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Abstract: Worldwide, the persistent trend of human and animal life losses, as well as damage
to properties due to wildlife–vehicle collisions (WVCs) remains a significant source of concerns
for a broad range of stakeholders. To mitigate their occurrences and impact, many approaches
are being adopted, with varying successes. Because of their increased versatility and increasing
efficiency, Artificial Intelligence-based methods have been experiencing a significant level of adoption.
The present work extensively reviews the literature on intelligent systems incorporating sensor
technologies and/or machine learning methods to mitigate WVCs. Included in our review is an
investigation of key factors contributing to human–wildlife conflicts, as well as a discussion of
dominant state-of-the-art datasets used in the mitigation of WVCs. Our study combines a systematic
review with bibliometric analysis. We find that most animal detection systems (excluding autonomous
vehicles) are relying neither on state-of-the-art datasets nor on recent breakthrough machine learning
approaches. We, therefore, argue that the use of the latest datasets and machine learning techniques
will minimize false detection and improve model performance. In addition, the present work covers a
comprehensive list of associated challenges ranging from failure to detect hotspot areas to limitations
in training datasets. Future research directions identified include the design and development of
algorithms for real-time animal detection systems. The latter provides a rationale for the applicability
of our proposed solutions, for which we designed a continuous product development lifecycle to
determine their feasibility.

Keywords: wildlife–vehicle collisions; intelligent systems; sensor; machine learning; human–wildlife;
human behavior; animal behavior; machine learning datasets; animal detection systems

1. Introduction

Wildlife–vehicle collisions (WVCs) have progressively increased in both developed
and developing economies. Every year, the United States (U.S.) registers 725,000 to
1,500,000 WVC cases, with over 200 humans dying annually. In comparison, Canada
records a wildlife roadkill rate of 4 to 8 animals per day [1]. WVCs lead to severe eco-
nomic losses, with the Ministry of Transportation of Canada spending over 600,000 CAD
while cleaning up the collision sites. The U.S. Department of Transportation registered
200,000 WVC cases in 1990 and more than 300,000 in 2004 [2]. Generally, from 1975 to the
mid-2000s, there were escalating deaths caused by collisions with cars in the U.S. Excitingly,
the death trend has leveled off over the past decade. These deaths increased from 89 in 1975
to 223 in 2007 and declined to 185 in 2019. In 2019, the highest number of WVC fatalities
occurred only during July–September [3]. Globally, amphibians and reptiles are the most
endangered species, with records showing WVC cases of 180 amphibians and 72 reptiles
on tertiary roads from March 2014 to October 2015 in a rural region in eastern Austria [4].
In 2015, the greater Mapungubwe transfrontier conservation area in South Africa recorded
991 and 36 roadkill on paved and unpaved roads, respectively [5]. The latter study shows
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that unpaved roads recorded less WVCs than paved roads. High numbers of WVCs were
both in hot and wet seasons, while cold and dry seasons experienced the lowest numbers.
In February 2012, researchers recorded 470 animal mortality rates due to WVCs in just two
fortnights in South Africa. Birds had the highest numbers, followed by reptiles, mammals,
and amphibians [6]. Roadkill and WVCs also happen in other parts of Africa, such as
Tanzania [7,8]. In 2015, John Kioki et al. [7] recorded a death rate of 3% for domestic animals
and 97% for wildlife due to WVCs. Their research findings show that roads are a potential
threat to wildlife in East Africa.

The WVCs have caused death to humans and animals as well as damage to properties
and roads, contributing to environmental conditions [9]. These collisions have affected
the safety of humans, property, and wildlife. Despite the escalating numbers of WVCs,
several methods adopted help solve the problem of roadkill. These methods include tra-
ditional (e.g., fencing, underpasses, and overpasses), intelligent systems (e.g., area cover,
buried cable, autonomous vehicles, driver assistants, and break-the-beam), and machine
learning algorithms. Some of these intelligent systems do not integrate machine learning
algorithms to mitigate WVCs. Nevertheless, these intelligent systems and machine learning
algorithms experience false detections when engaged in many accidents with animals on
highways. By definition, machine learning is a sub-field of computational intelligence
that exploits mathematical tools to make computers function like the human brain. It
has gained popularity to address problems that are challenging to tackle by traditional
computer science. Machine learning algorithms include but are not limited to support
vector machines [10], naive Bayesian [11], and artificial neural networks (ANNs) [12]. The
latter algorithm can minimize prediction and detection errors via the gradient descent
based on the back-propagation algorithm. This capability of ANNs enables them to easily
solve complex problems in different fields. A type of ANN is the feedforward neural
network, which features an extraction process that is oriented from the input layers to the
output layers, passing through the hidden layers. Moreover, another type of ANN is the
recurrent neural network (RNN) [13], long short-term memory (LSTM), and convolutional
neural networks (CNN [14]). Long short-term memory can mimic the behavior of randomly
generated data over time. The LSTM does this via massive units with various components
such as weights, activation functions, and backward and forward neurons connections
to handle the vanishing gradient problem, which a very deep CNN would likely fail to
address [15].

1.1. Problematic

Despite the escalating damage and danger that comes with WVCs, researchers engage
in developing engineering solutions to monitor animals and mitigate the WVCs. Traditional
approaches are implemented, such as wildlife crossings (e.g., overpass and underpass
structures) and the installation of fences together with segments on highways. These
traditional approaches are limited and are not always possible with steep rocky slopes
and deep snowpack, among others [16]. Because of these limitations, other solutions
such as wildlife–vehicle detection systems have received much attention. These include
systems such as break-the-beam [17–21], area cover [17,18,22–27], buried cable [28–30],
driver assistance [31], autonomous vehicles [32], and mobile mapping animal detection
systems (ADSs) [33,34], as well as roadkill detection [35]. These ADSs are combined with
traditional methods to enhance the prediction and detection of animals on the road. They
also help alert the drivers to be aware of animal presence and the exact location of animals
on the road. Although recent research on ADSs in combination with machine learning has
emerged, it is more popular in autonomous cars, followed by driver assistants. In other
systems which try to integrate machine learning and ADSs, their research is still in early
stages using simulation techniques. The simulation process uses synthetic images with
small training and test datasets resulting in low prediction accuracy [19].

Nevertheless, current survey and review studies on mitigating WVCs with machine
learning algorithms and/or intelligent systems are non-exhaustive. In 2021, the Said
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et al. [36] review on ADSs and characteristics of WVCs is vital, and in 2020, Raphaela
Pagany [37] discussed WVC influencing factors. However, their works did not focus on
machine learning methods that prevent WVCs and current datasets used to mitigate WVCs.
Because of these gaps, the motivation for this paper is six-fold:

• Understand and critique the current ADSs used to mitigate WVCs.
• Explore the negative factors contributing to WVCs; these negative factors should act

as features when developing intelligent systems that prevent WVCs.
• Discuss and criticize the current systems that integrate machine learning to miti-

gate WVCs.
• Identify the challenges and the gaps for the reviewed current systems that prevent

WVCs and identify potential solutions or new perspectives.
• Propose future research directions.
• Discuss the applicability and feasibility of the proposed solutions.

This investigation will fill the research gaps by comparing these technologies in terms
of their strengths, weaknesses, limitations, and the way forward in the field.

1.2. Contributions

We analyze negative factors that influence WVCs, such as human behaviors, animal
behaviors, road features, and climatic changes. These factors are key features to consider
when developing ADSs and machine learning to prevent WVCs. We review existing sys-
tems that prevent WVCs, e.g., area cover systems, break-the-beam systems, and other ADSs.
We discuss area cover systems classifications with sensor types such as active infrared sen-
sors, passive infrared sensors, passive video sensors, and active microwave radio sensors.
Besides classifying with sensor type, we state the strengths and weaknesses of each area
cover system. In break-the-beam systems, we use microwave radio, infrared, and laser
sensor types. In addition, we discuss the strengths and weaknesses in each study. We also
discuss the strength and weaknesses of the buried cable, mobile mapping, driver assistance,
autonomous vehicles, and roadkill ADSs. We conduct discussions on different types of
machine learning that prevent WVCs. Supervised methods such as support vector ma-
chine (SVM) [38], maximum entropy environmental niche modeling [39], CNN [34,38,40],
YOLOv3 [41], Xception [34], VGG16 [34], VGG19 [34], ResNet50 [34], inception [34], and
unsupervised methods such as K-nearest neighbors (KNN) [19], PCA [38], feature extrac-
tion [19], frame differencing [19], template matching [19], LDA [38], LBPH [38], as well
as ensemble learning such as random forest [19] have achieved promising results, among
others. We find a non-exhaustive work in the literature that explores self-supervised and
semi-supervised machine learning algorithms and how they contribute to mitigating WVCs.
Equally, we discuss state-of-the-art datasets that could help improve model accuracy and
minimize WVCs. Additionally, we record issues and challenges arising from the review
and suggest a way forward. Furthermore, we explain the applicability and feasibility of the
proposed solutions to existing damaged roads, accident car collisions, humans, animals,
and the environment. Finally, we design a continuous product development lifecycle to
help engineering teams determine the feasibility of the proposed solutions.

1.3. Manuscript Organization

The organization of this work is as follows: Section 2 discusses the methodology
adopted in this work. Section 3 discusses four factors contributing to human–wildlife
conflict and eventually WVCs. Section 4 reviews existing intelligent systems that pre-
vent WVCs. These are area cover systems, break-the-beam systems, driver assistants,
autonomous vehicles, roadkill detection, mobile mapping systems, as well as buried cable
ADSs. Section 5 shows a collection of the datasets used to mitigate WVCs. Section 6
conducts a survey of machine learning methods and how they prevent WVCs. Section 7
identifies issues from the review and proposes potential future research directions. The
same section also discuss the applicability and feasibility of the proposed solutions.
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2. Methodology

To define the methodology supporting this review, we recall at least three dominant
approaches in literature reviews: the narrative review, the systematic literature review, and
the bibliometric analysis.

The narrative literature review typically provides a broad overview of a specific topic
chosen by the author. It is based on the literature available about the designed topic. It is
often descriptive and written in an easily readable format [42,43]. The systematic literature
review has two objectives: first, perform an extensive literature search through a very
detailed process and then critically assess the selected literature [42,43]. Last but not least,
the bibliometric analysis aims at developing a quantitative investigation and relies on
statistical methods to evaluate several characteristics of specific bibliographic informa-
tion such as journals, research institutions, geographic location, and other quantifiable
characteristics [44].

In the present work, we conduct a combination of a systematic review with some
elements of bibliometric analysis.

2.1. Formulating Review Questions

The study is guided by formulating a comprehensive list of research questions. The
questions guided reviewers on the focus, scope, applicability, and feasibility of the research.
We define the study’s goal to draft the review questions easily. We aim at reviewing the
literature on intelligence systems using sensor technology and/or machine learning to
mitigate WVCs. We focus on reviewing datasets that help mitigate WVCs. Additionally,
we define a list of issues and challenges from the review and explain the applicability
and feasibility of the proposed solutions. To achieve the aim, the authors formulate and
implement research questions in Table 1 to guide them in writing this manuscript. The
questions help the authors define the scope of the review and set out what they wanted
to answer.

Table 1. Research questions and their descriptions. RQNi represents the research question number i.

RQNi Question Description

RQN1 What are the negative factors that
lead to the occurrence of WVCs?

To identify negative factors that contribute to
human–wildlife conflicts and WVCs.

RQN2 What ADSs are deployed to mitigate
WVCs in the primary studies?

To identify all the ADSs and techniques used
in the selected primary studies. State the
results, strengths, and weaknesses of each
system.

RQN3 What types of datasets are currently
used to mitigate WVCs?

The different types of datasets, e.g., text,
images, time series, etc., and what machine
learning tasks can use the data identified.

RQN4
What types of machine learning
algorithms are used to mitigate
WVCs?

To identify all the machine learning
algorithms used in the selected primary
studies to mitigate WVCs.

RQN5 What are the limitations of the
primary studies in mitigating WVCs?

To identify all the constraints or weaknesses
of the ADSs and machine learning methods
in mitigating WVCs and propose future
recommendations.

RQN6 How applicable and feasible are the
proposed solutions?

To show how the solutions minimize the
issues and challenges arising from the
review.

2.2. Search Databases

The search databases for this study are Scopus and Google Scholar. The articles are
peer-reviewed (PR) and non-peer-reviewed (NPR). We further search specific websites that
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had relevant information. Scopus is an international database of PR publications from
all over the world [45]. Using Google Scholar, an advanced search engine, helps to cover
citations that are not in Scopus [46]. We search each database and analyze results based on
the search string.

2.3. Locating Studies through Searching

To identify relevant publications, we perform a bibliographic search both in Scopus and
Google Scholar during April 2020 and November 2021. We also extract content from specific
websites which had reliable information. We extract and review a total of 136 manuscripts
in this study. To extract manuscripts to review, we use search terms and words such as
“animal-detection systems”, “break-the-beam”, “area-cover”, “mobile-mapping”, “buried
cable”, “driver assistance”, “unmanned aerial vehicles (UAVs)”, “drone”. To specifically
retrieve only manuscripts associated to ADSs that help mitigate WVCs, and those that
publish datasets to help reduce WVCs, the term “datasets + wildlife-vehicle collisions”
is considered. Detailed general terms and terms for each instance are shown in Table 2.
Further, the words “machine learning methods + mitigation + wildlife-vehicle collisions”
helped retrieve only manuscripts that use machine learning methods to mitigate WVCs.

Table 2. Search terms used when retrieving manuscripts from the different internet sources.

General Term Term

break-the-beam +
animal-detection systems

break-the-beam/animal-detection
systems/mitigation/roadkill/animal-vehicle collisions and
wildlife-vehicle collisions

area-cover + animal-detection
systems

area-cover/animal-detection systems/roadkill/mitigation
and/animal-vehicle collisions and wildlife-vehicle collisions

mobile-mapping +
animal-detection systems

mobile-mapping/roadkill/animal-detection
systems/mitigation/animal-vehicle collisions and
wildlife-vehicle collisions

buried cable + animal-detection
systems

buried cable/roadkill/animal-detection
systems/mitigation/animal-vehicle collisions and
wildlife-vehicle collisions

driver assistance +
animal-detection systems

driver assistance/roadkill/animal-detection
systems/mitigation/animal-vehicle collisions and
wildlife-vehicle collisions

unmanned aerial vehicles (UAVs)
+ animal-detection systems

unmanned aerial vehicles (UAVs)/animal-detection
systems/roadkill/mitigation/animal-vehicle collisions and
wildlife-vehicle collisions

drone + animal-detection systems
drone/animal-detection
systems/roadkill/mitigation/animal-vehicle collisions and
wildlife-vehicle collisions

machine learning methods +
animal-detection systems

machine learning methods/animal-detection
systems/mitigation/roadkill/animal-vehicle collisions and
wildlife-vehicle collisions

datasets + wildlife-vehicle
collisions

datasets/wildlife-vehicle collisions/animal-detection
systems/mitigation/roadkill/animal-vehicle collisions and
wildlife-vehicle collisions

2.4. Inclusion and Exclusion

Our methodology identifies eligible articles we obtain from Scopus and Google Scholar
datasets. We compare manuscripts and remove duplicates. Later, we screen the remaining
manuscripts for inclusion and exclusion based on defined criteria; this process is shown in
Figure 1. We also obtain additional information from websites. Information from websites
and Google Scholar also contain company reports.
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For any manuscript included in this review, we consider studies that:

• Refer to the use of ADSs and machine learning methods that mitigate WVCs.
• We discuss datasets used to mitigate WVCs.

We exclude studies that:

• Focus on ADSs or machine learning that count and monitor species minus mitigat-
ing WVCs.

• We did not consider any machine learning algorithms that detect hotspots.
• Articles that did not satisfy the search criteria.
• Review papers.

Scopus 156
records

Google scholar
4179 records

Others (websites) 27
records

Removed duplicates
68 records

Manuscripts
screened 4267

records
Manuscripts excluded 2998 records 

Reviews
Hotspot detection
Articles not related to search
criteria

Additional manuscripts excluded 1133
records 

Machine learning agorithms that do
not mitigate roadkill
Animal detection systems that do not
mitigate roadkill

Final manuscripts considered for
review 136 records 

Scopus 56 records
Google scholar 53 records
Websites 27 records 

Manuscripts eligible for
analysis 1269 records

Figure 1. Flow diagram of exclusion and inclusion process.

2.5. Data Extraction and Analysis

We consider a total of 56 and 53 manuscripts from Scopus and Google Scholar, respec-
tively. Additionally, the authors collect manuscripts from government websites (gov’t),
conservation websites (cs), education websites (educ), and news websites (news) with a
total of 5, 7, 11, and 4 manuscripts, respectively, totaling to 27 additional manuscripts.
Although we find these manuscripts suitable for review, they did not appear in both Scopus
and Google Scholar databases. The 27 manuscripts have clear objectives and accurate
information which prompted the authors to consider them for review. We summarize and
analyze these manuscripts in Figures 2–5.

Figure 2a visualizes the total number of manuscripts per each internet source. We
extract the highest number of manuscripts from Scopus followed by Google Scholar, educa-
tion websites (website (educ)), conversational websites (website (cs)), government websites
(website (gov’t)), and finally from news websites (website (news)). Figure 2b visualizes the
different document types reviewed with the associated number of manuscripts. The latter
figure ranks articles as the highly reviewed manuscripts in this review followed by reports,
conference papers, then websites and books. It is worthy to note that these document types
contain both PR and NPR manuscripts.

Figure 3a shows the distribution of years captured in this review. For each year, we
show the total number of manuscripts. The coverage of the manuscripts in this review range
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from 1975 to 2021, with some years seen as inactive. We observe that research in this field
has been neglected, with fluctuations in the yearly number of papers published from 1998
to 2021. The highest number of papers published per year are 14 manuscripts. This shows
that more research is required in this field in mitigating WVCs using intelligent systems
and machine learning methods. Even though the number of manuscripts progressively
published are few, the authors majorly archive them in PR journals as shown in Figure 3b.
Figure 3b shows PR and NPR manuscripts. PR manuscripts are many compared to NPR
manuscripts. Both PR and NPR manuscripts may contain articles, reports, conference
papers, and books; document types are presented in Figure 3b.

0 10 20 30 40 50
Number of manuscripts

website(news)

Website(gov t)

website(cs)

website(educ)

google scholar

scopus

(a)

0 10 20 30 40 50 60 70
Number of manuscripts

book

website

conference

report

article

(b)

Figure 2. (a) Displays the total number of manuscripts extracted from each internet source, and (b) vi-
sualizes the total number of manuscripts associated to each document type.

0 2 4 6 8 10 12 14
Number of manuscripts

1980

1990

2000

2010

2020

Ye
ar

 o
f p

ub
lic

at
io

n

(a)

0 20 40 60 80
Number of manuscripts

NPR

PR

(b)

Figure 3. (a) Counts manuscripts published per year, and (b) summarizes review status of
manuscripts, i.e., NPR and PR manuscripts, respectively.

To evaluate the relevancy of the research conducted and databases considered, we
extract the number of citations as shown in Figure 4. In Figure 4a, we visualize the
number of citations per each manuscript associated to a specific database. We observe that
manuscripts we extract from the Google Scholar database are cited highly compared to
the Scopus database. Google Scholar, Scopus, website (educ), website (gov’t), website (cs),
website (news) have 310,593, 42,880, 839, 299, 2, and 0 citations, respectively. The content
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from websites is composed of company reports. Google Scholar is cited more than the
Scopus database due to the following influencing factors:

• Scopus contains only PR manuscripts from Scopus indexed journals.
• Google Scholar contains both PR and NPR manuscripts such as technical which we

consider in this review.
• Scopus citation count includes only the number of times the publication was cited by

articles from journals that Scopus covers.
• Google Scholar counts citations from every journal published; it may include doc-

ument types such as books, conference proceedings, dissertations/thesis, patents,
technical reports, or other types of publications.

The influencing factors justify the high number of citations witnessed for manuscripts
extracted from the Google Scholar database. Based on this, we find the Scopus database
very relevant. Figure 4b shows document types with associated number of citations. The
number of citations from each document type show that conference papers are highly
cited with 151,318 citations followed by journal articles with 117,646 citations, books with
85,106 citations, reports with 516 citations, and 21 citations recorded for websites; citations
from websites are possible because websites contain company reports that we include in
this study.

0 5 10 15 20 25 30
Number of citations [×104]

Website(gov t)

google scholar

scopus

website(cs)

website(educ)

website(news)

(a)

0 2 4 6 8 10 12 14
Number of citations [×104]

article

book

conference

report

website

(b)

Figure 4. (a) Displays the total number of citations per database, and (b) visualizes the number of
manuscript citations per document type.

Using the same principle, Figure 5 also shows the relevancy of the manuscripts when
correlated to the number of citations. Figure 5a visualizes the number of citations of each PR
and NPR manuscript. The PR manuscripts are highly cited compared to NPR manuscripts.
Figure 5 shows the number of manuscripts per each total number of papers per year. In
2016, the published manuscripts are highly cited, followed by 2014, 1980, 2017, 1985, among
others. NPR manuscripts equally have many citations showing that the research published
is vital to the domain. The NPR manuscripts have 70,251 citations, while PR manuscripts
have 284,362 citations.

Due to the non-exhaustive research conducted on ADSs and machine learning methods
that mitigate WVCs, we consider a broad scope from 1975 to 2021 as displayed in Figure 3a.
Figure 3a justifies that there is no exhaustive systematic research conducted in this area
since there are fluctuations in publications in the different years, with many inactive years
showing no research published in the domain. The number of citations in Figure 5b for each
manuscript published each year equally fluctuates, with 2016 having the highest number of
citations. Due to these unidentified research publication trends, researchers should engage
in publishing research that mitigates WVCs.
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0 5 10 15 20 25
Number of citations [×104]
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Figure 5. (a) Visualizes manuscript citations per review status showing NPR and PR manuscripts, and
(b) shows relationships between the number of citations per each manuscript and year of publication.

3. RQN1: What Are the Negative Factors That Lead to the Occurrence of WVCs?

Globally, wildlife accidents with cars pose a safety threat to both animals and humans.
In this section, we explore the factors influencing the occurrence of these human–wildlife
accidents plus attacks. The influencing factors include human behaviors, animal behaviors,
road features, and changes in climatic conditions. These factors warrant a detailed descrip-
tion and understanding as they are crucial features to consider during the implementation
of intelligent systems that aim to prevent WVCs.

3.1. Road Features

A road is a path over which vehicles and other traffic may lawfully pass. It includes
pathways and may also include culverts, bridges, and land required for future widen-
ing [47]. Roads are characterized by curve road sections, no road marking, smooth, rut,
corrugations, express roads, primary roads, secondary roads, double lane line marking, and
rural location [48]. In road engineering and construction, the classification of a good road is
by its shape, width, thickness, and the materials it is made of [49]. Materials of the road are
usually found on a railway crossing, cobbled road, pothole, damaged road, speed bump,
manhole covers, and a road in good condition [50]. Roads are a barrier to animal movement
as they contribute to roadkill during crossing attempts or behavioral avoidance. WVCs
have negative consequences, such as demographic and genetic, that can ultimately result
in local or regional extinction [51]. Possibility of extinction is minimized by implementing
road structures such as fences to avoid animals from moving toward the roads [52]. The
fences limit the movement of animals and therefore reduce roadkill and mortality rates.
However, some animals can still jump through these constructed fences and attempt to
cross the roads. Road sections with high rates of WVCs are associated with areas with
high habitat diversity, limited crop cover, and fewer number of structures [53]. Research
shows that there is a significant decline in WVCs when road features such as fencing and
pavement are adopted [54]. Collinson et al. [55] designed a low-level roadside fence to
direct animals to underpasses as a way of mitigating WVCs of small vertebrates. The study
was not satisfactory due to low witnesses of dead animals detected after the installed barrier
sites. This study justifies that traditional structures do not totally eliminate WVCs, and the
domain requires more research to identify traditional structures or intelligent systems that
can mitigate WVCs with extremely high accuracy.

In another work, records of WVC hotspots are more on highways for mammals and
birds and riverside roads for amphibians and reptiles [56]. WVCs are more likely to occur
alongside roads with thick vegetation cover or habitats which hinder driver visibility [7].
In 2013, Seiler [57] emphasized that the mortality of these animals increases due to high
traffic speeds and volume. Road traffic accidents kill hundreds to millions of animals
every year, posing a critical threat to the populations of many species [58]. World Health
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Organization (WHO) states that over 90% of the world road fatalities occur in low-income
and middle-income countries, even though these countries have only about half the world’s
vehicles. Driver injuries increase due to factors such as lateral crosstown roads, less traffic
volume, increase in the percentage of heavy vehicles, wider lanes, lack of road markings,
and violation of driving laws and regulations [59]. Road safety is one of the considerations
in support of the 2030 agenda for sustainable development [60]. As a mode of contributing
to sustainable development goals, the United Nations conference on trade and development
wrote a report on road safety, contributing toward the WHO road safety agendas. The
document records show that more than 3500 road deaths occur worldwide every day and
1.25 million each year, with the addition of up to 50 million persons facing injuries in road
accidents [61]. Furthermore, the annual road traffic predicts that deaths are to increase to
around 1.9 million by 2030 and become the seventh leading cause of death [62]. The draft
report on road safety states that increase in mortality rates is due to overspeeding, drinking
and driving, and lack of motorcycle helmets and seat belts. To address this problem of
WVCs, some types of road mitigation measures are available that aim to reduce wildlife
mortality on roads. Some of these measures are traditional methods, e.g., overpasses, fences,
and underpasses that prevent animals from accessing roads—these traditional solutions
minimize the death rate of wildlife. For an effective and reliable approach to avoid WVCs,
we propose adopting traditional methods together with ADSs and further integrate them
with machine learning algorithms as a mitigation strategy since it contributes to reducing
mortality rates [52]. In this review, we give a comprehensive list of proposed solutions for
road safety in Section 7.2.

3.2. Climate Change and Season

Climate change inconsistencies are a threat globally and are now slowly affecting
Africa [63,64]. These changes in seasons are reactions of the greenhouse effect by green-
house gases. Greenhouse gases include carbon dioxide, methane, dinitrogen monoxide
or nitrous oxide, water, perfluorocarbons, and sulfur hexafluoride. As well, halocarbon
gases are composed of trichlorofluorocarbon and dichloroflurocarbon. These atmospheric
concentrations continue to be possible due to anthropogenic activities (human activities)
that hinder the balance of atmospheric gases [65]. The climatic change also creates different
weather variations and seasons such as dry (drought) and wet (food) conditions, number
of hurricanes, and temperatures [66]. These weather alterations affect bird life and animal
life with their behaviors, foraging, migration, growth, and reproduction patterns. When
the weather variations affect bird and animal lives, bird and animal movement patterns
fluctuate, leading to variations of WVCs on highways. Besides, global warming contributes
to a shift in seasons. The variations in seasons contribute to species extinctions since many
of the species live in areas that are severely affected by climate change, and climate change
is happening too quickly for many species to adapt [67]. Lately, global warming is intrigu-
ing. In addition, it has led to the global decline in wildlife, leading to wildlife effects such
as the loss of habitats, damage to oceans, coastlines, and coral reefs due to sea-level rise,
and increased storm activity, as well as more frequent and intense periods of drought [68].

Climate change and seasons alter wildlife movement and distributions due to the
change in position and location of habitats, potentially leading to associated location
changes in WVCs. The proposed development of movable structures can be a solution
other than overpasses and underpasses. Besides, it is transferable from one location to
adapt to the changing weather conditions that affect the animals [69]. In 2012, the Food
and Agriculture Organization of the United Nations stated the consequences of climate
change. The adverse effects are: (1) The changes in ecosystem and landscape, which reduces
biodiversity, leading to significant changes in disturbance patterns, e.g., more fires, more
droughts, and more floods, as well as loss of species due to mistiming, competition, and
stress from new species within an ecosystem. (2) The variations in species distribution
due to temperature, rainfall, and geographical barriers. It is important to note that natural
and human-made obstacles to movement are a problem to many animals as they try to
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move. These animals move to search for new conducive habitats in response to changing
conditions. (3) The human–wildlife–livestock conflicts due to increasing human population
densities and encroachment of human settlements and activities into wildlife habitats
contribute to rampant conflicts between humans and animals. These are majorly common
in rural areas where humans depend more on agriculture for farming. These conflicts
pressure animals since their habitats have been encroached on. (4) Wildland fires caused
by climate change. These affect slow-moving animals at risk of mortality from flames and
smoke. Other animals change their habitats due to lack of food, competition for the same
territories, or accessing shelter and death due to starvation, and (5) wildlife health, diseases,
invasive species, and pests.

The impact of climate change is rampant and includes permanent changes in physical
conditions. Examples of these changes are snow cover, permafrost, sea level, and extreme
increases in the irregularity and severity of extreme weather events such as droughts,
floods, and storms [70]. The impact forces animals to loiter away from their habitats in
search of a conducive environment such as green pastures. This act leads them to highways
or crossroads. Animals found on the highways usually collide with vehicles leading
to WVCs, which increase rampantly. In 2017, in Brazil, the study evaluates variables
such as seasonality, climatic (mean temperature, relative air humidity, and accumulated
precipitation), and average daily traffic on vertebrate roadkill rates [56]. The highest
numbers of roadkill records in the rainy season are reptiles. Roadkill was high for birds
during summer, mammals increase from spring to fall, and during fall, the roadkill for
amphibians and reptiles was at its peak [71].

3.3. Human Behaviors

The behaviors of humans are a threat to conservation in wild reserves. As such, con-
tributing to habitat loss through deforestation, as well as poaching, wildfires, conurbation,
and climatic changes in the earth’s atmosphere. The climatic changes are a result of the
released amounts of greenhouse gases and aerosols (small particles), burning fossil fuels
that release carbon dioxide into the atmosphere. Because of this damage to the atmosphere
that humans cause through anthropogenic activities, most blame for climate and season
alterations is partially due to their behaviors. Humans possess different behaviors from
person to person. Each human has different abilities, aspirations, motives, perceptions,
values, attitudes, and personality. Concepts such as actions, activities, and behaviors are
essential in understanding human behavior [5]. Actions are short and visible movements
such as taking a key, opening the door of a vehicle, and grasping. These actions can also
be invisible such as perceptions, attitudes, thoughts, feelings, and physiological processes.
On the other hand, activities are composed of several actions such as cutting down trees,
poaching, and driving a car. When we combine activities and perform them at different
time intervals, we refer to them as behaviors. Behaviors are those such as overspeeding,
frequent braking, and poaching, among others [9]. It is worthy to note that actions and
activities all contribute to WVCs on highways.

The mentioned activities and actions are driven by the underlying cognitive, emotional,
and physiological processes [72]. Social psychologists believe that attitudes contribute to
human behavior theory, e.g., what people think and do. They rely majorly on the attitude-
based questionnaire by Ajzen and Fishbein [73]. This attitude-based questionnaire has four
components that eliminate the difficulty in recognizing the attitude–behavior relationship.
These components are beliefs, attitudes, intentions, and behaviors.

Research contains majorly two cognitive theories, which are the theory of reasoned
action (TRA) [73,74] and its extension, the theory of planned behavior (TPB) [75]. These
theories offer conceptual frameworks for understanding human behavior. In TRA theory,
behavior intention combines a person’s attitudes and subjective norms. TPB theory is
an extension of TRA theory. TPB states that behavior intentions are usually determined
by a combination of a person’s attitudes, subjective norms, and perceived behavioral
control. The TRA theory states that a person’s intention to perform or not to perform a
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behavior at a specific time and place, as well as the more the person thinks other people
(friends, family, or society) would love them to perform that behavior (subjective norms),
are the immediate determinant of that action, i.e., intentions (behavior intentions) to
perform the behavior. This TRA theory is composed to help predict and explain volitional
behavior. TRA components are the determinants of intentions, such as attitudes toward
behavior determined by beliefs about the behavior and subjective norms. Psychologists
define attitude as a tendency of an individual to evaluate an entity such as a person,
place, behavior, or thing. The evaluation performed should be with a degree of favor or
disfavor [76]. Attitudes are composed of a combination of behavioral beliefs (strong beliefs
regarding behavioral outcome) and outcome evaluation (evaluation of the advantages and
disadvantages of behavior outcome) [77]. Psychologists emphasize that attitude toward an
object is not related to the attitude to behavior toward that object. For example, someone
may have a favorable attitude toward a rhino (object). However, they will go ahead and
engage in poaching (behavior toward objects) simply because they want the rhino horn,
believed to be medicinal. A subjective norm is what we think other people will think of us if
we perform (or do not perform) the behavior. Subjective norms are composed of normative
beliefs (strong beliefs regarding how important people will agree or disagree with the
behavior) and motivation to comply (motivation to comply with important people) [77].
Subjective norms are a result of social and environmental surroundings. Social norms
and taboos play a significant role in determining appropriate behavior in society and the
motivation to adopt the behavior. In 1988, while conducting a meta-analysis, Sheppard
et al. [78] showed that TRA is a powerful predictor of behavior. In general, Ajzen et al. [74]
highlight that the more positive a person regards attitude and subjective norm as important,
the more likely they are to form intentions to engage in the behavior.

The TPB theory focuses on perceived behavioral control; it looks at a person’s belief
in self-control over their behavior. TPB’s key component is perceived behavior control.
Perceived behavioral control refers to a person’s perception of how easy or difficult it is
to perform any behavior of interest to them. Perceived behavioral control varies across
situations and actions, which results in a person having varying perceptions of behavioral
control depending on the situation. Perceived behavior control is composed of control
beliefs and power beliefs [77]. Control beliefs are strong beliefs about what allows or avoids
the performance of the behavior. Power beliefs are power perceived presence of factors
that may limit or enhance the performance of a behavior. Human decision-making traits
are an attitude of a person toward the behavior, subjective norms regarding behaviors,
and a person’s perceived control over the behavior [79]. Generally, a positive attitude and
positive subjective norms result in greater perceived control. These increase the likelihood
of intentions governing changes in behavior. In other social research, there is an alternative
approach that predicts human behavior. The approach looks at behavior aspects of the lives
of people as the basis of the question design [80]. This new approach emphasizes replacing
attitude questions with questions about the respondent’s environment, consciousness,
knowledge, and behavior [81]. Drivers and other stakeholders collide with vehicles due to
the power that lies within the two models, TRA and TPB. Their actions and activities are
highly attributed to human behaviors. In Table 3, the strengths and limitations of the TRA
and TPB models are highlighted.

Table 3. Strengths and limitations of cognitive theories: TRA and TPB models.

Model Strengths Limitations

TRA
• Subjective norms and attitudes toward predicting

behavior were important
• Future behaviors were determined by behavioral

intentions

• The theory focuses on behavior under
volitional control

• The model is not used due to the theory
of planned behavior

TPB

• The introduction of perceived behavioral control covers
the non-volitional behaviors that were eliminated in
the theory of reasoned action

• Gaston et al. [82] highlighted the theory as good at
explaining intentions

• Intention prediction is more than
behavior prediction. This is due to
temporal element [75]
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3.4. Animal Behavior

Animal behavior refers to ways in which animals associate with other organisms and
the physical environment [72]. On the other hand, behavior is the change in the activity of
an animal in response to an external or internal cue [83]. The field of animal behavior is
composed of research on: (1) feeding behavior [84], (2) habitat selection [85], (3) mating
behavior [86], and (4) social organizations [87]. Animals classified according to their
feeding behavior are, e.g., herbivores, carnivores, omnivores, scavengers, and vegetarians.
In 1986, behavior evolution was based on assumptions that specific genes hardwire innate
behaviors. As well, learned behavior is attained by a more adaptive nervous system than
innate behavior. As such, the ability to learn is phylogenetically more recent than innate
behavior [88]. These assumptions lead to two categories of behaviors which are innate
while others are learned [89]. The categories are determinants of how animals behave the
way they do. The physiology and anatomy of an animal also contribute to behavior—both
external stimuli (threats from other animals, sounds, smells, weather) and internal stimuli
(hunger, fear) prompt behaviors [90]. Both innate and learned behaviors lead to WVCs as
animals make decisions to frequently cross the roads.

In wildlife conservation, harsh living conditions, e.g., drought, destabilize animals
tempting them to move toward roads [91]. Animal movements are disadvantageous and
lead to a lot of negative results, e.g., (1) a decline in biodiversity (due to loss of habitats),
(2) the introduction of exotic species (foreign, non-indigenous, or non-native species),
(3) over-harvesting of biodiversity resources (illegal hunting, cutting down trees), as well
as homogenization of species in agriculture (species lose their “character” through particle
size reduction in cells in animals or plants) [92]. WVCs lead to a decline in diversity of
animal species in wild reserves. The movement patterns of different animal species toward
particular roads continue to expose many repertoires of movement patterns that vary in
duration and complexity [93] due to animal behaviors [94].

To enable conservationists and researchers to understand animal behavior easily,
implementation of animal tracking technology in game reserves has been ongoing and
helps to capture and extract behavioral data [95], using monitoring tools such as GPS and
VHT [96,97]. In South Africa, behavioral data from tracking systems, such as animals’
daily movements, behavior, and diet, are collected from collars fitted on animals [98,99].
Classification of some animal species behavior types, such as walking, eating, foraging, lying,
standing, among others, are observed using GPS tracking and has scored an accuracy of over
80% [100]. The latter research shows that accelerometer data plus GPS tags contribute to a
promising result in distinguishing more behaviors than could be classified with GPS alone.
Adopting machine learning algorithms and integrating it into tracking systems to classify
animal species behavior types while understanding brain–behavior relationships achieves
acceptable accuracy. Their implementations using CNNs seek to understand five different
behavior tasks in mice and humans through models that generalized to different behavior
tests [101]. We note that both supervised and unsupervised machine learning methods help
understand or monitor animal behavior. Some examples of this application are the prediction
of animal behaviors from accelerometry data in pigs [102] and the classification regression
decision trees used to track cows in open and habitat fields using differences in movement
metrics between behavior types from GPS data [103]. In the latter, the GPS data with one-
minute time step interval from the open field scored an accuracy of 70%, while data with 12
and 2 min time step interval failed to classify. These results show that the time step interval
should be short enough for the behavior to be defined by its characteristic movement metrics.
Moreover, data obtained from forested areas scored higher accuracy compared to an open
field. Unsupervised algorithms are used extensively in identifying and modeling biologging
and telemetry data such as hidden Markov models or Gaussian mixture models [104].

In summary, we have discussed the prevailing conditions that contribute to WVCs.
In Section 3.1, we understand the contributions of roads and road features in reducing
roadkill. Section 3.2 discusses how alterations in climate change and season boost animal
mortality rates due to WVCs. Sections 3.3 and 3.4 discuss the behaviors of humans and
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animals, respectively. To minimize these WVCs, we introduce Section 3 and discuss existing
ADSs that prevent WVCs.

4. RQN2: What ADSs Are Deployed to Mitigate WVCs in the Primary Studies?

The existing intelligent technological systems used today to prevent WVCs are area-
cover, break-the-beam, mobile mapping, buried cable, driver assistant, and autonomous
vehicles ADSs. These operate independently, and some use machine learning algorithms to
mitigate WVCs. Area coverage sensors and break-the-beam sensors are the two frequently
used technologies to detect large animals within the range of the sensor either at a specific
angle or in a linear shape as animals approach the road. These two systems are either
active or passive [16]. Mobile mapping systems and roadkill detection systems detect
small animals on the road. Buried cable systems can detect both the crossing of large-
and medium-sized animals while providing data on their location along the length of the
cable. Driver assistants and autonomous vehicles are the latest technologies deployed with
machine learning models to help detect small, medium, and large animals. Even though
these two seem promising in the field, the implementations are not exhaustive in developed
economies, with less to no attempts made in developing and under-developed economies.

4.1. Area Cover Systems

For animal detection on the road, an area-cover system uses passive video sensors,
passive infrared sensors, and active microwave radio sensors [105]. Table 4 identifies and
describes each sensor type used by the area cover systems in this study.

Table 4. Description of sensors deployed in area cover systems.

Sensor Type Description

Active infrared sensors [106]

• Provides its own source of energy for illumination
• It has a transmitter which emits invisible active infrared beams and the receiver

which receives and analyzes the beams
• Detects intruders passing between the detection area

Passive infrared sensors [107]

• This sensor works by detecting the energy emitted by other objects such as an
animal

• This sensor uses the concept of black body radiation
• The objects emit heat in the form of infrared radiation in the detection area
• Any intruders in the detection area are detected

Passive video sensors [106]
• This technology detects and records objects and evaluates scenes recorded by a

video camera

Active microwave radio
sensors [106]

• This technology uses both passive and/or active remote sensing
• It emits microwave pulses and measures the reflection of a moving object
• They cover a larger area than infrared sensors
• Are vulnerable to electrical interference

An area cover system detects large animals in a distance of up to 50 meters within a
60◦ horizontal angle [108]. The system operates by reacting to changing physical conditions
that interfere with its electrical properties. They capture stimuli such as heat, sound, and
movements that animals induce. These stimuli convert to digital signals and are then sent
to a computer for processing and analysis. Area cover systems are passive or active. Passive
area cover systems are composed of passive infrared and video detection, and active area
cover systems are composed of microwave radar. These systems have successfully provided
animals the liberty to move compared to the traditional fencing systems. However, these
systems still face excessive false positives under vegetation cover [109]. In 2009, researchers
developed and evaluated a test-bed composed of five cone-shaped area cover systems.
These systems detect animals based on motion and body heat in an area and range from the
sensor. Their records show a decrease in false positives and an increase in false negatives in
passive area-cover systems due to high winds [18].

In 2003, the development and deployment of the thermal animal detection system
(TADS) was successful. The TADS solved the intense collisions between birds and wind
turbines in Denmark. To quickly achieve a reliable system for the TADS, thermal cameras
are associated with hardware and software. These system recordings show birds migrating
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and nearing the wind turbine blades of the offshore wind farms. The system is sometimes
effective under harsh conditions with poor visibility (fog, rain, or snow). A threshold
temperature level is defined to ensure only sequences of birds observed and captured
passing through the area cover system can eliminate false detections. The quality of
the captured images are equally good in both compressed and non-compressed regimes.
However, this work shows that collisions of turbines with birds are possible and highest at
night when the visibility of the thermal cameras is poor [24].

The design and implementation of the flashing light animal sensing host (FLASH) in
the U.S. helps detect deer on the U.S. Highway 30 pathway [25]. This system consisted of
three data collection systems installed on this highway. These systems are the FLASH, warn,
and motorist-speed systems. The FLASH system is composed of infrared sensors. These
sensors trigger each time a deer moves through the detection area by emitting a signal to
the receiving unit to activate flashing lights which are usually above permanently visible
warning signs. The lights alert the drivers who are distant about the existence of a deer
on the road. The intention is to prompt drivers to slow down the car’s speed determined
by the motorist-speed system embedded with sensors. Next, sensors gathered data on
vehicles on the highway before encountering the warning signs on either the right or the
left sides of the road. Whenever the vehicles approach the detection area, speed sensors
gather speed data on vehicles after viewing the sign and are already crossing. Moreover,
the sensors register the number of axles of individual vehicles that pass and distinguishes
them between automobiles and semi tractor-trailers. Further, the experts capture the time
and date when each vehicle crosses the sensor. On manipulations of speed-sensor data and
the FLASH data, the researchers are able to determine vehicle speed, vehicle type, date,
time, and the status of the FLASH system (activated or not) for each vehicle. The data from
the FLASH system is stored and downloads enabled remotely via modem. Results show
that each factor significantly affects speed reduction for semi tractor-trailers under normal
system operations. Factors, e.g., date, had a probability value equal to 0.003. For the time
of day, the probability value is less than 0.001, and treatment had a probability value of less
than 0.001. Automobiles also had a significant speed reduction for each factor, e.g., time of
day had a probability value less than 0.001 and treatment had a less than 0.001 probability
value. The date had no significant impact on the automobile’s speed because the date
had a high probability value of 0.101. Some months influenced vehicle speed more than
others. During December, semi tractor-trailers reduce their speed to 1.1 km per hour more
than during January, February, and March. The vehicles reduce their speed to a minimum
in the daytime and relatively high at night each day. This happens when the lights are
either activated or deactivated. For experimental treatments, results show that all factors
are significant with automobiles having a probability value of less than 0.001, and semi
tractor-trailer records treatment and time of day as significant. Results regard date as not
significant since it had a high probability value of 0.247. However, even when the system
results are favorable, the system is unreliable for the U.S. Highway 30 pathway. This system
can still operate well on roads with a huge percentage of local traffic than the U.S. Highway
30 pathway. In improving the effectiveness of the U.S. Highway 30 pathway at reducing
deer–vehicle collisions, a few recommendations are suggested, such as the installation of
a deer-proof fence as well as implementing an education program for the local motorists
explaining how the system operates.

In 2006, the Oh DEER, Inc. (Wayland, MA, USA) company developed an area-cover
system which detects white-tailed deer (large animal) within a certain range of a sensor [17].
These sensors transmit and receive microwave radio signals to detect large animal move-
ments. The system stores detection data such as identification number, type of sensor,
detection value, whether the flashing lights are turned on or not, battery voltage, solar
panel voltage, and temperature in the box with equipment on a flashcard. The last three
parameters are allowed for identifying potential problems. The data are downloadable on-
site or remotely through a modem and land-based phone line. The remote location system
configurations can enable time delay for a signal turn-off. In 2013, Mukherjee et al. [27]
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developed an area cover system by integrating both passive infrared and short-range. and
installed the system comfortably in terrain landscapes. Their system monitors animals
within the virtual trap wire. Further, their system experiences high false alarms during the
day, false detection, detection delay, and difficulty in detection during bad weather.

In 2017, a sensor composed of Doppler radar technology is used in detecting large
animals in a detection area and alerting drivers through activated warning signs [23].
The focus is to achieve the reliability and effectiveness of the ADS. In evaluating how
reliable radars are in detecting large animals, they adopted thermal cameras in monitoring
animals at the area coverage. Each time doppler radar detected an image of a large animal,
the thermal camera captures images every three seconds and saves them temporarily. To
measure the effectiveness of the systems in reducing vehicle speed, they install speed radars
to record the speed of individual vehicles. The radar records speed between the northbound
and southbound lanes as vehicles approach the detection area. Evaluation of the reliability
and effectiveness of the system is through conducting tests such as walk-through tests and
seasonal reliability tests. Even though the researchers consider this system reliable and
effective, it still registers false positives and negatives. In the same year, Vikhram et al. [26]
developed an ADS in the farm areas to prevent human–wildlife conflicts. They used a
passive infrared sensor to detect animals’ movement by sending a signal off the controller.
In addition, they also use ultrasonic sensors to generate a sound sent by a global system
for mobile communications to alert the farmer and department through messages about
the presence of an animal. Conducting system testing under bad weather was successful.
Doppler radar is used again in the detection of animals and humans under vegetation cover
in 2018 [22]. The Doppler radar has an HB100 sensor used in transmitting and receiving
microwave radiation. If the strength of the reflected signal is weaker than the one initially
sent, then the radar will invoke a detection. The Doppler radar is placed and moved in
front of the different crops. In addition, a dog or person is placed behind the crops. Under
this situation, the radar is able to detect these animals. Detection of humans is in five out of
seven cases and a dog in two out of seven cases. Although doppler microwave radar detects
animals, we need more research to minimize the disturbing factors on the measurements.

We summarize area cover systems in Table 5 while showing the different sensor types,
performances, strengths, and weaknesses.

4.2. Break-the-Beam Systems

Break-the-beam systems use transmitters and receivers with infrared, laser, or mi-
crowave radio signals. When an animal is present within the system’s beam, a warning
sign is activated. We describe break-the-beam ADSs currently deployed around the globe
showing their strengths and weakness.

In the last decades, the number of WVCs in North America was alarming. These
came with negative effects, prompting researchers to develop a break-the-beam system
to mitigate roadkill [17]. The system detects large animals as they approach the roads by
activating warning signs to alert drivers about the existence of animals on the road or in a
near distance. The sensor technologies and systems experts—a vendor company—conducts
field tests. The designing of the break-the-beam system is by the vendor company. The
system consists of a transmitter that sends modulated signals to the receiver. Suppose an
animal breaks the paired sensor beam. In that case, activated warning signs trigger an
alert to the driver about the existence of an animal on the highway which prompts the
driver to reduce the speed. Increase in alerts leads to fewer or less severe carcasses with
animals. They save the recordings of all detection at a master station. Detection events are
broadcast in real-time using the ultra-high frequency radio system. The detections enabled
on-site monitoring of the ADS operation using a portable data radio connected to a laptop
computer. The study saves every change in beam status at every date and time. However,
this system has drawbacks such as (1) covering longer distances, which requires many
sensors, hence making the system expensive, and (2) the system requires more hardware
resources on curves, slopes, and vegetation landscapes.
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Table 5. A comparison of areas cover systems in terms of their sensor types, performances, strengths, and weakness.

Reference Year Sensor/Signal Type Results Strengths Weakness

Desholm [24] 2003 • Thermal infrared

• TADS can record migrating birds
approaching the rotating blades of a
turbine, even under conditions with poor
visibility

• The study achieves good visibility with
thermal cameras during severe fog and
snowfall

• Good quality of compressed and
non-compressed captured images

• A threshold temperature level captures only
sequences of birds

• Vibrations from turbines did not affect the
video recording

• Time delays 20 s during remote controlling
had no practical problem

• We recognized water condensing within the
metal box as a potential problem

• Collisions of birds and offshore wind farms are
expected to continue during periods of bad
visibility

• The study was on only eider duck, so limited
data of other species

Gordon et al. [25] 2004
• Infrared
• Speed

• Detects a deer
• Captures details about the vehicle and its

speed
• Categorized vehicles such as automobiles

and semi tractor-trailers
• Able to store and retrieve sensor data from

the global system for mobile
communications

• Flashing warning lights activated to alert
drivers

• The FLASH detects deer moving through the
crossing area

• Minimizing of speed reductions is successful
when tested during different times of the day,
months of the year, date, treatment, among
other factors

• The system is not very effective and needed
station on the road with high traffic

• Poor usage of the system by drivers due to lack
of an educational program to train users of the
system on how to use it

Huijser et al. [17] 2006 • Microwave radio • Detects animals within a certain range of a
sensor

• Save the data for the detection to use it for
decision making

• Detection delay

U.S. Department of
Transport [109] 2008 • Passive infrared and video

• Active (microwave radar)
• Detect large animals • Liberty to wildlife movement than

traditional fencing systems • Experiences excessive false positives

Huijser et al. [18] 2009 • Passive IR • Detection of animals based on heat and
motion

• Detect large animals
• Large detection areas compared to

break-the-beam

• Cannot detect small animals
• System is less sensitive during high winds
• False detections

Mukherjee et al. [27] 2013 • Passive infrared
• Short-range radar

• Radar-based system is placed at lower
height from the ground than an infrared

• Radars cover longer-range monitoring
than infrared cameras

• Radars use fewer sensors and poles to
cover roadway than infrared

• Able to monitor animals beyond the virtual
tripwire

• No precise alignment of transmitter–receiver
pairs

• Installations can be in ridges, gullies, and
rocky outcrop landscapes

• Infrared systems operate only at night
• Higher false alarms during the day
• Prone to false detection due to rain
• Possibility of an animal becoming stuck inside

the fenced section or roadways
• Delays in detection and sending alerts
• Longer monitoring of detected animals (radar)
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Table 5. Cont.

Reference Year Sensor/Signal Type Results Strengths Weakness

Mukherjee et al. [27] 2013 • Radar

• Large animal detection (LAD) reliably
detects large animals in covered area

• Activates flashing beacons to alert drivers
• Influence of driver behavior so that drivers

can avoid a collision

• LADs deliver high reliability by reducing
false alarms in detecting animals

• Achieves a reliable and accurate tracking in a
low power

• Cost-effective and environmentally friendly
manner

• It is a modular system, which makes it easy
to upgrade with less effort

• Delays in detection

Vikhram et al. [26] 2017 • Infrared
• Sound

• Passive infrared and ultrasonic sensor
detect an animal in detection area and
send an alert to the controller presence of
the animal and send an input signal to the
controller

• Audio voice recorder and playback plays
the sound to divert the animal

• At night when a flashlight is on, an alert to
the forest department and farmer about
the presence of an animal is made

• Solar powers the system

• The design system will not be dangerous to
animal and human being, and it protects
farm

• The system is not extensively tested, under bad
weather (rain, snow, etc.)

Huijser et al. [23] 2017
• Doppler radar
• Thermal camera
• Sensor

• Detects large animals (in 113 m)
• Radar detects a person, and the warning

signs are on as long as the person was still
in the detection area

• The system can further be programmed to
detect large animals in a much longer
distance (400 m)

• The high location of the Doppler radar
reduced the risk of theft, vandalism, or
accidental damage and certain types of false
alarms

• Warning signs are activated whenever the
system detects an animal

• Drivers informed about the detection zone a
distance away from the detection area

• Detection of one animal multiple times while
it is still present in the detection area

• This technology distinguishes between large
mammals and other objects such as vehicles

• False positives: the radar reports the detection,
yet there is no large animal

• False negatives: the radar did not report any
detection, yet there is a large animal

Shapoval et al. [22] 2018 • Doppler radar HB100
• Radar is able to detect dog and human

when placed behind the crops
• System is able to detect these animals under

different gardener crops placed in front

• Generally, the system did not perform well in
detecting objects under thick crop cover and it
achieves unfavorable results on p-value
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In 2009, an installation of a test-bed of four break-the-beam systems are successful in
detecting large animals [18]. These systems consisted of infrared, laser, or microwave radio
signals. Most of these systems had two sensors on a pole in the middle of the 91 m distance,
with the sensors facing opposite directions. On evaluating the systems, the researchers
achieve excellent visibility associated with fewer false positives. However, these systems
also experienced challenges such as (1) high error rates due to high temperatures; this is
due to the failure of infrared sensors failing to differentiate between hot air and body heat
of animals, (2) terrains are not suitable for the installation of break-the-beam, and (3) high
false detections due to thick vegetation cover. In California, along Highway 3, engineers
installation of a microwave break-the-beam ADS was successful the next year. The system
site is used as a test-bed to determine factors to consider when selecting an ADS, and it
also shows the reliability tests of the system [20]. The test-bed is composed of an animal
enclosure, space for many ADSs, and six infrared cameras with recording capabilities. The
animal enclosure included shelter, water, area for feeding. This system detects animals,
records the date and time of each detection, and further records animal movement within
the enclosure. This work investigates the reliability of the system. The reliability test
results show that the percentage of false positives is 0.007% (1 false positive over 140 valid
detections), false negatives is 0.03% (4 false negatives over 140 valid detections), and
148 intrusions in the detection area, of which the study shows 144 detections, which led to
97% detections of intrusions in the detection area. Although these system results show high
detection rates, it still experiences false negatives related to the shortest animal, “sheep”, in
the enclosure. As a technique of eliminating the false negatives, we proposed cutting the
grass low in the enclosure.

In 2016, installations of a roadside animal detection system (RADS) in Florida [21]
was successful in helping to reduce WVCs that are rampant. The system uses an infrared
beam to initiate communication between transmitters and receivers. A paired combination
of these transmitters and receivers communicate through sending and receiving signals.
When an animal crosses between the sensors, the light beam sends back a weaker signal.
Each time a sensor receives a weak signal, a flashing light turns on, warning the drivers
that an animal is on the highway. The system performance result is average in detecting
target species. The average success rates were between 10.7 and 66%, and average failure
rates were between 34 and 89.3% of target animals not detected, resulting in false negatives.
Generally, 90% classifications of RADS activations are false positives (lights flashing and
animals not present). These activations cause a significant reduction in vehicle speed. The
effectiveness of RADS is also tested in a controlled setting using a driving simulator. Driver
simulation produced positive results such as (1) quick reductions in speed when exposed
to picture-based RADS signs than word-based RADS signs, (2) early braking in response to
observations of an animal in the road, (3) relatively low WVC cases, and (4) picture-based
RADS signs create alertness of drivers more than word-based RADS signs. These tests
show that the system is reliable and effective in detecting large animals and improving
motorcyclists’ road safety. However, the system still experiences downfalls such as false
detections, malfunction, and drivers’ ignorance of the usage.

In 2019, Antonio et al. [19] simulated an ADS that detects animals on the road and
alerts drivers. The system is composed of camera modules with microwave sensors and
computing units. The type of sensors used in their system are the break-the-beam sensors.
The computing unit is composed of a low-cost server, a management system and alert
processing, a warning signal on the road, and network equipment (a switch) that makes
the interconnection between all of these devices. Further, this architecture contains two
cameras, together with two sensors, which capture an animal’s image and send it to the
management system. This system initiates the machine learning algorithms to detect
and classify these images of moving animals. If an animal faces danger due to cars, the
particular animal is detected on the road by the management system, which alerts the
warning sign on the road for the driver to be cautious. This proposed simulation is the
first to integrate the concept of machine learning algorithms in detecting a specific or target
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species. Among all supervised algorithms used, KNN shows the best F-measure. However,
this work also faces downfalls such as using synthetic images for training the model. The
work also experiences less accuracy, with failure in detecting small animals. Moreover, the
study is characterized by fewer data with no road tests performed during the testing phase.

It is noticeable that break-the-beam systems effectively detect large animals, which
then reduces the collision of large animals and vehicles. The most recent break-the-beam
systems are compared and summarized in Table 6. The systems have also registered
false positives due to sensors’ movement and low visibility. Due to high rates of false
positives, drivers attempt to ignore the road’s warning signs, mistaking the system to be
facing a malfunction. Integration of advanced machine learning algorithms can help make
the system intelligent and eliminate false positives, achieving higher accuracy. Equally,
adopting the use of state-of-the-art machine learning approaches in RQN4 and integrating
them with sensor technology can minimize the false detection and increase the accuracy of
the system.

4.3. Buried Cable, Roadkill Detection, Driver Assistance, Autonomous Vehicles, and Mobile
Mapping ADSs

Installations of buried cable animal detection systems (BCADS) for wildlife–vehicle de-
tection were in the fall of 2008 along U.S. Highway 160 between Durango and Bayfield [28].
These systems can generate an invisible electromagnetic field that faces disturbance each
time a large animal crosses the cable. The disturbance has an adjustable threshold above
which it triggers an alarm and activates warning signs, cautioning drivers to be more
alert and reduce vehicle speed to help mitigate collisions of cars and ungulates. In 2009,
installations of cameras to capture the image of animals crossing the road during both
the day and night were successful. The records of images are associated with references
such as the date and time stamp. The results of the reliability investigation of the system
show ∼0.46% of false negatives with no false positives. The percentage of detections of
all intrusions in the electromagnetic field (detection area) is relatively high, i.e., ∼98.12%.
When tested under different environmental conditions, the system generates no false pos-
itives and approximately 0.46% false negatives. In 2015, Christian et al. [29] installed a
BCADS. The system detects large- and medium-sized animals crossing the road and pro-
vides data on their location along the length of the cable. The system generates an invisible
electromagnetic detection field around the buried cables. The components of the system
are a 300 m long-buried dual-cable sensor and a central processor unit for control and
communication which are similar to works by Huijser et al. [28]. In their study, each time
the area where detections happen are perturbed, an alarm is declared, and they determine
the location of the intrusion. Their work has a surveillance video camera which monitors
animal movement and gauges system detections during nighttime and under all-weather
conditions. Results show that if properly installed and calibrated, BCADS can detect large
and possibly smaller animals with over 95% reliability. However, this system still registers
false detections.
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Table 6. A comparison of break-the-beam systems in terms of their sensor types, performances, strengths, and weakness.

Reference Year Sensor/Signal Type Results Strengths Weakness

Huijser et al. [17] 2006 • Microwave radio

• Detection of an animal when it breaks the beam of
light

• Activated warning signs to alert driver of existence
of an animal on the road

• Increase awareness and reduction in speed of
vehicle, hence less collisions

• Increase in the alertness of drivers which
leads to fewer or less severe WVCs

• Curves, slopes, and vegetation landscapes
require additional sensors which increases
the cost of the system

Huijser et al. [18] 2009
• Infrared
• Laser
• Microwave radio

• Four systems in test-bed are able to detect large
animals

• Can detect large animals
• Excellent visibility, hence low number of

false positives

• Cannot detect small animals
• False positives due to sensor moving in

and out of the alignment
• Low visibility may block or reduce the

narrow signal path of optical
break-the-beam systems

Huijser [20] 2010 • Microwave

• Detection of animals are on a higher percentage
• Records date and time of each individual detection
• Records animal movement within the enclosure

• Less error rate with 1 false positive and 4
false negatives out of 140 valid detections

• The system achieves an overall accuracy of
97%

• Challenge in detecting small animals

Grace et al. [21] 2016 • Infrared-beam

• System performs from poor to fair in detecting
target animals

• Flashing light triggers when the beam breaks, this
alerts drivers of the presence of an animal on the
highway

• Reduction in the number of false positives
by nearly 50% through the use of a control
site to test the RADS

• Large number of false positives
• Encountered system malfunctions that

affected the results of the system
• Ignorance of the system by the drivers,

public education, increase in public
understanding, and driver awareness is
needed to achieve better results

William et al. [19] 2019 • Microwave sensors • KNN accuracy greater than rain forest • Method is able to identify animals

• Small sample of dataset
• System is not tested on real-life images but

on synthetic images
• System was not deployed to conduct

more test
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In 2016, mortality rates of amphibians on Portuguese roads had been rampant [35].
Installation of a roadkill-intelligent system successfully scans for the dead amphibians,
hence capturing roadkill records. This system scans the road using a trichromatic line
scan camera with light-emitting diode lighting. The two-axle trailer is attached to another
vehicle such as a lorry jeep, among others, and pulled. The architecture of the system
is composed of an imaging system used for acquiring road surface images: a computer
used to control the device, storage, and processing unit that can even operate offline, a
GPS for extracting the coordinates for all acquired read frames, a line scan camera and
light-emitting diodes used for capturing images, and an encoder used to synchronize all the
device. Some of the criteria to follow on implementing such a system are (1) mobility—easy
and free system movement, (2) versatility—that is, the flexibility to accommodate all
vehicles, (3) motion stability needed for the image capturing system and thus the dual axle
system, (4) standalone powering over several hours of utilization, (5) accommodation of all
the equipment with protection to rain and dust, and (6) capability to scan the road surface
with high resolution of a complete track (∼25 km) at an acceptable speed. However, even
though such excellent criteria is followed, this system still experiences downfalls such as
the lack of machine learning algorithms to automatically detect roadkill of amphibians
with high accuracy.

In 2017, Sharma and Shah [31] developed driver assistance to detect animals on
highways. Their system uses the histogram of oriented gradients descriptor and cascade
classifier to detect videos and images with less computing space. As such, the system
achieves a high accuracy due to the ability of cascade classifiers to remove false negatives
quickly from the data samples. The algorithm achieves an 80% accuracy when using a
small sample of dataset available. Their system does not capture and test the images
during the night. Even with these weaknesses, the algorithm accurately detects video and
images on the road and alerts the driver whenever the algorithm detects a cow. In the same
year, Rosenband [32] discussed the implementation of a self-driving car that requires no
human. The car uses software and hardware components to automate navigation. The
software helps to simulate and analyze vast amounts of datasets to make self-driving cars
a reality. Besides, the hardware contributes to automation through sensing, computing,
and embedded control with the help of the software. The sensors collect information such
as vehicle surroundings, position, and environment. Later, the sensors send the collected
information to a computing unit for processing. The computing unit fuses, processes, and
interprets the sensor data. The output of the computing unit is the trajectories. Next, these
trajectories pass to embedded control systems, which in turn communicate with the vehicle
actuators to manipulate steering, braking, and throttle. The dataset used for detection
is images and videos. However, this study is limited with animal datasets, limiting the
performance of autonomous vehicles in detecting WVCs. It is worthy to note that less
research is conducted on mitigating WVCs using autonomous vehicles.

In 2018, Sillero et al. [33] developed a prototype of a mobile mapping system for
classifying amphibians on the road. This system is composed of a scanning system attached
to a vehicle. The scanning gadget can record amphibian images on road surfaces up to
a speed of 30 km per hour. On evaluating the system, they conduct three tests which
show promising results. The first test controls are accompanied by plastic specimens;
the second control tests are composed of dead specimens. In addition, the third test is
composed of real tests on Mitra campus roads. The data collection process performs
analysis and testing on amphibian datasets, achieving acceptable results. The first test
correctly classified 94.1%, and failed classification rate is at 5.88%. The second test correctly
classified 92.3% dead specimens and failed to classify 7.7%. Finally, with the third test,
83.9% real specimens are classified correctly, and 16.1% failed to be classified. In all cases,
the human classification of images achieves 100% correctness. This study is the first to use
machine learning algorithms and conduct road tests to detect live and dead amphibians.
This work can adapt to any animal group. Unfortunately, the algorithm presented a high
rate of false-positive detections.
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In 2019, development of a smaller and improved version of the mobile mapping
system is successfully implemented in Portugal [34]. It detects dead amphibians and small
birds on the road. The new system components include a ZED stereo camera (stereo multi-
spectral and high definition camera), a GPS receptor, a high-power processing computer
(GL553VD ASUS laptop), an attachment device, and a lighter charger for vehicles. The
manufacturer of the camera component Stereolabs Inc is located in San Francisco, CA,
USA. Whereas that of the GL553VD ASUS laptop is ASUS company whose headquarters
is at Taipei City, Taiwan. The system runs continuously as long as the vehicle is working.
This novel solution is advantageous because of the reduction in the system size, hence
being light weight, making it portable and easily attached to the back of any vehicle.
Other advantages of this system are more straightforward workflow, unlimited energetic
consumption, and sampling width which effectively covers a one-way national road, and
the system is considerably cheaper. In measuring the effectiveness of the system, the
system detects approximately 78% of the amphibians and birds present on surveyed roads,
failing to detect 22% and generating approximately 17% of false positives. This system is
applicable and feasible and can improve the implementation of conservation measures. The
system saves time for researchers and transportation planning professionals. In the same
year, Goswami et al. [110] started developing deep learning algorithms for driver assistance
to detect animals and further proposed a dashboard framework to deploy algorithms. The
dashboard systems are usually portable and efficiently assist the driver by generating a
message signal whenever they detect an animal in the camera frame. Even though this
study had a limited dataset, results show that MobileNet-SSD outperforms Mask R-CNN
and YOLOv3 in detecting objects.

The Virginia Department of Transportation, in collaboration with the Virginia Tech
Transportation Institute, participated in installing BCADS. The system acts as a measure to
mitigate the WVCs [30]. The systems are powered by a solar photovoltaic system and a
cellular modem provided for remote system monitoring and data collection, installation of
a flashing light—“deer crossing”—warning sign at the site, and wirelessly linked to BCADS
to alert approaching drivers whenever a detection of an animal is observed. These systems
provide roadside or in-vehicle warnings if an animal is active on or near the road. The
system’s performance is monitored on a public road to assess real-world system capabilities
and operational issues. On evaluation under controlled and secure conditions, there was
successful reliability and effectiveness of BCADS. These systems identify crossings of large-
and medium-sized animals with approximately 99% reliability and provide data on their
exact location along the length of the sensing cable. Under all-weather conditions, BCADS
collected data to monitor animal movement, vehicle traffic, and system performance. The
authors collect data on driver response; warning signs are activated during the dawn and
dusk hours, and the data shows that approximately 80% of drivers either braked or slowed
in response, indicating that the signs are effective. However, we also see that 20% of the
drivers are not complying with the warning signs.

In summary, although existing intelligent ADSs detect large animals, these systems
still register a lot of false detections. Generally, the systems fail to distinguish between
the movements of large animals and other objects. Besides, they fail to restrict detections
to only wildlife movement. With this, these systems require algorithms that will help
them distinguish between different objects or help recognize target objects, hence reducing
the errors that lead to false positives and false negatives. Moreover, todate, there is no
work that uses geophones, UAVs, GPS, and VHT tags to detect animals with a motive of
mitigating WVCs. Table 7 summarizes the buried cable, roadkill detection, driver assistance,
autonomous vehicles, and mobile mapping ADS. In Section 5, we discuss the different
datasets used to prevent WVCs.
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Table 7. Summary of results, strengths, and weaknesses of BCADS, roadkill detection, driver assistance, autonomous vehicles, and mobile mapping ADSs.

Reference Year Application Results Strengths Weakness

Huijser et al. [28] 2012 BCADS • All intrusions in the detection area are
detected with a high percentage of 98.12%

• The system responds quite well when tested
under different environment conditions, it
generated no false positives and very few false
negatives

• False positives are 0% on testing reliability of
the system

• Reliability of the systems results are still not
favorable on the number of false negatives
(0.46%)

Druta et al. [29] 2015 BCADS

• System detects large- and medium-sized
animals crossing the road

• Provides data on the location of animal
detected along the length of the cable

• Detects animals with 95% accuracy during
nighttime and under all-weather conditions

• System still registers false detections
• In some cases, when a vehicle crosses the edge

line and was entering the detection field, an
alarm triggers and is declared as a regular
intruder detection. To some extent, the signal
response depends on the vehicle distance from
the detection field

• Nuisance alarm triggers are due to water
movement on the cable path

Gil et al. [35] 2016 Road-kill detection

• Scan images of amphibians on-road and
GPS coordinates

• Capture amphibians and road surface
images

• Data storage and data processing
• All these devices are synchronized using

an encoder attached to the left rear wheel
of the trailer

• Mobility
• Versatility in being easy to attach to any vehicle
• Motion stability needed for the image

capturing system and thus the dual axle system
• Standalone powering over several hours of

utilization
• Accommodation of all the equipment with

protection to rain and dust
• Capability to scan the road surface with high

resolution of a complete track (∼25 km) at an
acceptable speed

• Need to increase the accuracy of the system, on
using the Haar classifier method of computer
vision which achieves 65% accuracy which was
low

Sharma and Shah [31] 2017 Driver assistance

• The algorithm can detect an image, video,
and the distance between the animal and
car. Send alerts to the driver distance away
before the animal and car move closer to
each other, hence minimizing collisions

• The algorithm can detect animals in both a
video and image

• The study uses limited dataset, hence need for
improved performance

• Not tested object detection during the night

Rosenband [32] 2017 Autonomous vehicle
• Delivers autonomous self-driving without

requiring humans
• These cars are able to detect objects on the road

by adapting to different environment

• The cars have registered accidents with
humans, animals, etc., and also
maneuvers [111]
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Table 7. Cont.

Reference Year Application Results Strengths Weakness

Sillero et al. [33] 2018
A road mobile mapping
device for supervised
classification

• The algorithm is able to detect amphibians
from the amphibian dataset in all the three
cases

• The classification algorithm can adopt to any
classification group

• The system can work day and night
• It is ideal for passive surveys

• The work still faces false-positive detection

Guedes et al. [34] 2019 Mobile mapping system 2
• System detects approximately 78%

amphibians and birds (overlooking 22%)

• The survey can be conducted by any person
using mobile mapping system 2 with or
without sampling skills

• Generated 17% of false positives

Goswami, et al. [110] 2019 Driver assistance
• Three algorithms (Mask R-CNN, YOLOv3,

and MobileNet-SSD) are able to detect
animals on the road

• MobileNet-SSD performed better in detecting
animals

• The study uses a small dataset
• The algorithm is not deployed on the driver

assistance and tested

Druta et al. [30] 2020 BCADS

• The system identifies crossings of large-
and medium-sized animals and provides
data on their location along the length of
the sensing cable

• BCADS prove to be effective and reliable when
evaluating under controlled and secure
conditions

• Sometimes the system is able to detect small
animals

• Able to detect small, medium-sized, and large
animals with approximately 99% reliability

• Total 20% of the drivers do not respond to the
warning signs, which is dangerous, as this can
lead to WVCs

• False negatives—this is when a target crosses
over the cable or is inside the detection zone
and an alarm is not triggered
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5. RQN3: What Types of Datasets Are Currently Used to Mitigate WVC?

In this section, we provide a survey of the available datasets used in the primary
literature to mitigate WVCs. Moreover, the section suggests datasets to use in mitigating
WVCs. For each of the datasets, we identify different tasks implemented in the primary
studies to mitigate WVCs, and we propose additional tasks to apply to the dataset to further
minimize WVCs. Data collectors such as citizen scientists, experts, and Kaggle collect
the identified datasets. Table 8 shows parameters captured and these are name of dataset,
type of data, task executed or proposed, collectors, data collection period, the number
of instances, country, and the reference works. The datasets in Table 8 are presented in
alphabetical order and are composed of time series, image, and sound datasets. The label
X indicates that the work at the “Ref works” column has implemented the specified task.
The symbol × means a specific task is proposed to be implemented with the dataset, but
we did not find any work that implements the task in the literature. The label − indicates
that the authors are not explicit about a specified parameter value in the column. We note
that we did not find reference works for rows labeled as “None”.

The time series datasets are major records of WVC instances. For time series, the
collectors capture the name and the number of species killed in a specific time frame.
Datasets such as WVC hotspots [112] and snake roadkill [39] predict WVCs. Possibilities
of other machine learning tasks that may use these two datasets are classification and
forecasting. The WVC dataset [112] contains a count of 529 species killed in Italy. The data
are collected from 2014 to 2016 by citizen scientists. Predictions of WVCs are observed
by Valerio et al. [112] while using this dataset. In Taiwan, citizen scientists collect and
record ∼40,000 instances of snake roadkill [39]. Later, the dataset helped Yue et al. [39] to
predict the death of snakes on the road. The collection period is from 2006 to 2017. It is
worthy to note that time series datasets such as animal-related crash data [113] and roadkill
datasets [114–116] all focus only on collection but never perform any machine learning
techniques on the data. Animal-related crash data [113] are collected by experts from 2001
to 2007. Every year, 0 to 4285 instances are collected in Australia. From 2007 to 2008 in
Kenya, data on roadkill [114] are collected. The collectors record 1436 instances for 164
days over an 11 year period. We find no experiments performed on this dataset. Therefore,
implementation of machine learning models is vital to perform experiments. Besides, in
Tanzania, roadkill data [115] collections happened between 1990 and 1991. The experts
collected 183 instances. In South Africa, the roadkill dataset collected from 2011 to 2014
helps mitigate WVCs [116].

Image datasets such as Pothole dataset [117], Stanford cars dataset [118], Oregon wildlife
dataset [119], and Kangaroo dataset (https://www.kaggle.com/hugozanini1/kangaroodataset,
accessed on 14 August 2021) are vital in mitigating WVCs. These majorly capture examples
of the different animal images used in a machine learning model or framework. They
perform object detection tasks with other tasks such as classification, segmentation, and
localization not exhaustively applied. Fan et al. [120] use the Pothole datasets [117], Oregon
wildlife dataset [119], and Stanford cars dataset [118] in their study to mitigate roadkill. The
latter dataset detects and distinguishes vehicles from other objects. These three datasets are
collected on different occasions and in different locations for the use of object detection. In
2018, in the USA, a dataset composed of a collection of cars was collected by Kaggle and
referred to as Stanford cars dataset [118]. It is a large dataset with approximately 16,185
records of car images. The Oregon wildlife dataset [119] is collected from Oregon in 2019.
The dataset is open source and published on Kaggle for easy access. It contains 2029 image
instances. In the same year, 2019, Pothole image dataset [117] is collected by scraping
online images.

Additionally, object detection is further being applied to Kangaroo dataset (https:
//www.kaggle.com/hugozanini1/kangaroodataset, accessed on 14 August 2021) and
Serengeti dataset (https://lila.science/datasets/snapshot-serengeti, accessed on 20 Septem-
ber 2021). In 2020, 313 images of Kangaroo are scraped online to collect a Kangaroo

https://www.kaggle.com/hugozanini1/kangaroodataset
https://www.kaggle.com/hugozanini1/kangaroodataset
https://www.kaggle.com/hugozanini1/kangaroodataset
https://lila.science/datasets/snapshot-serengeti
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dataset (https://www.kaggle.com/hugozanini1/kangaroodataset, accessed on 14 August
2021). Later, the images are annotated to build machine learning pipelines for object de-
tection. Object detection achieves tremendous results on this dataset when applied by
Yi [41]. In addition, other machine learning tasks such as classification, segmentation,
and localization may apply to this dataset. Another fundamental dataset is the Serengeti
dataset (https://lila.science/datasets/snapshot-serengeti, accessed on 20 September 2021)
which contains 7.1 million images collected by conservationists in 2010 in Tanzania. It
contains a variety of animal species used to mitigate WVCs when modeled with machine
learning. Some works by Marco et al. [121] and Sadegh et al. [122] design object detection
algorithms that detect and count animals in wild reserves. The image dataset YOLOv3
achieves high accuracy on an image localization task by Redmon et al. [123]. Moreover,
the dataset contains images of animals used to mitigate WVCs. In 2020, 1000 instances of
Cheetah, Hyena, Jaguar and Tiger dataset (https://www.kaggle.com/c/swdl2020/data,
accessed on 1 September 2021) are collected by experts. This dataset has a good sample
size, prompting us to recommend tasks such as object detection, localization, classification,
and segmentation.

Other image datasets such as YOLOv3 (https://pjreddie.com/darknet/yolo/, ac-
cessed on 9 December 2021) and Waymo open dataset (http://www.waymo.com/open,
accessed on 11 December 2021) have performed with acceptable results in localization, and
detection and tracking tasks, respectively. YOLOv3 (https://pjreddie.com/darknet/yolo/,
accessed on 9 December 2021) dataset used localization techniques [123] to mitigate WVCs.
Waymo open dataset [124] (http://www.waymo.com/open, accessed on 11 December
2021) is a state-of-the-art image latest image dataset for autonomous driving. The dataset
contains 1150 scenes, each of which spans 20 s. It is composed of images of calibrated
high-quality LiDAR and camera data. The tasks that use this dataset are detection and
tracking.

Sound dataset such as wildlife–train collisions data [125] are vital in mitigating WVCs.
This particular dataset is collected from different sensors whenever a train approaches
a hotspot area. The train uses an approach detector which uses vibrations in the rail to
detect trains and creates a warning system. When the warning activates, animals leave the
railway, hence mitigating roadkill cases.

We find that some state-of-the-art datasets, such as those used in autonomous cars, do
not capture animals as a sample in the training examples, e.g., Kitti dataset [126]. Because
of this, there is a need for a balanced, fair dataset for detecting animals. This balanced,
unbiased dataset increases the accuracy of detecting animals in autonomous vehicles’ ADSs.
Other systems such as break-the-beam, area-cover, and driver assistance can embrace such
image datasets highlighted in Table 8.

https://www.kaggle.com/hugozanini1/kangaroodataset
https://lila.science/datasets/snapshot-serengeti
https://www.kaggle.com/c/swdl2020/data
https://pjreddie.com/darknet/yolo/
http://www.waymo.com/open
https://pjreddie.com/darknet/yolo/
http://www.waymo.com/open
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Table 8. Summary of datasets that are used in mitigating WVCs showing types of dataset, task (X means task is performed on data and × means a task we have
proposed that can be performed on data and no work in the literature has performed the task), collectors, collection period, number of instances, and country (−
means authors did not state data collection period, instances, and country).

Dataset Type of Data Task Collectors Collection Period #Instances Country Ref Works

Animal-related crash data [113] Time series
• Prediction ×
• Forecasting ×
• Classification ×

Experts 2001 to 2007 0 to 4285 per year Australia None

Cheetah, Hyena, Jaguar and Tiger dataset (https:
//www.kaggle.com/c/swdl2020/data,
accessed on 1 September 2021)

Images

• Object detection ×
• Classification ×
• Segmentation ×
• Localization ×

Experts 2020 1000 − None

Data on roadkill [114] Time series
• Prediction ×
• Forecasting ×
• Classification ×

Experts 2007 to 2018 1436 Kenya None

Kangaroo dataset (https://www.kaggle.com/
hugozanini1/kangaroodataset, accessed on 14
August 2021) Images

• Object detection X
• Classification ×
• Segmentation ×
• Localization ×

Kaggle 2020 313 Scraping online Yi [41]

Oregon wildlife dataset [119] Images

• Object detection X
• Classification ×
• Segmentation ×
• Localization ×

Kaggle 2019 2029 Oregon Fan et al. [120]

Pothole image dataset [117] Images

• Object detection X
• Classification ×
• Segmentation ×
• Localization ×

Kaggle 2019 618 Scraping online Fan et al. [120]

Roadkill data [115] Time series
• Prediction ×
• Forecasting ×
• Classification ×

Experts 1990 to 1991 183 Tanzania None

Roadkill dataset [116] Time series
• Prediction ×
• Forecasting ×
• Classification ×

Citizen science 2011 to 2014 2642 South Africa None

Serengeti dataset (https:
//lila.science/datasets/snapshot-serengeti,
accessed on 20 September 2021)

Images

• Object detection X
• Classification ×
• Segmentation ×
• Localization ×

Experts 2010 7.1M Tanzania Marco et al. [121],
Sadegh et al. [122]

https://www.kaggle.com/c/swdl2020/data
https://www.kaggle.com/c/swdl2020/data
https://www.kaggle.com/hugozanini1/kangaroodataset
https://www.kaggle.com/hugozanini1/kangaroodataset
https://lila.science/datasets/snapshot-serengeti
https://lila.science/datasets/snapshot-serengeti
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Table 8. Cont.

Dataset Type of Data Task Collectors Collection Period #Instances Country Ref Works

Snake roadkill [39] Time series
• Prediction X
• Forecasting ×
• Classification ×

Citizen science 2006 to 2017 >40,000 Taiwan Yue et al. [39]

Stanford cars dataset [118] Images

• Object detection X
• Classification ×
• Segmentation ×
• Localization ×

Kaggle 2018 16185 USA Fan et al. [120]

Waymo open
dataset [124] (http://www.waymo.com/open,
accessed on 11 December 2021)

Images (LiDAR
and camera) • Detection and tracking X Experts − 1150 USA Sun et al. [124]

Wildlife-train collisions data [125] Sounds • Train detection X Experts − 183 Canada Backs et al. [125]

WVC hotspots [112] Time series
• Prediction X
• Forecasting ×
• Classification ×

Citizen science 2014 to 2016 529 Italy Valerio et al. [112]

YOLOv3
dataset (https://pjreddie.com/darknet/yolo/,
accessed on 09 December 2021)

Images

• Object detection ×
• Classification ×
• Segmentation ×
• Localization X

Experts 2018 − USA Redmon et al. [123]

http://www.waymo.com/open
https://pjreddie.com/darknet/yolo/
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6. RQN4: What Types of Machine Learning Algorithms Are Used to Mitigate WVCs?

In 2013, Parikh et al. [127] used MATLAB to implement template matching and motion
detection using the frame difference method to detect birds on the road. While detecting the
motion of objects in the video, denoising for the frame and several frames is initiated on a
two-frame difference. Additionally, researchers perform background subtraction to obtain
a binary image [128] and subtract two frames to attain differencing. These subtractions are
mostly performed pixel wise. This system operates by using stored video and background
subtraction methods. Features extraction is from the stored video and database. Later,
the features generate target and template images which are fed into a template matching
algorithm for detection. Template matching is a technique in digital image processing for
finding small parts of an image that match a template image. While implementing template
matching, authors adopt the concept of normalized cross-correlation. On measuring the
similarity of the images, the results varied from −1 to 1 with 1 meaning that the image is
identical, −1 that the image is the negative of the other one, and 0 that the two immediate
images do not correlate. When the bird is detected, a generated alarm triggers as feedback.
On testing, the background subtraction methods perform well in detecting birds. The
false-positive and false-negative for bird detection are 5.94 and 5.23%, respectively. This
technique had 94% efficiency in detecting birds.

In 2017, Tibor et al. [38] created an animal dataset that consists of 500 different sub-
jects (5 classes with 100 images for each class). The five classes are bear, hog, deer, fox,
and wolf. Recognition and classification of the different animal species using CNN are
successful. Other algorithms compared with CNN in recognition of animals are those such
as: (1) principal component analysis (PCA), in which the PCA reduces the dimensionality
of large datasets by transforming a big set of input variables into a smaller one with almost
all the information obtained in the big set present [129]; (2) linear discriminant analysis
(LDA), which reduces the dimensionality of the data by maximizing the separability among
known patterns [130]; (3) local binary patterns histograms (LBPH), an image recognition
algorithm that uses pixel’s 3 × 3 neighborhood to extract the LBP code and in which the
process involves thresholding the 3 × 3 neighborhood of each pixel with the center value
using mean, median, and center pixel as thresholds [131]; and (4) SVM which classifies
the different species. Results show that the CNN model achieves the best accuracy of 97%
on a bear, 95% on a wolf, 95% on a fox, 93% on a deer, and 91% on a hog. The highest
accuracy scored by other models is 82% on bear and hog by PCA, 83% on a hog by LDA,
87% on wolf by LBPH, and 87% on a bear by SVM as summarized in Table 9. Even though
this study did not test this application on the roads, we highlight that the work is vital in
recognition and could classify animals on roads when integrated with an alert system to
minimize WVC.

Table 9. Compared results of correctly classified animals from an animal dataset with 5 classes
(Results from Tibor et al. [38]).

Accuracy of Correctly Identified Animals for Each Class (%)

Bear Wolf Fox Deer Hog

PCA 82 79 78 76 82

LDA 81 77 78 81 83

LBPH 85 87 83 84 82

SVM 87 864 85 83 81

Proposed CNN 97 95 95 93 91

Antonio et al. [19] developed a methodology that detects animals using animal images
captured by roadside installed cameras. This methodology allows features extraction
of regions of the image and further uses machine learning techniques to classify areas
into two classes: animal and non-animal. In this work, the KNN and random forest (RF)
algorithms achieve acceptable generalization. KNN ranks a test sample according to the
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class of its K nearest training samples and also defined according to a distance metric. RF
generates randomness for a model when the trees grow. Instead of finding the best feature
of splitting a node, it looks best among a random subset of resources. Results show that
KNN had a slightly higher accuracy of 0.6243 when compared to RF with an accuracy of
0.6219. However, adoption of more robust machine learning models is vital to help achieve
accuracy greater than 0.6243.

In 2019, mobile mapping system 1 was upgraded to mobile mapping system 2 in
Portugal [34]. Mobile mapping system 2 includes state-of-the-art deep learning image
classifiers such as (1) VGG16, a CNN model with a 16 weight deep layers network of a stack
of convolutional layers, fully connected layers, softmax layers, and rectified linear activation
function [132], (2) VGG19, which contains 19 weight network layers of 16 convolutions
and 3 fully connected layers, in which an image passes a stack of convolutional layers,
max-pooling layers, fully connected layers, softmax layers, and rectified linear activation
function to be recognized [132], (3) ResNet50, a 50 layer residual network stacked and
trained for a particular task, it learns many features at the end of its layers using skip
connections, and the residual is a subtraction of a feature learned from an input of a
layer [133], (4) Inception-V3 which modifies the previous inception models by using less
computational power [134], and (5) Xception, a deep CNN architecture that depends on
depthwise separable convolutions layers. Depthwise separable convolutions are composed
of depthwise and pointwise convolution [135]. These image classifiers tested on dead
amphibians and birds have achieved tremendous results. Real and controlled surveys
help to evaluate the system’s performance. Controlled surveys use a dataset of the dead
specimen from the University of Evora, and researchers conduct real surveys on the national
roads of Evora in real-time. In real surveys, detecting dead species is approximately 78% of
the amphibians and birds on Evora roads, with a false negative of 22% and roughly 17% of
false positives. Controlled surveys detections are between 63.3 and 80% of animals. The
false positives are between 17.4 and 24% and false negatives between 20 and 36.7%. In
East Asia, mortality rates of different species of snakes dataset are citizen-collected from
Taiwan [39] as shown in Table 8. The maximum entropy environmental niche modeling
helps in predicting the snake roadkill. This method finds the probability distribution that
best fits data [136]. Results show that patterns across snake species differed in habitat use,
foraging behavior, and taxonomic group. Roadkill sightings are highest in forests and
strips of farmland or shrubland that cut through forests; these areas likely support high
snake abundances or dispersal activity. Sightings are lowest in urban areas, likely because
of unfavorable habitat conditions. Road density has little influence on roadkill sightings.
Dense roads may be associated with lower habitat quality, hence containing fewer snakes.
To achieve high accuracy in mitigating snake roadkill efficiently, considerations of natural
history and landscape factors are vital.

In 2020, a dataset composed of various image samples is split into 75% train and
25% test and trained on a CNN vision algorithm [40]. The vision algorithm detects and
classifies a cheetah at 79% accuracy and an elephant at 86% accuracy. It uses a four-layer
approach to train the input images, e.g., convolutional layer that extracts features from
an input image, rectified activation function, pooling layer, and fully connected layer.
In the same year, Yi et al. [41] innovated and developed a roadkill alert system called
ROOD. This system alerts drivers of high-risk areas before they encounter animals. It
does this by detecting dead animals on the road and sending signals to drivers by using
LED lights and vibration to detect the roadkill. If the driver detects the roadkill as a
true positive, the driver sends the GPS location and photos back to the database. The
reported GPS location sets up an instant alert to the nearby drivers, and the location
is marked a high-risk area based on the collision rate. The dataset used in this study
is YOLOv3 (https://pjreddie.com/darknet/yolo/, accessed on 9 December 2021) and
Kangaroo dataset (https://www.kaggle.com/hugozanini1/kangaroodataset, accessed on
14 August 2021) for training the YOLOv3 algorithm [123]. The algorithm uses residual block,
bounding box regression, and intersection over union techniques. The image is divided into

https://pjreddie.com/darknet/yolo/
https://www.kaggle.com/hugozanini1/kangaroodataset
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many grids of equal dimensions for the residual blocks. Every grid cell will detect objects
that appear within them. For example, if an object center appears within a specific grid cell,
this cell will be responsible for detecting it. The bounding box outlines and highlights an
object in an image. The bounding box attributes are width, height, class (for example, lion,
elephant, etc.), and bounding box center. YOLOv3 uses a single bounding box regression
to predict objects’ height, width, center, and class. Later, the algorithm represents the
probability of an object appearing in the bounding box. Intersection over union is a metric
in localization that describes how boxes overlap. Each grid cell is responsible for predicting
the bounding boxes and their confidence scores. High performance is when the intersection
over union is equal or near to 1, and poor performance is when the intersection over union
is equal to 0 or closer to 0. The study allows road authorities and biologists to respond
to the collisions immediately and assists in planning road infrastructure improvements.
This system was not installed on real cars so that each vehicle turns into a peri-urban
citizen. Adequately, this research suggests three potential directions for mitigating roadkill:
changing animals’ behavior, improving road infrastructures, and changing driver behavior.

In summary, this section discusses works that use machine learning algorithms to
mitigate WVCs as shown in Table 10. Figure 6 captures the intelligent systems and the dif-
ferent tools and devices integrated into these intelligent systems to mitigate WVCs. We also
note in Figure 6 the various types of machine learning algorithms currently implemented
to detect animals and to mitigate WVCs. Moreover, we find that most machine learning
algorithms used to detect animals in wildlife do not mitigate WVCs but monitor and count
species. Besides, there is non-exhaustive research on mitigating WVCs using reinforcement
learning agents. As well, no identified research is exhaustive on the integration of machine
learning with ADSs such as area cover and BCADS. In Section 7, we discuss issues arising
from the review and suggestions on filling in the gap.

ANIMAL DETECTION SYSTEMS AND
MACHINE LEARNING METHODS THAT

PREVENT WILDLIFE VEHICLE COLLISIONS

MACHINE LEARNING
METHODS

AREA COVER
SYSTEMS

BREAK-THE-BEAM
SYSTEMS

OTHER
ANIMAL

DETECTION
SYSTEMS

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

ENSEMBLY
LEARNING

CONVENTIONALS

DEEP
LEARNINGPROBALISTIC

Active infrared sensors
Passive infrared sensors
Passive video sensors
Active microwave sensors

Laser signals
Infrared signals
Microwave radio signals

KNN
PCA
Feature extraction
Frame differencing
Template matching
LDA
LBPH

Maximum entropy
Environmental niche
Modeling

Buried cable detection
Road-kill detection
Mobile mapping systems
Driver assistants
Autonomous vehicles

Random forest

SVM

CNN
YOLOV3
Xception
VGG16
VGG19
ResNet50
Inception
Mask R-CNN
Mobile Net-SSD

Figure 6. Summary of existing intelligent systems and/or machine learning methods that pre-
vent WVCs.
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Table 10. Comparison of machine learning methods used to mitigate WVCs.

Reference Year Method Data Application Results Strengths Weakness

Parikh
et al. [127] 2013

• Feature extraction
• Frame

differencing
• Template

matching
algorithm

• Videos of birds
• Target images
• Template images

• Real-time
application

• A 94% accuracy in
detecting birds

• A 5.94 % false positive rate
for bird detection

• A 5.23% false negative rate
for bird detection

• Bird detection with high
accuracy

• This real-time system can be
adapted to detect large animals
before they enter the road to
help mitigate WVCs

• May help to save crops in farm
from animals, hence mitigating
human–wildlife conflicts

• System still experiences false detections

Tibor
et al. [38] 2017

• CNN
• PCA
• LBPH
• SVM
• LDA

• Images of wolf, bear,
deer, fox, and hog

• Animal
recognition
system

• Highest accuracy scored
models: 97% on bear by
CNN, 82% on bear and hog
by PCA, 83% on hog by
LDA, 87% on wolf by
LBPH, and 87% on bear by
SVM

• Highly predicted the class labels • No domain applicability stated
• Failed to classify some animals

Antonio
et al. [19] 2019

• KNN
• Random forest • Synthetic images • Simple ADS

• KNN accuracy is greater
than random forest

• Method is able to identify
animals on the road

• Dataset was too small
• Images used are not real-life
• The system is not deployed and tested

on roads
• The accuracy of the system was slightly

above average

Guedes
et al. [34] 2019

• CNN
• VGG16
• VGG19
• ResNet50
• Inception
• Xception

• Images of amphibians
and birds

• Mobile
mapping
system 2

• Detects 78% amphibians
• Overlooked 22% birds
• A total 17% false positives
• The algorithm classified

37.1% of the detected
animals to the species level
(the remainder was
classified as “others”)

• Mobile mapping system 2 better
than previous system mobile
mapping system 1

• High detectability
• Detects small animals

• It still requires human intervention to
determine if the animal is alive or
road-killed

• The weather conditions may affect the
images’ quality

• The system is not suitable to use at
night: there is no light system as in the
previous version

• A high storage capacity is necessary
(the tests originated 1.65 terabytes of
images)

• Specialized people needed for image
processing and animal identification

• A workstation is required for
computing heavy data
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Table 10. Cont.

Reference Year Method Data Application Results Strengths Weakness

Yue
et al. [39] 2019

• Maximum
entropy
environmental
niche modeling

• Roadkill snakes images
• Snake

roadkill
mitigation

• Detected road-killed snakes
• They sighted patterns across

snake species differing in
habitat use, foraging behavior,
and taxonomic group

• Natural history and landscape factors
contribute a lot to the increase in
number of snake roadkill

Banupriya
et al. [40] 2020 • CNN

• Wildlife images, e.g.,
elephants and cheetahs

• Animal
detection

• The model detects a
cheetah at 79% accuracy
and an elephant at 86%

• Able to classify animals
correctly with a good accuracy

• No warning to the driver about the
detected animal

• Algorithm was not tested on roads

Yi [41] 2020 • YOLOv3

• Kangaroo
dataset (https://www.
kaggle.com/hugozanini1
/kangaroodataset,
accessed on 14
August 2021)

• YOLOv3

• ROOD
System

• Developed a roadkill alert
system that mitigates
roadkill and alert drivers of
high risk areas

• Data collected help policy
makers, road authority, and
biologists to respond to
collisions

• This system is not installed on real cars

https://www.kaggle.com/hugozanini1/kangaroodataset
https://www.kaggle.com/hugozanini1/kangaroodataset
https://www.kaggle.com/hugozanini1/kangaroodataset
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7. RQN5: What Are the Limitations of the Reviewed Studies in Mitigating WVCs?
What Are the Proposed Solutions?

Many attempts highlighted in Sections 4 and 6 minimize WVCs. To date, roadkill
continues to be rampant due to prevailing conditions in Section 3 that contribute to the
occurrence of WVCs. Moreover, implemented solutions discussed in Sections 4 and 6 are not
effective in reducing roadkill due to high rates of false detections. We highlight, in-depth,
the issues and challenges arising from the review and the way forward as summarized in
Table 11.

Table 11. Summary of issues, challenges, and future research directions.

Current Issues and Challenges
from the Review

• Current systems are not suitable for small and medium-sized animals
• Machine learning algorithms do not detect individual species and their behaviors

but generalizes species
• High false detection of existing systems
• Some systems fail to alert drivers about the presence of animals on the road
• Failure to detect hotspot areas
• Investigations on ethics in AI in wildlife conservation is not explored
• Current ADSs are expensive to implement
• ADSs do not exist in South Africa and Africa
• Limited data sets for training AI models
• MMS needs human intervention to detect small dead animals
• Landscapes with curves, e.t.c. need more hardware tools
• Driver ignorance on the usage of roads and ADSs

Proposed Future Research
Directions

• Design matching algorithms that detect species vulnerable in specific season and
month of the year

• An update and upgrade of the existing system is essential
• Improved vision algorithms to detect each species
• Development of other new and improved efficient solutions
• Incorporating connectivity in wildlife reserves with ADSs as a consideration
• Sensitizing drivers about ADSs
• Enable open data for research in wildlife conservation
• Develop safe, reliable, and robust ADSs that is fair and accountable
• Venture into other machine learning methods and ADSs, e.g., geophones, UAVs,

GPS, and VHT tags. Integrate them to work towards mitigating WVC
• Development of real-time ADS
• Conduct exhaustive primary studies on factors and sub-factors contributing

to WVC
• Use 3D point cloud data sets in mitigating WVC
• Detecting WVC hotspots

7.1. Current Issues and Challenges Arising from the Review

Although these systems record tremendous results in mitigating WVCs, they still
experience enormous issues and challenges:

• Most current ADSs are not suitable for small- and medium-sized animals. We note
that small animals are killed more by WVCs than big animals, which requires urgent
attention in implementing tools that mitigate WVCs for all animal species. Most
solutions concentrate on creating solutions that detect large animals, leaving the
non-large animals vulnerable to roadkill.

• The machine learning algorithms do not understand each animal species and its be-
haviors but generalize species. Developing machine learning models that understand
and detect animal behavior of each species is vital.

• There is high false detection due to bad weather conditions and thick vegetation cover,
among other factors. The detections are either false positive detections (where the
system reports a detection and there is no animal) or false negative detections (where
the system did not report any detection yet there was a large animal present) or both.

• Some current systems fail to create an alarm to alert the driver whenever the system
detects an animal. In addition, other systems experience delays in detection and
sending alerts.

• The embedded solutions implemented so far are usually expensive. There is no
low-cost hardware that mitigates WVCs.

• There is a gap in the investigations of fairness in Artificial Intelligence (AI) [137],
without excluding AI for the wildlife conservation sector [138]. Auditing and explana-
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tion of machine learning algorithms is vital to ensure algorithms observe fairness in
machine learning.

• ADSs do not exist in South Africa and Africa and mostly exist in the Northern Hemi-
sphere.

• Limited datasets for training machine learning models to detect animals on the road.
• Mobile mapping systems need human intervention to detect dead amphibians and

birds. Moreover, the system captures poor quality images during bad weather seasons.
• The ignorance of drivers and other road users on the usage of the existing ADSs

greatly limits systems to achieve acceptable results during system testing.

7.2. Future Research Directions and Way Forward

Our review being investigative and interpretive raises opportunities for future research
directions. It does this by identifying challenges in Section 7.1 and then proposes future
research directions. Implementing the proposed solutions as stated in Section 7.1 depends
on the demands of new learning environments. In this section, we discuss the future
research directions as listed below;

• We suggest the design and development of a matching algorithm(s). The algorithm(s)
should match species to season(s) or month(s) of the year when vulnerable identified
species make frequent crossing attempts toward the opposite side of the road. It
is worthy to note that different animal species possess different behaviors during
different seasons. Because of these fluctuations in animal behavior, each animal
species will frequent the roads during different times and seasons. Animal movement
dataset is vital when designing the matching algorithm. This is because the dataset
records location coordinates, animal name, sensor type, and timestamp [139]. Further,
drivers can be sent alerts each time the algorithm matches a specific species to season(s)
or month(s). The notifications should tell the driver that there is a high probability that
a specific species is on the road or near the road. The alerts can be sent on the mobile
client or dashboard through GPS. Besides, these machine learning algorithms can use
factors such as climate to alert the expected presence of animals toward roads during
a specific period of the year. Proposal of using a movement dataset is possible because
this kind of dataset, together with machine learning models such as hidden Markov
models, has shown promising results in classifying animal behavior and estimating
the location of species by GPS telemetry [140].

• We recommend upgrading or updating existing systems. The existing systems may be
modified and integrated with cutting-edge improved vision algorithms to detect each
animal species and classify it with classical animal monitoring system capabilities.
Such a solution will increase the accuracy of the already implemented systems in
preventing WVCs. Most of these current systems implemented are either break-the-
beam, area cover, or buried cable ADSs using sensor technology. However, combining
these sensor technologies with vision algorithms is vital and helps detect specific
individual species, hence minimizing the false detections.

• We propose development of a real-time roadside ADS as shown in Figure 7 in Africa.
This system should monitor and track animals on the road. It is composed of (1) a
power supply, supplying the whole system with power. It supplies the computing
unit, camera, and sensors, (2) a switch to connect all the hardware devices or system,
and (3) photoelectric sensors having an emitter and receiver. The emitter sends a
beam of light to the receiver. When an animal crosses the light beam, the receiver
alerts the emitter about the presence of an animal. It also includes a (4) camera—when
the emitter sensor is alerted of a presence of an animal on the road, it invokes the
camera to take the picture. On taking the picture, the camera saves this information
to the computing unit (5) raspberry Pi, which is configured together with machine
learning algorithms to detect animals on the roads. The computing unit should be
configured with protocol buffers or Python to enable system interconnection. As well
as communication between the hardware and software and (6) warning signal device
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(LED-matrix display), the device is placed on the road for the drivers to read and be
notified if an animal is crossing the road. When the picture of an animal is taken by the
camera, the computing unit processes the images using machine learning algorithms.
The LED-matrix display sends an alert on the highway if it detects the image. The
system can further be implemented as a reinforcement learning agent to operate like
the real-time roadside animal detection proposed system.

• We suggest developing other new, improved, and efficient solutions. The solutions
should be different from the real-time roadside ADS proposed above; such solutions
can be, e.g., (1) a system that extends to send an alert to police in case of a collision to
clear up the road. The notification can be a text message or a mobile application that
pins the location of the accident remains. The driver or stakeholders in the community
can send the location of the accident too. (2) Driver assistants can be modified to use
AI in wildlife conservation where an agent can detect a hotspot based on existing
factors such as forests underpasses. In addition, the agent may predict the collision
of animals and cars in a particular region based on factors such as weather patterns,
among others. (3) Improvement of mobile mapping system 2 and the development of
new solutions that focus on detecting small animals will minimize WVCs.

• Incorporating connectivity in wildlife reserves with ADSs. Connectivity in wildlife is
composed of habitat connectivity which looks at the degree of movement of organisms
or ecology processes, i.e., the more the movement, the more connectivity, and the less
movement, the less connectivity. Landscape connectivity looks at how the landscape
facilitates species movement and other ecological flows. It is important to deploy the
ADS (moveable structure) at a location with high connectivity. These systems will
improve detecting animals since the exact location of system deployment experiences
high animal movement patterns. Such considerations will drastically contribute
to eliminating roadkill. We note that a swift change in the location of moveable
structures to new locations is possible should connectivity change due to different
animal behaviors and change in habitats.

• Sensitizing drivers about ADSs. Training drivers about road usage and also the
presence and usage of the ADS in hotspot areas is vital. This will result in reducing
unnecessary WVCs, which are caused majorly by the ignorance of drivers about the
ADSs on the roads.

• Open data: We recommend that conservation agencies collecting data from these
existing wildlife monitoring tools loosen their rules for accessing this data for research
purposes. Additionally, emphasis must focus on having a fair and balanced open
dataset in wildlife conservation to ease the development of cutting-edge research in
mitigating WVCs.

• Developing safe, reliable, and robust ADSs that use machine learning. The designs
must be fair by ensuring bias is minimized through algorithm audits [141] and other
AI ethics practical implementations. Moreover, the fairly designed algorithms should
reduce privacy and security attacks, e.g., model extraction attack, model inversion
attack, poisoning attack, and adversarial attack on an AI system [142]. Globally,
researchers emphasize technology to be made more human-centric. For AI to be
fair, work on explainability of AI [143,144] is on the rise to minimize challenges
raised by centralized machine learning architectures such as privacy concerns and
failure to explain and interpret the AI models. Additionally, scrutiny of AI algorithms
is escalating due to the mistrust of AI, leading to the high demand for auditing
frameworks [141]. Attempts made help minimize road accidents by applying AI
fairness to the health sector [145]. Moreover, documented guidelines on integrating
AI ethics in wildlife conservation AI systems help researchers consider AI ethics
in wildlife conservation [146]. When embraced in wildlife conservation, all these
attempts mitigate WVCs leading to safe, reliable, and robust ADSs.

• Venture into developing or upgrading existing ADSs and machine learning methods
used in animal detection. Combine these to detect animals and mitigate WVCs. The
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ADSs that detect animals are geophones, UAVs, GPS, and VHT tags. Integrating these
with deep CNN and other machine learning methods used so far in the detection of
wildlife is vital and helps mitigate WVCs.

• Although progress is made in understanding the factors contributing to WVCs, there
is still a paucity of data and information associated with not only factors but also sub-
factors leading to the occurrence of WVCs. We propose future research to exhaust both
positive and negative factors and sub-factors contributing to WVCs, hence generating
enough literature for the secondary studies. Factors reviewed are climate change and
season, animal behavior, human behavior, and road features. Proposed sub-factors
under road features are road-type, width, and curve. For animal behaviors, we propose
innate behaviors and learned behaviors. Sub-factors for climate change, season, and
human behaviors are vital when exploring how these factors and sub-factors lead to
WVCs. The factors that lead to WVCs have commonly been non-exhaustively studied
in isolation. However, a more integrated approach in primary studies is needed to
examine the factors leading to WVCs.

• State-of-the-art point cloud datasets together with machine learning are achieving
acceptable results and are good in detecting, classifying, and segmenting objects on
the road. However, these datasets are not used comprehensively in mitigating WVCs.
This gap needs to merge since a huge data collection of point clouds data samples by
the LiDAR sensors act as the eye of self-driving vehicles providing a 360-degree view
of their surroundings to enable safe driving and hence less WVCs.

• Detecting WVC hotspots helps to inform planning to improve driver and wildlife
safety. WVC hotspots can be detected using machine learning. Whenever a driver or
any other stakeholder is involved in an accident or is in contact with an accident, they
can take a picture and save the details on a server using a mobile application. The
system’s interface should capture the image and location of the accident. Moreover,
WVC hotspots detection may be by collecting road features image and video data,
training computer-vision machine learning models, and deploying such models on
the car dashboard. Whenever a driver is in the car and arrives at the hotspot area, the
system should be able to alert the driver to reduce the speed.

Figure 7. A proposed real-time roadside ADS with a computing unit that has machine learning
models to detect animal species captured by the camera unit.

8. RQN6: How Applicable and Feasible Are the Proposed Solutions?

The proposed solutions are applicable because they come as a solution to minimize the
issues and challenges arising from the review, hence mitigating WVCs. These solutions are
applicable because of the following advantages they come with as illustrated in Figure 8:

• Road damage: On implementing the proposed solutions, we attain good results such
as (1) minimizing road damages caused by rampant WVCs between animals and cars
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in hotspot areas, (2) minimizing costs that are associated with the road users such as
transport fares charged to passengers as well as the rate at which the car components
need replacement, (3) improvement on the market for farmer’s products by limiting
road damage, which increases mobility and eases farmers in accessing markets for
their products, (4) eases the transportation of imports and exports which later improve
the country’s gross domestic product, and (5) the citizens will start experiencing less
road traffic in hotspot areas.

• Accident car collision: The proposed solutions minimize not only the escalating
number of WVCs but also the damage they impart on properties. Properties such
as cars, items within the cars, and properties usually near the collision sites such as
bridges, signposts, electricity poles, and much more wear out easily, and others become
diminished due to the damage caused by WVCs. In the long run, implementing these
proposed solutions leads to low costs as fewer properties are damaged, lost, and the
frequency of animal carcasses minimized.

• Human prevention: The innovations proposed prevent lives of all the different stake-
holders. Usually attained by minimizing death that frequently occurs due to collisions
in hotspot areas. Stakeholders are such as insurance companies, highway agencies,
citizens on social media, and any other persons that use road transport.

• Animal prevention: Preventing animals from road damage and death is vital. The
proposed solutions ensure drivers are aware of the existence of animals on the road,
which later limits collisions and minimizes the mortality rates of these animals.

• Environmental damage: The proposed solutions will minimize pollution caused by
WVCs. The car collision parts and fuel smoke from cars pollute the environment.
When minimizing pollution, climate change, and global warming, reduction in the
extinction of animal species is limited.

Figure 8. Summary to justify the applicability of the proposed solutions.

The proposed systems in Section 7.2 contain machine learning functionalities. The
functionalities aid in minimizing WVCs. In determining the practicability and feasibility of
the proposed solutions, we propose and discuss a continuous general product development
lifecycle in Figure 9. The workflow proposes steps to follow to determine the feasibility of
machine learning systems, i.e., whether the project defined is feasible or not. To conduct
a feasibility analysis for any machine learning project, product managers should follow
the proposed workflow from product discovery, feasibility, product execution to product
delivery. This workflow enables project managers to guide team members during the
continuous process of product discovery to product delivery. In Figure 9, we describe the
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product development lifecycle steps to follow when developing machine learning models
and products. It has three continuous phases, product discovery, product execution, and
product delivery, which are vital [147].

• Product Discovery: The discovery phase helps product managers to assess good ideas
to consider for the final project. The output of the product discovery is the validated
product backlog. The validated product backlog states four risks that every product
needs to consider and address. Risks are tackled upfront rather than at the end. In
modern teams, the risks are tackled before deciding on building anything. These risks
include: (1) value risk, whether customers will buy the product or users will choose to
use the product, (2) usability risk, whether users can figure out how to use the product,
(3) feasibility risk, whether our engineers can build what we need with the time, skills,
and technology we have, and (4) business viability risk, whether the solution also
works for the various aspects of our business.

• Feasibility: The key objective is to evaluate all key factors relevant to a defined project
after tackling the significant four risks. The components may be technical and non-
technical, but all of these aid in predicting the likelihood of project success. When the
non-technical factors are acceptable in the feasibility analysis, technical aspects are
further processed and are modeled to quickly obtain a baseline model performance
for the task defined while showing measurable progress on the selected baseline.
The baseline model developed may rapidly use hyperparameter tuning to obtain
different model architectures using an iterative process. If engineers work on a novel
solution, the feasibility is more complex than upgrading and updating an existing
system. Finally, the results from the feasibility analysis inform the decision on whether
to proceed to the next step in the product lifecycle, i.e., product execution.

• Product Execution: Whenever the developed feasibility prototypes show that the
performance would likely be acceptable, product managers engage the development
team to execute the idea according to client needs. Products are defined and designed
collaboratively rather than sequentially. In executing the project, the project team may
follow the steps: (1) Define Design Requirements: After the feasibility analysis, project
managers define the requirements of the system. A requirement is a need, functionality,
or characteristic of a system [148]. A functional specification document describes the
requirements to be implemented by the software solution. The document captures
what the software needs to perform to support a user. The design requirements help
product development teams prioritize work and decide what to build next. Following
are two main types of requirements: (a) Functional requirements are those that must be
met to deliver the project and are described from the customer’s point of view, e.g., how
will the customer experience it and/or benefit from it? Specific functional requirements
may define each application in the machine learning domain. Some machine learning
applications are credit card detection, whose functional requirement is a count of
false positives and classification. The functional requirement for classification is a
threshold on a count of low-confidence predictions that require human review and
approval. (b) Non-functional/technical requirements define the system quality and
determine the implementation of the system. Non-functional/technical requirements
are system qualities such as security, accuracy, performance, security, data privacy,
costs, availability, maintainability, operability, and scalability. (2) Model and Product
Development: After defining design requirements, these, together with the selected
aggregated data, act as input to the model and product development phase to build
a baseline model or product. Later, evaluations of model output determine if the
performance is acceptable. If yes, the model and product are deployed and sent to
production. If no, a loop is activated to repeat the process from product discovery to
product delivery

• Product Delivery: The process is continuous and enables delivery of executed products
to the market, meeting the necessary performance, reliability, and fault. This phase
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focuses on implementing a solution that solves an underlying problem. They typically
focus on attaining the expected results.

• Production and Deployment: When the experiments are satisfactory, the model is
deployed and set to production for clients to use.

• Support and Maintenance: This is the last step after model deployment and produc-
tion. It can be challenging when conducting support and maintenance of machine
learning products over time because machine learning is tightly coupled and inte-
grated, meaning it depends on each of the components in the framework. Changes in
one component, feature space, hyperparameters, and learning rate affect the model’s
performance. We need maintenance to track these issues and rectify them before they
go astray.

Even though we find the proposed solutions novel, feasible, and also practical, they
still need more case-by-case justification of the feasibility of each proposed solution. We,
therefore, recommend future studies to verify the proposed systems’ practicability and
feasibility simply because feasibility analysis of a system is different for each project and
location. It is essential to verify feasibility across different continents, countries, domains,
weather conditions, types of animals, and road types. While verifying, the project teams
may develop system prototypes and/or implement product development lifecycles for
software and embedded systems.

Usability Risk

Feasibility Risk

Business Viability Risk

Define Design Requirements

Model and Product Development

Deployment and Production

Support and Maintenance

Feasibility

Value Risk

Objectives

Product  
Discovery

Product 
Execution

Product 
Delivery 

Figure 9. The product development lifecycle for determining feasibility analysis of machine learning
projects (adopted from Cagan [147]).
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In summary, Section 7.1 discusses issues and challenges arising from the review,
Section 7.2 proposes future research directions and a way forward, and Section 8 explains
the applicability of the proposed solutions.

9. Conclusions

The emphasis on avoiding WVCs is a big concern in conservation. In mitigating WVCs,
traditional methods such as underpasses, overpasses, plus fencing have been implemented
and have contributed significantly to the decline of WVC mortality rates. Even when these
traditional methods have recorded positive results in mitigating WVCs, they still have
extreme limitations. These limitations have prompted the rise of ADSs such as area cover,
mobile mapping, break-the-beam, and buried cable systems. These systems can even send
an alert in case of intrusion in the detection area to caution the driver. However, these ADSs
have also registered some limitations such as (1) failure to detect small animals, (2) false
detection of animal species, and (3) ignorance of drivers on-road usage. A few works
have introduced and implemented machine learning algorithms and datasets to help and
overcome these limitations.

This paper aimed at generating rules that analyze how different factors contribute to
WVCs and how the rules integrate machine learning to prevent WVCs. Previous solutions
such as ADSs have contributed significantly to conservation research. In this review, we
have criticized research on factors that influence WVCs, machine learning algorithms,
ADSs, and datasets currently implemented to prevent WVCs. We have highlighted the
issues and challenges arising from the review and proposed future solutions. We also
noted that most of the current systems implemented to mitigate WVCs do not detect small
animals. We suggest developing solutions in Section 7.2 to improve in detecting animals
with a core goal of mitigating WVCs and further justify and determine the feasibility of the
projects using the proposed continuous product development lifecycle.

Finally, we agree that animal detection and animal warning systems have contributed
a positive impact on reducing WVCs. However, more research is needed to address the
wildlife conditions in Africa. The automated systems should be developed and tested
in Africa since Africa has different animal species and weather patterns than the North-
ern Hemisphere.
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