
����������
�������

Citation: Wang, F.; Zhang, C.; Zhang,

W.; Fang, C.; Xia, Y.; Liu, Y.; Dong, H.

Object-Based Reliable Visual

Navigation for Mobile Robot. Sensors

2022, 22, 2387. https://doi.org/

10.3390/s22062387

Academic Editors: Arturo de la

Escalera Hueso and Andrey V. Savkin

Received: 27 January 2022

Accepted: 16 March 2022

Published: 20 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Object-Based Reliable Visual Navigation for Mobile Robot
Fan Wang 1,2 , Chaofan Zhang 1,* , Wen Zhang 1,*, Cuiyun Fang 1,2, Yingwei Xia 1, Yong Liu 1 and Hao Dong 3

1 Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of
Sciences, Hefei 230031, China; wanfan8@mail.ustc.edu.cn (F.W.); fangcy@mail.ustc.edu.cn (C.F.);
xiayw@aiofm.ac.cn (Y.X.); liuyong@aiofm.ac.cn (Y.L.)

2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
3 China National Tobacco Quality Supervision Test Center, Zhengzhou 450001, China; dongh@ztri.com.cn
* Correspondence: zcfan@aiofm.ac.cn (C.Z.); zhangwen@aiofm.ac.cn (W.Z.); Tel.: +86-187-5519-1725 (C.Z.);

+86-181-5607-2858 (W.Z.)

Abstract: Visual navigation is of vital importance for autonomous mobile robots. Most existing
practical perception-aware based visual navigation methods generally require prior-constructed
precise metric maps, and learning-based methods rely on large training to improve their generality. To
improve the reliability of visual navigation, in this paper, we propose a novel object-level topological
visual navigation method. Firstly, a lightweight object-level topological semantic map is constructed
to release the dependence on the precise metric map, where the semantic associations between objects
are stored via graph memory and topological organization is performed. Then, we propose an object-
based heuristic graph search method to select the global topological path with the optimal and shortest
characteristics. Furthermore, to reduce the global cumulative error, a global path segmentation
strategy is proposed to divide the global topological path on the basis of active visual perception and
object guidance. Finally, to achieve adaptive smooth trajectory generation, a Bernstein polynomial-
based smooth trajectory refinement method is proposed by transforming trajectory generation into a
nonlinear planning problem, achieving smooth multi-segment continuous navigation. Experimental
results demonstrate the feasibility and efficiency of our method on both simulation and real-world
scenarios. The proposed method also obtains better navigation success rate (SR) and success weighted
by inverse path length (SPL) than the state-of-the-art methods.

Keywords: topological path planning; visual navigation; object-level topological semantic map;
Bernstein polynomial

1. Introduction

Over the last few decades, autonomous mobile robots have gained increasing attention
for various applications, such as indoor service, surveillance missions, and search-and-
rescue. Safe and reliable autonomous navigation is of crucial importance for mobile robots
to execute their main tasks in complex environments. Vision-based navigation has become
a popular research area due to the richness and practicality of vision sensors [1]. Most
existing practical indoor vision navigation methods focused on path planning with a prior
precise metric map, such as an occupancy grid map [2] and dense map [3]. Generally, these
maps are constructed with Simultaneous Localization And Mapping (SLAM) algorithms,
which can perform well in a conditional ideal environment [4]. In spite of their remarkable
results, some challenging environments, such as unstructured indoor areas and dynamic
objects, pose great challenges for the performance of visual navigation methods. With the
development of deep learning, the learning-based visual navigation methods demonstrate
strong navigation performance to the above problems [5–7], while they need a large number
of training datasets to improve generalization capabilities. Therefore, it is necessary to
exploit a reliable and feasible visual navigation method.
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In general, the performance of practical map-based visual navigation is mainly af-
fected by the variations of the environment [8]. Many state-of-the-art algorithms [9–12]
demonstrate that robust object feature detection is significant for improving the reliability
of visual navigation. In [9–11], based on the precise metric map, they improved the relia-
bility of path planning by fusing semantic object information to achieve safe and efficient
visual navigation. Li Tang et al. present a topological local-metric framework, which
achieves long-term autonomous navigation through the fusion of object-based topological
associations and local metric information [12]. Thus, to achieve reliable visual navigation,
in this paper, we propose a novel object-based topological path planning method, unlike
the above approach, which tightly connects objects through a semantic topological graph
structure and performs reliable global path planning based on the semantic guidance of the
objects. The proposed method mainly includes two issues: effective global path searching
and feasible trajectory generation.

On the one hand, for global path searching, an object-constrained topological path-
searching method is proposed. Firstly, a lightweight topological semantic map is con-
structed to reduce the dependence of visual navigation on a high-precision map, by modi-
fying our previous work [13] with the graph memory and topological associations. Then,
based on the constructed map, an object-based heuristic graph search method is proposed
to effectively search global topological paths. We extract the highly-dimensional semantic-
geometric features of objects based on 3D object detection and use the multi-attribute
constraints on the feature to provide heuristic evaluation for graph search. What’s more,
a robot-centric relative topological association constraint is proposed to provide weights
for graph search in the absence of global poses. With the presented method, an optimal
and shortest global path is obtained, which improves the reliability of the visual naviga-
tion system.

On the other hand, for trajectory generation, to reduce the effect of the global cu-
mulative error on visual navigation, we propose a novel segmented smooth trajectory
generation and refinement method based on object guidance and Bernstein polynomial
parameterization. In [14,15], it is also confirmed that segmented trajectories can improve
the accuracy of path planning. Inspired by this, we convert the trajectory generation prob-
lem into a nonlinear programming problem. First, an active visual perception and object
guidance strategy is proposed to achieve the effective segmentation of global paths. Then,
the trajectory of segmentation is represented based on the multi-constraint property of
Bernstein polynomials. Based on the proposed method, we can obtain smooth and dynami-
cally feasible trajectories, and the reliability of the proposed visual navigation method is
further improved.

The illustration of the proposed object-level topological path planning for visual
navigation is shown in Figure 1. The main contributions are summarized as follows:

• A novel object-based visual navigation method is proposed, where an object-constrained
topological path-searching method is proposed for the first time to significantly re-
lease the dependence on a precise metric map and improve the reliability of visual
navigation.

• A segmented smooth trajectory generation and refinement method is proposed, based
on the object guidance and Bernstein polynomial parameterization. We implement
adaptive smooth trajectory generation to further improve the effectiveness and effi-
ciency of global path planning.

• Experimental results on both simulation and real-world scenarios validate the feasibil-
ity and efficiency of our methods.
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Figure 1. Illustration of the proposed object-level topological path planning for visual navigation.
(a,b) shows two different indoor scenarios. The blue boxes represent the 3D object detection of
object-level landmarks. The red dots indicate the nodes of the topological map. The yellow lines
indicate the edges of the topological map. The green curve is the feasible navigation trajectory
generated based on the proposed method.

2. Related Work

In this section, we briefly review visual navigation methods from the views of naviga-
tion map representation, path searching, and trajectory optimization.

2.1. Navigation Map Representation

For navigation map representation, classical metric-based navigation map represen-
tations are well established by accurately encoding the 3D geometric information of the
environment. Multiple representations have been constructed by different methods, for ex-
ample, in [16–20], they represent maps as precise and sparse 3D landmarks by specific
visual features (such as point feature and line feature). However, they cannot perform global
path planning and obstacle avoidance tasks. In contrast, dense representations attempt to
provide high-resolution models of the 3D geometry [3]. Available sensors also facilitate the
construction of highly accurate geometric maps, such as occupancy grid maps [2]. Although
these models are more suitable for obstacle avoidance and path planning for mobile robots,
they also typically require the storage of large amounts of data, and the high-precision
maps are not easy to maintain and scale [5]. Other works try to improve the reliability of
map representation by embedding semantic information [19–22]. Currently, topology maps
are widely explored to represent the environment in abstract graphs, achieving a simple
and compact lightweight representation [23–25]. However, the pure topological solution
is not suitable for robot navigation that requires metric guidance [12]. Thus, some work
constructs topological representations that are highly consistent with the metric map [26]
or embeds local metric information [12]. Although it makes the map lightweight, it also
limits the high scalability of topological maps. Moreover, due to the widespread successful
application of deep learning, the learning-based map representation approach has also
attracted a lot of interest. Some topological methods work with human-like exploration of
pre-established topological maps [6,7]. It relies on a large number of labeled datasets and
cannot be applied well to an unfamiliar environment. Other approaches build topological
representations that incorporate semantics [27]. Inspired by the above work, our work
focuses on making visual navigation lightweight, scalable, robust, and efficient. We intend
to achieve this by integrating the high-dimensional semantic and geometric information of
objects into the structure of the graph, which enables reliable navigation capabilities.

2.2. Path Searching

The topological representation of the environment already provides a discrete working
space for path planning. Most works that perform path search in this type of workspace
are also referred to as C-space search. Depending on the way of discretizing the C-space
search, path-searching methods can be subdivided into two predominant groups [28]: the
sampling-based method and graph search method. Rapidly Random Tree (RRT) [29] is
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the most famous sampling-based path search method, which stimulates the growth of
a tree, starting from a starting point and dynamically creating branches [30]. Later, lots
of path-searching methods have been proposed by improving the RRT method, such as
RRT-Connect [31], Heuristic RRT (RRT*) [32], Probabilistic Roadmap Method (PRM) [33],
and Fast Marching Tree (FMT*) [34]. The sampling-based path-searching algorithm is
asymptotically optimal, which means that the number of samples may be larger over
time to approach the global optimal solution [35] and requires the use of larger memory
resources to store all the samples. The graph search-based path search algorithm completely
or partially accesses the constructed topology graph until it finds a path connecting the
initial point and the goal point. The classical graph search-based path search algorithm is
the Dijkstra algorithm [36]. Currently, several improved versions are obtained by speeding
up the search, reducing the computational complexity, including A* [37], Dynamic A* [38],
Lifelong Planning A* (LPA*) [39], and Hybrid A* [40]. In this paper, inspired by the A*
algorithm, we propose an object-based heuristic path-searching method, which performs
heuristic evaluation by semantic–geometric features of objects and weight constraints based
on topological associations between objects.

2.3. Trajectory Generation

Generally speaking, the existing initially searched paths cannot be directly executed
by the robot due to dynamic constraints and the inherently poor smoothness of the paths.
Therefore, a control function is required to parameterize the paths, which generates smooth
trajectories and adjusts them to the robot’s motion constraints. In the CHOMP proposed by
Ratliff et al. [41], the optimal solution is approximated from the feasible path utilizing the
gradient optimization technique. Van Den Berg et al. [42] optimized the obtained initial path
by differential dynamic programming. In HOOP [43], quadratic programming is employed
to transform the trajectory refinement into a higher-order segmented polynomial processing.
In [44], they proposed a generative algorithm for minimizing snap that represents the
trajectory as a piece-wise polynomial function. Savkin et al. [45] proposed a method
for smooth trajectory generation based on curvature constraints. However, this method
assumes that the obstacles are smooth and constrains the robot model, which makes it
difficult to apply to real-world complex scenarios. In [46,47], Bernstein bases are used to
perform trajectory optimization, and they directly generate safe and dynamically feasible
trajectories, which confirms the feasibility of the algorithm. In this paper, we first perform
the segmentation of global paths by active visual perception and object guidance. After
that, the individual segmented paths are parameterized based on Bernstein polynomials
to generate smooth and feasible trajectories via transforming the trajectory optimization
problem into a nonlinear programming problem.

3. Overview of the Framework

In this paper, we propose an object-level topological path planning method that
enables mobile robots to perform reliable visual navigation tasks in the absence of a
precise navigation map. Inspired by the idea of human-like navigation, we allow the robot
to observe its surroundings through vision sensors and estimate ego-motion based on
semantic-geometric information about objects and association information between objects
in the environment.

The overall framework of the proposed object-level topological path planning is de-
scribed in Figure 2. We take the outputs of the lightweight navigation mapping, global
graph search, as well as trajectory generation and refinement modules to produce dynam-
ically feasible global paths. The whole framework is composed of two sections. Firstly,
an object-constrained topological path-searching method is applied to object-based visual
navigation, which includes topological semantic mapping and object-based heuristic graph
search, as described in Section 4. Topological semantic mapping provides a lightweight
environment model for visual navigation (Section 4.1). Object-based heuristic graph search
provides an optimal shortest initial path for visual navigation (Section 4.2). Secondly, on the
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one hand, a global path segmentation strategy based on active visual perception and object
guidance is proposed to divide the extracted initial global topological path into multiple
segments, which reduces the global cumulative error in navigation, as shown in Section 5.1.
On the other hand, Bernstein basis [47] is used to generate smooth and dynamically feasible
trajectories, which improves the effectiveness and efficiency of path planning (Section 5.2).

Semantic-geometric 

feature extraction

Robot-centric relative 

topological association

Visual perception

Magnetic 

declination

Topological semantic 

maps

Shortest global path

Object-based 

heuristic graph 

searching

Global segmented 

smoothing path

Bernstein

polynomials

Segmented path

Object 

guidance

𝒈𝒏

𝒅𝒏

Figure 2. The block diagram outlines the specific modules in the proposed object-level topological
path planning system and the connections between them.

4. Object-Constrained Topological Global Path Searching

In this section, to extract the initial global path, we achieve the object-constrained
topological global path searching via the lightweight object-level topological semantic
mapping and an object-based heuristic graph search. In this paper, the overall path-
searching cost is ( fn = gn + dn). gn is a heuristic evaluation by matching the multi-attribute
constraint based on the semantic–geometric feature of the goal object. dn is the relative
topological association constraint of the topological edge. Finally, a global topological
path is obtained, which is a unidirectional graph composed of adjacent topological edges
concatenated together, as expressed in Equation (1). The illustration of the object-based
heuristic graph search method is shown in Figure 3.

graph
(i < j < n)

=

{
node1, . . . , nodei, . . . , nodej, . . . , noden

edgeij

}
(1)
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Figure 3. Illustration of the object-based heuristic graph search. The red dashed line indicates the
shortest global topological path.

4.1. Representation of the Object-Level Topological Semantic Map

The map is a fundamental representation of aspects of interest (e.g., landmarks, ob-
stacles) describing the environment of robot operates [4]. In vision navigation, the robot
needs to compute the position information of landmarks from arbitrary locations to assess
the perceptual quality of candidate landmarks. Objects are the basic constituents of the
environment. Inspired by the way humans navigate, we pay more attention to recent
relative motion between objects other than the highly accurate global position for global
navigation. Therefore, in this paper, referencing our previous work [13], we represent the
environment by using a lightweight abstract topology graph that records the relative asso-
ciations between objects. The basic structure of this map is a graph defined as G = {N, E},
where N and E denote the nodes and edges of the graph, respectively. The representation
of the map is shown in the semantic scene sub-graph in Figure 4.

T1

T2

3, chair, orange2, chair, black

4, desk, orange
5, chair, orange

1, sofa, black

6, chair, black

2m

4m

east

Figure 4. Illustration of our proposed agent-centric object-level topological semantic map.

Node Representation: We take the objects in the scene as topological nodes and
define the nodes with the semantic properties of the objects themselves, such as class
and color. Thus, for each node Ni belonging to N, the corresponding properties are
defined as Ni = {ID, class, center, ni}. ID is the serial number added to the graph in
order. center(x, y, z) is the coordinate of the object center point obtained by fusing deep
information. ni is defined as a proxy for additional properties of the node. For example,
color, functional and operational properties, 6D pose (position and orientation), etc. To
achieve accurate matching between objects, different from traditional visual features, we
propose a multi-attribute high-dimensional semantic-geometric feature for object-level
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nodes, which includes attributes such as category, color, and 3D geometric center. The
multi-attribute high-dimensional semantic-geometric feature is obtained as described in
Section 4.2.1.

Edge Representation: For topological edges, the associated object-level node relative
relationship attributes are used to define, for example, the relative direction and distance
between nodes. Thus, for each edge Eij, connecting the neighboring nodes Ni and Nj,
belonging to E, the corresponding properties are defined as Eij =

{
disij, yawij, eij

}
. disij is

a rigid relative distance between node Ni and Nj, which is also used as the weight of the
topology graph. yawij is a relative direction between node Ni and Nj in the geomagnetic
coordinate system. We introduce IMU to calculate the magnetic declination angle. eij is
defined as a proxy for additional properties of the edge.

4.2. Object-Based Heuristic Graph Searching
4.2.1. Heuristic Evaluation Based on Semantic–Geometric Feature

In this section, to meet the requirements of object-based heuristic path searching,
a highly robust semantic–geometric feature is constructed, which fuses the high-dimensional
semantic properties of objects with geometric spatial properties. On the one hand, the multi-
attribute constraint matching based on semantic–geometric features between objects can
provide heuristic evaluation (gn) for path searching and improve the efficiency of path
searching. On the other hand, semantic–geometric features of objects can effectively im-
prove the robustness of visual navigation under scene changes, such as illumination and
occlusion. The illustration is shown in Figure 5.

Geometric 

Spatial Properties

Class: chair 

Color: orange

etc

Semantic Properties

[R,T]

𝒙, 𝒚, 𝒛

50cm

9
7
cm

scale, position, etc

Figure 5. Schematic representation of the high-dimensional semantic–geometric features of the object.
High-dimensional semantic-geometric features consist of semantic features (class, color, etc.) and
geometric spatial features (scale, position, etc.).

For the above reasons, we use VoteNet [48], the 3D object detection method that
achieves advanced performance, to extract semantic information and geometric spatial
features of the object (scale size, centroid coordinates, pose, etc.). VoteNet is proposed
inspired by the Hough voting-based 2D object detector, which votes on virtual centroids of
objects directly from a point cloud and generates a set of high-quality 3D object proposals
by aggregating voting features [49]. Thus, it reaches the state-of-the-art performance on two
large indoor benchmark datasets (ScanNet [50], SunRGBD [51]). In particular, to improve
the differentiation of objects of the same class, we modified VoteNet by making it possible
to output the color properties of objects directly. Firstly, we select the smallest outer
rectangle of the object based on the projection of the 3D box onto the 2D image to extract
the salient area of the object and eliminate the background interference. Then, we maintain
color invariance by converting the original RGB space into a more robust HSV space [52].
Finally, we select the color with the largest area percentage as the object color property. The
experimental results are shown in Figure 6.
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black blue cyan green

purpleorange red red2 white

yellow

black blue cyan green yellow

purpleorange red red2 white

Figure 6. Experimental results of 3D object detection with embedded color attributes. The top and
bottom columns represent the color feature extraction for orange and red chairs, respectively.

In addition, to increase the detection accuracy of VoteNet in the real-world environ-
ment, we collect and add some data for training based on the data format of the SunRGBD
dataset. Since there is no open-source annotation tool for the existing indoor dataset, we
make a homemade tool for indoor 3D point cloud annotation inspired by the PNP ap-
proach [53]. The annotation process is shown in Figure 7. Marking is divided into three
main steps. Firstly, a cube frame is surrounded by the road marker to match its scale before
annotation. After that, a corner point of the cube frame is used as the origin of the world
coordinate system. The world coordinates and pixel coordinates of the extracted corner
points are converted to the cubic frame’s pose by PNP and used as the pose of the landmark.
Finally, all the point cloud data are corrected to the horizon level. We will open-source the
income of this tool soon.

L，W，H  

AxisCorner3D

Corner2D, Class
PnP

Corner3D

PointCloud
Camera 

Intrinsic matrix
PointCloud*R

𝑅 = 𝛼, 𝛽, 𝛾 , 𝑇

𝛽=0

Figure 7. The block diagram of the proposed PNP-based annotation tool for 3D object detection.

The result of 3D object detection in the real-world environment is shown in Figure 8.
The experimental results show that the 3D object detection method has high robustness.
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RGB Depth Object detect Cuboids

(a)

(b)

(c)

(d)

Figure 8. Four examples of 3D object detection results in real-world environments. (a,b) are the
detection comparison results of the illumination variation. (c,d) are the comparison results of detection
of occlusion and a dynamic object. Experimental results indicate that the proposed high-dimensional
semantic-geometric features have high robustness.

4.2.2. Robot-Centric Relative Topological Association Constraint

The high-dimensional semantic-geometric feature detection of objects has provided
highly robust visual features for environment modeling and path searching. However,
the semantic information learned by the model has not yet been considered relevant to
autonomous robot movement. The information from object detection still needs to be trans-
lated into information in the robot coordinate system. To ensure effective path searching
through the constructed topological map without global poses, we propose a robot-centric
relative topological association constraint to obtain the weight of the shortest path searching.
The topological association information of the environment is shown in Figure 9a. In the
constructed topological map, we represent the relative directions between adjacent nodes
as direction vectors ~d = (x2 − x1, y2 − y1, z2 − z1) in the calculation by converting the
landmark and robot rigid body coordinate as well as the robot rigid body coordinate and
the geomagnetic coordinate. As shown in Figure 9b, since the direction of the geomagnetic
coordinate system is usually constant, based on the principle of coordinate invariance of
vectors, the relationship between adjacent fixed nodes does not change with time and space.
The specific implementation of the pseudocode is shown in Algorithm 1. Finally, dn is
obtained by calculating the Eulerian distance (dn =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2)

of the topological edge.
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Figure 9. Illustration of the robot-centric relative topological association. (a) is the illustration of
topological association information of the environment. (b) is the illustration of topological association
based on the principle of coordinate invariance of vectors.

Algorithm 1 Robot-Centric Relative Topological Association

Require: Adjacent landmarks N1 and N2, given the coordinates CN12 of N1 in the camera
coordinate system at the moment t2, solve the coordinates BN22 of N2 in the robot
coordinate system at the moment t2;

1: CN11 = (x1, y1, z1), CN21 = (x2, y2, z2) ← The coordinates in the camera coordinate
system at the moment t1;

2: [R, T] Conversion matrix of the camera coordinate system to the robot rigid body
coordinate system;

3: BN11 = R ∗ CN11 + T, BN21 = R ∗ CN21 + T, BN12 = R ∗ CN12 + T;
4: yaw1, yaw2 ← The deflection angles of the robot’s rigid body and magnet moments t1

and t2, respectively;
5: MN11, MN12, MN21 ← MNit · x = BNit · x ∗ cos yawt∗π

180 + BNit · y ∗ sin yawt∗π
180 ;

MNit · y = BNit · y ∗ cos yawt∗π
180 − BNit · x ∗ sin yawt∗π

180 ;
6: ~d = (MN21 · x2 −MN11 · x1, MN21 · y2 −MN11 · y1);
7: MN22 = MN12 + ~d;
8: BN22 ← MN22, yaw2.

5. Object-Guided Topological Trajectory Generation and Refinement

To obtain smooth and feasible trajectories, in this section, the initial topological path is
refined based on real-time object guidance and Bernstein polynomials. Firstly, the topo-
logical path is segmented based on the spatial information of the local objects detected
in real time. Then, the segmented path is refined by parameterizing them with Bernstein
polynomials to form a smooth trajectory as the final global trajectory.

5.1. Object-Guided Trajectory Segmentation and Refinement Strategy

To reduce the impact of global cumulative error, a global path segmentation strategy
based on active visual perception and object guidance is proposed, which divides the initial
global path into multiple segments to maintain the navigation error in the local area and
reduce the computational complexity of the trajectory generation process. Firstly, as the
navigation case illustrated in Figure 10, for a given global topological path, when the robot
navigates in the map, the robot body is used as the starting point, and the active visual
observation and the matched objects are used as the intermediate guidance point to guide
the robot to the next unknown target point through positional permutation. The above
process is executed cyclically until the goal location is navigated. In addition, we conducted
several experiments to verify the effectiveness of the global segmentation strategy proposed
above, as shown in Figure 11. On the one hand, we plot the variation curve of the global
cumulative translation error of the goal object position with the increase of the number of
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landmarks on the global path, as shown in Figure 11a. The experimental results show that
the cumulative translation error will have an exponential growth trend with the increase of
the number of landmarks on the global path. Thus, the proposed global segmented path
strategy is beneficial to eliminate the effect of global cumulative translation error on path
planning. On the other hand, we plotted the variation curve of the computation time of the
Bernstein polynomial with the increase of the number of nodes, as shown in Figure 11b. The
experimental results show that the time cost of computation tends to increase exponentially
with the increase in the number of nodes. Therefore, the segmentation of paths facilitates
the execution of online global path planning.

Landmarks

Unknown

Robot

Figure 10. Illustrates of the object-guided topological trajectory generation and refinement.
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Figure 11. The performance of global segmentation strategy verification experiment. (a) Cumulative
translation error. The solid blue line indicates the cumulative translation error of converting the
six objects on the global topological path to the current robot coordinate system. The red dashed
line indicates the exponential trend of the error. (b) Computational time cost. The solid blue line
indicates the computational time cost of Bernstein polynomials as the number of nodes increases.
The red dashed line indicates the exponential trend of the computational time cost.

Secondly, it is important to generate a smooth and dynamically feasible trajectory for
robust and accurate autonomous navigation of the robot. Thus, in this paper, we propose
a novel trajectory refinement strategy by turning global path planning into a nonlinear
planning problem and using properties useful for Bernstein polynomials to accomplish
these tasks. According to the Bernstein polynomial theorem, all continuous functions on
the interval [a, b] can be approximated by polynomials, as shown in Figure 12a. In the case
of this paper, it is also known as a Bezier curve B(t), which has some special constraint
properties [47]:
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• Endpoint constraint property. The Bessel curve always connects the starting and
ending control points in series without passing through any intermediate control
points;

• Convex hull constraint property. The Bezier curve consists of a set of control points
that are completely confined within a convex hull defined by its Bernstein coefficients;

• De Casteljau algorithm constraint property. The de Casteljau algorithm implements
the decomposition of a Bernstein polynomial defined on an interval into multiple
segments for computation. The illustration is shown in Figure 12b.

(a) (b)

Figure 12. (a,b) are schematic diagrams of Bessel curves of second order and third order, respectively.
(b) shows a geometric example of de Casteljau’s algorithm to split Bernstein polynomials. The Bessel
curve on the left is shown in red, and the curve on the right is shown in blue.

The schematic diagram of the proposed global segmented smooth trajectory generation
is shown in Figure 13.

Figure 13. The schematic diagram of the proposed global segmented smooth trajectory generation.
The gray solid line is the global topology shortest path. The three dashed lines (yellow, blue,
and green) are the three trajectories generated online, respectively. Each segment of the trajectory is
a Bessel curve generated by taking the robot’s rigid body as the starting control point and the first
currently invisible node in the one-way diagram as the end control point in turn.

5.2. Bernstein Basis Segmental Trajectory Formulation

A two-dimensional, nth-order Bernstein polynomial, Bn
t , is defined as:

BN(t) =
n

∑
i=0

pi
nbi

n(t), t ∈
[
t0, t f

]
(2)

where pi
n ∈ R2, (i = 0, . . . , n) is the set of control points of the nth piece of the Bezier curve.

bi
n(t) is the Bernstein polynomial basis, which is defined as:

bi
n(t) =

(
n
i

) (t− t0)
i
(

t f − t
)n−i

(
t f − t0

)n (3)
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where
(

n
i

)
= n!

i!(n−i)! is the binomial coefficient. Our online segmented trajectory gener-

ation is based on the end-point constraint property of the Bessel curve. The robot body
is used as the first control point in each segment. Based on the order of the nodes in the
one-way graph, the first node in the one-way diagram that is currently not detectable in
the current local view range is used as the last control point, as shown in Figure 13. There-
fore, according to the real-time local environment, the nodes in the one-way graph visible
during navigation are used as current control points, and thus, the control points within
each segment are dynamically variable, pi

n,m =
{

pi
n,1, pi

n,2, . . . , pi
n,m

}
∈ R2, m denotes

m-segments.
According to the number of shortest path nodes and the number of visible range

nodes, the set of m-segments can be expressed as shown in Equation (4):

fBn(t) =



∑n1
i=0 pi

n1,1

(
n1
i

)
(t−t0)

i(t f−t)
n1−i

(t f−t0)
n1 , t ∈

[
t0, t f

]
∑n2

i=0 pi
n2,1

(
n2
i

)
(t−t0)

i(t f−t)
n2−i

(t f−t0)
n2 , t ∈

[
t0, t f

]
...

∑nm
i=0 pi

nm ,1

(
nm
i

)
(t−t0)

i(t f−t)
nm−i

(t f−t0)
nm , t ∈

[
t0, t f

]
(4)

Based on the de Casteljau algorithm constraint property, the overall formula can be
expressed as:

Bn(t) =
m

∑
j=0

nj

∑
i=0

pi
nj ,jb

i
nj
(t) (5)

It is worth noting that when the last node is seen, it will become a one-order Bern-
stein polynomial.

6. Experiments

In this section, to evaluate the proposed method well, we perform a series of experi-
ments on both simulation and real-world environments. We mainly compare our method
with two types of navigation methods: a learning based navigation method and a classical
metric-map based navigation method. All experiments have been run on a PC with Intel
i7-8700K CPU 3.7GHz, NVIDIA GTX1080GPU, and 24GB RAM. The experimental video
link is at https://github.com/CASHIPS-ComputerVision/Paper-videos (accessed on 2
March 2022).

6.1. Experimental Setup
6.1.1. Multi-Constrained Local Path Planning Strategy

To enable the proposed object-level topological path planning approach to perform
practical navigation tasks, we first integrate a multi-constrained local path planning strategy
into the overall framework to achieve local obstacle avoidance, as shown in Figure 14.

The multi-constrained local path planning strategy takes the endpoint of each global
segmented trajectory as the stage goal point of local planning. To obtain the local linear
and angular velocities, as shown in Equation (6), it determines the optimal local trajectory
by calculating the overall loss cost (Cn) of the sampled trajectory. The overall loss cost
includes the global segmented Bessel trajectory cost constraint (Gdist), the velocity cost

constraint (
1
ẋ2 ), the pointing target cost constraint (Ddist), and the obstacle cost constraint

https://github.com/CASHIPS-ComputerVision/Paper-videos
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(obs). The velocity cost constraint (
1
ẋ2 ) is the translational component of the sampled

velocity on the current trajectory, which keeps the robot’s velocity within a certain range.

Cn = αobs + βGdist + γDdist +
δ

ẋ2 (6)

Visual perception Global segmented smoothing path

Global path costLocal obstacles cost Goal front costVelocity cost 

Figure 14. The block diagram outlines the specific modules in the proposed multi-constrained local
path planning strategy.

6.1.2. Environment

• Simulation Experiment Setup: We build the simulation environment with the Gibson
dataset [54]. The Gibson dataset is visually realistic, since it consists of reconstructions
of real-world scenes [5]. As shown in Figure 15, we finally selected nine simulation
scenes by excluding scenarios that contain multiple floors and empty rooms. In the
simulation experiments, the baseline methods are the state-of-the-art learning-based
navigation methods, including Neural Topological SLAM (NTS) [5], Active Neural
SLAM (ANS) [6], and Metric Spatial Map + RL (MSMRL) [7]. All of these methods
use RGBD camera settings. MSMRL is an end-to-end navigation method based on
the local metric map constructed by geometric projections of depth images, and it
performs navigation decisions using Reinforcement Learning (RL). ANS is a baseline
that integrates metric map and learning-based navigation method to perform agent
movement control. NTS models the environment as a topological map. However,
different from our method in this paper, it performs navigation through retrieval
image goals. Following the method in NTS [5], the test scenarios in this paper are
classified as easy, medium, and difficult, depending on the distance between the start
and end locations, which are: Easy (1.5–3 m), Medium (3–5 m), and Hard (5–10 m).

• Real-World Experiment Setup: As shown in S1, S2, and S3 of Figure 16, in the real-
world experiment, we choose two typical indoor environments to evaluate our method,
including weakly textured corridors and offices. During the experiments, we set up
three navigation tasks with different difficulties, named Test 1, Test 2, and Test 3,
as shown in Figure 16. Test 1 is continuous navigation with no obstacles and has
multiple landmarks. Test 2 is a more challenging navigation with dynamic obstacles
that do not exist in the constructed map. Test 3 is the long-distance navigation for large
scenarios, which is the most challenging task for most existing navigation methods.
We use a four-wheeled mobile robot to record RGB-D images and inertial measurement
unit (IMU) measurements, as shown in Figure 17. It is equipped with an Xtion RGBD
camera and an inertial measurement unit (IMU). The RGBD camera returns a regular
RGB image and a depth image that is used for real-time semantic landmark detection.
The IMU returns high-frequency inertial guidance data for magnetic declination
detection.

In the real-world experiment, to further evaluate the proposed navigation method,
we compare our method to a classical navigation method (called OGMADWA), which
is combined by a high-precision Occupancy Grid Map [7], the global path-searching
method A* [37], and the local path planning method DWA [55].
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Figure 15. Top view of nine simulation experiment scenarios in the Gibson dataset.

(S1) (S2) (S3)

(G1) (G2) (G3)

(T1) (T2) (T3)

Figure 16. Example of navigation in the real world. (S1–S3) show the test scenes of our method in
the real world. (T1–T3) correspond to the topological semantic maps of the three scenes, respectively,
which are generated by our previous work [13]. (G1–G3) correspond to the high-precision occupancy
grid maps of the three scenes, respectively, which are generated by the OGMADWA method.



Sensors 2022, 22, 2387 16 of 24

Figure 17. A four-wheeled mobile robot platform called BootBot. It is equipped with an Xtion RGBD
camera and an inertial measurement unit (IMU). These sensors are placed 20 cm above the middle of
the body.

6.1.3. Evaluation Metrics

In this paper, we use the navigation Success Rate (SR) and Success weighted by inverse
Path Length (SPL) as the evaluation metrics to compare the performance of our method
with other methods. SPL is one of the most important metrics for evaluating navigation
performance, which considers the effectiveness and efficiency of the agent in accomplishing
the navigation task. It is worth noting that only when the motion of the mobile robot in the
state space is continuous, the experiment is determined effectively. For a success rate, we
set the “arrived” signal, and only if the robot takes a stop action within a 1 m radius of the
goal location is it considered to have navigated successfully. In addition, there must be no
collisions and no loss during the continuous movement. According to [56], the SPL takes
into account the efficiency of the robot in reaching the goal; for detailed descriptions, see
Appendix A.

6.2. Evaluation on Simulation Data

We first compare the SR and SPL of our method with those of NTS [5], ANS [6], and
MSMRL [7] on simulation data. The experimental results are shown in Table 1. Their bar
graph representations of SR and SPL in Table 1 are shown in Figure 18a,b, respectively. It can
be seen that our method outperforms all methods in all scenarios in terms of both SR and
SPL. In addition, the performance improvements of our approach over the baseline increase
along with the difficulty of experimental settings (0.06/0.05, 0.31/0.25, and 0.32/0.37). Our
proposed method outperforms the MSMRL and ANS because of two potential reasons.
First, we perform efficient and accurate object-based heuristic graph search to select paths
instead of the image matching-based path retrieval method. The end-to-end path searching
used by MSMRL and ANS has high computational complexity, especially in the large-
scale environment. Second, compared to the metric map-based MSMRL and ANS, our
proposed 3D environment modeling approach provides more reliable semantic–geometric
features for navigation. The proposed trajectory generation and refinement strategies
also improve the effectiveness of visual navigation. We can also see from Table 1 and
Figure 18 that our method has better performance than NTS. It is mainly because the NTS
is an image-based target-driven navigation method, in which the images do not provide
directional information that can be explored for navigation [5], while our method provides
multi-attribute information for navigation including the direction and pose of the object. In
conclusion, these results of simulation experiments demonstrate the effectiveness of our
proposed system. Figure 19 shows an example of our navigation visualization.
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Table 1. Performance comparison results of the proposed algorithm with MSMRL, ANS, and NTS on
the simulation datasets.

Model
Easy Medium Hard Overall

SR SPL SR SPL SR SPL SR SPL

MSMRL [7] 0.69 0.27 0.22 0.07 0.12 0.04 0.34 0.13
ANS [6] 0.76 0.55 0.40 0.24 0.16 0.09 0.44 0.29
NTS [5] 0.87 0.65 0.58 0.38 0.43 0.26 0.63 0.43

Our 0.93 0.70 0.89 0.63 0.75 0.63 0.86 0.65
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Figure 18. SRs and SPLs results for MSMRL, ANS, NTS, and our method on simulation scenarios.
(a) Results of SRs; (b) Results of SPLs.

Step 1

Step 2

Step 3

Step 4

Goal

Start
Object 1

Object 2

Achieved goal

Moving toward the goal

Figure 19. Visualization results for navigation in simulation scenario. The first step acquires global
topological paths through active visual perception and object guidance, and generates segmented smooth
trajectories. The second step determines the goal position by goal object evaluation and it generates
segmented smooth trajectories. The third step moves toward the target location. The fourth step moves
to within 1 meter of the goal object and publishes an "arrived" command to end the navigation.



Sensors 2022, 22, 2387 18 of 24

6.3. Evaluation on Real-World Data

We further evaluate the performance of our method by comparing it with the well-
known OGMADWA method in the real-world environment. Figure 16 visualizes the
navigation environment. T1, T2, and T3 in Figure 16 correspond to the topological semantic
maps of the three scenes, respectively, which are generated by our previous work [13].
G1, G2, and G3 in Figure 16 correspond to the high-precision occupancy grid maps of the
navigation tasks respectively, which are generated by the OGMADWA method. Figure 20
shows the results of the visualization with the example of navigation in the S1 scene. We
still choose SR and SPL as the evaluation metrics in the real-world experiment. For all
experimental results, we report the median of 20 times.

The SR and SPL are shown in Table 2 and Figure 21. According to [56], the value of
SPL greater than 0.5 indicates good navigation performance. It can be seen from Table 2
and Figure 21 that the SPL of both methods are greater than 0.5, which indicates that
both methods have good navigation performance. We can still observe that our method
outperforms the OGMADWA method. For example, as can be seen from the “Overall”
column in Table 2, our method has similar SR with the OGMADWA method but has
higher SPL than OGMADWA. This demonstrates the effectiveness and advantages of
the proposed navigation method, since we do not need precise metric maps. We can
further concretely observe the superiority of our method. In Test 1 and challenging Test 2,
these two methods have the same SR, but our method has better performance in terms
of SPL. There are two reasons. On one hand, we perform object-based topological path
planning instead of prise metric map-based path planning. For the OGMADWAW method,
when it comes to the multiple objects in S1 and dynamic objects in S2, the accuracy of
the metric map decreases, and the complexity of the path planning method increases.
Thus, its navigation performance decreases. As for our method, the proposed topological
semantic map uses the semantic–geometric information and topological associations of
objects, which has better scalability. On the other hand, our proposed object semantic–
geometric feature-based heuristic evaluation strategy and Bernstein’s polynomial trajectory
refinement method improve the efficiency of visual navigation. Particularly, unlike the A*
algorithm, the proposed object-based heuristic path search method avoids over-dependence
on high-precision metric maps. It is worth noting that for Test 3, we successfully navigate
in a 26.2 m long weakly textured corridor, as shown in Figure 16S3. It can be seen that
both methods achieve similar navigation performance, while OGMADWA achieves slightly
higher on SR/SPL than our method. It is mainly because there are fewer available objects
from the starting location to the goal location, which greatly challenges our method.

In summary, the above results show that the proposed method has a better overall
performance compared to OGMADWA for the same configuration.

Table 2. Performance comparison results of the proposed algorithm with OGMADWA on the real-
world datasets.

Model
Test 1 Test 2 Test 3 Overall

SR SPL SR SPL SR SPL SR SPL

OGMADWA 0.90 0.68 0.90 0.53 0.70 0.67 0.83 0.63
Our 0.90 0.71 0.90 0.68 0.65 0.62 0.82 0.67
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Step 1

Step 2

Step 3

Step 4

Object 1Object 2Object 3Goal 

Object

Figure 20. Visualization results for navigation in the S1 scene. We select an object-level topological
path after constructing the lightweight topological semantic map. Then, the robot is guided from step
one to step four to generate a segmented smooth trajectory to the next invisible object based on the
currently visible object until it moves within 1 meter of the goal object and publishes an “arrived”
command to end the navigation.
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Figure 21. SRs and SPLs result for OGMADWA and our method on real-world datasets. (a) Results
of SRs; (b) Results of SPLs.

6.4. Discussion

From the above results, we have thoroughly verified the advantages of object-based
global path planning. Then, for some special cases, we can discuss the limitations of
our current approach. We represent the environment as an abstract topological graph in
which the topological node and topological edge represent object-level landmarks and the
semantic association properties between object-level landmarks, respectively. We model
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the environment mainly based on long static object-level landmarks. If the object in the
model is dynamic and movable, then the topological relationship between the currently
moving object and its neighbors changes, and the robot is at risk of being lost.

To effectively discuss and analyze the above question, we set up three cases to carry
out navigation experiments, as shown in Figure 22. Case 1 shows that the robot can re-
navigate through the surrounding red chairs after moving the yellow chair. The difference
between Case 2 and Case 3 is that the distances between the goal object (blue chair) and the
object being moved (yellow chair) are different. Case 3 shows that there is no detectable
object around the robot and there is a risk of navigation failure after moving the yellow
chair. Figure (a), Figure (c), and Figure (e) in Figure 22 indicate scenes before moving
the yellow chair. Figure (b), Figure (d), and Figure (f) in Figure 22 indicate scenes after
moving the yellow chair. We performed navigation experiments in these three cases and
statistically calculated the SR and SPL of navigation respectively, as shown in Table 3.
Their bar graph representations of SPL in Table 3 are shown in Figure 23. It can be seen
from the experimental results that in Case 1 and Case 3, when the goal object in the map
is moved, the SR and SPL of navigation decrease. In Case 1, although the topological
relationship between the yellow chair and its neighboring objects disappears, the remain
objects still maintain the original topological relationship well. Therefore, the robot can
re-plan paths and regenerate a trajectory to the location of the goal object by searching for
the surrounding red chair or goal object. In Case 2, when observable objects exist around
the goal object, the robot can replan and re-navigate by searching for surrounding objects.
In Case 3, when no observable objects exist around the goal object at all, the robot is lost,
just as humans become lost. For the above problem, to perform effective navigation, we set
five states for the robot, including initialization, waiting for the goal object, regenerating the
trajectory, re-planning the path, and moving. The robot can online switch states according
to the actual navigation situation.

Case1:

Case2:

(a) (b)

Case3:

(c) (d)

(e) (f)

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Figure 22. Navigation examples when objects in the environment models are moved. Yellow lines
indicate the topological associations between objects. Case 1 shows that the robot can re-navigate
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through the surrounding red chairs after moving the yellow chair. The difference between Case 2 and
Case 3 is that the distances between the goal object (blue chair) and the object being moved (yellow
chair) are different. Case 3 shows that there is no detectable object around the robot and there is a
risk of navigation failure after moving the yellow chair. (a,c,e) indicate the scenes before moving the
yellow chair. (b,d,f) indicate the scenes after moving the yellow chair.

Table 3. The SR and SPL of navigation in all scenarios.

Model
Case 1 Case 2 Case 3

(a) (b) (c) (d) (e) (f)

SR 0.90 0.70 1 1 0.70 0
SPL 0.70 0.49 0.69 0.68 0.53 0
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Figure 23. Bar graph of SPL results for all scenarios.

7. Conclusions and Future Work

In this paper, we propose an object-based visual navigation method that can greatly
improve navigation performance under the large-scale challenging environment. Firstly,
a novel object-level semantic topological map is constructed to model the environment in a
lightweight way. Then, we propose an object-based heuristic graph based path-searching
method to obtain an optimal global topological path by combining semantic–geometric
feature-based heuristic evaluation and topological association-based weight constraints.
After that, to reduce the cumulative error of global navigation, active visual perception and
object guidance are combined to segment global topological paths. Finally, we propose a
new Bernstein polynomial refinement strategy to generate smooth and feasible navigation
trajectories by parameterizing segmented paths. Experiments on 3D object feature detection
in complex real-world scenes such as illumination changes and partial occlusions verify
the high robustness of the proposed method. In addition, the effectiveness and reliability
of the proposed global path planning method is verified by cumulative translation error
and computational time cost experiments. The reliability of the proposed method is further
proved by comparison experiments with SR and SPL of state-of-the-art methods under
simulation and real-world scenarios. Despite the great results, some promotions are needed
in the future. We will use a lightweight object detection network to improve the accuracy
and reduce the computational complexity of the system as well as deploy the system on an
embedded platform. We will also continue to improve the robot’s navigation performance
in the case of dynamic changes in relationships between objects. Furthermore, we will
explore the proposed method in more large-scale real-world navigation tasks.
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Appendix A. SPL

Success weighted by inverse Path Length (SPL) measures the robot’s navigation
performance as

1
N

N

∑
i=0

Si
li

max(pi, li)
(A1)

where N denotes the number of testing episodes, Si is a binary indicator of success in the
testing episode i, pi represents path length, and li is the shortest path distance from to
the goal.
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