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Abstract: Most commercially successful face recognition systems combine information from multiple
sensors (2D and 3D, visible light and infrared, etc.) to achieve reliable recognition in various
environments. When only a single sensor is available, the robustness as well as efficacy of the
recognition process suffer. In this paper, we focus on face recognition using images captured by a
single 3D sensor and propose a method based on the use of region covariance matrixes and Gaussian
mixture models (GMMs). All steps of the proposed framework are automated, and no metadata,
such as pre-annotated eye, nose, or mouth positions is required, while only a very simple clustering-
based face detection is performed. The framework computes a set of region covariance descriptors
from local regions of different face image representations and then uses the unscented transform
to derive low-dimensional feature vectors, which are finally modeled by GMMs. In the last step, a
support vector machine classification scheme is used to make a decision about the identity of the
input 3D facial image. The proposed framework has several desirable characteristics, such as an
inherent mechanism for data fusion/integration (through the region covariance matrixes), the ability
to explore facial images at different levels of locality, and the ability to integrate a domain-specific
prior knowledge into the modeling procedure. Several normalization techniques are incorporated
into the proposed framework to further improve performance. Extensive experiments are performed
on three prominent databases (FRGC v2, CASIA, and UMB-DB) yielding competitive results.

Keywords: face recognition; 3D images; local descriptors; statistical models

1. Introduction

Face recognition systems are becoming increasingly popular due to their attractive
properties such as high user acceptance, non-intrusiveness of the acquisition procedure
and commercial potential in a diverse range of applications in both the private and public
sectors [1,2]. The open issues in face recognition systems mainly relate to recognition
in the presence of different sources of image variability, such as facial expressions and
orientation, occlusions, illumination, time delay, or presence of makeup [3]. Such variability
is ubiquitous in many applications, such as surveillance systems where images are captured
under uncontrolled acquisition conditions and subjects are not cooperative [4]. To improve
the reliability of the recognition procedure in the above scenarios, the use of 3D sensors
to capture facial data has emerged as an important alternative to standard 2D cameras.
The advantages of using 3D images for face recognition include invariance to lighting
conditions and the ability to rotate 3D facial data into a normal pose [5], as well as providing
additional information to defend against face spoofing attacks [6]. On the other hand, many
3D face recognition systems are still affected by facial expressions, occlusions and aging.
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In addition to the use of standard 2D cameras, existing solutions for reliable face
recognition include the use of multisensor approaches [7] as well as the use of specialized
sensors such as 3D sensors [8], infrared assisted sensors such as FaceID [9] and Kinect [10],
long-range sensors such as FaceSentinel [11], recent behind-the-screen sensors [12], thermal
sensors [13], smart glasses [14] or multi-view sensors [15], to name a few. The main
drawback of using special sensor hardware is its price, which may be prohibitive for many
applications, while some laser scanner devices can also be harmful to human eyes, making
them unsuitable for face recognition. Furthermore, some scanners have long acquisition
times during which the face should remain still. When using multi-sensor approaches, it
also proved difficult to obtain the optimal sensor combination based on the calibrated and
fused information from the sensors, due to the heterogeneous sensors characteristics [7].

The main goal of using multiple or/and special sensors in the face recognition system
is to provide additional information about the face to increase the robustness and the
recognition performance of the system. Alternatively, the same goal can be pursued by
acquiring face data with a single 2D or 3D sensor and then constructing a face recognition
pipeline that ensures reliable performance. Existing approaches from this group include
solutions applied at the data representation level [16], the data augmentation level [17],
the feature extraction level [18], and the classification level [19]. Recently, deep neural
network-based approaches for face recognition have become popular [20–23]. Approaches
based on deep networks can combine all the above tasks from data representation to
classification into a single end-to-end system. Such systems enable significant improvement
in face recognition performance, but also require large amounts of training data.

The approach proposed in this paper uses a single 3D sensor in combination with the
multiple (depth) data representations. Using a single depth sensor, we ensure fast acquisi-
tion times as well as the acquisition of detailed 3D shape information, while the different
(3D) data representations add robustness to the face recognition process. The proposed
face recognition system is fully automatic and proves to be robust to expression variations,
partial occlusions, and moderate pose changes. Due to the robustness of our method,
we only use a very simple and coarse face localization procedure. The alignment step is
skipped and detection or removal of parts with occlusions/expressions is not required. We
build on a framework for 3D face recognition previously proposed in [24] that capitalizes
on region covariance matrixes (RCMs) and GMMs. The improvements over the previous
framework include: (i) a novel face detection method that is more robust to occlusions
since it does not rely on detection of any facial landmarks; (ii) inclusion of several data
normalization techniques; (iii) thorough evaluation of recognition performance on the three
challenging databases.

The work presented in this paper includes the following contributions: (i) A novel
composite representation of 3D facial images based on various surface descriptors, such as
shape index, Gaussian curvatures, surface normal coordinates, local binary patterns, etc.
(ii) A novel local feature extraction method that unifies the above representations into a
so-called composite representation, which is then used to extract local descriptors using
covariance matrixes, transformation to Euclidean space, delta features, and PCA subspace
projection. (iii) Integration of the above novelties into a new framework for fully automatic
3D face recognition that robust to image variability that occurs under real-world conditions,
as shown by the experimental evaluation.

The paper is structured as follows. Section 2 summarizes related work. Section 3 con-
tains a detailed description of the proposed framework. Section 4 presents the experimental
evaluation and Section 5 concludes the paper with some final remarks.

2. Related Work

In this section, we outline a taxonomy of 3D face recognition techniques in terms
of the type and number of sensors used to acquire the facial data. Specifically, in this
section we capitalize on the difference between single-sensors techniques, which perform
identity inference based on data coming from a single acquisition device, and multi-sensor
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solutions that combine information from several (typically diverse) acquisitions devices
when performing identity recognition.

2.1. Single Sensor Techniques

3D face recognition methods can be categorized on the basis of the type of sensor they
use to acquire facial data. According to the technologies used, depth sensors are normally
categorized as active and passive devices. Essentially, all sensors in both categories acquire
depth data using the triangulation principle. In active sensors, a triangle is defined between
the light source, the object, and the sensor, while in passive sensors, the triangle can be
formed between the object and two sensors [25]. Among the active sensors, the Minolta
Vivid sensor is one of the most widely used for 3D face recognition. This sensor has
been used to acquire multiple face image databases such as the Face Recognition Grand
Challenge [26], Bosphorus [27], the CASIA [28], and the UMB-DB databases [29] to name a
few. Methods for recognizing faces from images acquired by such sensors range from older
subspace-based methods [30] to the latest state-of-the-art deep learning methods [20,31–33].
Instead of triangulation, low-cost active sensors typically use a structured light to compute
depth, which provides much faster but less accurate and more noisy measurements [34].
Face recognition methods in [35,36] that use low-cost sensors such as Kinect pay special
attention to removing noise from images. These methods often rely on representing the
face through local features that are not affected by regional noise and distortions due to
missing data, which are characteristic of low-cost sensors. The use of passive sensors for
face recognition has the advantage of simplicity and applicability, since sensors of this type
are built with relatively simple instrumentation [37]. Methods for recognizing faces from
images acquired by passive sensors such as stereo cameras can obtain facial shapes from
image sequences [38] or by fitting the estimated depth to a generic 3D model [39]. Recently,
generative adversarial networks and deep convolutional networks have proven to be very
successful in reconstructing facial shape and texture from a single 2D image [40].

Face recognition methods from the 3D sensors can also be grouped on the basis of
the sensor data format. Depth sensors typically provide data in the form of a point cloud
or in the form of a depth image. A point cloud is a set of data points, where each point
contains information about its x, y, and z coordinates. Matching between point clouds is
usually done by the iterative closest point algorithm (ICP) [41], which provides a dense
point-to-point correspondence of 3D face shapes. If the points are projected onto the regular
grid in the (x, y) plane, a depth image is obtained, which can be handled as a normal 2D
grayscale image, where the value of each image pixel denotes the depth rather than the
brightness. Consequently, many face recognition methods, such as subspace projection
methods [42], originally developed for 2D images can be applied to depth images without
much modification.

2.2. Multi-Sensor Modality

Some recognition methods use a combination of multiple sensors to acquire facial
appearance data. The reasoning behind this is that multiple sensors provide more diverse
data and that different sensors exhibit different characteristics under diverse environmental
conditions. The most common multimodal approaches fuse information from 2D and 3D
sensors, since many 3D sensors are also equipped with a calibrated 2D camera (e.g., Kinect,
Minolta Vivid).

One of the first approaches of multimodal sensor face recognition in [43] investigates
the comparison and combination of 2D and 3D face data for biometric recognition. It
uses a PCA-based method tuned separately for 2D and 3D. They find no statistically
significant difference between the recognition performance for both modalities, but report
improved performance with a joined 2D – 3D solution when the fusion is performed at the
classifier level.

In [7], the authors propose a face recognition system that integrates information from
the visible,thermal-IR, and 3D time-of-flight sensors. When compared to the single sensor
system, the proposed system shows improved performance on images with pose and
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illumination variations. They use the ICP algorithm to handle pose variations and various
subspace projection methods for feature extraction.

Recently, an approach that uses several 2D sensors to capture images at multiple
viewpoints was proposed in [44]. This approach incorporates the feature prior constraint
and the texture constraint to explore the implied 3D information of uncalibrated multiview
images of a person’s face.

3. The Proposed System

In this section, we describe basic characteristics of the 3D face recognition framework
proposed in this paper, denoted as RCM_GMM_SVM for later convenience. We begin with
a brief description of the entire framework and then explain in detail the preprocessing,
data representation, feature extraction, modeling, classification, and normalization stages
of the proposed approach. The section concludes by elaborating on characteristics of the
proposed methodology.

3.1. Overview

Figure 1 shows a block diagram of the proposed 3D face recognition framework.
The first procedural step of the framework involves the acquisition of a 3D face image.
The data-acquisition step is followed by registration and preprocessing, which involves
cropping the facial regionand filtering out all potential holes and spikes on the face images.

CR1 CR2

CRN

s s           s

s    s           s

11 12 1D

21 22 2D

, , ...

, , ...

s s sN1 N2 ND, , ...

Figure 1. Conceptual diagram of the proposed system.

The next step is to map the preprocessed 3D facial data to a data structure, which
we refer to as a composite representation. This composite representation is nothing more
than different representations of 3D facial data stacked one upon another (see Figure 1).
The composite representation is then analyzed in a block-by-block manner and a region
covariance matrix (RCM) is extracted from all examined blocks. A local descriptor is
obtained from each RCM matrix by transforming it in to Euclidean space using the
Unscented Transform [45]. From these descriptors, delta coefficients are computed and
their dimensionality is reduced by projecting them on to the PCA subspace. Finally,
the descriptors are normalized to zero mean and unit variance.

Please note that unlike most other feature extraction techniques, RCM descriptors
can be extracted from regions of variable sizes, allowing data to be examined from both
local and holistic perspectives. Furthermore, RCM descriptors provide an elegant way to
combine different representations of 3D data into a coherent feature vector.

After RCM extraction, each face is represented by several RCM descriptors whose
distribution can be modeled by a GMM. Here, GMMs are selected for modeling purposes
because they allow prior knowledge to be incorporated into the modeling procedure and
naturally handle unreliable data. Each face can then be described by a so-called supervector,
composed of the corresponding GMM parameters. Two normalization techniques are used
at the supervector level, namely rank-normalization and within-class covariance normal-
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ization. Finally, an SVM-based classification scheme is used to classify the supervectors
derived from the GMMs. At the end, normalization of the classifier scores is performed.

In the remainder of this section, we elaborate on all of the above steps and discuss
their contribution to the robustness of the proposed recognition system.

3.2. Data Preprocessing and Localization

The input images are initially low-pass filtered to remove spikes. The z values (depth
components) are interpolated and resampled uniformly on a grid with a resolution of
1.0 mm in the (x, y) plane. The face region is then localized on each preprocessed image.

The localization procedure (hereafter referred to as CB for Clustering Based) uses
k-means clustering [46] to segment the 3D image into three (k = 3) regions—background,
body, and face (see Figure 2, where each color denotes one of the detected clusters). We
choose the region with the lowest average depth as the face region. This procedure achieves
only a rough localization of the facial region that may also include parts of a neck, hair and
ears. The localized face is used as input for the subsequent recognition steps without any
prior face alignment, occlusion removal, or normalization for facial expressions. However,
these factors are addressed implicitly in the (local) feature extraction, the modeling, and
the classification steps.

Figure 2. Input image (left) and the same image after CB localization (right).

The CB localization method is computationally extremely simple and, due to the robust
nature of the proposed system, more than sufficient to ensure satisfactory recognition
results (see Section 4.3). In Figure 3, we see that the CB localization can reliably detect
faces even under very challenging conditions where other, less robust localization methods
often fail.

Figure 3. Original (top) and preprocessed (bottom) sample images from UMB-DB database.
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3.3. Data Representation

Let I represent a preprocessed depth image of size W × H. We then construct a
W × H × D dimensional composite representation F from a given depth image I (see
Figure 1) as follows

F(x, y) = φ(I, x, y), (1)

where the function φ extracts a D-dimensional vector f = F(x, y) from a pixel at posi-
tion (x, y) of the image I. The vector f can be constructed by concatenating different
representations of the image I at (x, y), including depth values, color information, pixel co-
ordinates, image gradients, higher order derivatives, filter responses, differential-geometry
descriptors, surface normals, etc.

In summary, a composite representation F represents a W × H × D tensor, where W
and H represent the image width and height, and D denotes the number of representations
combined in the tensor. A conceptual representation of the composite representation can
be seen in Figure 1. It needs to be noted that there is no rule for how many or which 3D
data representations should be combined into F for optimal face recognition performance.
This issue has to be resolved experimentally and is addressed in Section 4.4.

3.4. Region Covariance Matrix

The composite representation F of a given 3D face image is analyzed locally block
by block and from each block an RCM is constructed, from which feature vectors are
eventually computed. Formally, any rectangular region R ⊂ F, comprising a set of vectors
{ fn}N

n=1, can be represented by a D× D covariance matrix [47]

CR =
1

N − 1

N

∑
n=1

( fn − µR)( fn − µR)
T , (2)

where µR is the mean vector of fn. The diagonal entries of CR represent the variance of
each feature and the non-diagonal entries represent their respective correlations.

Extracting the covariance of an inhomogeneous area results in a strictly symmetric
and positive semidefinite matrix with constant dimensions that models the properties of
the specified region. When no location-related representations (e.g., spatial coordinates)
are used to construct the composite representation, the RCM descriptor is invariant to
both rotation and scaling [47,48]. In this case, CR does not capture the ordering of the
incorporated vector fn in the block/region R, nor the information regarding the size of the
block from which it was extracted.

3.5. Unscented Transform

Covariance matrixes do not lie in Euclidean space (e.g., the covariance space is not
closed under multiplication by negative scalars). Since most standard machine learning
techniques are defined on Euclidean space, they are not directly applicable to work with
covariance matrixes. Nonlinear mappings to Riemannian manifolds [49] or the Lie alge-
bra [50] are therefore traditionally used to obtain vector spaces in which the metrics for
machine learning methods are defined. This concept is also used in the Förstner metric [45],
which approximates covariance dissimilarity measurement through log-manifold mapping
and was originally proposed in [49] to measure the similarity between two RCMs. We
cannot adopt the Förstner metric for our computations, since we plan to use the RCM-based
feature vectors as input to the GMM-based modeling procedure and only then perform the
matching procedure. Therefore, we consider a different approach based on the Unscented
Transform (UT) [45,51].
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The concept of UT is similar to Monte Carlo methods, with the difference that the
vectors are not randomly generated. The UT encodes a given CR in a set of vectors {wi}2D+1

i=1
that, when treated as elements of a discrete probability distribution, have a covariance
equal to a given CR. The vectors wi, unlike CR, reside in Euclidean space and are defined as

w0 = µR,

wi = µR + (
√

αCR)i, i = 1 . . . D, (3)

wi+D = µR − (
√

αCR)i, i = 1 . . . D,

where (
√

αCR)i denotes the i-th column of the square root of the matrix CR. The scalar α
is a weighting factor for the elements in the covariance matrix and is set to α = 2 in the
case of the Gaussian distribution. To demonstrate the equivalence of the initial and the
approximated distribution, we can compute an approximate sample mean vector µ′R and
the corresponding covariance matrix C′R by

µ′R =
1

2D + 1

2D

∑
i=0

wi ≈ µR, (4)

C′R =
1

2D

2D

∑
i=0

(wi − µ′R)(wi − µ′R)
T ≈ CR. (5)

Each of the (2D + 1) vectors wi resides in a D-dimensional Euclidean space, where
L2 distance computations can be performed. To obtain a single vector from each RCM, we
concatenate all vectors wi extracted from a given RCM into one D(2D + 1)-dimensional
feature vector v:

v = [wT
0 wT

1 . . . wT
2D+1]

T . (6)

3.6. Delta Coefficients

Within the feature extraction procedure, we also include delta coefficients, which
are commonly used in speech recognition. Deltas encompass the relations among the
neighboring blocks and can therefore compensate for the assumption of feature vector
independence in the subsequent GMM modeling step. Delta features thus integrate the
interdependence among spatially adjacent vectors, since a different arrangement of vectors
leads to different delta coefficients.

Given two D-dimensional feature vectors extracted from the neighboring blocks, i.e.,
vi = [v(i)1 , . . . , v(i)D ] and vi+1 = [v(i+1)

1 , . . . , v(i+1)
D ], the j-th delta coefficient is defined as a

difference between the features of neighboring blocks:

∆vj = v(i+1)
j − v(i)j . (7)

Vertical delta features are computed from vertically adjacent blocks and horizontal
delta features from horizontally adjacent blocks. The RCM-based feature vectors allow
introduceingdepth deltas as well, the concept of which is presented in Figure 4. Depth
deltas can be computed only due to the fact that the length of the RCM-based feature
vectors does not depend on the size of the corresponding blocks.

All delta modalities provide us with feature vectors where the relations among adjacent
blocks are implicitly included in the vectors themselves.
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Figure 4. Schematic illustration of delta features extraction.

3.7. PCA Projection

Before statistical modeling, the feature vectors ∆v are projected into the lower dimen-
sional space using PCA. In this way, the redundant information in the feature vectors is
eliminated and, at the same time, the computational complexity of the subsequent steps in
our system is reduced. The PCA projection of a given feature vector v is defined as

s = UT∆vT , (8)

where U denotes the eigenvector matrix computed offline using facial images from a train-
ing set. We determine the dimensionality of the projected feature vectors s experimentally,
as described in Section 4.2.

3.8. Modeling

Next, the distribution of local feature vectors s is modeled by GMMs. Formally, a GMM
can be defined as a superposition of K multivariate Gaussian probability density functions

p(s) =
K

∑
k=1

πkN (s|µk, Σk), (9)

where the parameters πk are called mixture weights and the Gaussian density N (s|µk, Σk)
is a component of a mixture defined by its own mean µk and covariance Σk as

N (s|µk, Σk) =
1

(2π)N/2|Σk|1/2 exp
{
−1

2
(s− µk)

TΣ−1
k (s− µk)

}
. (10)

Given a set of descriptors Ψ = {sn}N
n=1, a GMM is constructed by determining its parame-

ters based on maximizing the log-likelihood

log p(Ψ|π,µ, Σ) =
N

∑
n=1

log

{
K

∑
k=1

πkN (sn|µk, Σk)

}
. (11)

Maximum likelihood solutions (ML) for the model parameters are found via the
Expectation-Maximization algorithm (EM) [52], initialized in our case by K-means clus-
tering. When building user-specific GMMs (A user-specific GMM in this context is a
GMM constructed from one 3D face image of a specific user.), there is usually not enough
data available to reliably estimate the parameters of the GMM. Therefore, a universal
background model (UBM) is typically constructed first, and then user-specific models are
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obtained by adaptating the UBM. A UBM is itself a GMM that represents generic, person-
independent features. The parameters of the UBM are estimated via the ML paradigm (11)
using all available training data. Once the UBM is built, user-specific GMMs are computed
by maximum a posteriori (MAP) adaptation [53], adapting only the mean vectors {µk}K

k=1,
by iteratively evaluating

µ̂k = (1− α)µk + αµEM
k , (12)

where µ̂k is a new mean of the k-th Gaussian, µk is a mean from the previous step (initialized
by the UBM), and µEM

k is the re-estimated mean from the M step of the EM algorithm.
The parameter α balances the influence of the EM’s new statistics and the prior mean µk
and is obtained for each component of the mixture as:

αk =
Nk

τ + Nk
, (13)

where Nk = ∑N
n=1 γ(znk) can be interpreted as the number of feature vectors assigned to

the k-th mixture component and znk is the posterior probability of k-th mixture component
given a n-th feature vector.

Since the MAP adaptation preserves the order of the mixture components among
different GMMs, all mean vectors {µk}K

k=1 from each user-specific GMM can be stacked in
sequence to form the so-called supervector of a given 3D face image

ρ =
[
µT

1 ,µT
2 , . . . ,µT

K

]T
. (14)

Thus, each image is encoded by a single supervector of equal length.

3.9. Classification

Once the supervector is derived from the input 3D face image of a given user, it can be
used to train an SVM classifier [54] for that specific user. SVMs are binary classifiers that
seek a decision hyperplane with an our case, the supervectors ρ). It often happens that the
classes are not linearly separable. Non-linear SVMs therefore project the input samples into
a higher-dimensional space, where the samples can be linearly separated by a hyperplane.
The SVM decision function takes the following form

ν(ρ) =
N

∑
n=1

antnK(ρ, ρn) + b, (15)

where the coefficients αn and b are the solutions of a quadratic programming problem [55]
and K(ρ, ρ′) = φ(ρ)Tφ(ρ′) is a kernel function. It turns out that the kernel function
can be computed without the explicit mapping φ(·) to the higher dimensional space,
but requires only the computation of dot products between pairs of samples in the input
(supervector) space.

During the enrollment stage, given a pool of supervectors {ρn}N
n=1 from all N training

images and the client’s supervector, the SVM training procedure constructs a decision
hyperplane between the client’s supervector and the training supervectors. At test time,
a supervector ρp is first derived by MAP adaptation for the given client and the score
ν(ρp) is then computed. The value of ν denotes the distance of the client’s supervector
to the decision hyperplane ν(ρ) = 0 and can be treated as a dissimilarity measure that is
eventually used for verification purposes.

3.10. Data Normalization

We apply several data normalization techniques on the feature vector, supervector,
and matching scores levels to improve the recognition robustness of the framework. Data
normalization in the image domain is already intrinsically included in the representations
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used to construct the composite representation. The normalization techniques used are
described below.

Zero-mean and unit variance normalization—MVN. Within the descriptor domain,
we standardize RCM-based descriptors to have zero mean and unit variance. Consider a
descriptor s with its components si. For each component of the feature vector, we calculate
the mean µi and standard deviation σi using all feature vectors from the training set, and
then normalize each component as

s∗i =
si − µi

σi
, (16)

where s∗i stands for the normalized i-th component.
Rank-based normalization—RN. At the supervector level, a rank-based normaliza-

tion is applied, where each component ρi of the supervector ρ is replaced by the index (or
rank) that the component would correspond to if the components of the n training images
were arranged in ascending order

ρ∗i =
rankρ1 ...ρn (vi)− 1

n− 1
, (17)

where ρ∗i is the i-th normalized component.
As a result of the rank-based normalization, the distribution of the supervector com-

ponents in the normalized supervector ρ∗ approximates the uniform distribution.
Within-class covariance normalization—WCCN. In a ddition to RN, WCCN [56,57]

is used at the supervector level. The WCCN, originally introduced in the context of SVM
modeling [58], tries to minimize the expected classification error on the training data.
To this end , the authors define a set of upper bounds on the classification error metric. By
minimizing these bounds, the classification error is also minimized. The optimal solution
to the minimization problem is given in terms of a generalized linear kernel, obtained by
inverting the within-class covariance matrix ΣW computed as follows

ΣW =
N

∑
i=1

∑
ρj∈ζi

(ρj − µ̂i)(ρj − µ̂i)
T , (18)

where ρj denotes the j-th supervector of the i-th subject ζi in the training set and µ̂i is
the mean of all supervectors of the i-th subject included in the training set. To obtain
a WCCN-normalized supervector ρ∗, each supervector ρ is pre-multiplied by an upper
triangular matrix U

ρ∗ = Uρ, (19)

where U is obtained by Cholesky decomposition of the matrix Σ−1
W , i.e., Σ−1

W = UTU.
Score normalization—SN. Finally, normalization of the matching scores between the

probe and gallery images is performed. Each gallery and probe image is compared to
several pseudo-impostors (i.e., images from the training set). From the obtained scores,
the mean µg and standard deviation σg of the scores for each gallery image are computed.
The same is applied to the probe images, estimating the mean µp and standard deviation
σp for each probe image. Then, each score νgp is normalized as follows

ν∗gp =
νgp − µgp

σgp
, (20)

where µgp is defined as

µgp =
µgσ2

p + µpσ2
g

σ2
g + σ2

p
(21)



Sensors 2022, 22, 2388 11 of 26

and σgp is defined as

σgp =

√
σ2

g σ2
p

σ2
g + σ2

p
. (22)

The derivation of the (21) and (22) can be found in [59]. The effects of the above
normalization techniques on verification performance are experimentally evaluated in
Section 4.6.

3.11. Characteristics of the Proposed Approach

The proposed framework, summarized in Figure 1, has several desirable characteristics
that ensure robust and effective recognition performance, as also demonstrated later in the
experimental section, i.e.:

(i) RCM descriptors are able to elegantly combine various face representations into a
single coherent descriptor and can be considered as an efficient data fusion/integration
scheme.

(ii) RCM descriptors do not encode information about the arrangement or number of
feature vectors in the region from which they are computed, and thus can be made scale
and rotation invariant to some extent, but only if appropriate feature representations
are selected for the construction of the composite representation F (see, e.g., [47,48]).

(iii) Since RCM descriptors are computable regardless of the number of feature vectors
used for their computation, they can handle missing data in the feature extraction step
(i.e., even in the presence of holes in the face scans or in regions near the borders of
the face scans, the RCM descriptor is still computable). Please note that this is not the
case for other local features commonly used with GMMs, such as 2D DCT features,
which require that all elements of a rectangular image-block are present.

(iv) The size of the RCM-derived feature vectors does not depend on the size of the region
from which they were extracted. Feature vectors of the same size can therefore be
computed from image blocks of variable size. Thus, RCM-based feature vectors enable
a multi-scale analysis By the term multi-scale analysis, we refer to the fact that the face can
be examined at different levels of locality up to the holistic level.) of the 3D face scans.

(v) GMM-based systems treat data (i.e., feature vectors) as independent and identically
distributed (i.i.d.) observations and therefore represent 3D facial images as a series of
orderless blocks. This characteristic is reflected in good robustness to imperfect face
alignment, moderate pose changes (The term moderate pose changes refers to the pose
variability typically encountered with cooperating subjects in a 3D acquisition setup.
Examples of such variability are, for example, illustrated in Figure 3), and expression
variations, as shown by several researchers, e.g., [60,61].

(vi) The probabilistic nature of GMMs makes it easy to include domain-specific prior
knowledge into the modeling procedure, e.g., by relying on the universal background
model (UBM).

(vii) Image reconstructions from GMMs confirm that the representations are invariant to
partial occlusions and moderate rotations.

4. Experiments

The following subsections provide an evaluation of the performance and robustness
of the RCM_GMM_SVM method and a comparison with other state-of-the-art methods.
We also implement some of the popular local and holistic methods for 3D face recognition,
summarized in Table 1 and include them in the comparison. In addition to the performance
evaluation, we also assess the time complexity and study the proposed approach from the
generative point of view.

The experiments evaluate two types of recognition systems, namely verification and
identification systems. The results of the verification experiments are presented in the form
of Receiver Operating Characteristic (ROC) curves or in the form of the verification rate
(true acceptance rate) at a 0.1% False Acceptance Rate (FAR), whereas the results of the
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identification experiments are reported in the form of rank-1 identification rates or with
Cumulative Match Characteristic (CMC) curves.

Table 1. Recognition methods implemented in this paper.

Module

Feature
Extraction

Feature
Modeling ClassificationMethod

PCA_EUC [62] PCA based holistic
feature extraction /

Euclidean distance-based
similarity measure with

nearest neighbor classifier

GSIFT_EUC [63]
SIFT ∗ descriptors extracted
from uniformly distributed

locations on facial area
/

Euclidean distance-based
similarity measure with

nearest neighbor classifier

GSIFT_SVM [64]
SIFT ∗ descriptors extracted
from uniformly distributed

locations on facial area
/ SVM

GSIFT_GMM_SVM [65]
SIFT ∗ descriptors extracted
from uniformly distributed

locations on facial area
GMM SVM

SIFT_GMM_SVM [65] Classic SIFT∗ descriptors GMM SVM

SIFT_SIFTmatch [66] Classic SIFT∗ descriptors / SIFT matching

DCT_GMM_SVM [67] DCT-based descriptors GMM SVM

RCM_GMM_SVM RCM-based descriptors GMM SVM

SIFT∗ descriptors extracted from the shape index representations of depth images.

4.1. Used Databases

To perform a thorough experimental evaluation of the proposed recognition system,
we use three data bases in our experiments, i.e., FRGC v2 [26], UMB-DB [68], and CA-
SIA [28]. With the experiments on the FRGC v2 we evaluate the recognition performance
in the case of a large number of subjects with near-frontal orientations and large expression
variations. UMB-DB is used to observe the robustness of the proposed method to occlusions,
while the robustness to pose variations is evaluated using the CASIA data, base.

The images in the FRGC v2 database have minor variations in pose and major varia-
tions in facial expressions. FRGC v2 contains 4007 3D facial images of 466 subjects, with up
to 22 images per subject. The images were acquired with a Minolta Vivid 910 (this type of
scanner is also used in UMB-DB and CASIA), which uses triangulation with a laser stripe
projector to create a 3D image of the face. The images may contain shape artifacts, such
as deformed areas due to movement of the subject during scanning, nose absence, holes,
small protrusions, and impulse noise.

The UMB-DB consists of 1473 images (3D + color 2D) of 143 subjects. This data base
was collected with special attention to facial occlusions that may occur in the real world.
There are 590 images with partially occluded facial areas by different objects, such as hair,
eyeglasses, hands, hats or scarves. The occlusions cover, on average, 42% of the face area,
with a maximum of about 84%.

The CASIA data base consists of 4624 images of 123 subjects. There are 37 or 38 images
per person containing (single) variations in pose, expression, and illumination, as well as
combined variations of expressions under illumination and pose changes.

4.2. Experimental Parameter Setting

There are several parameters for feature extraction, model training, and classification
that must be properly set for optimal operation of the proposed framework. We set the
parameters based on a simple optimization procedure over a small number of parameter
values and use the selected values for the later experiments.
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The verification rates of the RCM_GMM_SVM system under different parameter
settings are shown in Table 2. The parameter values in bold are used in the subsequent
experiments. When analyzing different block sizes and step sizes between neighboring
blocks, it can be observed that using smaller blocks leads to lower performance features
computed from small blocks are less descriptive due to limited surface variability. On the
other hand, larger block and step sizes result in a reduced number of observations per
face, which also leads to lower performance. When investigating the effects of PCA
dimensionality, we vary the length of the RCM-based feature vectors from 15 to 40. The best
performance is obtained using the first 35 PCA components, but we use only the first 25
PCA components in the following experiments to reduce the computational cost. To test
the effect of training data on recognition performance, we gradually increase the number
of images used to train the UBM, from 10 up to the entire FRGC v1 database. As expected,
more training data leads to better performance. The highest number of mixture components
we studied is 1024, where the best performance is also achieved. However, in the following
experiments, we use only 512 mixtures to ease the computational burden—512 components
offer a good trade-off between performance and computational complexity.

Table 2. Verification rate (%) at 0.1% FAR under different parameter settings.

Parameter Parameter Value/Verification Rate

Block size (pixels) 15/95.6 20/95.7 25/96.1 30/95.1 35/92.1 40/91.9

Step size (pixels) 3/96.2 4/96.1 5/95.0 6/92.4 7/88.9 8/83.2

Feature vector length
(no. of PCA comp.) 15/95.0 20/95.7 25/96.1 30/96.1 35/96.2 40/95.8

No. of training images
to build the UMB 10/79.0 50/92.2 100/94.4 200/95.5 400/95.9 943/96.1

No. of Gaussian mixtures 32/86.9 64/92.7 128/94.1 256/95.7 512/96.1 1024/96.1

4.3. Robustness to Imprecise Localization

To test the robustness of the proposed method to localization errors, we implemented
three face localization procedures in addition to the CB method presented in Section 3.2:

• Nose tip alignment (NT). The technique automatically detects the nose tip of the 3D
faces and then crops the data using a sphere with radius r = 100, similar to what is
described in [69];

• Metadata localization (MD). The technique uses the metadata provided by the FRGC pro-
tocol for face localization, i.e., manually annotated eye, nose tip and mouth coordinates;

• ICP alignment (ICP). The technique localizes the face scans by first coarsely normalizing
the position of the 3D faces using the available metadata, and then applying the
iterative closest point algorithm for fine alignment with the mean face model.

The ICP and MD localization techniques use manually annotated characteristic points
of the facial images, whereas the NT and CB techniques are fully automatic. Three base-
line techniques are used in this analysis in addition to the proposed RCM_GMM_SVM
approach, i.e., PCA_EUC, GSIFT_SVM and SIFT_SIFTmatch. Table 3 denotes the perfor-
mance degradation that occurs when automatic face localization is used . The localization
techniques are sorted from left to right in an increasing rate of localization imperfections.
We see that SIFT_SIFTmatch and RCM_GMM_SVM, the representatives of local methods,
are more robust to localization errors that the holistic methods, PCA_EUC and GSIFT_SVM,
while the proposed RCM_GMM_SVM has the most stable performance among the com-
pared methods.
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Table 3. Verification rate (%) at 0.1% FAR for different localization techniques (FRGC v2 all vs. all
experiment).

Localization Technique

Method ICP MD NT CB

PCA_EUC 41.1 38.4 38.1 18.6
GSIFT_SVM 72.3 71.1 70.3 61.4

SIFT_SIFTmatch 90.2 90.0 89.9 89.1
RCM_GMM_SVM 97.9 97.9 97.8 97.7

4.4. Composite Representation Selection

Table 4 summarizes the experiments that analyze appropriate data representations for
constructing the composite representation. Several representations are assessed (some of
which can be seen in Figure 5), such as pixel coordinates (x, y), depth values I, shape index
values Is, Gaussian curvature values Ig, mean curvature values Im, minimum curvature
values Imin, maximum curvature values Imax, surface normal coordinates Inx, Iny and Inz,
local binary patterns Ilbp and angle values Iϕ between surface normals and the average
facial normal. If we look at Table 4, the first thing we notice is that different combinations
of image representations lead to significantly different verification rates. Among the
evaluated combinations, the highest verification rate across all three data bases is achieved
by the following W × H × 4 dimensional composite representation

F = [Is Inx Iny Inz]. (23)

Somehow unexpectedly, composite representations with more face representations
do not always outperform composite representations with fewer face representations.
This fact suggests that complementary information needs to be included in the composite
representation to improve recognition performance.

Figure 5. Different representations of depth data: (a) depth values, (b) shape index values, (c) mean
curvature values, (d) local binary patterns, (e) minimum curvature values, (f) maximum curvature
values, (g) x-values of surface normals, (h) y-values of surface normals, (i) z-values of surface normals,
(j) angle values between surface normals and the average normal.
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Table 4. Verification rate (%) at 0.1% FAR for different composite representations F.

Experiment

FRGC v2

all vs.

all

UMB-DB

neut., n.-occl.

vs. occl.

CASIA

neut., front. vs.

n-neut., front.F

[Inx Iny Inz] 94.8 81.2 94.2

[X Y Inx Iny Inz] 95.8 83.5 93.6

[Is Inx Iny Inz] 95.7 84.7 94.8

[X Y Is Inx Iny Inz] 94.7 83.9 93.2

[Ilbp Is Inx Iny Inz] 93.6 82.0 92.1

[Is Ig Im Imin Imax] 92.3 82.3 81.4

[X Y Is Iϕ Ilbp] 78.3 65.6 77.2

4.5. Contribution of UT Transform and Delta Features

In this set of experiments, we evaluate the contributions of the UT transform and
delta features, both of which are integral parts of the proposed feature extraction process.
Table 5 summarizes the advantages of using the UT transform to derive the feature vectors
(see Section 3.5). When UT is not applied, the feature vectors are formed directly from the
elements of the RCM. By doing so, the feature vectors violate the postulates of the Euclidean
space, which leads to a decreased verification performance of the system. Improved
recognition performance can be obtained by extending the feature vectors with the mean
vectors µR derived from the composite representations. However, the best performance is
achieved by relying on the UT transform and constructing the feature vectors as shown
in (6).

Table 5. Influence of the unscented transform (UT) on the verification rate (FRGC v2 all vs. all
experiment). The results represent the Verification rate (%) at a 0.1% FAR.

UT Modality

Without UT
Without UT,

Added µR
With UT

Method

RCM_GMM_SVM 93.9 94.7 96.1

The contributions of delta features to recognition performance are summarized in
Table 6. We see that both, horizontal and vertical deltas increase verification rate, while the
highest verification rate is achieved when using combined horizontal and vertical deltas.

Table 6. Influence of delta features on verification rate (FRGC v2 all vs. all experiment). The results
represent the Verification rate (%) at a 0.1% FAR.

Delta Features

Method Without Horizontal Vertical Horizontal + Vertical

RCM_GMM_SVM 94.9 95.8 95.9 96.1

4.6. Evaluation of Normalization Techniques

Here, we assess the effects of the data normalization techniques described in Section 3.10
on recognition performance. The results of these experiments are shown in Table 7. The
case where no normalization is used is denoted as ∅ (without normalization). We see that
all normalization techniques contribute to the improvement of the verification rate, while
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RN normalization of supervectors brings the greatest improvement in the verification rate.
The highest verification rate is obtained when all normalization techniques are included in
the framework (last column in Table 7). Furthermore, we observe that the normalization tech-
niques are beneficial for other techniques as seen by the results for the GSIFT_SVM approach.

Table 7. Verification rate (%) at 0.1% FAR for different normalization techniques on the FRGC v2 all
vs. all data set.

Normalization Technique

∅ MVN
MVN

+RN

MVN+RN

+WCCN

MVN+RN+

WCCN+SNMethod

GSIFT_SVM 47.1 50.5 57.9 61.3 61.4

RCM_GMM_SVM 81.0 84.0 96.1 97.5 97.7

4.7. Comparative Assessment on the FRGC v2 Database

Here we provide a comparative performance analysis of the proposed method with the
latest state-of-the-art methods that also use the FRGC v2 data base in their experiments. To
accurately compare the performance of the methods, we follow the FRGC v2 experimental
protocol, which provides a set of standard verification experiments and defines three data
sets—a training set, a gallery set, and a probe set. The training set is used to build global
face models. In our experiments, images from the FRGC v1 data based are used as training
images. The gallery set contains images with known identities (intended for enrollment),
whereas the probe set contains images with unknown identities presented to the system
for recognition. The FRGC v2 protocol provides several masks defining gallery and probe
sets. We use the ROC I, ROC II, and ROC III masks to examine verification performance in
the presence of a time lapse between the gallery and probe images. The ROC I experiment
refers to images collected within a semester, while the ROC II experiment refers to images
collected within the same year and the ROC III experiment refers to images collected
between semesters. The all vs. all verification experiment uses all 4007 images as galleries
and probes, resulting in more than 16 million comparisons (note that in this experiment
gallery and probe sets are actually identical). Other partitions, i.e., neutral vs. neutral, neutral
vs. non-neutral, and neutral vs. all are based on the facial expression labels and are provided
by the FRGC protocol.

Table 8 shows the verification rates of the examined methods at 0.1% FAR. We re-
port the results of the competing methods based on what is given in the corresponding
papers, and also provide results for some other popular (holistic and local) methods im-
plemented specifically for the comparative evaluation. We see that the performance of
the RCM_GMM_SVM method is comparable to the other state-of-the-art methods, while
noting that the RCM_GMM_SVM method uses only an extremely simple procedure to
localize the faces and skips the alignment step. This is in contrast to the methods in [70–72],
which outperform our method in some of the experiments.

The highest verification rate was obtained by [21], but this result comes at the expense
of higher computational cost. A higher verification rate is also stated in [72], but a different
experimental setup is used there. The authors randomly select up to six images from each
subject to form the gallery set, and use the remaining images as probe set images. For the
subjects with less than or equal to six images, they randomly select one image from each
subject for the probe set and the remaining images for the gallery set. Then they calculate
the matching score for each pair of gallery and probe images. They repeat the random
division of the data set into the gallery and probe sets many times to be confident that every
two images in the data set are matched. Table 9 shows the results of the above experimental
setup used in [72]. Using this procedure, we achieved a verification rate of 99.9% at 0.1%
FAR with only four images per subject.
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Table 8. Comparison with the state-of-the-art (verification rates (%) at 0.1% FAR on the FRGC v2).

Experiment

all vs.

all

neut. vs.

all

neut. vs.

neut.

neut. vs.

n.-neut.
ROC I ROC II ROC III

Method

Drira et al., 2013 [73] 94.0 n/a n/a n/a n/a n/a 97.1

Huang et al., 2012 [74] 94.2 98.4 99.6 97.2 95.1 95.1 95.0

Cai et al., 2012 [75] 97.4 n/a 98.7 96.2 n/a n/a n/a

Al-Osaimi et al., 2012 [76] n/a n/a 99.8 97.9 n/a n/a n/a

Queirolo et al., 2010 [77] 96.5 98.5 100.0 n/a n/a n/a 96.6

Kakadiaris et al., 2007 [78] n/a n/a n/a n/a 97.3 97.2 97.0

Wang et al., 2010 [70] 98.1 98.6 n/a n/a 98.0 98.0 98.0

Inan et al., 2012 [71] 98.4 n/a n/a n/a n/a n/a 98.3

Mohammadzade et al., 2013 [72] 99.2 n/a 99.9 98.5 n/a n/a 99.6

Emambakhsh et al., 2016 [79] n/a n/a n/a n/a n/a n/a 93.5

Soltanpour et al., 2016 [80] 99.0 99.3 99.9 98.4 n/a n/a 98.7

Ratyal et al., 2019 [21] 99.8 n/a n/a n/a n/a n/a n/a

Cai et al., 2019 [81] n/a 100 100 100 n/a n/a 100

Zhang et al., 2022 [82] n/a 99.6 100 99.1 n/a n/a n/a

GSIFT_EUC 49.6 52.3 55.2 46.7 52.8 50.7 48.4

GSIFT_SVM 61.4 64.1 66.2 59.8 64.9 62.6 60.2

GSIFT_GMM_SVM 65.6 67.7 70.0 63.1 67.6 66.0 64.1

SIFT_GMM_SVM 77.3 83.7 94.4 69.9 78.1 77.0 75.9

RCM_GMM_EUC 82.7 91.2 97.9 83.7 84.3 83.1 81.8

RCM_SIFTmatch 87.5 91.9 97.1 82.4 88.0 87.6 87.2

SIFT_SIFTmatch 89.1 92.5 98.7 85.3 89.6 89.2 88.1

DCT_GMM_SVM 93.3 96.1 98.9 93.2 94.6 93.8 93.1

RCM_GMM_SVM 97.7 99.2 99.8 98.5 98.6 98.1 97.7

Table 9. Verification rate (%) at 0.1% FAR for different maximum numbers of images per gallery subject.

Max. Number of Images per Gallery Subject

Method 1 2 3 4 5 6

Mohamadzae et al. [72] n/a 90.6 98.4 99.2 99.5 99.6

RCM_GMM_SVM 97.7 99.6 99.8 99.9 99.9 99.9

We set up the identification experiments according to the protocols in the literature,
considering four partition modes : (i) A-A. The earliest image of each subject is used
as a gallery image and subsequent images of these subjects are used as probes; (ii) N-A.
The earliest neutral image of each subject is used as a gallery image and subsequent images
are used as probes; (iii) N-N. The earliest neutral image of each subject is used as a gallery
image and subsequent neutral images are used as probes; (iv) N-N̄. The earliest neutral
image of each subject is used as a gallery image and subsequent non-neutral images are
used as probes. These partitions enable closed-set identification, in which each probe image
has a match among the gallery subjects. A comparison of the achieved identification per-
formance is shown in Table 10. Our RCM_GMM_SVM method obtains rank-1 recognition
rates consistently above the 98%, which is comparable to the highest identification results
on the FRGC v2 data base. We can also conclude that expression variations have little
effect on the identification performance of the RCM_GMM_SVM method.
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Table 10. Comparison with the state-of-the-art (Rank- 1 identification rate (%) on the FRGC v2).

Experiment

Method A-A ∗ N-A † N-N ‡ N-N̄ §

Drira et al., 2013 [73] 97.0 n/a n/a n/a
Huang et al., 2012 [74] n/a 97.6 99.2 95.1
Cai et al., 2012 [75] 98.2 n/a n/a n/a
Al-Osaimi et al., 2012 [76] 97.4 n/a 99.2 95.7
Inan et al., 2012 [71] 97.5 n/a n/a n/a
Wang et al., 2010 [70] 98.2 98.4 n/a n/a
Queirolo et al., 2010 [77] 98.4 n/a n/a n/a
Kakadiaris et al., 2007 [78] 97.0 n/a n/a n/a
Emambakhsh et al., 2016 [79] n/a 97.9 98.5 98.5
Soltanpour et al., 2016 [80] n/a 96.9 99.6 96.0
Ratyal et al., 2019 [21] 99.6 n/a n/a n/a
Cai et al., 2019 [81] n/a 100 99.9 99.9
Yu et al., 2020 [31] 98.2 n/a n/a n/a
Zhang et al., 2022 [82] 99.5 n/a n/a n/a
SIFT_SIFTmatch 89.4 91.2 96.1 85.3
DCT_GMM_SVM 94.8 96.8 98.6 94.6
RCM_GMM_SVM 98.1 98.9 99.6 98.2

∗ earliest as galleries, remaining as queries. † earliest neutral as galleries, remaining as queries. ‡ earliest
neutral as galleries, remaining neutral as queries. § earliest neutral as galleries, non-neutral as queries.

4.8. Comparative Assessment on the UMB-DB Database

The UMB-DB database is employed to test the effectiveness of the proposed approach
in the presence of occlusions. We use the CB method to localize faces as in all previous
experiments. Thus, the facial images are recognized without prior detection or removal of
occluded parts in the preprocessing step.

Both verification and identification experiments are performed on the images from
the UMB-DB database . The results of the verification experiments can be seen in Table 11,
where we followed the experimental protocol defined in [29]. Table 12 shows the results of
the identification experiments, where we partitioned the images into gallery and probe sets
similar to [83]. Note that the training set consists of the remaining images not included in
the gallery or probe sets.

As the results in Tables 11 and 12 show, the proposed method exhibits robust per-
formance, even in the presence of severe occlusions that are present in the UMB-DB. We
see that the difference in recognition performance between the RCM_GMM_SVM and
SIFT_SIFTmatch systems is not as significant as for the FRGC v2 database, since the
SIFTmatch local feature matching strategy naturally performs well when occlusions are
present in the input facial images, as shown previously in [74]. On the other hand, the
holistic approach in GSIFT_GMM fails completely in the presence of occlusions, since
occluded areas are here directly included in the holistic feature vectors.

It should be noted that the systems described in [29,83] remove the occluded facial
parts already in the preprocessing step. Therefore, the recognition performance of these sys-
tems depends heavily on the correct detection of the occluded parts. The proposed system,
on the other hand, does not require detection of occluded parts. Since the subject-specific
GMMs are adapted from the UBM, the α parameter ensures adapting only the components
already seen in the training data and included in the UBM. Thus, the features corresponding
to occluded areas do not have much impact on the subject-specific GMM estimation.
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Table 11. Equal-error rates (%) on the UMB-DB (Values in the brackets are verification rates (%) at
0.1% FAR).

Subset Method

Gallery Probe Training
Colombo

et al., [29]

GSIFT_

GMM_SVM

SIFT_

SIFTmatch

RCM_

GMM_SVM

neut., n.-occl. neut., n.-occl. n.-neut., n.-occl. 1.9 4.8 (90.4) 0.8 (99.2) 0.6 (99.2)

neut., n.-occl. n.-neut., n.-occl. occl. 18.4 9.7 (63.6) 5.0 (90.2) 3.0 (93.8)

neut., n.-occl. neut., occl. n.-neut., n.-occl. n/a 31.4 (11.5) 7.2 (79.1) 3.6 (85.8)

neut., n.-occl. occl. n.-neut., n.-occl. 23.8 34.9 (10.7) 7.9 (77.8) 4.1 (84.7)

Table 12. Rank-1 identification rate (%) on the UMB-DB.

Experiment

Method N¯O-Ō ∗ N¯O-¯N¯O † N¯O-O ‡

Alyuz et al., 2013 [83] 97.3 n/a 73.6

Ratyal et al., 2019 [21] 99.3 n/a n/a

Xiao et al., 2020 [84] n/a n/a 61.6

GSIFT_GMM_SVM 92.3 76.0 21.2

SIFT_SIFTmatch 99.0 93.0 90.8

RCM_GMM_SVM 99.7 97.9 91.8
∗ gallery: earliest neut. n.-occl.; probes: remaining n.-occl. † gallery: earliest neut. n.-occl.; probe:
remaining n.-neut. n.-occl. ‡ gallery: earliest neut. n.-occl.; probe: occl. images.

4.9. Comparative Assessment on the CASIA Database

The third set of comparative performance assessments is performed on the CASIA
database, where we analyze robustness to pose variations. There is no experimental
protocol for this database, so we use examples from the literature as a guide. As in the
previous experiments, we divide the CASIA data into three subsets. The training set
contains images from the last 23 of the 123 subjects, while the gallery and probe sets are
constructed as described in Tables 13 and 14, where we take into account the expression
and occlusion labels provided in the CASIA metadata.

Table 13. Verification rate (%) at 0.1% FAR on the CASIA database (Pose variations larger than 30◦

are discarded).

Subset Method

Gallery Probe
SIFT_

SIFTmatch

RCM_

GMM_SVM

neut., front. neut., front. 98.8 98.8

neut., front. n.-neut., front. 95.8 96.9

neut., front. neut., n.-front. 59.5 66.0

neut., front. n.-neut., n.-front. 53.0 59.3

neut., front. all 77.6 74.3
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Table 14. Rank-1 identification rate (%) on the CASIA database.

Method

Xu et al.,

2009 [85]

Xu et al.,

2019 [32]

Dutta et al.,

2020 [86]

SIFT_

SIFTmatch

RCM_

GMM_SVMProbe

IV(400) ∗ 98.3 n/a 98.2 99.3 99.5

EV(500) † 74.4 n/a n/a 97.6 98.8

EVI(500) ‡ 75.5 99.1 n/a 98.2 99.2

PVS(700) § 91.4 n/a 88.8 83.3 85.3

PVL(200) ¶ 51.5 n/a n/a 55.5 59.5

PVSS(700) ‖ 82.4 n/a n/a 76.7 80.3

PVSL(200) # 49.0 n/a n/a 48.0 51.5
∗ Illumination variations: top, bottom, left and right lighting. † Expression variations: smile, laugh, anger,
surprise and closed eyes. ‡ Expression variations under the lighting from the right side. § Small pose variations,
including views of front, left/right 20–30◦, up/down 20–30◦ and tilt left/right 20–30◦. ¶ Large pose variations,
including views of left/right 50–60◦. ‖ Small pose variations with smiling. # Large pose variations with smiling.

As with the previous two databases, we perform identification and verification experi-
ments on the CASIA database. From the experimental results in Tables 13 and 14, it appears
that the RCM_GMM_SVM system shows relatively robust performance in the presence of
occlusions compared to the competing techniques evaluated in this experiment.

4.10. Reconstruction of 3D Face Images from GMMs

The overall robustness of the proposed system can be attributed to the use of local
features and statistical models. However, the most important role in ensuring robustness
against occlusions is attributed to the latter, i.e., the statistical models. By relying on the
UBM and MAP adaptation, an adequate statistical model of a person can be built even
from a poor representation of the face at the feature level. To clearly demonstrate this
characteristic, we assess the robustness of the proposed system from a generative point
of view.

By randomly sampling from the GMMs, it is possible to generate synthetic data in the
feature space and subsequently generate facial images. To generate a synthetic face image
by random sampling, we choose a k-th Gaussian component (we pick it with probability
given by its mixing coefficient {πk}K

k=1) and then generate a sample feature vector from the
chosen component. For each generated feature vector, we find the closest match among
the feature vectors from the training images and construct a face image from the surface
patches belonging to the matched training feature vectors (for this purpose, we previously
stored the feature/patch pairs of all training images).

Using this procedure, we generate synthetic images from Figure 6, where the top
images of a pair represent 3D facial images from the UMB-DB that were automatically
localized using the CB technique, and the bottom images show the corresponding synthetic
faces generated by random sampling. We can see that expression and orientation variations
are excluded from the synthetic facial images, while regions not seen in the original images
due to occlusions are restored in the generated synthetic images. We argue that such
variations are eliminated by estimating the GMM parameters from the UBM via MAP
adaptation. Using the αk parameter from (12), only the components that were seen in the
training data are adapted. For the feature vectors extracted from occluded areas the Nk
from (13) will be small for all K components of the mixture model. Consequently, the αk
parameter will have a smaller value, while the adaptation (12) will rely more heavily on
the UBM.
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Figure 6. Preprocessed images (top row) and images generated by random sampling from the
corresponding GMMs (bottom row).

It can also be seen in Figure 6j,k that GMM models obtained from the facial images of
the same person contain similar data. As expected, the random sampling from the UBM
generates an average face (shown in Figure 7).

Figure 7. The image of an average face generated from the UBM.

4.11. Time Complexity

In the final set of experiments, we evaluate the time needed by our framework to verify
a single probe image and compare it to the processing times of the comepting techniques.
All experiments were performed on a PC with an Intel Xeon CPU @ 2.67 GHz and 12 GB
RAM.The methods were implemented using Matlab and therefore could be significantly
sped up if implemented using a compiled language such as C/C++. The results of this part
of our assessment are shown in Figure 8. The time complexity of the RCM_GMM_SVM
method ranks in the middle compared to the other techniques. Compared to the tech-
niques that use SIFTmatch classification, the RCM_GMM_SVM method has a significantly
faster comparison/classification step. This makes the RCM_GMM_SVM method more
suitable for the identification task where each probe subject needs to be matched with
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every gallery subject. The relatively short computation time of the proposed framework
also results from the fact that only a simple clustering-based technique is used to locate
the faces. This can also be observed in Figure 9, which shows the runtimes of all assessed
localization techniques.

0 0.2 0.4 0.6 0.8

PCA_EUC
GSIFT_EUC
GSIFT_SVM

GSIFT_GMM_SVM
SIFT_GMM_SVM
RCM_GMM_EUC
RCM_SIFTmatch
SIFT_SIFTmatch

DCT_GMM_SVM
RCM_GMM_SVM

Image
preprocessing
Feature
extraction
Statistical
modeling
Matching

Figure 8. Average running times (in seconds) of the assessed methods for the verification of one
probe image.

0 0.5 1 1.5 2 2.5

ICP
MD
NT
CB

Figure 9. Average running times (in seconds) of the assessed localization techniques.

5. Conclusions

This paper addressed robust face recognition from data acquired in uncontrolled/real
conditions by a single depth sensor. In such scenarios, we have to cope with different
sources of image variability, such as changes in orientation, scale, facial expressions, and oc-
clusions. The fully automatic recognition system proposed in this papersolves the problems
of face detection, feature extraction, statistical modeling, and classification. Each of these
problems was approached with the intention of increasing the overall robustness to vari-
ations that can occur in realistic situations. As demonstrated by experiments on three
popular databases, the system is able to achieve high recognition performance even under
very challenging conditions, and compares favorably with other state-of-the-art 3D face
recognition systems from the literature.
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35. Mráček, Š.; Drahanský, M.; Dvořák, R.; Provazník, I.; Váňa, J. 3D face recognition on low-cost depth sensors. In Proceedings of
the International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 10–12 September 2014;
pp. 1–4.

36. De Melo Nunes, L.F.; Zaghetto, C.; de Barros Vidal, F. 3D Face Recognition on Point Cloud Data—An Approaching based on
Curvature Map Projection using Low Resolution Devices. In Proceedings of the 15th International Conference on Informatics in
Control, Automation and Robotics, Porto, Portugal, 29–31 July 2018; Volume 2, pp. 266–273. [CrossRef]

37. Hayasaka, A.; Ito, K.; Aoki, T.; Nakajima, H.; Kobayashi, K. A Robust 3D Face Recognition Algorithm Using Passive Stereo
Vision. IEICE Transact. 2009, 92-A, 1047–1055. [CrossRef]

38. Roth, J.; Tong, Y.; Liu, X. Adaptive 3D Face Reconstruction from Unconstrained Photo Collections. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Vegas, NV, USA, 27–30 June 2016; pp. 4197–4206. [CrossRef]

39. Aissaoui, A.; Martinet, J.; Djeraba, C. 3D face reconstruction in a binocular passive stereoscopic system using face properties. In
Proceedings of the 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012;
pp. 1789–1792. [CrossRef]

40. Gecer, B.; Ploumpis, S.; Kotsia, I.; Zafeiriou, S.P. Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction. IEEE Transact. Pattern Anal. Mach. Intell. 2021, 1. [CrossRef] [PubMed]

41. Fan, Z.; Hu, X.; Chen, C.; Peng, S. Dense Semantic and Topological Correspondence of 3D Faces without Landmarks. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

42. Xue, Y.; Jianming, L.; Takashi, Y. A method of 3D face recognition based on principal component analysis algorithm. In
Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; Volume 4,
pp. 3211–3214. [CrossRef]

43. Chang, K.I.; Bowyer, K.W.; Flynn, P.J. Multimodal 2D and 3D biometrics for face recognition. In Proceedings of the IEEE
International SOI Conference, Nice, France, 7 October 2003; pp. 187–194. [CrossRef]

44. Tian, L.; Liu, J.; Guo, W. Three-Dimensional Face Reconstruction Using Multi-View-Based Bilinear Model. Sensors 2019, 19, 459.
[CrossRef]

45. Kluckner, S.; Mauthner, T.; Bischof, H. A Covariance Approximation on Euclidean Space for Visual Tracking. In Proceedings of
the OAGM, Stainz, Austria, 14–15 May 2009.

46. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1988.
47. Tuzel, O.; Porikli, F.; Meer, P. Region Covariance: A Fast Descriptor for Detection and Classification. In Proceedings of the ECCV,

Graz, Austria, 7–13 May 2006; Volume 3952, pp. 589–600.
48. Pang, Y.; Yuan, Y.; Li, X. Gabor-Based Region Covariance Matrices for Face Recognition. TCSVT 2008, 18, 989–993.
49. Tuzel, O.; Porikli, F.; Meer, P. Human Detection via Classification on Riemannian Manifolds. In Proceedings of the CVPR,

Minneapolis, MN, USA, 18–23 June 2007; pp. 1–8.
50. Porikli, F.; Tuzel, O.; Meer, P. Covariance Tracking using Model Update Based on Lie Algebra. In Proceedings of the CVPR, New

York, NY, USA, 17–22 June 2006; Volume 1, pp. 728–735.
51. Julier, S.; Uhlmann, J.K. A General Method for Approximating Nonlinear Transformations of Probability Distributions; Technical Report;

Department of Engineering Science, University of Oxford: Oxford, UK, 1996.
52. Moon, T. The Expectation-Maximization Algorithm. Sig. Proc. Mag. IEEE 1996, 13, 47–60. [CrossRef]
53. Reynolds, D.A.; Quatieri, T.F.; Dunn, R.B. Speaker verification using Adapted GMMs. Dig. Sig. Proc. 2000, 10, 19–41. [CrossRef]
54. Bredin, H.; Dehak, N.; Chollet, G. GMM-based SVM for face recognition. In Proceedings of the 18th International Conference on

Pattern Recognition, ICPR, Hong Kong, China, 20–24 August 2006; Volume 3, pp. 1111–1114.
55. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: New York, NY, USA, 2006.
56. Hatch, A.O.; Kajarekar, S.; Stolcke, A. Within-class Covariance Normalization for SVM-based Speaker Recognition. Proc. ICSLP

2006, 1471–1474. Available online: https://www.sri.com/wp-content/uploads/pdf/within-class_covariance_normalization_
for_svm-based_speaker_recogniti.pdf (accessed on 17 February 2021).

57. Vesnicer, B.; Žganec Gros, J.; Vitomir Štruc, N.P. Face Recognition using Simplified Probabilistic Linear Discriminant Analysis.
Int. J. Adv. Robot. Syst. 2012, 9, 180. [CrossRef]

http://dx.doi.org/10.1109/ICCVW.2011.6130509
http://dx.doi.org/10.1109/TIFS.2014.2309851
http://dx.doi.org/10.1109/ICCT46805.2019.8947113
http://dx.doi.org/10.1007/s11831-021-09705-4
http://www.ncbi.nlm.nih.gov/pubmed/35035213
http://dx.doi.org/10.1109/ICIEA.2014.6931468
http://dx.doi.org/10.5220/0006843702660273
http://dx.doi.org/10.1587/transfun.E92.A.1047
http://dx.doi.org/10.1109/CVPR.2016.455
http://dx.doi.org/10.1109/ICIP.2012.6467228
http://dx.doi.org/10.1109/TPAMI.2021.3084524
http://www.ncbi.nlm.nih.gov/pubmed/34043505
http://dx.doi.org/10.1109/ISCAS.2005.1465311
http://dx.doi.org/10.1109/AMFG.2003.1240842
http://dx.doi.org/10.3390/s19030459
http://dx.doi.org/10.1109/79.543975
http://dx.doi.org/10.1006/dspr.1999.0361
https://www.sri.com/wp-content/uploads/pdf/within-class_covariance_normalization_for_svm-based_speaker_recogniti.pdf
https://www.sri.com/wp-content/uploads/pdf/within-class_covariance_normalization_for_svm-based_speaker_recogniti.pdf
http://dx.doi.org/10.5772/52258


Sensors 2022, 22, 2388 25 of 26

58. Hatch, A.; Stolcke, A. Generalized Linear Kernels for One-Versus-All Classification: Application to Speaker Recognition. In
Proceedngs of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, Toulouse, France,
14–16 May 2006; Volume 5. [CrossRef]

59. Bromiley, P. Products and Convolutions of Gaussian Distributions; Internal Report 2003-003; TINA Vision. 2003. Available online:
http://www.tina-vision.net/ (accessed on 17 February 2021).

60. Križaj, J.; Štruc, V.; Dobrišek, S. Towards Robust 3D Face Verification using Gaussian Mixture Models. Int. J. Adv. Robot. Syst.
2012, 9, 1–11. [CrossRef]

61. Wallace, R.; McLaren, M.; McCool, C.; Marcel, S. Cross-pollination of normalization techniques from speaker to face authentication
using GMMs. IEEE TIFS 2012, 7, 553–562.

62. Tsalakanidou, F.; Tzovaras, D.; Strintzis, M. Use of depth and colour eigenfaces for face recognition. Pattern Recognit. Lett. 2003,
24, 1427–1435. [CrossRef]
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