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Abstract: Water features (e.g., water quantity and water quality) are one of the most important envi-
ronmental factors essential to improving climate-change resilience. Remote sensing (RS) technologies
empowered by artificial intelligence (AI) have become one of the most demanded strategies to au-
tomating water information extraction and thus intelligent monitoring. In this article, we provide
a systematic review of the literature that incorporates artificial intelligence and computer vision
methods in the water resources sector with a focus on intelligent water body extraction and water
quality detection and monitoring through remote sensing. Based on this review, the main challenges
of leveraging AI and RS for intelligent water information extraction are discussed, and research
priorities are identified. An interactive web application designed to allow readers to intuitively and
dynamically review the relevant literature was also developed.

Keywords: surface water; water body detection; surface water extraction; water quality moni-
toring; remote sensing; artificial intelligence; computer vision; machine learning; deep learning;
convolutional neural networks

1. Introduction and Motivation

Water is fundamentally necessary to all forms of life, and it is also the primary medium
through which climate change impacts Earth’s ecosystem and thus the livelihood and
wellbeing of societies [1]. While water covers about 71% of the Earth’s surface, only
approximately 3% of the Earth’s water bodies are freshwater [2]. Climate change will
bring unique challenges to these water bodies. Many rivers and streams are heavily
dependent on winter snowpack, which is declining with rising temperatures and changing
precipitation patterns [3]. Sea level rise is also impacting the continued quality and quantity
of water supplies [4]. Both the quantity and the quality of freshwater systems are critical
environmental features essential to increasing resilience in the face of climate change [5,6].
Resilience is defined here as the capacity of a system to absorb disturbance and still retain
its basic function and structure [7]. Climate change will bring new disturbances in many
forms, including increased pollution from wildfires, saltwater intrusion, and deteriorated
water quantity resulting from prolonged drought [1,8]. It is critical that we gather, ideally
automatically, as much information as possible about freshwater bodies and how they
function in order to increase our capacity to respond to a changing climate. Rockström [5,6]
and his colleagues conceptualize freshwater use and biogeochemical flows that threaten
the integrity of freshwater (via pollution) as two of seven variables key to overall Earth
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system function. Each of these variables, they argue, can be thought of as having “planetary
boundary”, a threshold that should not be crossed if we are to maintain the Earth in its
current system state [5]. In this sense, the integrity and functioning of freshwater systems
are essential not only in the local scale in which they provide critical ecosystem services;
they also create a “safe operating space” for humanity as a whole, as we seek to achieve
global solutions to the larger environmental challenges we face with climate change and
associated stressors [6].

Responding to climate change challenge impacts on water resources requires adap-
tation strategies at the local, regional, national, and global scales. Countries are urged to
improve their water resources management systems and to identify and implement “no
regrets” strategies in order to be resilient to climate change [1]. The changing spatial and
temporal patterns of surface water are important, in both practical and scientific terms, for
water resources management, biodiversity, emergency response, and climate change [9].
More specifically, automated monitoring of water bodies is critical for adapting to climate
change, water resources, ecosystem services, and the hydrological cycle, as well as for
urban hydrology, which can facilitate timely flood protection planning and water quality
control for public safety and health [10–12]. Accurate water quality monitoring is essential
for developing sustainable water resource management strategies and ensuring the health
of communities, ecosystems, and economies [13]. However, current knowledge of water
quality is often disconnected in time and space across different measurement techniques
and platforms that may fail to capture dynamic ecosystem changes. This disconnection
indicates an inefficiency and redundancy in research and monitoring activities. A major
challenge for water resource management is how to integrate multiple sources of water
quality data and indices into usable and actionable information of environmental, social,
economic, and infrastructural value [13,14].

Geospatial big data are leading to transformative changes in science (with the advent
of data-driven and community science) and in society (with the potential to support the
economy, public health, and other advances). Artificial intelligence (AI), especially its
branches machine learning (ML), deep learning (DL), and computer vision (CV), are central
to leveraging geospatial big data for applications in both domains. Remote sensing (RS)
is the single largest source of geospatial big data and has increased dramatically in terms
of both spatial and temporal resolution. This poses serious challenges for effective and
efficient processing and analysis [15]. Meanwhile, recent advances in DL and CV have
significantly improved research in RS and geosciences [16–18]. These advances, if integrated
in creative and appropriate ways, host potential to enable the automated identification and
monitoring of large-scale water bodies and water quality effectively and efficiently.

In this article, we argue specifically that bridging research into extracting important
water information (e.g., water body extent, water quality) from RS imagery will provide
an important computational foundation for the development of smart, RS-enabled water
resource management systems. We review a range of recent developments in the relevant
fields that can be leveraged to support intelligent automation of water body extraction
and water quality detection and monitoring through RS imagery. An accompanying
interactive web application allows our readers to intuitively track scholars and publications
covered in this review (the web app tool URL and its brief demo video link are provided in
Appendix A).

1.1. Selection Criterion for Reviewed Papers and Brief Graphic Summary

In the literature review process, we performed a systematic search on Google Scholar
with the keywords and search strategy detailed in Table 1. In addition, our search was
restricted to research articles published in English and in peer-reviewed journals or confer-
ence proceedings. For water body detection, we combined the water body keywords with
some combination of the general keywords. The process for finding publications related
to water quality was the same, only with the water quality keywords list. Beyond the
keywords listed in this table, references (those cited in the papers we reviewed) cited by
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the keyword-identified papers were also retained. A total of 90 papers relevant to the topic
of water body and/or water quality from RS imagery using AI/ML/DL/CV algorithms
were identified. A total number of 56 highly relevant articles were identified by applying
the following exclusion criteria: (1) papers related to plastic pollution and sewage/water
treatment plants, (2) precipitation forecasting or groundwater detection (as it is not intuitive
to detect groundwater from RS imagery), and (3) general land use classification. Figure 1
shows the spatial distribution and a simple statistics summary of the papers covered in this
review, where (d) shows the number of published papers by year in the reviewed topics
from 2011 to early 2022.

Table 1. Keywords used for article search.

Keyword Category Search Strategy

General keywords 1

“remote sensing” OR “satellite data” OR “UAV” AND
“computer vision” OR

“machine learning” OR “deep learning” OR “neural
networks” OR “AI”

Water body “water body” AND “detection” OR “extraction”

Water quality “water quality” AND “sensing” OR “monitoring”
1 A list of general keywords were combined with either the category of water body or water quality, respectively,
to perform our search.
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1.2. Roadmap

Here, we provide a roadmap for the rest of the paper. Section 2 outlines the scope of this
review and our intended audience. Section 3 is the core of the paper, focused on identifying
important and recent developments and their implications to water body detection and
water quality monitoring from RS imagery through the leverage of AI/ML/DL/CV. Here,
we highlight recent advances in several subfields of AI that water domains and RS can
leverage. Specifically, we provide general characteristics of the reviewed studies using
word clouds (Section 3.1). We then examine and appraise key components of influential
work in water body detection (Section 3.2) and water quality monitoring (Section 3.3).
Section 4 starts with a brief summary (Section 4.1), followed with a discussion of key
technical challenges (Section 4.2) and opportunities (Section 4.3). The paper concludes
in Section 5.

To allow our readers to intuitively and dynamically review the relevant literature, we
have developed a free-of-charge interactive web app tool (the web app URL and its brief
demo video are provided in Appendix A). To provide background for readers (particularly
those from water resources and RS) who are new to AI/ML/DL/CV, we introduce essential
ML terms in Appendix B. As evaluation metrics are essential for measuring the performance
of AI/ML/DL/CV models, we also provide an introduction to a set of commonly used
evaluation metrics in Appendix C. In addition, as there are plenty of acronyms in this paper,
we provide a full list of abbreviations right before the appendices.

2. Audience and Scope

It is important to know where water is and how its extent and quality are changing
over time in a quick and accurate manner. Water quality is a key issue in water supply,
agriculture, human and animal health, and many other areas [19]. Impaired water quality
can be caused by natural disasters, but the most common cause is anthropogenic pollution.
Pollutants, excessive nutrients from fertilizers, and sediment (e.g., from soil erosion) are
carried into local lakes and rivers via runoff from urban or agricultural areas [19,20]. The
quality of water varies from places and from time to time [19]. Affected surface waters are
present in RS imagery and can be identified with the help of computational techniques
such as ML. To make near real-time intelligent water body detection and water quality monitoring
possible, we need to first detect extent of water bodies from RS imagery, from which volume can be
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computed, and then recognize their corresponding water quality, eventually linking the two to allow
water quality monitoring.

Environmental nonprofits, government agencies, and water managers need access to
this type of integrated spatial–time series of water body and water quality information
to see how local water resources are changing and plan for future drought conditions.
Collective detection and monitoring of water bodies and their associated water quality
has applications for human health, as well as to private-sector industries including timber,
agriculture, recreation, and tourism. Public policy planners need to be better informed as
they make environmental preservation and restoration decisions based on changing water
availability, and with this data we can be better equipped to monitor water quality that can
quickly change due to floods, hurricanes, or human-caused pollution, and yet, to date, water
body detection and water quality monitoring research has been historically separate and does not
focus enough on producing intuitive, operational products.

Building on the long-term interest in ML and CV within the RS community, the main
goals of this review paper are to (1) survey recent advances in water body detection and
water quality monitoring from RS data using AI to identify commonly cited challenges
in order to provide suggestions for new research directions, and (2) move towards au-
tomated, synoptic water quantity and quality monitoring to inform more robust water
resource management.

This systematic review is relevant to multiple research domains, including, but not
limited to RS, geographic information science, computer science, data science, information
science, geoscience, hydrology, and water resource management. This paper does not
attempt to review the application of RS to water resources and hydrology more generally;
for recent reviews of these topics, see [13,21–24]. A survey of DL applications in hydrology
and water resources can be found in [25]; a survey of AI in the water domain can be found
in [26]; and a survey of water quality applications using satellite data solely focused on ML
can be found in [27]. This review focuses on investigating recent AI methods, including
its branches ML, DL, and CV, for water information extraction (specifically water body
detection and/or water quality monitoring) from RS imagery. Our review has a narrowed
scope in water resources and hydrological research, but a wider and deeper scope in
terms of AI methods and metrics used to assess models in both water body detection and
water quality research. By integrating both domains, we hope to develop a basis for effective
computational frameworks for intelligent water monitoring systems using RS and AI.

3. The State of the Art: Advances in Intelligent Waterbody Information Extraction
3.1. General Characteristics of the Reviewed Studies

Note that we only included and reviewed the papers that use both RS and AI/ML/DL/CV
for water body and/or water quality detection (that is, the number of papers cited in our
reference section is much larger than the number of papers we review in this Section 3). A word
cloud visualization of the titles, abstracts, and keywords of the reviewed 56 papers are provided
in Figure 2, where the top figure indicates the word cloud for all reviewed papers. The bottom
left word cloud is for reviewed water body papers, and the bottom right for reviewed water
quality papers.

As we can see from the word cloud for both water body extraction and water quality
(see the top word cloud in Figure 2), “remote sensing”, “deep learning”, “prediction”,
“classification”, “extraction”, “machine learning”, “water body”, “water quality”, and
“convolutional neural network” are prominent concepts and words captured by the word
cloud. Our focus is on studies that use RS for water body extraction and water quality
monitoring, so many of the keywords are to be expected. However, it is perhaps surprising
to see DL featured so prominently given that the shift from ML to DL models is a relatively
recent phenomenon.
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Figure 2. Word cloud visualization of all the reviewed papers (top), water body papers (bottom left),
and water quality papers (bottom right). Note that the word clouds are generated from paper titles,
abstracts, and keywords. The word clouds provide an informative (general and specific) focus of
each set of the papers. For example, both water body and water quality papers share the focus on
RS, DL, and neural networks (NN). We can also see that water body extraction tasks tend to focus
on the use of convolutional neural networks (CNN), whereas for water quality modeling the use of
long short-term memory (LSTM) networks is more prevalent. We can also see that there are specific,
unique keywords for water quality, such as “turbidity”, “chl”, and “algal bloom”.

When we separate the keyword word clouds (see the bottom two word clouds in
Figure 2), this trend becomes clearer. Deep learning is much more common in water body
extraction, whereas in the word cloud for water quality monitoring, “neural network” and
“machine learning” are about the same size. Additionally, in the water body extraction
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word cloud, “remote sensing” is featured much more heavily than it is in the water quality
extraction literature. In our review, the water quality papers often involved other types of
data, including in situ sensors or smaller RS devices (not satellites), whereas the water body
extraction literature is dominated by RS imagery. This is related to the scale of projects in
the two domains: water body extraction is usually undertaken across large spatial scales,
whereas the water quality monitoring literature is still focused on smaller, often individual,
bodies of water. This points to a future research direction in the water quality literature
that we touch on in our review paper: we need to scale up water quality estimation using
RS imagery by matching it with ground-truth water quality measurements.

Tables 2 and 3 provide a brief summary of the methods used for water body detection
and water quality monitoring, elaborated in Sections 3.2 and 3.3, respectively. The general
characteristics summarized by machines (i.e., the word clouds in Figure 2) align with the
literature; convolutional neural network (CNN) models are indeed applied much more
frequently for water body detection, and long short-term memory (LSTM) models are often
used for water quality monitoring. The evaluation metrics used in the reviewed articles
were also summarized and are provided in Tables 2 and 3 (a brief explanation of each
metric is in Appendix C).

Table 2. Studies targeting water body detection from RS imagery using AI (note that it is ordered
chronologically to show trends in data type and model usage; see the Abbreviations for a list of
the acronyms).

Reference Method Model Comparison RS Data Type Evaluation Metrics

Li et al. (2011) [28] DNN NDWI Landsat TM coherence

Yang et al. (2015) [29] AE DNN, SVM Landsat ETM+ accuracy

Huang et al. (2015) [30] ELM DT, LORSAL, RF, SVM, TB GeoEye-1, WorldView-2 Kappa, F-score

Isikdogan et al. (2017) [31] CNN MDWI, MLP Landsat F1-score, CE, OE, precision, recall

Yu et al. (2017) [32] CNN–LR hybrid ANN, CNN, SVM Landsat ETM+ accuracy

Jiang et al. (2018) [10] MLP MLC, NDWI Landsat-8 OLI Kappa, OA

Chen et al. (2018) [33] CNN CNN, NDWI, SVM GaoFen-2, Zi Yuan-3 ECE, EOA, EOE, OA, PA, UA

Miao et al. (2018) [34] CNN DNN Google Earth imagery OA

Acharya et al. (2019) [35] SVM ANN, DT, GMB, NB, NDWI, RF,
RPART Landsat-8 OLI Kappa, OA

Feng et al. (2019) [36] CNN–CRF hybrid CNN, CV-method GaoFen-2, WorldView-2 Kappa, PCC, precision

Li et al. (2019) [37] CNN CNN, NDWI, SVM GaoFen-2 F1-score

Li et al. (2019) [38] CNN–CRF hybrid CNN, NDWI GaoFen-1 IoU, pixel accuracy, recall

Meng et al. (2019) [39] CNN–SVM hybrid CNN, SVM GaoFen-2 accuracy, MA, UA

Isikdogan et al. (2020) [40] CNN CNN, MLP, MNDWI Landsat-8 F1-score, precision, recall

Song et al. (2020) [41] CNN CART, KNN, RF, SVM GaoFen-2, WorldView-3 IoU, precision, recall

Yang et al. (2020) [42] CNN CNN GaoFen-2 IoU

Wang et al. (2020) [43] CNN CNN, NDWI GaoFen-1 F1-score, mIoU, precision, recall

O’Neil et al. (2020) [44] CNN DEM, NDVI, RF LiDAR DEMs, NAIP precision, recall

Chen et al. (2020) [45] CNN NDWI, SVM GaoFen-1, GaoFen-2, Zi
Yuan-3 BOA, Kappa, OA

Dang and Li (2021) [46] CNN CNN GaoFen-2, GID mIoU, FWIoU, OA

Yuan et al. (2021) [47] CNN CNN, MNDWI, NDMI, NDWI Sentinel-2 accuracy, mIoU

Tambe et al. (2021) [48] CNN CNN Landsat-8 OLI CA, F1-score, GA, IoU, precision,
recall

Yu et al. (2021) [49] CNN CNN GaoFen-2, Landsat-7 F1-score, OA, precision, recall

Li et al. (2021) [50] CNN CNN, CV-method, SVM UAV Kappa, F-score, OA, precision
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Table 2. Cont.

Reference Method Model Comparison RS Data Type Evaluation Metrics

Zhang et al. (2021) [51] CNN CNN, MLC, NDWI, SVM GaoFen-2 IoU, Kappa, pixel accuracy

Li et al. (2021) [52] CNN CNN, NDWI, SVM GaoFen-2, GaoFen-6,
Sentinel-2, Zi Yuan-3 F1-score, IoU, OA

Su et al. (2021) [53] CNN CNN Landsat-8, Sentinel-2A IoU, pixel accuracy, recall

Ovakoglou et al. (2021) [54] KMeans

fuzzy-rules classification,
Haralick’s textural features of

dissimilarity, Otsu
valley-emphasis

Sentinel-1 Kappa, OA, precision, recall

Table 3. Studies targeting water quality monitoring from RS imagery using AI (where “/” means
none. Note that it is ordered chronologically to show trends in data type and model usage) (See the
Abbreviations for a full list of the acronyms).

Reference Method Model Comparison RS Data Type Evaluation Metrics

Chebud et al. (2012) [55] DNN / Landsat TM RMSE, R2

Wang et al. (2017) [56] SVR index methods spectroradiometer, water
samples RMSE, RPD, R2

Lee and Lee (2018) [57] LSTM DNN, RNN water quality time series RMSE

Wang et al. (2019) [58] LSTM / water quality time series accuracy, cross-correlation

Pu et al. (2019) [59] CNN RF, SVM Landsat-8 accuracy

Liu et al. (2019) [60] LSTM ARIMA, SVM IoT data MSE

Chowdury et al. (2019) [61] MLP / IoT data threshold value

Hafeez et al. (2019) [62] DNN CB, RF, SVR Landsat accuracy, relative variable
importance

Li et al. (2019) [63] RNN–DS hybrid GRU, LSTM, SRN, SVR water quality time series MAE, MAPE, RMSE

Randrianiaina et al. (2019) [64] DNN / Landsat-8 RMSE, R2

Yu et al. (2020) [65] LSTM / water quality time series MAE, RMSE

Zou et al. (2020) [66] LSTM DNN, GRU, LSTM meteorological time series,
water quality time series MAE

Peterson et al. (2020) [67] ELR MLR, SVR Landsat-8, Sentinel-2 MAPE, RMSE, R2

Hanson et al. (2020) [68] LSTM / water quality time series auto-correlation, MK statistics,
RMSE

Barzegar et al. (2020) [69] CNN–LSTM
hybrid CNN, LSTM water quality data from

multiprobe sensor
MAE, NSEC, Percentage of

Bias, RMSE, Wilmott’s index

Aldhyani et al. (2020) [70] LSTM ANN, DNN, KNN, NB,
SVM water quality time series

accuracy, F-score, MSE,
precision, R, sensitivity,

specificity

Li et al. (2021) [71] RF SVM Sentinel-2 MSI RMSE, RPD, R2, Z-score

Sharma et al. (2021) [72] CNN CNN UAV camera precision, recall

Cui et al. (2021) [73] CNN KNN, index method, RF,
SVM Landsat-8, Sentinel-2 RPD, RMSE, R2

Zhao et al. (2021) [74] DNN RBFNN Landsat-8, water quality
time series MAE, MSE, R2

Arias-Rodriguez et al. (2021) [75] ELM LR, SVR Landsat-8, Sentinel-2 MSI,
Sentinel-3 OLI MAE, MSE, RMSE, R2

Kravitz et al. (2021) [76] DNN KNN, RF, XGBoost Landsat 8 OLI, Sentinel-2
MSI MAPE, RMSE, RMSLE 1

Sun et al. (2021) [77] DNN GPR, RF proximal hyperspectral
imager, water samples accuracy, MRE, RMSE, R2

1 The authors use the abbreviation RMSELE for RMSLE in their paper (this might be a typographical error).
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3.2. Recent Advances in Water Body Detection Using AI

From our systematic review (including Table 2), we provide a brief summary here
about the recent advances in water body detection based on AI. (1) The most common
satellite platforms were Landsat, GaoFen, Zi Yuan, WorldView, and Sentinel, although
there were some manually annotated datasets. The use of UAVs and DEMs were noted
but were not as common. (2) Precision, recall, overall accuracy (OA), F1-score, kappa,
and intersection over union (IoU) are the most popular evaluation metrics for water body
detection since it is mainly a classification task. (3) Convolutional neural networks (CNNs)
are normally compared to normalized difference water index (NDWI) or another index-
based method, some form of “shallow” ML model (e.g., random forest (RF), support
vector machine (SVM)), or other CNN architectures). Below, we provide a more detailed
review of the methods used for water body detection. As Table 2 and word clouds (see
Figure 2) indicate, the dominant methods used in water body detection with AI are CNNs
(Section 3.2.1). Beyond CNN-based methods, there are other methods including CNN
hybrids (Section 3.2.2), artificial neural networks (ANN), multilayer perceptrons (MLP),
dense neural networks (DNN), other DL methods (Section 3.2.3), and “shallow” ML based
methods (Section 3.2.4).

3.2.1. CNN-Based Water Body Detection

CNN-based models are the dominant methods for water body detection, but each of
them have addressed different challenges posed in water body detection from RS imagery.
Based on our review, we identify the following five groups of use cases: (1) Addressing
limitations of index-based methods; (2) sharpening blurred boundaries caused by CNNs;
(3) Addressing spatial and spectral resolution challenges, which covers those methods that
are able to recognize water body across scales, at multiple resolutions, from very high-
resolution imagery, and/or integrating bands beyond RGB channels to use for CNN model
training; (4) Robust detection of small/slender/irregular-shaped water bodies; (5) Others.

1. Addressing limitations of index-based methods:

Index methods (e.g., NDWI) are rule-based and fail to take advantage of context
information. CNNs can overcome this, although they often blur boundaries in segmentation
tasks because of the convolution operation [34]. A DenseNet was used in [43] for water
feature extraction and the authors compared its performance with NDWI and several
popular CNN architectures. While NDWI methods are quick, they are not as accurate as
CNNs. The authors showed that DenseNet performed the best at distinguishing water
from shadows and clouds. However, the authors argue that clouds often occlude optical
imagery, so one way to improve their method is to combine it with microwave RS imagery.

The authors in [31] pointed out that index methods require careful calibration and that
indices differ from place to place. They also suffer from false positives (from snow, ice, rock,
shadows, etc.) and vary in different weather conditions (e.g., clouds). To overcome those
limitations of index-based methods, the authors of [31] developed DeepWaterMap, which
can classify water with high accuracy, even distinguishing it from snow, ice, shadow, and
clouds. DeepWaterMap is able to classify land classes that are often misclassified as water
(or vice versa); thus, it minimizes false positives during the classification process. Most
importantly, the DeepWaterMap model also works across different terrains and in different
weather conditions, although it is still affected by clouds. The same authors released a
second version of the model, DeepWaterMap v2, in [40]. The major improvement from v1
is that the new version allows users to input large RS scenes without the need for tiling,
and the authors made their network run efficiently with constant memory at inference time.
This model should theoretically work across different sensor platforms as long as they have
the visible, near-infrared, and shortwave infrared 1 and 2 bands, but will still sometimes
classify clouds as water.

2. Sharpening blurred boundaries caused by CNNs:
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CNN-based methods can overcome the limitations of index-based methods, as reported
above in group (1) [34], but they often blur boundaries in segmentation tasks because of the
convolution operation. To sharpen water body detection boundaries, in [34], a restricted
receptive field deconvolution network (RRF DeconvNet) and a new loss function called edges
weighting loss were proposed. However, the authors needed to retrain the entire network
(which is very computationally expensive) instead of using transfer learning (TL).

Apart from blurring pixel boundaries, CNNs generally require many training parame-
ters and very large training datasets to be successful. A novel convolution–inception block
in a network, called W-Net, was proposed in [48], to extract water bodies from RS imagery.
W-Net is able to train on fewer images compared with other CNN models and still extract
water bodies accurately, and the authors pointed out that less computations are necessary
due to use of inception layers. W-Net outperformed other CNN architectures, although
the authors still needed to go through the time- and labor-intensive process of creating a
dataset of manually annotating images.

3. Addressing resolution and band related challenges

High-resolution optical RS imagery allows for much finer detail in surface water
body extraction. However, clouds and their shadows are often present in optical RS
images [78]. The shadows (e.g., cloud shadows and building shadows) and water bodies
share a very similar appearance in optical RS images. Therefore, water body extraction is
not an easy task in the optical high-resolution RS images due to the limited spectral ranges
(including blue, green, red, and near-infrared bands) and the complexity of low-albedo
objects (cloud shadows, vegetation, and building shadows). Higher spatial resolution
imagery often comes at the cost of less spectral channels and thus makes it difficult to
extract features from complex scenes. To address this problem, a dense local feature
compression (DLFC) was proposed [52] to extract bodies of water from RS imagery, and
their DLFC outperformed other state-of-the-art (SOTA) CNNs, as well as an SVM and
NDWI thresholding. Their results demonstrated that the DLFC is good at extracting slender
water bodies and distinguishing water bodies from building shadows using multisensor
data from multiple RS platforms.

TL and data augmentation (see Appendix B) are used in [37] to extract water bodies
from satellite imagery. The authors showed that a CNN can outperform NDWI and an SVM
in water body detection when the input data is very high resolution. There are tradeoffs,
however, and the authors reported that the difficulty of hyperparameter tuning is one
downside to using a CNN. A water body extraction NN, named WBE-NN, was proposed
in [45] to extract water bodies from multispectral imagery at multiple resolutions while
distinguishing water from shadows, and performed much better than NDWI, an SVM,
and several CNN architectures. A self-attention capsule feature pyramid network (SA-
CapsFPN) was proposed in [49] to extract water bodies from satellite imagery of different
resolutions. SA-CapsFPN is able to recognize bodies of water across scales and different
shapes and colors, as well as in varying surface and environmental conditions, although it
is still entirely dependent on optical imagery as input to the CNN.

The novel MSResNet proposed in [46] learned from a large dataset of unlabeled RS
imagery. MSResNet, in addition to being able to extract water bodies in an unsupervised
manner, is able to recognize water bodies at multiple resolutions and of varying shapes.
However, their network cannot distinguish water bodies from farms and barren areas. In
addition, the CNN-based model name FYOLOv3, proposed in [51], is able to detect tidal
flats at different resolutions. However, it does depend on a manually selected similarity
threshold that introduces some subjectivity.

RGB band imagery is the primary focus in substantial research for water body ex-
traction, but many more bands are available in RS imagery. A multichannel water body
detection network (MC-WBDN) was created in [47], which fused the infrared and RGB
channels and used them as input data for their CNN architecture. They demonstrated that
when multispectral data is used, model performance for water body detection is increased
and the model is more robust to lighting conditions. The proposed model MC-WBDN is
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much more accurate than index-based methods such as NDWI, modified NDWI (MNDWI),
and normalized difference moisture index (NDMI). MC-WBDN also outperforms other
SOTA architectures such as U-Net and DeepLabV3+ for water body detection tasks. How-
ever, this method still relies on preprocessing data to make sure each input image is the
same shape and free of clouds.

4. Robust detection of small/slender/irregular-shaped water bodies

Small water bodies are hard to extract from RS imagery. In [33], the authors designed
a CNN (named SAPCNN), which is able to extract high-level features of water bodies
from input data in a complex urban background. NDWI and SVMs cannot distinguish
between water and shadows and their architecture’s performance partly relies on visual
inspection. Ref. [53] utilized a modified DeepLabv3+ architecture to extract bodies of water
at different scales. Their focus is on extracting water bodies in urban RS images. Their
network performed well on small bodies of water, but the model has problems identifying
many of them because they were not properly annotated.

Mask-region-based CNNs (R-CNNs) have demonstrated success in detecting small
and irregular shape water bodies. Song et al. (2020) [41] employed an R-CNN for water
body detection from RS imagery, and their model outperforms many traditional ML models
in identifying small water bodies and bodies of water with differing shapes. However, it is
still difficult to deploy a trained NN model into a usable, production-ready form for water
mapping applications. The authors reported that using NN output to create and update a
vector map of water resources for stakeholders is challenging.

Yang et al. (2020) [42] also used a mask R-CNN to automate water body extraction.
The authors argued that this allows them to avoid manual feature extraction in complex RS
imagery. They segmented small water bodies and bodies of water with irregular shapes,
although their methods suffer from poor IoU accuracy. This is primarily due to a small
training set, for which DL models are ill-suited, and resulted in their models having
problems identifying multiple bodies of water in RS images.

A self-attention capsule feature pyramid network (SA-CapsFPN) was proposed in [49]
to extract water bodies from satellite imagery. SA-CapsFPN is able to recognize bodies of
water across scales and different shapes and colors, as well as utilizing different information
channels. The novel MSResNet proposed in [46], learnt from unlabeled large RS imagery, is
also able to recognize water bodies at multiple resolutions and of varying shapes; however,
their network cannot distinguish water bodies from farms and barren areas.

A dense local feature compression (DLFC) was proposed in [52] to extract bodies of
water from RS imagery, and their DLFC outperformed other SOTA CNNs, as well as an
SVM and an NDWI. Their results demonstrated that the DLFC is good at extracting slender
water bodies and distinguishing water bodies from building shadows using multisensor
data from multiple RS platforms.

5. Others

Extracting water bodies from RS imagery quickly and reliably is still a difficult task.
Based on U-Net, [50] developed a new model called SU-Net to distinguish between water
bodies, shadows, and mixed scenes. However, the authors only focused on water body
extraction in urban areas and only used RGB information during the extraction process.
While SU-Net performed better than an SVM and classic U-Net, it suffered when extracting
water bodies from RS imagery with high reflectivity or that contained aquatic plants.

Wetlands are important ecosystems because they can keep flooding at bay and store
carbon; however, they are threatened by development, climate change, and pollution. For
the task of identifying wetlands, [44] combined RS imagery with hydrological properties
derived from digital elevation models (DEMs) to identify wetlands. They showed that
an RF performs as well as a CNN, although both models had issues distinguishing roads
and trees from wetlands. This is perhaps due to their small training set. To improve
performance, the authors argued that larger datasets with finer labels should be created for
wetland detection.
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Substantial water body detection work has focused on water bodies in urban and
inland settings. Very few focus on tidal flat extraction, where sediment levels are high
and the boundary of the water body itself is blurry. A CNN model called FYOLOv3 was
proposed in [51], where the authors compared their model to NDWI, an SVM, a maximum
likelihood classifier, U-Net, and YOLOv3. FYOLOv3 performed the best and is able to detect
tidal flats at different resolutions; however, it depends on a manually-selected similarity
threshold during the training process, which is a source of subjectivity.

Large sets of unlabeled water body data are available and easy to acquire, and semantic
segmentation networks cannot recognize different water body shapes. A recent, very novel
encoder–decoder CNN architecture named MSResNet, proposed in [46], is able to overcome
those limitations. MSResNet is able to learn from unlabeled data and can also recognize
water bodies of varying shapes and at multiple resolutions. However, even though their
network outperforms other SOTA architectures without supervised training, their network
has some issues categorizing water bodies, farms, and barren areas.

3.2.2. CNN Hybrid-Based Water Body Detection

CNNs are the SOTA models in water body extraction tasks (detailed in Section 3.2.1
above); however, their output and decisions for why they make the predictions that they
do are largely a black box. Recent studies have integrated CNNs with some ML models.
Interpretability was improved by using a CNN and SVM in parallel to classify wetland
water bodies [39]. Wetlands are difficult/complex to identify in high-resolution satellite
imagery with any single ML model. Hybrid models have shown promise in a process called
decision fusion. Here, the authors pick a decision fusion threshold value by performing
cross-validation on the CNN to see when it is sure or not. They then use this threshold
value for the decision fusion predictions (e.g., when the CNN is not that sure, they defer
to the SVM). However, the authors did not explain why they used an SVM and not some
other ML model. The classifier used in [32] combines a CNN with a logistic regression (LR)
model to extract water bodies. The authors emphasized that traditional ML methods for
water body extraction need multispectral data and rely on lots of prior knowledge. Thus,
those ML-based methods would not generalize well to different tasks. The authors also
argue that single-band threshold methods are subjective. Their results demonstrated that
the hybrid CNN-LR model works better than an SVM, an ANN, and other CNNs. However,
their method requires segmented RS images as input.

How to accurately extract water bodies from RS images, while continuously updating
the surface water maps, is an active research question. Index methods and active contour
models are popular methods for water body detection tasks but are sensitive to subjective
threshold values and starting conditions. Deep U-Net model was proposed to be used
with a conditional random field (CRF) and regional restriction to categorize water versus
non-water in satellite images [36], while reducing the blurring of edges that often occurs
from CNNs for image segmentation. Although this network is highly accurate, it takes a
lot of data and computation power to train. Training ML models at a single scale in single
channels can cause errors when generalizing to other scales or types of RS data. Multiscale
RS imagery was used with DeepLabV3+ and a CRF for water body segmentation [38]. This
approach works well for training models on data from different scales, and they concluded
that CNNs and CRFs together extract more accurate water boundaries at both large and
small scales than CNNs alone.

3.2.3. ANN, MLP, DNN, and Other DL-Based Methods for Water Body Detection

An NN architecture called a local excitatory globally inhibitory oscillator network
(LEGION) is used in [28], where the authors compared the results of LEGION trained
on NDWI and spectral information, respectively. In addition, they employed object-wise
classification, instead of pixel-based classification used in most other work. The authors
reported that the network is very computationally expensive.
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Different methods of water body extraction work (or do not work) in different ar-
eas/terrain types. Each needs subjective thresholds and/or hand-crafted features. In addition,
generating large sets of labeled data is difficult and expensive, as high-dimension RS data is
difficult to analyze. Objects such as shadows, clouds, and buildings are hard to distinguish
from water bodies. In [29], the authors used an autoencoder for unsupervised training and
concluded that their results are more accurate than for an SVM and traditional NN.

Huang et al., 2015 [30] pointed out that not many people have focused on water
body detection in urban settings. This is a problem because water bodies often look
similar to shadows due to buildings at certain times of the day in optical imagery. The
authors employed an extreme learning machine (ELM), an SVM, a tree bagger (TB), and
an RF to detect water bodies. The authors reported that the RF and TB performed much
better than the SVM and ELM. However, their method depends on optical imagery with
subjective thresholds set through trial and error. Specifically, their method depends on
subjective threshold values in NDWI, normalized difference vegetation index (NDVI), and
morphological shadow index (MSI).

Ref. [10] compared MLP, NDWI, and a maximum likelihood model for water body
classification and showed that MLP performed the best. However, the maximum likelihood
model could not recognize small bodies of water and thin rivers, whereas NDWI was not
able to distinguish seawater from land. The MLP could identify small bodies of water
better, but the analysis depended on visual assessment.

3.2.4. “Shallow” ML-Based Water Body Detection

Although most of the recent methods for water body detection used DL and/or deeper
neural networks (Sections 3.2.1–3.2.3), a few studies used only “shallow” ML methods (e.g.,
RF and SVM). In [35], the authors used band methods (where slope, NDVI, and NDWI
were added as three secondary bands to integrate extra information into ML training), and
then applied an SVM, a decision tree (DT), and an RF to analyze multiband RS data for
water body extraction in the Himalayas. However, while their models worked well for flat
and hilly terrain, they had to parse out high elevations and snow in this method (which
involves extra preprocessing and limits when/where their method can work with optical
data). The authors ran different experiments to analyze which input bands (NDWI vs.
individual input bands from Landsat data) worked the best but could only compare results
visually. The authors concluded that adding single secondary bands is better than adding
multiple in most ML algorithms except for NNs.

Sentinel-1 data and four different ML models (K-nearest neighbors classifier (KNN),
fuzzy-rules classification, Haralick’s textural features of dissimilarity, Otsu valley-emphasis)
were employed to classify water bodies in [54]. It involved many different ML methods
in tandem (i.e., the output of one ML model was fed into other processing steps), which
complicates interpretability. This method did not have very high accuracy and did not
work well in flooded regions, near buildings, and in the presence of aquatic vegetation.
However, it was an important attempt to use synthetic aperture radar (SAR) data, which is
rare in water body detection literature.

3.3. Recent Advances in Water Quality Monitoring Using AI

From Table 3, we identify the following trends in the use of AI for water quality
monitoring research: (1) Water quality monitoring differs from water body detection in
that it is formulated as both a classification and a regression task. Because of this, recurrent
neural networks (RNNs), long short-term memory (LSTMs), and gated recurrent units
(GRUs) are much more prevalent in the water quality literature. (2) Accuracy, precision,
and recall are common metrics, as are some variations of mean squared error (MSE) and
R2. (3) It is important to note that while water body detection papers describe integrating
multiple data sources into one analysis, this practice is much more common in water quality
monitoring research. This primarily takes the form of trying to match up water quality
parameters from time series data or water samples to optical satellite RS imagery. In water
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quality monitoring, it is much more common to utilize Internet of Things (IoT) sensors,
smaller probes such as unmanned aerial vehicle (UAVs) and stationary hyperspectral
imagers, as well as government and private water quality time series data. (4) Some studies
do not compare their model to any other models (detailed in Table 3), making it difficult to
fully assess their methodologies.

Below, we provide a more detailed review of the methods used for water quality
detection and monitoring. As our manual investigation (see Table 3) and machine summary
(word cloud, see Figure 1) indicate, the dominant methods used in water quality detection
with AI are LSTMs (Section 3.3.1) and ANNs, MLPs, DNNs, and other DL methods
(Section 3.3.5). Beyond LSTM and ANN-based methods, there are other methods including
LSTM hybrids (Section 3.3.2), CNN-based methods (Section 3.3.3), and “shallow” ML-based
methods (Section 3.3.4).

3.3.1. LSTM-Based Water Quality Detection and Monitoring

Algal blooms cause serious harm to human and animal health and can damage both
environments and economies. Various factors lead to algal blooms and gathering the data
necessary to predict them is time- and cost-intensive. ML models can provide advanced
warning for these events by taking into account time series data of basic water quality
parameters. A linear regression model was compared with an MLP, an RNN, and an LSTM
to predict harmful algae blooms in dammed pools from several rivers [57]. While the LSTM
model was the most accurate overall, for several of the dammed pools that the authors
tested, a least-squares regression model outperformed the LSTM. This casts doubt as to
how the LSTM model generalizes and if it is worth the added complexity.

Water pollution is becoming an increasing problem because of rapid rates of devel-
opment and urbanization. Large amounts of water quality parameters can be taken via
IoT sensors, and DL techniques are well suited to finding patterns in the large quantity of
data. An LSTM was used to predict future values of different water quality parameters [60].
Most importantly, the authors only used single-dimensional inputs and outputs (i.e., a 1D
time series of dissolved oxygen as an input to predict dissolved oxygen at some time in the
future). While the results were good, the authors noted that the architecture would benefit
from training on multiple time series at the same time. The authors reported that long-term
predictions on the order of 6 months into the future did not work well. Beyond monitoring
water for different levels of pollutants, it is also important to find the sources of pollutants
when they are identified. Cross-correlation was used to map pollutants to different water
quality parameters [58]. They then used an LSTM to match pollutants to nearby polluting
industries using the highly correlated water quality parameters.

Similar to LSTMs, RNNs have been demonstrated to be accurate for times series
prediction but are also often criticized for being difficult to interpret. Meanwhile, process-
based ecological models, although deterministic, fail to capture patterns at longer time
scales. A process-based model was integrated with an RNN to better align predictions of
phosphorus levels in lakes to eliminate outlier predictions. Constraining NN output with
physics-based models better aligns their predictions with ecological principles [68].

Rapid development has led to decreased water quality. In [70], water quality parame-
ters can be used to both classify the current water quality index and predict future water
quality index states. However, the authors separately compared DL models for water
quality prediction and ML models for water quality classification, making the methods
not directly comparable. A nonlinear autoregressive neural network (NARNET), a type of
ANN, performed better than an LSTM at predicting the water quality index, while an SVM
performed better than other traditional ML models for classification.

3.3.2. LSTM Hybrids Water Quality Detection and Monitoring

To further improve model performance, a few recent studies have integrated other
models with LSTMs. Water scarcity and drought are increasingly significant environmental
challenges. Increased development is leading to worsening water pollution. Predicting the
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water quality from time series data is essential, but traditional ML models fail to capture
long-term temporal patterns. This causes them to make false predictions in water quality
monitoring applications. An RNN–Dempster–Shafer (RNN–DS) evidence theory hybrid
model was used to make sense of multiple input time series of different time scales [63].
While evidence theory did make the predictions more stable, longer-term predictions did
not work very well, even with the improvements to the model. The authors pointed out
one possible reason might have been not taking spatial correlations between water quality
parameters into account.

Economic development and urban growth have posed water quality issues. Wavelet
domain threshold denoising (WDTD) and wavelet mean fusion (WMF) were used to
analyze the output of LSTM predictions for multiple water quality parameters [65]. While
multiple wavelet basis functions were used to analyze predictions, the LSTM was not
compared to any other models in this analysis. The authors noted that not having enough
observations was a limitation while training their LSTM model.

Mangrove wetlands provide habitats for many different types of animal species in
addition to preventing coastal erosion. More recent research has focused on monitoring the
water quality in these environments to assess the health of coastal ecosystems. Using water
quality and meteorological time series data, three different submodels were used for each
water quality parameter at different time intervals and fused their output predictions [66].
The authors tested this setup with a DNN, a gated recurrent unit (GRU), and an LSTM
model. While the LSTM performed the best, the authors reported that the model is not very
reusable or user-friendly.

Collecting and analyzing water samples is expensive, time-consuming, and labor-
intensive. Thus, many researchers choose to use sensors to remotely monitor water quality
parameters, but the number of parameters they can record are often limited. Ref. [69] used a
submerged multiprobe sensor to monitor several important water quality parameters over
the course of 1 year. They found that a CNN–LSTM model performs better than standalone
DL models and traditional ML methods for predicting water quality parameter values;
however, the authors did not use a validation set during NN training and the hybrid model
was able to quickly learn the training and testing set data distributions.

3.3.3. CNN-Based Water Quality Detection and Monitoring

CNNs are the dominant architecture for water body detection (Sections 3.3.1 and 3.3.2)
but are not used as widely for water quality. Here, we review two very interesting but
effective CNN-based methods. In situ water quality measurements work really well but
are very expensive. In addition, things such as total nitrogen and phosphorus, biological
oxygen demand, and dissolved oxygen are hard to measure from satellites because they
have weak optical properties. A CNN was used in [59] and showed that TL beats out
traditional ML models when classifying water quality from RS imagery. However, their
dataset was very small, and their focus was narrow (specifically, only two lakes in China,
no rivers or coastal waters covered). Water bodies are often polluted, or their quality
is affected from far away and thus it is difficult to identify and report on water quality.
Methods for estimating water quality at scale are essential. Turbidity can be a proxy for
total suspended solids (TSS) and suspended sediment concentration (SSC), so [72] used
image detection and then applied edge detectors to UAV images of water. They employed
CNNs to detect changes in water color and utilized this to approximate quality. They
showed that image-based turbidity detection is as accurate as actual turbidity meters, but
more importantly represents a very promising method for monitoring water quality at
greater spatial scales.

3.3.4. “Shallow” ML-Based Water Quality Detection and Monitoring

Remote water bodies are hard to monitor for water quality. A simple NN architecture
was designed to estimate several water quality parameters (i.e., chlorophyll-a, turbidity,
phosphorus) both before and after an ecosystem restoration project during both the dry
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and wet seasons [55]. Importantly, their predictions, using seven different input bands for
training the NN, were very close to the actual values.

Finding what data to input into an ML model for water quality monitoring is neither
easy nor straightforward. Different indices are sensitive to different areas and varying
weather and lighting conditions. To address this problem, [71] first correlated water quality
parameters to different RS bands. These correlations were then used to test four ML models
and their ability to predict a water quality index. Their R2 statistics were not high, though.

3.3.5. ANN, MLP, DNN, and Other DL-Based Methods for Water Quality Detection and
Monitoring

Climate change is making droughts and water shortages increasingly worse in arid
regions. It is thus important to develop methods and systems for intelligent and efficient
monitoring of the water resources in those regions. A water quality index for arid regions
was proposed in [56] and attempted to find which bands and spectral indices are related
to that water quality index. In situ water quality sampling is labor- and cost-intensive
and often suffers from low temporal resolution. As bodies of water around the world are
changing rapidly due to global warming, it is more important than ever to model their
spatial variation through time. A point-centered regression CNN (PSRCNN) was used
in [73] to analyze lake reflectance data to model water transparency. The authors concluded
that their model outperformed different band ratios and traditional ML models (KNN, RF,
SVM), although at the cost of generalization. The PSRCNN did not make stable predictions
due to too little data.

There is currently not enough paired RS imagery and in situ water measurement to
meaningfully create robust water quality monitoring applications. The generation of a
synthetic dataset of atmospheric reflectances and its suitability for water quality monitoring
were investigated in [76]. The synthetic dataset is physics-based and attempts to capture the
natural variability in inland water reflectances and chlorophyll-a concentrations. An ANN
outperforms several traditional ML models (KNN, RF, XGBoost) in predicting actual water
quality parameter values when trained on the synthetic dataset, although only the ANN
is validated against unseen data. Still, synthetic data generation is a promising research
direction for water body and water quality detection. Without RS imagery, many water
quality monitoring programs will suffer from lack of spatial coverage due to labor, time, and
cost constraints. Yet while RS is a useful tool for monitoring water quality parameters, it
has not been meaningfully integrated into operational water quality monitoring programs.
Existing water quality time series data were used in [75] and assessed the effectiveness of
multiple RS data platforms and ML models in estimating various water quality parameters.
The authors showed that some sensors are poorly correlated with water quality parameters,
while others are more suitable for water quality monitoring tasks. They concluded that
more research needs to be carried out for assessing the suitability of paired RS imagery and
in situ field data.

Current water quality monitoring systems are labor-, time-, and cost-intensive to
operate. IoT sensors can monitor water quality parameters in near real time, allowing
for much more data to be recorded with much higher temporal resolution. A wireless
sensor network made up in part of IoT sensors was used in [61], and used an MLP to
classify water quality as either good or bad. The authors utilized the MLP predictions to
notify water quality managers via SMS if the water quality drops below a certain threshold
value. However, because of the cost to deploy and run the network, the authors were
not able to include additional water quality parameters from more types of bodies of
water other than rivers. Water quality monitoring data collection is expensive and time
consuming, and there are usually tradeoffs between spatial and temporal resolution when
implementing data collection programs. In addition, several key water quality parameters
(pH, turbidity, temperature) can be estimated directly from optical and infrared RS imagery.
Randrianianina et al. [64] used RS imagery and DNNs to model water quality parameters
directly, after which they extend their analysis to map the distributions of water quality
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parameters to an entire lake, but they only focused on one lake and did not test their
methods on other bodies of water.

As bodies of water are exposed to increased nutrient loads, harmful algal blooms can
occur, leading to eutrophication. This process can create dead zones that would kill wildlife
and lead to negative economic impacts. Thus, it is important to monitor chlorophyll-a levels
in water bodies and predict algal blooms before they happen. Zhao et al. [74] attempted to
address this need by comparing DL models to traditional ML and curve-fitting methods
to predict chlorophyll-a levels using time series measurements paired with RS imagery.
The authors did not have much data as they limited the data collection process to one lake.
Thus, the DL models did not perform well. Additionally, the ML models used in this paper
needed more data and computing than simpler models in order to perform well.

It is often difficult to monitor inland water bodies for quality because of low signal-to-
noise ratios and limitations in resolution. A proximal hyperspectral imager was used in [77]
with high spectral and temporal time series data for continuous water quality observations.
The authors found that index-based methods of water quality detection were difficult to
calibrate as thresholding values are subjective, while ML and DL models performed much
better. However, the authors show that their models do not generalize well to other water
bodies with different water quality parameter distributions.

Anthropogenic activities have currently threatened largely coastal ecosystems. Coastal
ecosystems are complex bodies of water but monitoring them is very important. The
performance of an ANN was compared to traditional ML models in [62] for predicting
various water quality parameters. In some cases, traditional ML methods outperform the
ANN. More importantly, the authors conducted an analysis of relative variable importance
to show which sets of input data helped the ML models to learn the most. While the relative
variable importance analysis is critically important, the authors only test their method in
cloud-free RS imagery, limiting its utility. Additionally, while biophysical and chemical
water quality parameters were analyzed, little work was carried out with bio-optical data
due to issues with data availability.

While recent advances in RS capabilities for water quality detection are substantial
in the literature, few papers have collected and synthesized the resources available to
researchers. In a paper reviewing recent trends in RS imagery, cloud computing, and ML
methods, [67] used time series data from hundreds of water quality parameters and water
samples and combined them with proximal imagery, hyperspectral imagery, and two sets
of data from different satellite data platforms. They showed that DNNs outperform many
other traditional processing and ML techniques for assessing water quality. The authors
conclude that anomaly detection using multisensor data is the most promising method
for algal bloom detection. As is sometimes the case in the water body detection and water
quality monitoring literature, the authors did not have a third holdout set (necessary for
DL projects so that the data is not memorized).

4. Challenges and Opportunities

In this section, we first provide a brief summary and discussion of the key themes and
overall insights (Section 4.1) derived from reviewing the range of research discussed above.
In Section 4.2, we provide and discuss some of the major challenges we identified through
our systematic survey. Specifically, those challenges shared in both domains are detailed in
Section 4.2.1, those specific only to water body extraction in Section 4.2.2, and those specific
to water quality monitoring in Section 4.2.3. Finally, we discuss possible research directions
and related opportunities for water body detection and water quality monitoring using RS
and AI in Section 4.3.

4.1. Summary and Discussion

After introducing the essential terms in AI and RS (Appendix B) and commonly used
evaluation metrics in ML and DL for classification, regression, and segmentation tasks
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(Appendix C), we reviewed recent and influential research for water body detection and
water quality monitoring using RS and AI (Section 3).

While the research investigated in Section 3 has demonstrated the power of using
RS and AI to detect water bodies and monitor water quality, very few studies thus far
performed integrative research of water body and water quality using the power of RS and
AI. In addition, most existing RS and AI-based work on water bodies and water quality
repeat the same (or very similar) methods in a different research location or on a different
(usually small) dataset. However, real intelligent water resource management applications
will require serious development that goes beyond this type of research. Before operational
applications can be deployed, AI models (especially DL models) need to be trained on
large and representative benchmark datasets with a focus on making models generalizable
and interpretable.

We noticed that most work does not include hardware specifications (e.g., what
CPU/GPU the authors used to run their models) and/or processing time. To make models
comparable and for the sake of replicability and reproducibility, it is essential to report
such information. This is even true for index-based methods and more traditional ML
models so that researchers can fully evaluate the trade-offs between runtime, accuracy, and
ease of implementation. We hope our review will provide a useful guide to make future
research more replicable and reproducible. From our interactive web app (the web app
tool URL and its brief demo video link are provided in Appendix A), we also noticed that
while most papers have an open access PDF/HTML version of their manuscripts, a sizable
portion of manuscripts (16 out of 56 of reviewed articles) do not. We suggest authors
provide an open access version (e.g., posting the proofreading version after acceptance
to ResearchGate/arXiv) in order to increase the visibility of their research and thus to
accelerate the advancement of scientific knowledge.

4.2. Identified Major Challenges

Below, we provide the most commonly posed challenges for water body and water
quality research in the literature we reviewed. Those challenges shared in both domains
are outlined in Section 4.2.1 and those specific to each domain are detailed in Sections 4.2.2
and 4.2.3, respectively. Here are some specific issues to water body detection and water
quality monitoring.

4.2.1. Shared Common Challenges in Both Domains

A summary of the shared common challenges and identified problems in water body
extraction and water quality monitoring using RS and AI are provided below.

• Methods for water body detection and water quality monitoring need to be able to
work quickly and reliably on large spatial and temporal scales, and yet high-resolution
RS imagery is very complex. Index methods rely on subjective threshold values that
can change over time and space depending on weather conditions. Shallow ML models
are more accurate, but do not work at scale. DL models are complex, require very large
datasets to train on, and are very computationally expensive; also, the hyperparameter
tuning process is very tedious and difficult.

• It is difficult to know exactly what data to feed to ML and DL models, and it is
difficult to know what to make of the output predictions. This often requires integra-
tive expertise and/or interdisciplinary collaboration of RS, hydrology, biology, and
CV/ML expertise.

• NNs generally perform the best in water quality and water body detection tasks
but are often the least stable models (i.e., they do not generalize well). This is not
surprising, as the datasets used in RS problem settings are often not large enough
to allow NN models (too many parameters compared with shallow ML models) to
overcome overfitting (see Appendix B). Table 4 summarizes the relatively few existing
datasets we identified through our systematic review.
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• Both domains over-rely on optical RS imagery, and thus clouds and shadows are a persis-
tent problem and heavily skew the results towards working only in cloud-free conditions.

Table 4. Existing datasets for waterbody extraction and water quality monitoring.

Datasets Source Category Link to the Dataset Notes

DeepWaterMap v2 [40] Water body
https://github.com/isikdogan/

deepwatermap, accessed on
15 December 2021

>1 TB of Landsat-7 imagery
paired with Global Inland Water

dataset labels.

2020 GaoFen
Challenge / Water body

https://github.com/
AICyberTeam/2020Gaofen, accessed

on 15 December 2021

Dataset containing both 2500
optical and 1200 SAR satellite

images with pixel level labels for
water body segmentation.

GID-15 [79] Water body
https:

//captain-whu.github.io/GID15/,
accessed on 15 December 2021

150 pixel-level annotated
GaoFen-2 images for semantic

segmentation tasks.

LandCover.ai [80] Water body https://landcover.ai/, accessed on
15 December 2021

A dataset from 2015–2018 of
10,674 annotated tiles of RGB

imagery with labeled
water bodies.

SEN12MS [81] Water body
https:

//mediatum.ub.tum.de/1474000,
accessed on 15 December 2021

A curated dataset of 180, 662
georeferenced multispectral

Sentinel-1 and -2 imagery with
MODIS land cover labels.

AquaSat [82] Water quality
https://github.com/

GlobalHydrologyLab/AquaSat,
accessed on 15 December 2021

600,000 data matchups between
satellite imagery and water
quality measurements from

1984–2019.

Forel–Ule Index [83] Water quality
https://doi.org/10.6084/m9

.figshare.13014299, accessed on
15 December 2021

151 data matchups between
satellite imagery and water
quality measurements from

2000–2018.

4.2.2. Additional Challenges in Water Body Extraction

The specific challenges and problems identified for water body extraction are summa-
rized below.

• The majority of reviewed research focused on inland bodies of water, where only a
few papers discussed applications for coastal waters (not including oceans). Moreover,
many papers focus solely on only one type of water body, for example, only on lakes
or rivers in a specific area. As a result, water bodies from different landscapes (e.g.,
inland, coastal tidal flats, urban, wetlands) are difficult to recognize with one unified
method (i.e., methods do not generalize). The same applies to water bodies of different
colors, especially when distinguishing them from rock, ice, snow, clouds, and shadows.

• There are very few benchmark datasets. In contrast, there are huge volumes of
unlabeled data not being fully leveraged.

• CNNs blur output boundaries during the segmentation process.

4.2.3. Additional Challenges in Water Quality Monitoring

The specific challenges and problems identified for water quality monitoring are
summarized below.

• Collecting in situ water quality data is very time- and labor-intensive and financially
expensive; also, it often does not have adequate temporal or spatial resolution.

• RS imagery and existing corresponding field samples are often not stored together.
Allowing water quality researchers to easily retrieve and locate two or more sources

https://github.com/isikdogan/deepwatermap
https://github.com/isikdogan/deepwatermap
https://github.com/AICyberTeam/2020Gaofen
https://github.com/AICyberTeam/2020Gaofen
https://captain-whu.github.io/GID15/
https://captain-whu.github.io/GID15/
https://landcover.ai/
https://mediatum.ub.tum.de/1474000
https://mediatum.ub.tum.de/1474000
https://github.com/GlobalHydrologyLab/AquaSat
https://github.com/GlobalHydrologyLab/AquaSat
https://doi.org/10.6084/m9.figshare.13014299
https://doi.org/10.6084/m9.figshare.13014299
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of data at the same location is critical, as computational methods require such data to
verify their model performance in order to generalize to new water bodies.

• Remote water bodies are difficult to monitor.
• Urbanization, pollution, and drought are having serious effects on the economy,

wildlife, and human health as they deteriorate water quality.
• Ecosystems are complex and their nutrient and pollution budgets are not well understood.
• Some studies do not use a training, validation, and testing set for DL projects (all

three are necessary) or do not use nearly enough data to achieve good results with
DL models.

4.3. Research Directions and Opportunities

Here, we provide five research directions, each along with its promising opportunities,
from our investigation and based on the posed challenges discussed in Section 4.2 above.

4.3.1. Urgent Need of Large and Comprehensive Benchmark Datasets

Large representative, balanced, and open-access benchmark datasets are critical for
any domain to let AI meaningfully shine [84–86]. In computer science, especially for its
branches CV and DL, there are very comprehensive, large, and open-source databases (e.g.,
ImageNet [87] for image classification tasks, and Microsoft COCO [88] for object detection
and segmentation tasks). The availability of big and open-source image repositories has
dramatically boosted recent advances in novel and robust algorithms in DL and CV, as
computer science researchers do not need to worry about collecting datasets. Instead, they
can focus on developing new algorithms and/or methods.

In our systematic review, we identified an urgent need for more curated, labeled
datasets for intelligent water body extraction and water quality monitoring. We found
some of the few available open-source datasets with water body boundary labels through
our literature review, but also sought out additional datasets. We identified datasets that
were not used in our literature review but contain water body labels, or datasets that were
used for water body detection or water quality monitoring that did not use ML/DL/CV
but would be useful for benchmarking tasks. Our search results are summarized in Table 4
above. Below, we list a few opportunities in this direction.

(1) More public data and code: currently, most authors do not share their code and/or datasets.
See the two quoted pieces below from [25]: (a) “Lack of deep learning-ready datasets
within the water field [ . . . ] The main problem caused by this absence of many datasets is
that the research community does not build upon previous work in terms of constructing
better neural network architectures and moving the state of art to the next iteration [ . . . ]”;
(b) “[ . . . ] many papers are published that achieve the same task with almost identical
methods but different data.”. Part of this issue is a replication crisis in the water body
detection and water quality monitoring literature, but it stems more broadly from the lack
of public codebases and datasets.

(2) Some promising ways to generate large datasets of good quality

• AI/ML/DL models need large datasets with good quality to guarantee meaningful
(unbiased and generalize well) good to great performance, thus work on obtaining
large but better subsets of data. Quality > quantity is critical and in urgent demand.
See one piece of such evidence reported in [44], “[ . . . ] site-specific models improved
as more training data was sampled from the area to be mapped, with the best models
created from the maximum training datasets studied: [ . . . ] However, performance
did not improve consistently for sites at the intermediate training data thresholds.
This outcome exemplifies that model improvement is an issue of not only increasing
the quantity of training data, but also the quality”.

• Generating synthetic data as in [76] (detailed in the second paragraph in Section 3.3.5).
• Downloading RS images from Google Earth Engine (GEE) and annotating accordingly,

or, even better, developing user-friendly interactive interfaces with GEE as a backend
to directly allow researchers (or even citizen science volunteers) to contribute to the
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annotation of RS imagery available on GEE. To our knowledge, no RS datasets for
water body detection and water quality monitoring are downloaded from GEE and
then annotated, let alone interfaces for directly annotating RS imagery on GEE.

• Obtaining RS imagery from Google Earth (GE) manually or with the help of code
scripts, then annotating accordingly (see [34,42,49] for examples). For instance, the
following two datasets generated and used in [34,49] are both from GE, but are not
shared publicly.

# “The first dataset was collected from the Google Earth service using the BIGEMAP
software (http://www.bigemap.com, accessed on 15 December 2021). We named
it as the GE-Water dataset. The GE-Water dataset contains 9000 images cov-
ering water bodies of different types, varying shapes and sizes, and diverse
surface and environmental conditions all around the world. These images were
mainly captured by the QuickBird and Land remote-sensing satellite (Landsat)
7 systems.” [49].

# “We constructed a new water-body data set of visible spectrum Google Earth
images, which consists of RGB pan-sharpened images of a 0.5 m resolution, no
infrared bands, or digital elevation models are provided. All images are taken
from Suzhou and Wuhan, China, with rural areas as primary. The positive
annotations include lakes, reservoirs, rivers, ponds, paddies, and ditches, while
all other pixels are treated as negative. These images were then divided into
patches with no overlap, which provided us with 9000 images [ . . . ]” [34].

4.3.2. Generalization

It is important to be able to obtain a good accuracy score when training an ML/DL
model, but perhaps more important is that model’s ability to generalize to unseen data. The
ultimate goal of ML/DL is to develop predictive models through finding statistical patterns
in a training set which then generalize well to new, previously unseen data outside the
training set [89]. Ideally, this is achieved by training on large and representative datasets
that capture nearly all variations in the data actual distribution of values [86,89]. A model’s
ability to generalize is critical to the success of a model. An ML/DL model with good
generalization capability will have the best trade-off between underfitting and overfitting
so that a trained model obtains the best performance (See “Generalization, overfitting,
underfitting and regularization” entry in Appendix B for details). Below, we outline a few
ways to make AI systems more generalizable for water body detection and water quality
monitoring tasks.

(1) Create robust AI methods for tiny water body detection. Depending on resolution,
tiny water bodies such as ponds or small lakes in desert cities are difficult to identify yet
may play a more critical role than we think.

(2) Develop NN architectures and comprehensive datasets (see Section 4.3.1) that are
able to recognize water bodies not just from

• One type of body of water (e.g., ponds, lakes, rivers);
• One color (e.g., different levels of sediment, aquatic vegetation and algae, nutrients,

pollutants);
• One size: Water bodies present in RS imagery come with different sizes (large and

small water bodies) and various shapes. Many studies reported that it is not an easy
task to correctly classify small water bodies and/or water bodies with different shapes.

• One environment setting (e.g., desert, urban, inland, coastal).

(3) Utilize data from multiple sources to train ML/DL models. From our comprehen-
sive investigation, most of the current AI methods are only able to deal with water quality
and/or water body detection data from one specific type of RS imagery. This should be im-
proved and indicates a promising new research direction. Specifically, it will be important
to focus on using data from multiple data platforms or resolutions, from varying weather
conditions, and regions which have different ecosystem and terrain types. We humans
can recognize water bodies in different RS imagery with different weather conditions. We

http://www.bigemap.com
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expect that machines should be able to mimic humans to perform this task well if we have
robust AI algorithms and comprehensive datasets. See some example research below:

• Extraction of water bodies at multiple resolutions and scales using CNNs [49,53];
• Evaluation of CNN performance on multisensor data from multiple RS platforms [52];
• Integration of data from multiple sources (e.g., SAR, UAV, smaller sensors, water

quality time series);
• Data fusion of Landsat-8 and Sentinel-2 RS imagery for water quality estimation [67].

“Virtual constellation” learning introduced in [67] could be a future direction for
both water body detection and water quality estimation. A virtual constellation is
constructed by using multiple RS platforms to “shorten” the revisit time and improve
the spatial coverage of individual satellites. This entails fusing data sources from
separate RS platforms with potentially different resolutions.

(4) Propose new frameworks for improving generalizability. Generalization is one
of the fundamental unsolved problems in DL. The goal of a generalization theory in
supervised learning is to understand when and why trained ML/DL models have small
test errors [90]. The recently proposed deep bootstrap framework [90] provides a new lens
for understanding generalization in DL. This new framework has the potential to advance
our understanding of water domain research empowered by RS and AI by highlighting
important design choices when processing RS imagery with DL.

4.3.3. Addressing Interpretability

DL has achieved significant advances with great performance in many tasks in a
variety of domains, including some water domain tasks (detailed in Section 3). In the
literature we reviewed for this paper, DL models have produced results comparable to,
and in some scenarios even superior to, human experts. Improving predictive accuracy is
important; however, improving the interpretability of ML/DL models is more important,
especially through visualization techniques of ML/DL model output for later analysis by
humans [18]. Interpretability is one of the primary weaknesses of DL techniques and raises
wide concerns and attention in DL [91]. Due to the overparameterized and black-box nature
of DL models, it is often difficult to understand the prediction results of DL models [92,93].
Understanding and explaining their black-box behaviors remains challenging due to their
hierarchical, nonlinear nature. The lack of interpretability raises major concerns across
several domains; for example, in high-stakes prediction applications, such as autonomous
driving, healthcare, and financial services [94], the trust of DL models is critical. While
many interpretation tools (e.g., image perturbation and occlusion [95], visualizing NN
activation weights and class activation mapping [96,97] or attention mechanisms [98,99],
feature inversion [100], local interpretable model-agnostic explanations or “LIME” [101])
have been proposed to interpret how DL models make decisions, either from a scientific
perspective or a social angle, explaining the behaviors of DL models is still in progress [92].
For water domains, we list some specific potential opportunities in terms of interpretability
we identified below.

• More ablation studies are needed (see Appendix B for an introduction) to investigate
the role of each DL component in terms of model performance contribution and
ultimately which component(s) control the model performance.

• Exploring the output of hidden layers to obtain some information to help investigate
whether the model works as expected.

• Hybrid models for analyzing NN output and improving an NN’s decision-making process
through post-processing, for example, CNN–LR hybrids [32], CNN–CRF hybrids [36,38],
CNN–SVM hybrids [39], RNN–DS hybrids [63], and CNN-LSTM hybrids [69].

• More research needs to be carried out on analyzing the importance of input data to
output predictions. See examples in [62,75], each detailed below.

# The authors in [62] systematically analyzed relative variable importance to
show which sets of input data contributed to the ML models’ performance. See
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the quoted text below: “Relative variable importance was also conducted to
investigate the consistency between in situ reflectance data and satellite data,
and results show that both datasets are similar. The red band (wavelength
≈ 0.665 µm) and the product of red and green band (wavelength ≈ 0.560 µm)
were influential inputs in both reflectance data sets for estimating SS and
turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 µm) as
well as the ratio between infrared (wavelength ≈ 0.865 µm) and blue band and
green band proved to be more useful for the estimation of Chl-a concentration,
due to their sensitivity to high turbidity in the coastal waters”.

# The authors in [75] utilized existing water quality time series data and assessed
the effectiveness of multiple RS data platforms and ML models in estimating
various water quality parameters. One of their interesting findings is that some
sensors are poorly correlated with water quality parameters, while others are
more suitable for water quality monitoring tasks. They suggested that more re-
search needs to be carried out for assessing the suitability of paired RS imagery
and in situ field data. See the quoted text below: “[ . . . ] assess the efficacy of
available sensors to complement the often limited field measurements from
such programs and build models that support monitoring tasks [ . . . ] We
observed that OLCI Level-2 Products are poorly correlated with the RNMCA
data and it is not feasible to rely only on them to support monitoring operations.
However, OLCI atmospherically corrected data is useful to develop accurate
models using an ELM, particularly for Turbidity (R2 = 0.7).” (RNMCA is the
acronym for the Mexican national water quality monitoring system).

• Water quality monitoring will benefit from more research exploring how well a certain
ML/DL model contributes to which water quality parameter(s). See an example
in [67], where the authors investigated how well DNNs could predict certain water
quality parameters.

• Physics-constrained or process-based ML/DL predictions as demonstrated in [68,69].
• The need for automatic and visually-based model evaluation metrics that are better

than current visual assessment as an evaluation metric. For example, automatic
assessment of how DL methods are performing in large and complex RS imagery
(e.g., specifically, Bayesian DL, and Gaussian DL/ML for uncertainty measurement
and visualization).

4.3.4. Ease of Use

As emphasized in [13,14], one of the major current challenges for water resource
management is the integration of water quality data and indices from multiple sources into
usable and meaningful insights for actionable management decisions. Geovisualization,
also known as geographic visualization, uses the visual representations of geospatial data
and the use of cartographic techniques to facilitate thinking, understanding, knowledge
construction, and decision support about human and physical environments at geographic
scales of measurement [102,103]. Geovisualization is widely utilized in different domains
(e.g., public health [104], crisis management [105,106], environmental analysis [107–109],
and climate change strategies [110]) for the exploration and analysis of spatiotemporal
data. To the best of our knowledge, very little research has leveraged geovisualization
in this way for water resources management. The only piece of work similar to this we
noticed is in [111], where a web interface powered by GEE allows their expert system,
combined with visual analytics, to be run on any Landsat 5, 7, or 8 imagery to draw bound-
aries for water bodies. Geovisualization through interactive web applications provides a
promising solution to the posed challenge of integrating water quality data and indices
from multiple sources [112–115]. We provide a few suggested research opportunities in
this direction below.

• Simply applying (or with minor modifications) existing AI/ML/CV/DL algorithms/
methods to RS big data imagery-based problems is still very far away from producing
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real-world applications that meet water management professionals’ and policymakers’
needs. As echoed in [13], “[ . . . ] realizing the full application potential of emerging
technologies requires solutions for merging various measurement techniques and
platforms into useful information for actionable management decisions, requiring
effective communication between data providers and water resource managers” [116].
Much more multidisciplinary and integrative collaboration in terms of depth and
breadth are in high demand. Those scholars and practitioners who have an interdisci-
plinary background will play a major role in this in-depth and in-breadth integration.
For example, researchers who have expertise in RS but also know how to utilize AI,
through collaboration with domain expertise such as water resources management
officers, will significantly advance this research direction. Intuitive interactive web
apps that are powered by both geovisualization and AI/ML/DL/CV will definitely
make interdisciplinary collaboration much more seamless and thus easier.

# Interactive web portal empowered by geovisualization for integration of vari-
ous water quality data sources. As noted in [117], it is natural and intuitive in
many studies to use “space” as the organizing paradigm.

# More smart and responsive water management systems through the develop-
ment of interactive web apps/libraries that integrate ML/DL backends and
intuitive, user-friendly front ends are needed. Such systems would allow collab-
oration between technical experts and domain experts, including stakeholders,
and even community volunteers, from anywhere at any time.

# This requires very close collaboration and thus very integrative research from re-
searchers in many domains (e.g., computer science, cognitive science, informatics,
RS, and water-related sub-domains). We reinforce that geovisualization will be
the ideal tool to make the collaboration smooth, productive, and insightful.

# There is one recent work [118] that takes a small step in this direction, but much
more work and efforts are in demand.

• Resource hubs for standardized AI/ML/DL/CV models and easy-to-follow and
understandable tutorials for how to use them are needed.

• More data “matchups” as demonstrated in [82,83]. When more in situ measurements come
in, they should be matched up and stored with satellite data for easy calibration studies.

4.3.5. Shifting Focus

From our investigation, it is clear that with enough annotated data and allocated
computing, DL models are more accurate than traditional ML models, which are in turn
more accurate than index-based methods for water body detection and water quality
monitoring tasks. Increasing the accuracy of models by fractions of a percent should be
given much less focus and attention moving forward. Water body detection methods are
unlikely to improve upon the high rates of accuracy already reported in the literature
without very high-resolution, very large, labeled datasets or the use of UAVs to detect
small water bodies. Instead, we suggest that future research should focus more on reducing
model parameters and making model training less computationally expensive in terms
of time (e.g., designing neural networks to use constant memory at inference time [40], or
by using TL [37,59]). Below, we outline some additional potential research directions we
identified through our systematic review.

• As noted in Section 4.3.1, the lack of large benchmark datasets is a bottleneck in water
body detection and water quality monitoring research utilizing RS imagery and AI.
The dominant methods in both water domains are supervised learning, which often
requires very large, labeled datasets to train on, thus, there is a clear, urgent need for
semi-supervised and unsupervised learning methods [15].

# Unsupervised learning methods are able to learn from big sets of unlabeled data,
as demonstrated in [29,46].
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# Semi-supervised learning methods are able to learn from limited good-quality
labeled samples. DL models do not require feature engineering, and they are
also much better at discovering intricate patterns hidden in big data. How-
ever, pure supervised DL is impractical in some situations, such as those for
which the labeling tasks require domain knowledge from experts. Very few
domain experts have the time and are willing to label very large sets of RS
images [84]. An active learning-enabled DL approach that uses a visualization
interface and methods to iteratively collect modest amounts of input from
domain experts and uses that input to refine the DL classifiers [84] provides
a promising direction to produce well-performing DL models with limited
good-quality datasets.

• From our systematic review, we can easily see that current work on water body
extraction and water quality monitoring using AI and RS are, in general, carried out
separately. We call for a closer integration of water body detection and water quality
monitoring research and more attention focusing on handling massive datasets that
may include information in a variety of formats, of varying quality, and from diverse
sources. This integration is critical as it will provide the essential foundation for
developing real, intelligent water monitoring systems using RS and AI capable of
producing insights used for actionable decision making.

• GEE + AI: as noted in [18], GEE is a good solution to address computational costs
and overcome technical challenges of processing RS big data. However, online DL
functionality is still not supported on GEE. To the best of our knowledge, the only
piece of research integration of the Google AI platform with GEE is performed in [119];
however, as the authors reported, “data migration and computational demands are
among the main present constraints in deploying these technologies in an operational
setting”. Thus, the ideal solution is to develop DL models directly on the GEE platform.

• Most current ML/DL-based RS research focuses on borrowing or slightly improving
ML/DL/CV models from computer science [79,120]. Compared with natural scene
images, RS data are multiresolution, multitemporal, multispectral, multiview, and
multitarget [15]. Slight modifications of ML/DL/CV models simply cannot cope with
the special challenges posed in RS big data. New ML/DL models specialized for RS
big data are thus urgently needed [15,18]. We hope our review will draw the attention
of researchers who have a multidisciplinary background to this issue. Looking deep
into the mechanisms of RS and land surface processes, studying the characteristics of
RS imagery would guide the design of specialized ML/DL models for RS big data and
thus further improve RS applications using AI in breadth and depth [15].

5. Conclusions

Building intelligent and synoptic water monitoring systems requires automation of
water body extent detection using RS imagery, from which volume can be computed,
and also automation of their corresponding water quality, eventually linking the two to
allow synoptic water quality monitoring. Yet, to date, water body detection and water
quality monitoring research has been historically separate. Our systematic investigation
indicates the following trends: deep learning is much more commonly used in water
body detection, the dominant data source of which is RS imagery, whereas water quality
literature often involves other types of data sources (e.g., in situ sensors, smaller RS devices
that are not satellites). The trends relate to the scale of projects in the two domains: water
body extraction is usually undertaken across large spatial scales, whereas the water quality
monitoring literature is still only focused on smaller, often individual, bodies of water. This
points to one of the future research directions in the water quality literature that we touch
on above in Section 4.3; that is, we need to scale up water quality estimation using RS
imagery through matching it with ground-truth water quality measurements.

Overall, based on the systematic review above, we contend that RS integrated with
AI/ML/DL/CV methods, along with geovisualization, have great potential to provide
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smart and intelligent support for water resources monitoring and management. Thus, this
integration has considerable potential to address major scientific and societal challenges,
such as climate change and natural hazards risk management.
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Abbreviations
The following abbreviations (in alphabetical order) are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BOA Boundary Overall Accuracy
CA Class Accuracy
CART Classification and Regression Trees
CB Cubist Regression
CE Commission Error
CNN Convolutional Neural Network
COCO Common Objects in Context
CPU Central Processing Unit
CRF Conditional Random Field
CV Computer Vision
DL Deep Learning
DNN Dense Neural Network
DS Dempster–Shafer Evidence Theory
DT Decision Tree
DEM Digital Elevation Model
ECE Edge Commission Error
ELM Extreme Learning Machine
ELR Extreme Learning Regression
ESA European Space Agency
EOE Edge Omission Error
EOA Edge Overall Accuracy
FN False Negative
FP False Positive
FWIoU Frequency Weighted Intersection over Union
GA Global Accuracy
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GAN Generative Adversarial Network
GBM Gradient Boosted Machine
GE Google Earth
GEE Google Earth Engine
GPR Gaussian Process Regression
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IoT Internet of Things
IoU Intersection over Union
Kappa Kappa Coefficient
KNN K-Nearest Neighbors Classifier
LORSAL Logistic Regression via Variable Splitting and Augmented Lagrangian
LSTM Long Short-Term Memory
MA Mapping Accuracy
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
mIoU Mean Intersection over Union
MK Mann–Kendall
ML Machine Learning
MLC Maximum-Likelihood Classifier
MLP Multilayer Perceptron
MLR Multiple Linear Regression
MNDWI Modified Normalized Difference Water Index
MPC Microsoft Planetary Computer
MRE Mean Relative Error
MSE Mean Squared Error
MSI Morphological Shadow Index
NB Naive Bayes Classifier
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near-Infrared
NN Neural Network
NSEC Nash–Sutcliffe Efficiency Coefficient
OA Overall Accuracy
OE Omission Error
PA Producer’s Accuracy
PCC Percent Classified Correctly
RBFNN Radial Basis Function Neural Network
R-CNN Region Based Convolutional Neural Network
RF Random Forests
RMSE Root Mean Squared Error
RMSLE Root Mean Squared Log Error (referred to in Table 3 as RMSELE by the authors)
RNN Recurrent Neural Network
RPART Recursive Partitioning And Regression Trees
RPD Relative Percent Difference
RS Remote Sensing
SAR Synthetic Aperture Radar
SRN Simple Recurrent Network (same abbreviation given for Elman Neural Network)
SOTA State-of-the-Art
SVM Support Vector Machine
SVR Support Vector Regression
SWIR Short Wave Infrared
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TB Tree Bagger
TL Transfer Learning
TN True Negative
TP True Positive
VHR Very High Resolution
UA User’s Accuracy
UAV Unmanned Aerial Vehicle

Appendix A. The Accompanying Interactive Web App Tool for the Literature of
Intelligent Water Information Extraction Using AI

In Section 1.1, we provided a brief map and graphic summary of the papers covered
in this review. To allow readers to obtain more useful and dynamic information and
insights from the papers reviewed, we have developed an interactive web app. Through
the web app, readers can keep track of the major researchers and access an up-to-date list
of publications in the reviewed topics. Updated publications are accessible through (1) a
researcher’s public academic profile on Google Scholar or ResearchGate (see Figure A1a for
an example), and (2) a continuously updated citations count of the papers that we reviewed
in this paper (see Figure A1b for an example: the cited by as of 10 November 2021 is 47,
which is when we first entered the data in our data file when we reviewed the paper, and
then before this paper submission, when we clicked on the cited by URL, the page shows
that the up-to-date citation number is 49). The web app can be accessed publicly, free of
charge at

• Web app tool: https://geoair-lab.github.io/WaterFeatureAI-WebApp/index.html,
accessed on 28 February 2022.

• Brief web app demo video (about 6 min duration): the video link is accessible at the
web app page.
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Appendix B. Essential AI/ML/DL/CV Terms

In this appendix, we provide brief definitions to some essential terms (ordered
alphabetically) in ML/DL/RS in our review. For readability, we group some related
concepts together.

Ablation Studies: In AI, particularly in ML and DL, ablation is the removal of a
component of an AI system. Ablation studies are crucial for AI, especially for DL research.
An ablation study investigates the performance of an AI system by removing certain
components to understand the contribution of the component to the overall system. The
term is analogous to ablation in biology (removal of components of an organism). Note that
ablation studies require that the systems exhibit graceful degradation (i.e., they continue to
function even when certain components are missing or degraded). The motivation was that,
while individual components are engineered, the contribution of an individual component
to the overall system performance is not clear; removing components allows this analysis.
Simpler is better: if we can obtain the same performance with two models, we prefer the
simpler one.

Convolution, kernel (i.e., filter), and feature map [121–123]:
Convolutional layers are the major building blocks in CNNs. A convolution is the

simple application of a filter (i.e., kernel) to an input that results in an activation. Repeated
application of the same filter to an input results in a map of activations called a feature
map, indicating the locations and strength of a detected feature in an input (e.g., an image).

https://geoair-lab.github.io/WaterFeatureAI-WebApp/index.html
https://geoair-lab.github.io/WaterFeatureAI-WebApp/index.html
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Convolution: Convolution is one of the most important operations in signal and image
processing. Convolution is a mathematical operation to merge two sets of information.
Convolution provides a way of multiplying together two arrays of numbers, generally of
different sizes, but of the same dimensionality, to produce a third array of numbers of the
same dimensionality. This can be used in image processing to implement operators whose
output pixel values are simple linear combinations of certain input pixel values.

A convolutional filter (i.e., kernel) is a weight matrix (vector for one-dimensional
and cube for three-dimensional data) which operates through a sliding window on input
data. The convolution is performed by determining the value of a central pixel through
adding the weighted pixel values of all its neighbors together. Specifically, it is carried
out by sliding the kernel over the input image, generally starting at the top left corner,
so as to move the kernel through all the positions where the kernel fits entirely within
the boundaries of the input image. Each kernel position corresponds to a single output
pixel, the value of which is calculated by multiplying together the kernel value and the
underlying image pixel value for each of the cells in the kernel, and then adding all these
numbers together. The output is a new modified filtered image. Convolution is a general
purpose filter effect for images. Depending on the kernel structure, the operation enhances
some features of the input data (e.g., blurring, sharpening, and edge detection).

In the context of a CNN, a convolution is a linear operation that involves the mul-
tiplication of a set of weights with the input. Given that the technique was designed for
two-dimensional input, the multiplication is performed between an array of input data and
a two-dimensional array of weights (i.e., a filter or a kernel). Technically, note that in CNNs,
although it is referred to as a “convolution” operation, it is actually a “cross-correlation”.
That is, in CNNs, the filter is not flipped as is required in typical image convolutions; except
for this flip, both operations are identical.

Kernel (i.e., filter): A kernel is a small matrix used in image convolution, which
slides over the input image from left to right and top to bottom. Differently sized kernels,
which contain different patterns of numbers, produce different results through convolution
operation. The size of a kernel is arbitrary, but 3 × 3 or 5 × 5 is often used. Think of a filter
similar to a membrane that allows only the desired qualities of the input to pass through it.

Feature map: The feature maps of a CNN capture the application result of the filters
to an input image (i.e., at each layer, the feature map is the output of that layer). Think of it
as (higher level) representations of the input. The feature map(s) is/are the output image(s)
of each convolutional layer(s). The resultant number of feature maps equals the number
of filters.

Data augmentation (DA) [124]:
ML (especially DL) model performance often improves with an increase in the amount

of data. The common case in most ML/DL applications, especially in image classification
tasks, is that obtaining new training data is not easy. Thus, we need to make good use of the
existing (relatively small) training set. DA is one technique to expand the training dataset
from existing training data in order to improve the performance and generalizability of
DL models. DA enriches (i.e., “augments”) the training data by creating new examples
through random transformation of existing ones. This way, we artificially boost the size
of the training set, reducing overfitting. Thus, to some extent, DA can also be viewed as a
regularization technique.

Image DA is perhaps the most well-known type of DA and involves creating trans-
formed versions of images in the training dataset that belong to the same class as the
original image. The ultimate goal is to expand the training dataset with new, plausible
examples (i.e., variations of the training set images that are most likely to be seen by DL
models). For example, a horizontal flip of a bike photo may make sense, because the photo
could be taken from the left or right. A vertical flip of a bike image does not make sense
and would probably not be appropriate as the model is very unlikely to see a picture of an
upside down bike. Transformations for image DA include a range of operations from the
field of image manipulation (e.g., rotation, shifting, resizing, flipping, zooming, exposure
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adjustment, contrast change, and much more). This way, a lot of new samples can be
generated from a single training example.

Note that image DA is typically only applied to the training dataset, and NOT to the
validation or test dataset. This is different from data preparation such as image resizing and
pixel scaling; those must be performed consistently across all datasets that interact with the
model. The choice of the specific DA techniques used for a training dataset must be chosen
carefully and within the context of the training dataset and knowledge of the problem
domain. It can be useful to experiment with DA methods in isolation and in concert to see
if they result in a measurable improvement to model performance, perhaps with a small
prototype dataset, model, and training run.

DeepLabV3+ [125]: DeepLabV3 was firstly proposed to enable deep CNNs to seg-
ment features in images at multiple scales. ResNet-50 and ResNet-101, two variations on the
popular residual network (ResNet) architecture, are the tested backbones for DeepLabV3.
Through the use of residual blocks, atrous convolution, and a spatial pyramid pooling
module, the authors showed that their new architecture achieved comparable perfor-
mance to other SOTA models in image segmentation tasks without the need for further
post-processing. The authors further improved DeepLabV3 and named the new version
DeepLabV3+ [126], which combines atrous spatial pyramid pooling modules with an
encoder–decoder module. This further improved the performance of DeepLabV3 while
sharpening predicted feature boundaries. The DeepLabV3+ architecture is very popular in
the water body extraction literature.

Generative adversarial network (GAN): GAN is a class of unsupervised DL frame-
works in which two neural networks compete with each other. One network, the generator,
tries to create synthetic or false images which fool the discriminator network. The discrim-
inator, in turn, attempts to discern which images coming from the generator are actual
vs. synthetic images [127]. GANs use a cooperative zero-sum game framework to learn.
Among many variants of GAN, cycleGAN [128] is a technique for training unsupervised
image translation models using the GAN architecture and unpaired collections of images
from two different domains. CycleGAN has been demonstrated on a wide range of applica-
tions, including season translation, object transfiguration, style transfer, and generating
photos from paintings.

Generalization, overfitting, underfitting and regularization (referenced [123,129,130]):
The prediction results of an ML/DL model sit somewhere between (a) low-bias,

low-variance, (b) low-bias, high-variance, (c) high-bias, low-variance, and (d) high-bias,
high-variance. A low-biased, high-variance model is called overfit and a high-biased,
low-variance model is called underfit. A trained model achieves the best performance,
through generalization, when the best trade-off between underfitting and overfitting is
found. Learning with good accuracy is good, but generalization is what matters most.
A good model is supposed to have both low bias and low variance. Overfitting and
underfitting should both be avoided, where regularization may help.

Generalization: In ML/DL, generalization refers to the ability of a trained ML/DL
model to react to new (i.e., previously unseen) data, drawn from the same distribution as
the training data used to create the model. That is, after being trained on a training set, an
ML/DL model can digest new data and make accurate predictions. The generalizability of
an ML/DL model is central to the success of that model.

Overfitting vs. underfitting: Variance and bias are two important terms in ML. Vari-
ance refers to the variety of predicted values made by an ML model (target function). Bias
means the distance of the predictions from the actual (true) target values. A high-biased
model means its prediction values (average) are far from the actual values. In addition,
high-variance prediction means the prediction values are highly varied.

If an ML/DL model has been trained too well on training data, it will be unable to
generalize. It will make inaccurate predictions when given new data, making the model
useless even though it is able to make accurate predictions for the training data. This is
called overfitting. Underfitting happens when a model has not been trained enough on the
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data. Underfitting models are not useful either, as they are not capable of making accurate
predictions, even with the training data.

Low error rates and a high variance are good indicators of overfitting. To avoid
overfitting, part of the training dataset is typically set aside as the “test set” to check
whether a trained model is overfitting. If the training data has a low error rate and the
test data has a high error rate, it signals overfitting. An overfit model would have very
low training error on seen training data but very high error from unseen datasets (e.g.,
testing dataset and new datasets beyond training and testing data). This is because the
model maps the training set perfectly and any deviation from the training set would result
in errors. An underfit model has high training error in training data and testing error in
testing data and thus in new unseen data. This is because the model cannot generalize the
training data correctly. Thus, the model will have a very high training error.

Regularization (also known as shrinkage): When an ML/DL model becomes too
complex, it is most likely to suffer from overfitting. To avoid overfitting, regularization is a
collection of methods to constrain and make an ML/DL model simpler and less flexible.
Specifically, regularization methods are used to avoid high variance (i.e., bias/underfitting)
and overfitting and thus to increase generalization. Intuitively, it follows that the function
the model represents is simpler, less unsteady. Thus, predictions are smoother, and overfit-
ting is less likely. Certain approaches are applied to different ML algorithms, for example,
pruning for DT, dropout techniques for NN, and adding a penalty parameter to the cost
function in regression.

Google Earth (GE): GE is a computer software, formerly known as Keyhole Earth-
Viewer, that renders a 3D representation of Earth based primarily on satellite imagery. It
has a web version at https://earth.google.com/web/, accessed on 2 January 2022. Since
GE version 4.3, Google fully integrated Street View into Google Earth. Street View displays
360◦ panoramic street-level photos of select cities and their surroundings. The photos were
taken by cameras mounted on automobiles, can be viewed at different scales and from
many angles, and are navigable by arrow icons imposed on them.

Google Earth Engine (GEE) and Microsoft Planetary Computer (MPC):
GEE and MPC share similar goals (e.g., cloud storage and computing support for geospa-

tial datasets), but have their own primary focus. For example, GEE is the pioneer in the area of
RS cloud computing (launched in 2010, has 495 datasets in total as of 22 December 2021), and
MPC, launched in 2020 (contains 17 datasets in total as of 22 December 2021), with a primary
focus on climate change and sustainable environmental studies.

GEE [131,132]: GEE is a cloud-based platform for planetary-scale geospatial analysis,
launched in 2010 by Google. GEE combines a multipetabyte catalog of satellite imagery
and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers,
and developers use GEE to detect changes, map trends, and quantify differences on the
Earth’s surface. GEE brings Google’s massive computational capabilities to bear a variety of
high-impact societal problems (e.g., deforestation, drought, disaster, disease, food security,
water management, climate monitoring, and environmental protection). GEE has been
available for commercial use from 2021 and remains free for academic and research use.

MPC [133,134]: The world lacks comprehensive, global environmental data. Microsoft
Chief Environmental Officer (CEO), Dr. Lucas Joppa, imagines an international database
that would provide the world with “information about every tree, every species, all of our
natural resources”. Microsoft President Brad Smith further emphasized that “it should be
as easy for anyone in the world to search the state of the planet as it is to search the internet
for driving directions or dining options”, and Microsoft believes technology and AI is the
key to get there, in hopes that this information will allow people to “come together and
solve some of the greatest environmental and sustainability challenges we face today”.

To support sustainability decision-making with the power of cloud computing and
AI, similar to GEE, since December 2020, Microsoft is using ML and computing power
to aggregate global environmental data (contributed by individuals around the world
coupled with machinery placed in water, space, land, and air environments) into a planetary

https://earth.google.com/web/
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computer for a sustainable future. MPC, described as a “global portfolio of applications
connecting trillions of data points”, is designed to use AI to synthesize environmental data
into practical information regarding the Earth’s current ecosystems. For the first time, there
will be a concise and comprehensive compendium of international ecosystem data. Not only
will this allow for essential environmental information to be readily available to individuals
across the world, but the planetary computer will predict future environmental trends
through ML. In short, MPC integrates a multipetabyte catalog of global environmental
data with APIs, a flexible scientific computing environment that allows people to answer
global questions about that data, and applications that place those answers in the hands of
conservation stakeholders.

Image classification: The concept of image classification in RS and ML/DL settings
has different meanings. In RS research, the image classification is at pixel level (this is what
semantic segmentation does in CV, ML, and DL settings; see the concept definition below).
In contrast, in an ML and DL setting, image classification does not refer to assigning each
individual pixel to a class (e.g., vegetation, water), but rather to assign the entire image to a
specific class (e.g., flooded vs. not flooded) [135].

Instance segmentation: Unlike semantic segmentation, instance segmentation identi-
fies each object instance of each pixel for every known object within an image. Thus, labels
are instance-aware. Instance segmentation is essential to tasks such as counting the number
of objects and reasoning about occlusion.

Normalized difference moisture index (NDMI) [136,137]: Normalized difference
moisture index (NDMI) is a satellite-derived index from the near-infrared (NIR) and short
wave infrared (SWIR) channels of RS imagery (note that some literature used NDMI
interchangeably with NDWI; check the NDWI entry in this Appendix B for clarification).

NDMI is sensitive to the moisture levels in vegetation, and thus used to determine
vegetation water content. It can be used to monitor droughts as well as monitor fuel
levels in fire-prone areas. NDMI uses NIR and SWIR bands to create a ratio designed to
mitigate illumination and atmospheric effects. It is calculated as a ratio between the NIR
and SWIR values from RS imagery, see the formula below. For example, in Landsat 4–7,
NDMI = (Band 4 − Band 5)/(Band 4 + Band 5). In Landsat 8, NDMI = (Band 5 − Band
6)/(Band 5 + Band 6). Delivered NDMI is a single band image. Similar to NDVI, NDMI
values are between −1 and 1.

NDMI = (NIR − SWIR)/(NIR + SWIR)

Normalized difference vegetation index (NDVI) [138]: NDVI is a pixel-wise math-
ematical calculation rendered on an image. It is an indicator of plant health, calculated
by comparing the values of absorption and reflection of red and near-infrared (NIR) light.
A single NDVI value can be determined for every pixel in an image, ranging from an
individual leaf to a 500-acre wheat field, depending on the RS imagery resolution.

NDVI = (NIR − Red)/(NIR + Red)

NDVI values always fall between −1 and 1. Values between −1 and 0 indicate dead
plants, or inorganic objects (e.g., water surfaces, manmade structures such as houses,
stones/rocks, roads, clouds, snow). Bare soil usually falls within 0.1–0.2 range; and plants
will always have positive values between 0.2 and 1 (1 being the healthiest plants). Healthy,
dense vegetation canopy should be above 0.5, and sparse vegetation will most likely fall
within 0.2 to 0.5. However, it is only a rule of thumb and we should always take into
account the season, type of plant, and regional peculiarities to meaningfully interpret
NDVI values.

Normalized difference water index (NDWI) and modified NDWI (MNDWI) [139–141]:
The NDWI is an RS-based indicator sensitive to the change in the water content of leaves or
water content in water bodies (detailed below). There are two versions of NDWI.



Sensors 2022, 22, 2416 34 of 48

One was defined to monitor changes in water content of leaves, using near-infrared
(NIR) and short-wave infrared (SWIR) wavelengths, proposed by Gao in 1996 [139] (to
avoid confusion of the two versions of NDWI, this version is also called NDMI, see NDMI
entry in this Appendix B).

NDWI = (NIR − SWIR)/(NIR + SWIR)

The other version of NDWI, proposed by McFeeters in 1996, was defined to monitor
changes related to water content in water bodies, using green and NIR wavelengths [140].
The calculation formula is given below. It is obvious that the NDWI in the papers we
reviewed in this article is the version of water content in water bodies. Modification of
normalized difference water index (MNDWI) was proposed [141] for improved detection
of open water by replacing NIR spectral band with SWIR.

NDWI = (Green − NIR)/(Green + NIR)

PyTorch [142]: PyTorch is an open-source deep learning framework developed and
maintained by Facebook Artificial Intelligence Research (FAIR). At its core, PyTorch is a
mathematical library that performs efficient computation and automatic differentiation
on graph-based models. Achieving this directly is challenging, although thankfully, the
modern PyTorch API provides classes and methods that allow you to easily develop a suite
of deep learning models.

Random forest (RF): It is an ML (particularly, ensemble learning) algorithm that can
be used for both continuous (regression) and categorical (classification) tasks [143]. RF is
widely accepted as an efficient ensemble approach for land cover classification using RS
data. It handles imbalanced data, missing values, and outliers well [144].

Semantic segmentation: In contrast to instance segmentation, semantic segmentation
aims to predict categorical labels for each pixel for every known object within an image,
without differentiating object instances [145]. Thus, its labels are class-aware.

Support vector machine (SVM): SVM is a (supervised) machine learning algorithm
that provides solutions for both classification and regression problems. The support-vector
clustering [146] algorithm applies the statistics of support vectors (developed in the support
vector machine algorithm) to categorize unlabeled data and is one of the most widely used
clustering algorithms in many applications.

TensorFlow: TensorFlow is an open-source deep learning framework developed and
maintained by Google. Although using TensorFlow directly can be challenging, the modern
tf.keras API brings the simplicity and ease of use of Keras to the TensorFlow project.

Transfer learning (TL): TL is one powerful technique that makes learning in (deep) ML
transferable. TL was initially proposed in [147] and recently received considerable attention
due to recent significant advances in DL [123,148–152]. Inspired by humans’ capabilities
to transfer knowledge across domains (e.g., the knowledge gained while learning violin
can be helpful to learn piano faster), TL aims to leverage learned knowledge from a related
domain to achieve a desirable learning performance with minimized number of labeled
samples in a target domain [151]. The main idea behind TL is that it is more efficient to
take a DL model trained on an (unrelated) massive image dataset (e.g., ImageNet [87]) in
one domain, and transfer its knowledge to a smaller dataset in another domain instead of
training a DL classifier from scratch [153], as there are universal, low-level features shared
between images for different problems.

U-Net: CNNs gave decent results in easier image segmentation problems but have not
made any good progress on complex ones. This is where UNet comes in. UNet was first
designed especially for medical image segmentation in [154]. It demonstrated such good
results that it was used in many other fields afterwards. UNet is an improved architecture
developed for biomedical image segmentation [154]. The UNet architecture stems from a
fully convolutional network (FCN) first proposed by Long and Shelhamer in [155] and its
architecture was modified and extended to work with fewer training images and to yield
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more precise segmentations. The architecture of UNet resembles a “U”, which justifies
its name.

The UNet architecture includes three sections: the contraction, the bottleneck, and the
expansion section. The bottommost layer mediates between the contraction layer and the
expansion layer. The number of expansion blocks is the same as the number of contraction
blocks. Most importantly, UNet uses a novel loss weighting scheme for each pixel such
that there is a higher weight at the border of segmented objects. Specifically, all pixel-wise
softmax applied on the resultant image is followed by a cross-entropy loss function. Each
pixel is classified into one of the classes. The idea is that even in segmentation, every
pixel has to lie in some predefined category. Thus, a segmentation problem was converted
into a multiclass classification and it performed very well compared to the traditional
loss functions.

Appendix C. Common Evaluation Metrics in AI/ML/DL/CV Classification and
Regression, and Segmentation Tasks

Many evaluation criteria have been proposed and are frequently used to assess the
performance of AI/ML/DL/CV models. No single evaluation metric can tell a full story of a
trained model. To better select appropriate evaluation metrics for certain domain problems
and tasks, in this appendix, we provide brief definitions to some commonly used evaluation
metrics (ordered alphabetically; referenced [123,129,130,156,157]) in AI/ML/DL/CV for
classification, regression, and segmentation tasks in our review (i.e., those listed in the
field of “Evaluation metrics” in Tables 2 and 3). For readability, we group some related
metrics together. In the following formulas, TP refers to true positive, FP to false positive,
FN to false negative, and TN to true negative. TP samples are those that are in the positive
category and are correctly predicted as positive. FPs are not annotated as the positive
category but are incorrectly predicted as positive. TNs are correctly predicted as negative,
while FNs are predicted as negative when they are actually labeled as positive.

Accuracy, overall accuracy (OA), commission error (CE), omission error (OE), pro-
ducer’s accuracy (PA), user’s accuracy (UA), and pixel accuracy (PixA) [31,156,158–161]:

To better understand the metrics in this group, let us use the same confusion matrix
shown below in Figure A2 to calculate the accuracy metrics in this group. Confusion
matrix, also called error matrix, is a table that allows us to visualize the performance of a
classification algorithm by comparing the predicted value of the target variable with its
actual value [162].Sensors 2022, 22, x FOR PEER REVIEW 41 of 50 
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(Average) Accuracy: Classification accuracy is the number of correct predictions made
as a ratio of all predictions made. Accuracy with a binary classifier is measured as the
following:

Accuracy (for binary classifier) = (TP + TN)/(TP + TN + FP + FN)

Note, however, that (average) accuracy for a multiclass classifier is calculated as the
average of each accuracy per category (i.e., sum of accuracy for each category/number
of categories) (see the definition and examples of binary classification and multiclass
classification in Appendix A4 in [84]). For the example confusion matrix shown in Figure A2
(it is a multiclass classification problem), the (average) accuracy is calculated as follows:

(average) accuracy = (21/27 + 31/37 + 22/31)/3 = 77.5%

Accuracy is perhaps the most common evaluation metric for classification problems,
and it is also the most misused. It is really only meaningful and appropriate when there are
an equal number of observations in each category and that all predictions and prediction
errors are equally important, which is often not the case. Accuracy alone cannot tell a full
meaningful story of the ML/DL models, especially when a dataset encounters a severe data
imbalance problem (detailed in [86]); other metrics, such as F-score, need to tell whether an
ML/DL is not suffering from overfitting when the trained model has very high accuracy.

OA: It essentially tells us out of all of the samples what proportion were classified
correctly. OA is usually expressed as a percent, with 100% accuracy being a perfect
classification where all samples were classified correctly. OA is the easiest to calculate and
understand but ultimately only provides very basic accuracy information. OA is formally
defined as follows, where N is the number of total samples. OA calculation from the
example confusion matrix in Figure A2 is (21 + 31+ 22)/95 = 74/95 = 77.9%

OA = Number of correctly classified samples/N = (TP + TN)/N

OE [31]: Errors of omission refer to samples that were left out (or omitted, as its name
implies) from the correct category in the classified results. An example of OE is when pixels
of a certain thing (such as maple trees), are not classified as maple trees.

OE is sometimes also referred to as a type II error (false negative). An OE in one
category will be counted as a CE in another category. OEs are calculated by reviewing
the reference sites for incorrect classifications. In the example confusion matrix shown in
Figure A2, this is carried out by going down the columns for each category and adding
together the incorrect classifications and dividing them by the total number of samples for
each category. A separate OE is generally calculated for each category, as this will allow us
to evaluate the classification accuracy and error for each category. OE is the inverse of the
PA (i.e., OE = 1 − PA).

OE example based on the confusion matrix shown in Figure A2:
Water: Incorrectly classified reference sites: 5 + 7 = 12. Total # of reference sites = 33.

OE = 12/33 = 36%

Forest: Incorrectly classified reference sites: 6 + 2 = 8. Total # of reference sites = 39.

OE = 8/39 = 20%

Urban: Incorrectly classified reference sites: 0 + 1 = 1. Total # of reference sites = 23.

OE = 1/23 = 4%

CE [31]: Errors of commission are in relation to the classified results. An example of
an CE is when a pixel predicts the presence of a feature (such as trees) and, in reality, it is
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absent (no trees are actually present). CE is sometimes also referred to as a type I error (false
positive). CEs are calculated by reviewing the classified sites for incorrect classifications.
This is performed by going across the rows for each class and adding together the incorrect
classifications and dividing them by the total number of classified sites for each class. CE
is the inverse of the UA (i.e., CE = 1 − UA). This makes sense and is easy to interpret, as
when the predicted results are very reliable (with high UA score), the classification error
would be low.

CE example based on the confusion matrix shown in Figure A2:
Water: Incorrectly classified sites: 6 + 0 = 6. Total # of classified sites = 27.

CE = 6/27 = 22%

Forest: Incorrectly classified sites: 5 + 1 = 6. Total # of classified sites = 37.

CE = 6/37 = 16%

Urban: Incorrectly classified sites: 7 + 2 = 9. Total # of classified sites = 31.

CE = 9/31 = 29%

PA: Similar to UA, PA is category-level-based accuracy. PA is the accuracy from the
point of view of the “producer”. PA tells us how often real features in the ground truth
are correctly shown in the classified results, or the probability that a certain ground truth
category is classified as such. PA is formally defined as the following and is complement of
the omission error (OE). PA = 100% − OE.

PA = Number of correctly classified reference samples for a particular category/Number of
samples from reference (i.e., annotated) data for that category = 1 − omission error

PA example based on the example confusion matrix in Figure A2:
PA for water category = Correctly classified reference sites for water category/Total #

of reference sites for water category = 21/33 = 64%.
PA for forest category = Correctly classified reference sites for forest category/Total #

of reference sites for water category = 31/39 = 80%.
PA for urban category = Correctly classified reference sites for urban category/Total #

of reference sites for uran category = 22/23 = 96%.
UA: Similar to PA, UA is category-level-based accuracy. UA is the accuracy from

the point of view of a “user”, not the “producer”. UA essentially tells us how often the
classified category will actually align with the ground truth. This is referred to as reliability
(memory tip: users often care about reliability). The UA is a complement of the commission
error (i.e., UA = 100% − Commission Error). UA is defined as the following:

UA = Number of correctly classified samples for a particular category/Number of
samples classified (i.e., predicted) to that category = 1 − commission error.

UA example based on the example confusion matrix in Figure A2:

UA for water category = Correctly classified sites for water category/Total # of
classified sites for water category = 21/27 = 78%.

UA for forest category = Correctly classified sites for forest category/Total # of
classified sites for water category = 31/37 = 84%.

UA for urban category = Correctly classified sites for urban category/Total # of
classified sites for uran category = 22/31 = 70%.

PixA [158]: Pixel accuracy is perhaps the easiest to understand metric conceptually. It
is the percent of pixels in the image that are classified correctly. It is the simplest metric,
simply computing a ratio between the amount of properly classified pixels and the total
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number of pixels. See the PixA calculation formula below, where N represents the total
number of pixels in the assessment image, which equals TP + TN + FP + FN. TP denotes
the number of target-pixels that were correctly detected, FN denotes the number of water
body pixels not classified, FP is the number of nontarget pixels classified, and TN is the
number of nontarget pixels classified as nontarget pixels. This metric can sometimes
provide misleading results when the category representation is small within the image, as
the measure will be biased in mainly reporting how well the classifier identifies negative
category (i.e., where the category we care about, such as the water body category, is
not present).

PixA = (TP + TN)/N

Edge overall accuracy (EOA), edge commission error (ECE), and edge omission error [33]:
The authors in [33] defined a few evaluation metrics for water edge pixel extraction

accuracy. See the following steps for how these metrics are computed.

1. Manually draw the boundary of water body.
2. Apply morphological expansion to the water body boundary from step (1) to create a

buffer zone, which is centered on the boundary line (radius = three pixels).
3. Finally, the pixels in the buffer area are judged.

Let the total number of pixels in the buffer area be M, the number of correctly classified
pixels be MR, the number of missing pixels be MO, and the number of false alarm pixels be
MC. EOA, EOE, and ECE are defined as below:

EOA = MR/M × 100%

EOE = Mo/M × 100%

ECE = Mc/M × 100%

Intersection over union (IoU), mean intersection over union (mIoU), and frequency
weighted intersection over union (FWIoU):

In the formal definitions below, TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative samples, respectively.

IoU [163,164]: It is the most popular and simple evaluation metric for object detection
and image segmentation used to measure the overlap between any two shapes such as two
bounding boxes or masks (e.g., ground-truth and predicted bounding boxes). Values of
IoU lie between 0 and 1, where 0 means two boxes do not intersect and 1 indicates two
boxes completely overlap. If the prediction is completely correct, IoU = 1. The lower the
IoU, the worse the prediction.

mIoU [43]: It is a common evaluation metric for semantic image segmentation, which
first computes the IOU for each semantic class and then computes the average over classes.
The formula is given below.

mIoU = TP/(TP + FP + FN)

FWIoU [46,158]: It is an improvement over mIoU. As its name implies, it weights
each class importance depending on their appearance frequency. The formal definition of
FWIoU is given below, where n is the number of categories.

FWIoU =
1

n + 1 ∑n
i=0

(
TPi

TPi + TNi + FNi
× TPi + FNi

TPi + FPi + TNi + FNi

)
Kappa statistic [156,159,165–172]:
Kappa (aka Cohen’s kappa) statistic, a statistic that is frequently used to measure

inter-annotator reliability (i.e., agreement) and also intra-annotator reliability for qualitative
(i.e., categorical) items, is a very useful, but underutilized, metric. The importance of rater
reliability is important because it represents the extent to which the data collected in a study
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are correct representations of measured variables. Note that this measure is to compare
labeling by different human annotators, not a classifier versus a ground truth.

Cohen’s kappa statistic is a very good measure that can handle both multiclass and
imbalanced class problems very well. In ML, for a multiclass classification problem (see
Appendix A4.2 in [84] for the definition and other types of classification tasks), measures
such as accuracy, precision, or recall do not provide the complete picture of the performance
of a classifier. In addition, for imbalanced class problems (see section II.D Imbalanced
data in [86] for details about data imbalance), measures such as accuracy are misleading,
so measures such as precision and recall are used. There are different ways to combine
the two, such as the F-measure, but the F-measure does not have a very good intuitive
explanation, other than it being the harmonic mean of precision and recall.

The kappa statistic can be calculated by the following formula, where Pr(a) represents
the actual observed agreement, and Pr(e) represents expected (i.e., estimated) chance
agreement). Thus, Pr(a) = OA.

Kappa Statistic = (Pr(a) − Pr(e))/(1 − Pr(e))

Note that the sample size consists of the number of observations made across which
raters are compared. Cohen specifically discussed two raters in his papers. The kappa is
based on the chi-square table, and the Pr(e) is obtained through the following formula [166],
where: cm1, cm2, rm1, rm2 represent column 1 marginal, column 2 marginal, row 1 marginal,
row 2 marginal, respectively, and n represents the number of observations (not the number
of raters).

Expected (Chance) Agreement =

(
cm1×rm1

n

)
+
(

cm2×rm2

n

)
n

Similar to most correlation statistics, the kappa score can range from −1 to +1. Scores
above 0.8 are generally considered good agreement; zero or lower mean no agreement
(practically random labels). According to the scheme of [165], a value of <0 indicates no
agreement, 0–0.20 is slight, 0.21–0.40 is fair, 0.41–0.60 is moderate, 0.61–0.80 is substantial,
and 0.81–1 is almost perfect agreement.

Kappa is one of the most commonly used statistics to test interrater reliability, but it has
limitations. Judgments about what level of kappa should be acceptable for health research
are questioned. Cohen’s suggested interpretation may be too lenient for health-related
studies because it implies that a score as low as 0.41 might be acceptable [166]. Additional
measures have been proposed to make use of the kappa framework.

For example, in [159], the authors advocate against the use of kappa and proposed
the alternative measures of quantity and allocation disagreement. Quantity disagreement
(QD) is the disagreement between the classification and reference data resulting from a
difference in proportion of categories. Allocation disagreement (AD) assesses a difference
in the spatial location of categories. The two measures (i.e., QD and AD) sum to overall
error (i.e., 1–OA).

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) [123,
129,130,173]:

MAE: also called mean absolute deviation, MAE finds the average of the absolute
differences between actual and predicted values. It gives an idea of how wrong the
predictions were. MAE measure gives an idea of the magnitude of the error, but no idea of
the direction (e.g., over- or underpredicting). MAE is defined as below [174], where yi is
the actual true value, and ŷi is the predicted value. MAE value lies between 0 to ∞. Small
value indicates a better model, and a value of 0 indicates no error, or perfect predictions.

MAE =
1
N ∑N

i=1|yi − ŷi|

MAE is more robust to the outliers than MSE, as it is not sensitive to outliers. MAE
treats larger and small errors equally. The main reason is that in MSE, through squaring



Sensors 2022, 22, 2416 40 of 48

the errors, the outliers, which usually have higher errors than other samples, obtain more
attention and dominance in the final error and thus impact the model parameters. In
addition, there is an intuitive maximum likelihood (MLE) interpretation behind MSE and
MAE metrics. If we assume a linear dependence between features and targets, then MSE
and MAE correspond to the MLE on the model parameters by assuming Gaussian and
Laplace priors on the model errors, respectively.

MAPE [175]: MAPE, also known as mean absolute percentage deviation (MAPD), is
the mean or average of the absolute percentage errors of forecasts. Error is defined as actual
value (i.e., observed value) minus the forecasted value. Percentage errors are summed
without regard to sign to compute MAPE. It is the most common measure used to forecast
error and works best if there are no extremes to the data (and no zeros). Because absolute
percentage errors are used, it avoids the problem of canceling positive and negative errors.
The formula is given below, where M is mean absolute percentage error, n is number of
times the summation iteration happens, At is the actual value, and Ft is the forecast value.
The smaller the MAPE, the better the forecast.

M =
1
n ∑n

t=1

∣∣∣∣At − Ft

At

∣∣∣∣
Precision, recall, sensitivity, specificity, and F-score [156]:
Each measure in this group is a set-based measure [176]. The values of those measures

are all from 0 to 1, with the best value at 1 and the worst score at 0.
Precision: The precision is mathematically defined by the following formula. Precision

attempts to answer the question What proportion of positive identifications was actually
correct? Precision refers to the proportion of the samples that is correctly classified amongst
the samples predicted to be positive and is equivalent to user’s accuracy (UA) for the
positive category, which is also equivalent to 1 − commission error.

Precision = TP/(TP + FP)

Recall (also called sensitivity or true positive rate): it refers to the proportion of the
reference data for the positive category that is correctly classified and is equivalent to
producer’s accuracy (also equivalent to 1 − omission error) for the positive category. It
is calculated by the following formula. Recall attempts to answer the following question:
What proportion of actual positives was identified correctly?

Recall = TP/(TP + FN)

Specificity (also called true negative rate): it refers to the proportion of negative
samples that is correctly predicted and is equivalent to the producer’s accuracy (PA) for the
negative category [177].

Specificity = TN/(TN + FP)

F-score (also called F1-score, F measure): Depending on the application domain, we
may need to give a higher priority to recall or precision, but there are many applications
where both recall and precision are important. Thus, it is natural to think of a way to
combine these two metrics into a single one. One popular metric that combines precision
and recall is called F1-score. The F1-score can be interpreted as a weighted harmonic mean
of the precision and recall and is formally defined as below. There is always a trade-off
between precision and recall of a model; if making the precision too high, we would see a
drop in the recall rate, and vice versa.

F1-score = (2 × Precision × Recall)/(Precision + Recall)
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The generalized version of F-score is defined as follows. F1-score is a special case of
F_β when β = 1.

Fβ =
(

1 + β2
)
× precision× recall

β2 × precision + recall

R2, mean squared error (MSE), root mean squared error (RMSE), and root mean
squared logarithmic error (RMSLE) [123,129,130,173]:

R2 is based on correlation between actual and predicted value; MAE is based on
absolute value of error; MSE and RMSE are both based on square of error.

R2: R-squared, also known as the coefficient of determination, is a value between 0
and 1 that measures how well a regression line fits the data (i.e., indication of the goodness
of fit of a set of predictions to the actual values in a regression model). The value range of
R2 lies between 0 and 1 for no-fit and perfect fit, respectively. R2 is not sensitive to outliers.

The R-squared formula compares our fitted regression line to a baseline model. This
baseline model is considered the “worst” model. The baseline model is a flat line that
predicts that every value of y will be the mean value of y. R-squared checks to see if our
fitted regression line will predict y better than the mean.

R2 = 1− SSRES
SSTOT

= 1− ∑i(yi − ŷi)
2

∑i(yi − y)2

SSRES refers to the residual sum of squared errors of the regression model; yi is the
actual value, and ŷi is the predicted value through the regression model. For example, if
the actual y value was 58 but we had predicted it would be 47 then the residual squared
error would be 121 and we would add that to the rest of the residual squared errors for
the model.

SSTOT is the total sum of squared errors. This compares the actual y values to the
baseline model (i.e., the mean). We square the difference between all the actual y values
and the mean y and add them together.

MSE: MSE is perhaps the most popular metric used for regression problems. It
essentially finds the mean (i.e., average) of the square of the difference (i.e., squared error)
between actual and estimated values. Similar to MAE, MSE provides a gross idea of the
magnitude of error. Let us assume we have a regression model that predicts the price of
houses in the Boston area and let us say for each house we also have the actual price the
house was sold for. The MSE can be calculated as the following, where N is the number of
samples, yi is the actual house price, and ŷi is the predicted value through the regression
model. MSE value lies between 0 to ∞. Small value indicates a better model. Sensitive to
outliers, it punishes larger errors more. MSE incorporates both the variance and the bias of
the predicting model.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2

MSE measures how far the data are from the model’s predicted values, whereas R2

measures how far the data are from the model’s predicted values compared to how far the
data are from the mean. The difference between how far the data are from the model’s
predicted values and how far the data are from the mean is the improvement in prediction
from the regression model.

RMSE: very straightforward, RMSE is the square root of MSE. Sometimes people use
RMSE to have a metric with scale as the target values. Taking the house pricing prediction
example, RMSE essentially shows what is the average deviation in your model predicted
house prices from the target values (the prices the houses are sold for). Similar to MSE,
RMSE value lies between 0 to ∞, with a small value indicating a better model. Similar to
MSE, RMSE is sensitive to outliers and punishes larger errors more. The value of RMSE
is always greater than or equal to MAE (RMSE >= MAE). The greater difference between
them indicates greater variance in individual errors in the sample.
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RMSLE: both RMSE and RMSLE are the techniques to find out the difference between
the actual values and the predicted values by an ML/DL model. RMSLE is the root mean
squared error of the log-transformed predicted and log-transformed actual values. RMSLE
is formally defined as follows, where X denotes the predicted value and Y denotes the
actual value, and n is the number of samples. Note that RMSLE adds 1 to both actual and
predicted values before taking the natural logarithm to avoid taking the natural log of
possible 0 (zero) values.

RMLSE =

√
1
n ∑n

i=1(log(xi + 1)− log( yi + 1))2

RMSLE is very robust to outliers. When we compare the formula of the RMSE and
RMSLE, the only difference is the log function. Basically, what changes is the variance
measured. This small difference makes RMSLE much more robust to outliers than RMSE. In
RMSE, outliers can explode the error term to a very high value, but in RMLSE, the outliers
are drastically scaled down, therefore nullifying their effect.

RMSLE is often used when we do not want to penalize huge differences in the pre-
dicted and the actual values when both predicted and true values are huge numbers. (1) If
both predicted and actual values are small: RMSE and RMSLE is same. (2) If either pre-
dicted or the actual value is big: RMSE > RMSLE. (3) If both predicted and actual values
are big: RMSE > RMSLE (RMSLE becomes almost negligible).
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