediction, mean absolute error (MAE) [21],
root mean square error (RMSE) [22], and R2 [23] were selected as the evaluation criteria
for the model quality. The calculation formulas are as follows:

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (6)

RMSE(y, ŷ) =
1
n

n

∑
i=1
‖yi − ŷi‖2

2 (7)

R2(y, ŷ) = 1− RSS
TSS

=
ESS + 2 ∑n

i=0(yi − ŷi)(ŷi − y)
TSS

(8)

TSS =
n

∑
i=1

(yi − y)2 (9)

RSS =
n

∑
i=1

(yi − ŷi)
2 (10)

ESS =
n

∑
i=1

(ŷi − y)2 (11)

where y denotes the true value; ŷ denotes the predicted value; y denotes the average value
of the true value; TSS is the Total sum of squares, which defines the difference between y
and y; RSS is the Residual sum of squares, which defines the difference between y and ŷ;
and ESS is the Explained sum of squares, which defines the difference between ŷ and y.

Among the selected evaluation indicators, MAE and RMSE are used to measure the
size of error between the predicted and real data; R-squared measures the quality of the fit.

3.2. Dataset

The training data used by existing temperature field prediction models based on
machine learning methods were collected by instruments. These type of data are closer to
reality. However, owing to the variability of natural environmental parameters and the
in-stability of instruments, the data acquired by the instrument are noisy and costly.

We use our own temperature dataset constructed by ourselves, which includes the
thermophysical parameters, meteorological parameters, and temperature field data of
3D objects.

3.2.1. Dataset Format

We use the thermophysical and meteorological parameters of the dataset as input to
MTPHNet and the corresponding temperature data as its output to train and optimize the
model parameters.

The shape of the 3D target model has an impact on the temperature field formation.
Under the same environmental conditions, different shapes will cause uneven heat distri-
bution in the 3D target model, for instance, objects in shadow will be cooler than objects in
direct sunlight. Therefore, the thermophysical parameters in the dataset first need to obtain
the spatial position information of the 3D target model. We built several 3D models using
3D modeling software and exported them to OBJ file format. Because OBJ file uses the face
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element data structure to build the 3D model and the proposed model uses the point cloud
data structure, we processed the exported OBJ file and calculated the center coordinates of
each face element to replace the face element. Figure 6 shows the constructed 3D model.
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Figure 6. A 3D model and its corresponding point cloud data.

Figure 6 shows that each 3D object has several data points. In addition to spatial
coordinates, each data point contains additional attribute information, such as material,
thickness, and initial temperature. Table 1 shows the point cloud data format of the 3D
target model during training.

Table 1. Point cloud data format for 3D targets.

Physical
Parameters

Space
Coordinates Density Specific

Heat Conductivity Thickness Convection Emissivity Absorptivity Initial
Temperature

Unit (mm) (kg/m3) (J/kg·K) (W/m·K) (mm) Bool / / ◦C

In addition to the 3D point cloud data, meteorological parameter data are required.
For this study, we collect meteorological parameter data for four seasons. Combined with
the parameters that must be collected in the analysis above, we selected date, atmospheric
temperature, solar radiation, wind speed and direction, relative humidity, and cloud cover-
age as environmental parameter variables. Figure 7 shows the meteorological parameters
related to time, and the changing trends.
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According to the collected thermophysical and meteorological parameters, we use
an internal temperature field calculation software to calculate the temperature field dis-
tribution of the 3D model data and add the calculation results to the dataset for training
the model.

From Equation (5), Ytemp ∈ RP×T , which means P points, and each point has T
temperature values.

3.2.2. Teacher Forcing

As discussed before, the temperature of the 3D target is affected by the sun, atmo-
sphere, and surrounding objects. It is evident that the temperature of the 3D target model
at each moment is determined by the meteorological and thermophysical parameters at the
current moment.

Among the features of the thermophysical parameters, one dimension of the feature
represents the temperature of the point cloud data. Because the 3D model is represented by
a point cloud, each point represents a distinct object. Therefore, this dimension represents
the distribution of the temperature field at the current moment.

The temperature field distribution is obtained at the next moment by entering the data
into MTPHNet to measure the difference between the two one time step.

Because unknown information cannot be used in the test, the calculated value is
assigned to this dimension of the input data to calculate the temperature value at the next
moment, after calculating the temperature value at the current moment. Figure 8 illustrates
the process.
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Figure 8. Temperature substitution process. The temperature value calculated by the model replaces
a certain dimension of the input to simulate the temperature change of all objects in the temperature
field at each moment.

During the training, the temperature value at any time is known. Therefore, there is
no need to use the temperature value calculated by the model to replace the value of the
dimension, which allows parallel calculations during the training.

4. Results and Discussion
4.1. Performance of the MTPHNet

To demonstrate that the MTPHNet successfully integrates an object’s thermophysical
and meteorological parameters can further improve the prediction of the temperature
field, we used temperature field data, thermophysical parameters, and meteorological
parameters as training data and compared the performance of MTPHNet with those of
v-SVR and a combined BP neural network (CBPNN) model.

When training MPTHNet, the hyperparameters needed by the model included batch
size, epoch, number of multi-heads, and initial learning rate. The batch size affects the
degree of optimization and model speed. The size of the epoch affects the fitting effect of
the model. Tuning the number of multi-heads helps the network capture richer features.
The initial learning rate determines if and when the objective function converges to a
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local minimum. To obtain better hyperparameter values, we used Microsoft’s automatic
parameter tuning tool, NNI, for hyperparameter selection, which runs the code in a loop
to obtain the optimal hyperparameter values. The results of the operation are shown in
Figure 9:
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Figure 9. Results of NNI.

As can be seen in Figure 9, the batch size was set to 16; the number of epochs was 100,
the number of multi-heads was 6 and the initial learning rate was 0.0003. As it is based on
the Transformer structure, the MTPHNet model is large and needs a significant amount of
memory. Considering computational efficiency and fitting accuracy, we selected the Huber
loss function and the Adam optimizer for optimization. Dropout was used for overfitting
mitigation, and the deletion ratio, p, was 0.05.

Because the thermophysical parameters of the 3D target were considered, the MTPH-
Net trained different 3D models with the same number of point clouds. However, v-SVR
and CBPNN only consider the impact of meteorological parameters on the temperature of
the 3D target and cannot simultaneously predict the temperature field of different 3D target
models. For referential significance, all three models were trained with the same training
set, which includes the temperature field distribution data of a single 3D model. MTPHNet
was better than the other prediction models after testing on the test set. Table 2 presents the
generalization performance of the models.

Table 2. Comparison of generalization performance of MTPHNet, v-SVR, and CBPNN.

Algorithm Model MAE RMSE R-Squared

v-SVR 17.329 21.17 −388.6

CBPNN 2.249 3.474 0.889

MTPHNet 1.722 2.512 0.941

As shown in Table 2, the MTPHNet prediction error, was significantly lower than that
of the existing temperature field prediction models. Compared with the CBPNN model,
its MAE and RMSE decreased by 23.4% and 27.7%, respectively, whereas the R-squared
increased by 5.85%. Figure 10 shows the prediction effects of the models.

Because the 3D model was composed of patches, in the experiment, we extracted
several patches by generating random numbers to show the effect of temperature field
prediction. We selected patches 96,231 and 423 for presentation. The experiments demon-
strated that, although the existing temperature field prediction methods fit the temperature
field on the change trend, their accuracies were insufficient. Therefore, it is necessary to
combine the energy interaction mode of the 3D object in the natural environment and its
meteorological and thermophysical parameters to further improve prediction accuracy.
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4.2. Advantages of MTPHNet
4.2.1. Multi-Object Temperature Field Prediction

The results indicate that MTPHNet has a better fitting ability than the existing temper-
ature field prediction models. Because MTPHNet comprehensively considers the various
energy exchanges between the object and the environment and combines the thermo-
physical parameters of the object for training, it simultaneously trains and predicts the
temperature field for different 3D targets. Existing temperature field prediction models
cannot achieve this.

In this study, we summarized the 3D target temperature field data shown in Figure 5
and imported them into MTPHNet for training and verification. Table 3 presents the
fitting performances.

As shown in Table 3, when the MTPHNet model was used to predict the temperature
field of multiple objects, the values of its various indicators were satisfactory. The exper-
imental results demonstrate that the thermophysical parameters of the 3D target model
are significant for temperature field prediction. Figure 11 shows the effects of the multi-
object temperature field prediction. Here, three materials were used for the temperature
field calculation. For a convenient comparison, we selected patch 1 for presentation. The
same patch shows the effect of different materials on temperature and the adaptability of
MTPHNet to different temperature changes.
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Table 3. MTPHNet’s generalization performance for multi-object temperature field prediction.

Model Material MAE RMSE R-Square

Box

1 2.077 2.568 0.938

2 3.953 5.664 0.877

3 1.785 2.153 0.929

Cylinder

1 4.419 6.224 0.855

2 2.497 3.320 0.901

3 5.572 7.976 0.821

Sphere

1 1.910 2.329 0.918

2 2.556 3.245 0.897

3 4.843 6.927 0.831

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21 
 

 

4.2. Advantages of MTPHNet 
4.2.1. Multi-Object Temperature Field Prediction 

The results indicate that MTPHNet has a better fitting ability than the existing tem-
perature field prediction models. Because MTPHNet comprehensively considers the var-
ious energy exchanges between the object and the environment and combines the ther-
mophysical parameters of the object for training, it simultaneously trains and predicts the 
temperature field for different 3D targets. Existing temperature field prediction models 
cannot achieve this. 

In this study, we summarized the 3D target temperature field data shown in Figure 
5 and imported them into MTPHNet for training and verification. Table 3 presents the 
fitting performances. 

Table 3. MTPHNet’s generalization performance for multi-object temperature field prediction. 

Model Material MAE RMSE R-Square 

Box 
1 2.077 2.568 0.938 
2 3.953 5.664 0.877 
3 1.785 2.153 0.929 

Cylinder 
1 4.419 6.224 0.855 
2 2.497 3.320 0.901 
3 5.572 7.976 0.821 

Sphere 
1 1.910 2.329 0.918 
2 2.556 3.245 0.897 
3 4.843 6.927 0.831 

As shown in Table 3, when the MTPHNet model was used to predict the temperature 
field of multiple objects, the values of its various indicators were satisfactory. The experi-
mental results demonstrate that the thermophysical parameters of the 3D target model are 
significant for temperature field prediction. Figure 11 shows the effects of the multi-object 
temperature field prediction. Here, three materials were used for the temperature field 
calculation. For a convenient comparison, we selected patch 1 for presentation. The same 
patch shows the effect of different materials on temperature and the adaptability of 
MTPHNet to different temperature changes. 

 

(a) 

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21 
 

 

 

(b) 

 

(c) 

Figure 11. Multi-object temperature field prediction effects. Fitting of different materials of (a) box; 
(b) cylinder; and (c) sphere. 

4.2.2. Prediction of Temperature Field of Complex Objects 
When predicting multiple objects, this study assumed that each object had only one 

part; thus, the attribute data of different points are the same. In reality, however, a com-
plex 3D object is composed of different materials, and the energy exchange between them 
is more complicated than that of a single material. Therefore, we chose a complex model 
for training and prediction. Figure 12 shows the geometry of the model. 

 
Figure 12. Complex house model with 5660 patches and 30 parts: (a) geometric structure; (b) tem-
perature field distribution at a given moment. 

Table 4. MTPHNet’s generalization performance for temperature field prediction of complex ob-
jects. 

Model MAE RMSE R-Square 
House 2.645 3.522 0.964 

Figure 11. Multi-object temperature field prediction effects. Fitting of different materials of (a) box;
(b) cylinder; and (c) sphere.

4.2.2. Prediction of Temperature Field of Complex Objects

When predicting multiple objects, this study assumed that each object had only one
part; thus, the attribute data of different points are the same. In reality, however, a complex
3D object is composed of different materials, and the energy exchange between them is
more complicated than that of a single material. Therefore, we chose a complex model for
training and prediction. Figure 12 shows the geometry of the model.
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4.3. Ablation Analysis

To verify the effectiveness of our proposed network, we conducted three ablation
experiments to verify the performance of the main design components: environmental data
feature mapping module (EMM), point cloud feature extraction module (PCEM), and data
fusion module (DFM). The proposed MTPHNet is given as MTPHNet-A, and its variants
for ablation are MTPHNet-B, MTPHNet-C, and MTPHNet-D. All variants were trained
and validated using the same procedure described in Section 4.1. Each ablation experiment
was performed three times and the results were averaged, and shown in the Table 5 and
Figure 14.

Table 5. Quantitative evaluation metrics of MTPHNet and its variants. All models follow the same
procedure and training environment as described in Section 4.1 and are evaluated on the same test
set. The best results are shown in bold.

Model MAE RMSE R-Square

MTPHNet-A (Original) 1.722 2.512 0.941

MTPHNet-B (no EMM) 8.734 10.362 −0.011

MTPHNet-C (no PCEM) 2.277 3.516 0.885

MTPHNet-D (no DFM) 2.303 3.431 0.89
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Figure 14. Multivariate temperature field prediction network based on heterogeneous data (MTPH-
Net) variants for ablation experiments: (a) MTPHNet-B removes the environmental data feature
mapping module (EMM) to study the effect of meteorological parameters on temperature field
prediction; (b) MTPHNet-C removes the point cloud feature extraction module (PCEM) to study the
effect of thermophysical parameters on temperature field prediction; and (c) MTPHNet-D re-places
the data fusion module (DFM) with an additive fusion method to study the effect of data fusion on
temperature field prediction.

4.3.1. Effectiveness Analysis of EMM

To measure the EMM’s contribution, we designed a variant model without EMM, as
described in Table 5: MTPHNet-B. It can be seen that the prediction effect of MPTHNet-A
without EMM is extremely poor; it cannot even predict the temperature. The quantitative
results show that the EMM is the core of temperature prediction.

4.3.2. Effectiveness Analysis of PCEM

We believe the use of PCEM would further improve the accuracy of temperature
prediction. To substantiate it, we designed a variant without the PCEM: MTPHNet-C. In
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Table 5, MTPHNet-A outperforms MTPHNet-C in all metrics. The quantitative results
clearly show that PCEM improved the prediction performance.

4.3.3. Effectiveness Analysis of DFM

DFM fuses the features extracted from meteorological and thermophysical parameters,
which is a crucial step. To confirm this, we designed a variant model, MTPHNet-D, which
replaces the DFM with an additive fusion module. In Table 5, MTPHNet-A outperforms
MTPHNet-D in all metrics, and MTPHNet-D is closer to MTPHNet-C in terms of metrics.
The quantitative results show that DFM and PCEM contribute similarly to improve the
prediction performance.

5. Conclusions

This study comprehensively considered the thermophysical and meteorological param-
eters affecting the temperature field distribution of a 3D target. Combined with temperature
field distribution data, an intelligent temperature field prediction model, MTPHNet, was
proposed. To fuse meteorological and thermophysical parameters, MTPHNet used PCEM
to calculate the interaction between 3D target attributes and extract thermophysical fea-
tures. Simultaneously, it used EMM to map meteorological parameters to meteorological
features so that the mapped data and thermophysical data would be of the same size,
which facilitated the subsequent data fusion. Finally, DFM fused the parts and used the
results to predict the temperature. Considering PCEM’s tendency of memory explosion
when processing point cloud attribute data, we introduced PointNet as a feature extraction
network to reduce the memory burden and divide the feature extraction process into local
feature and global feature extraction activities to further streamline memory use. Com-
pared with v-SVR and CBPNN, the MAE and RMSE of MTPHNet were reduced by at
least 23.4% and 27.7%, respectively, whereas the R2 value increased by at least 5.85%. The
results show that MTPHNet effectively improves model generalizability to more efficiently
and accurately predict temperature fields while meeting real-time infrared simulation
processing requirements. In complex object temperature field prediction tasks that simulate
real environments, MTPHNet is advantageous in that it considers realistic energy interac-
tion processes. Its MAE, RMSE, and R2 values were 2.645, 3.522, and 0.964, respectively,
demonstrating the model’s high adaptability to real scenes.

It should be noted that when MTPHNet performs multi-model prediction tasks, the
number of point clouds of different 3D models are required to be the same, which signifi-
cantly increases the difficulty of data collection. Therefore, in a future work, we plan to
change the model structure so that it can be further adapted to 3D models varying numbers
of point clouds.
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