
����������
�������

Citation: Schöffel, M.; Lauer, F.;

Rheinländer, C.C.; Wehn, N. Secure

IoT in the Era of Quantum

Computers—Where Are the

Bottlenecks?. Sensors 2022, 22, 2484.

https://doi.org/10.3390/s22072484

Academic Editors: Himanshu

Thapliyal and Akhilesh Tyagi

Received: 25 February 2022

Accepted: 21 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Secure IoT in the Era of Quantum Computers—Where Are
the Bottlenecks?
Maximilian Schöffel , Frederik Lauer , Carl C. Rheinländer and Norbert Wehn *

Microelectronic Systems Design Research Group, Department of Electrical and Computer Engineering,
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany; schoeffel@eit.uni-kl.de (M.S.);
flauer@eit.uni-kl.de (F.L.); rheinlaender@eit.uni-kl.de (C.C.R.)
* Correspondence: wehn@eit.uni-kl.de

Abstract: Recent progress in quantum computers severely endangers the security of widely used
public-key cryptosystems and of all communication that relies on it. Thus, the US NIST is currently
exploring new post-quantum cryptographic algorithms that are robust against quantum computers.
Security is seen as one of the most critical issues of low-power IoT devices—even with pre-quantum
public-key cryptography—since IoT devices have tight energy constraints, limited computational
power and strict memory limitations. In this paper, we present, to the best of our knowledge, the first
in-depth investigation of the application of potential post-quantum key encapsulation mechanisms
(KEMs) and digital signature algorithms (DSAs) proposed in the related US NIST process to a
state-of-the-art, TLS-based, low-power IoT infrastructure. We implemented these new KEMs and
DSAs in such a representative infrastructure and measured their impact on energy consumption,
latency and memory requirements during TLS handshakes on an IoT edge device. Based on our
investigations, we gained the following new insights. First, we show that the main contributor to high
TLS handshake latency is the higher bandwidth requirement of post-quantum primitives rather than
the cryptographic computation itself. Second, we demonstrate that a smart combination of multiple
DSAs yields the most energy-, latency- and memory-efficient public key infrastructures, in contrast
to NIST’s goal to standardize only one algorithm. Third, we show that code-based, isogeny-based
and lattice-based algorithms can be implemented on a low-power IoT edge device based on an
off-the-shelf Cortex M4 microcontroller while maintaining viable battery runtimes. This is contrary
to much research that claims dedicated hardware accelerators are mandatory.

Keywords: post-quantum cryptography; low-power secure IoT; TLS; key-encapsulation mechanisms;
digital signature algorithms

1. Introduction

The Internet of Things (IoT) is disruptively changing many areas of modern life.
Whether they are meant to make smart homes more comfortable, to facilitate medical-
and healthcare or to enhance industrial processes in the Industrial IoT (IIoT), the number of
applications that utilize IoT devices is growing extensively. However, the IoT also bears
numerous risks, and security is seen as one of its most critical issues, especially since the
number, effort and capabilities of malicious attacks on IoT infrastructures are growing in
proportion to the number of internet-connected devices. In this context, the exploit that was
recently found in the log4j-library has shown how vulnerabilities in widely used software
affect many sectors. Currently, information security is facing another threat in widely used
software libraries due to the recent advances in building Quantum Computers (QCs).

Secure communication is essential for many IIoT applications, as the data that is
exchanged via the internet may contain safety-critical, infrastructural information as well as
industrial secrets [1]. In the vast majority, this security is established through cryptographic
protocols such as Transport Layer Security (TLS) and relies on the combination of symmetric

Sensors 2022, 22, 2484. https://doi.org/10.3390/s22072484 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8390-5339
https://orcid.org/0000-0001-5935-4872
https://orcid.org/0000-0001-5132-3799
https://doi.org/10.3390/s22072484
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072484?type=check_update&version=1

Sensors 2022, 22, 2484 2 of 21

cryptography and Public Key Cryptography (PKC). These public key cryptosystems are
hard to break on classical computers, but the theoretical basis to solve their underlying
mathematical problems in polynomial time on a QC was introduced almost 30 years ago [2].
While powerful QCs were not available back then, it is expected that cryptographically
relevant QCs will be available by the end of this decade [3].

Thus, the US National Institute of Standards and Technology (NIST) started a Post-Quantum
Cryptography (PQC) standardization process to find new, quantum-computer-resistant pub-
lic key algorithms for digital signature algorithms (DSAs) and key-encapsulation mechanisms
(KEMs) [4]. During this process, candidates are evaluated based on their security assump-
tions and performance. Therefore, it is essential to explore the impact of key parameters
such as computational complexity and bandwidth requirements of PQC algorithms in
different, representative applications such as low-power, secure IoT. In addition, it is very
important to know in time whether the state-of-the-art (SotA) low-power IoT hardware can
fulfill the computational requirements of these new algorithms under the given energy
constraints, or whether dedicated hardware accelerators will be required, as proposed
in [5–7].

A holistic system view of the complete application, including the different layers of
the protocol stack, is mandatory for a conclusive evaluation of the new PQC algorithms.
A first investigation of post-quantum KEMs in low-power IoT devices has been carried
out in [8], however, not all KEMs were included in this investigation, and some that were
included have been updated recently. Furthermore, no post-quantum, secure DSA and
public-key infrastructures (PKIs) were considered, leaving the communication susceptible
to QC-based man-in-the-middle (MITM) attacks. In this paper, we close this knowledge
gap and explore the overhead in energy demand and latency caused by the migration
from conventional cryptography to PQC in a representative low-power IoT infrastructure
that employs Bluetooth low energy (BLE), IPv6 over low-power wireless personal area network
(6lowPAN), Transmission Control Protocol (TCP), TLS and Message Queuing Telemetry Transport
(MQTT).

On the client side, we implemented post-quantum security on a low-power IoT edge
device by extending mbedTLS (https://github.com/ARMmbed/mbedtls, accessed on
24 February 2022), a standard TLS library for embedded systems, to enable the seamless
integration of PQC into the TLS 1.2 handshake protocol. On the server side, we updated
OQS-OpenSSL (https://github.com/open-quantum-safe/openssl, accessed on 24 Febru-
ary 2022) with the latest Round 3 KEM versions. Additionally, we extended the library
to support post-quantum DSAs and certificates. We measured the latency, energy con-
sumption and memory requirements of post-quantum-secured TLS handshakes on the IoT
edge device using the protocol stack described above and compared them to traditional
handshakes based on elliptic curves.

The US NIST has announced that more performance data of PQC applications to
internet protocols is necessary in the course of standardization [4]. This paper fills this gap
with the following new insights:

• We carry out a holistic analysis of the latency and energy demand of the TLS hand-
shake with post-quantum DSAs that are suitable for IoT and with all NIST Round
3 KEMs (“Finalists” and “Alternate Candidates” except for Classic McEliece). Our
analysis shows that the communication bandwidth requirements (the sum of public
key and ciphertext or signature) and memory footprint–rather than the cryptographic
computations–are the major bottlenecks of PQC.

• We deploy new PKIs and show that, in contrast to NIST’s idea of standardizing one
DSA, a combination of different post-quantum DSAs that exploits their individual ben-
efits yields the most energy-efficient implementation for low-power IoT environments.

• We calculate the battery runtime for a representative IoT application with an off-
the-shelf ARM Cortex M4 microcontroller and show that TLS-secured edge devices
deployed with post-quantum DSAs and KEMs can achieve battery runtimes compara-
ble to those deployed with conventional PKC.

https://github.com/ARMmbed/mbedtls
https://github.com/open-quantum-safe/openssl

Sensors 2022, 22, 2484 3 of 21

To the best of our knowledge, this is the first work that provides a broad system
view of a representative, fully post-quantum-secured, low-power IoT application with
different PKIs, a representative infrastructure and including the complete protocol stack in
the investigation.

This paper is structured as follows. In Section 2, we expound the background of
TLS, explain how TLS can be broken with QCs and highlight the fundamentals of PQC.
In Section 3, an overview of related work is provided. In Section 4, our IoT evaluation
platform is presented. In Section 5, the measurement results are shown and evaluated. In
Section 6, we summarize our key observations.

2. Background

In this section, we first explain the importance of security and, in particular, cryp-
tography in the IoT context. The operating principles of TLS and PKI are then explained,
with a focus on how they can be broken by quantum computers and the consequences of a
security breach. Finally, we will show how this problem can be solved with PQC.

2.1. IoT Security

In the context of the IoT, security poses a challenge due to complex, application-specific
infrastructures, the lack of regular in-field device updates and the limited computational
power and memory resources of IoT nodes. Furthermore, the strict energy constraints
of battery-powered edge devices commonly used in IoT and the requirement for a short
time-to-market enforced by competitive pressure often result in drastic security risks.

This is particularly concerning since the past has shown that security breaches can
lead to serious financial consequences, the loss of customer confidence and, in the worst
case scenario, the loss of life. IBM found that the average cost of a data breach in 2020
was up to $7.13 million, depending on the industry sector, and for “mega breaches” IBM
even estimates the cost at nearly $400 million [9]. In [10] hackers were able to gain control
over essential car components, including the engine, the brake system and the steering
wheel, due to the lack of authenticity checks of a firmware update mechanism which was
used for malicious code insertion. In [11], hundreds of thousands of IoT devices were
infected with malicious code to build botnets that were used for distributed denial-of-service
(DDoS) or cryptocurrency mining. Although these are worst-case scenarios, the meaning of
privacy, integrity and authenticity in IoT is hard to overestimate. Even lightweight sensor
devices collect sensitive data when they are deployed in sensible, private environments, in
industrial applications or in critical infrastructure [1]. Therefore, the usage of cryptography
to provide this security should be considered essential.

2.2. TLS

TLS is a cryptographic protocol that protects communications against eavesdropping,
tampering and message forgery and is deployed in many areas, including Hypertext Transfer
Protocol Secure (https) [12]. PKC is utilized to provide authentication and to solve the secret-
key distribution problem by an initial establishment of a master secret. This master secret
is subsequently used to create the keys to encrypt the application data with symmetric
cryptography, including message authentication codes (MACs) to ensure integrity.

The TLS standard comprises multiple protocol layers that are used during a connec-
tion [12]. This paper focuses on the TLS handshake protocol, as it uses the PKC that is
susceptible to QC attacks. The handshake protocol is used to establish a cryptographically
secured connection, including authentication of the communication partners, agreeing on a
common master secret and the instantiation of security parameters.

Its procedure is shown in Figure 1. The relevant steps involving PKCs are explained
below, as they need to be modified to be resistant to QCs. A full description of the protocol
can be found in [12]. For the sake of simplicity, we only expound the high security setup that
deploys ephemeral keys with mutual authentication to provide perfect forward secrecy (PFS).

Sensors 2022, 22, 2484 4 of 21

Server Client
ClientHello

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Encrypted
Application Data

Encrypted
Application Data

Handshake Protocol

Record Protocol

Figure 1. Procedure of the TLS 1.2 handshake as defined in [12].

In this setup, a DSA is used to prove the authenticity of each communication part-
ner and to protect the communication against MITM attacks, while a key-establishment
algorithm builds the pre-master secret. The procedure for an Elliptic Curve Diffie–Hellman
Ephemeral (ECDHE) key-exchange is displayed in Figure 2 from a top-level view. Both
communication partners generate a pair of keys and exchange their public keys. Then, they
use their own secret key and the opposing, received public key to calculate a shared secret,
which results in the same value for server and client due to the mathematical properties
of ECDHE. For an attacker, it would be sufficient to have access to either skC or skS to
calculate the same shared secret and break the cryptosystem; however, refactoring skS from
pkS requires solving the elliptic curve discrete logarithm problem, which is assumed to be
intractable on conventional computers.

Figure 2. ECDHE working principal in the TLS 1.2 handshake: respectively, pkC and pkS denote the
public key of client and server, skC and skS the secret key of client and server, and ss the shared secret.
The green-marked variables may be publicly known while the red ones have to remain secret.

The protocol in Figure 2 is still susceptible to an MITM, as it can intercept the
KeyExchange messages and send their own public key to client and server. Therefore,
servers and clients use DSAs along with additional pairs of long-term keys to prove their
identity and prevent attackers from intercepting and tampering with their messages by
creating verifiable digital signatures. In the TLS handshake, the server uses its secret key
belonging to DSA to sign the public key belonging to ECDHE in the ServerKeyExchange

Sensors 2022, 22, 2484 5 of 21

message, while the client verifies this signature with the server’s public key, what had
been previously transmitted in the Certificate message as part of the server certificate.
In this message, the server’s certificate chain is transmitted to establish a chain of trust
containing the server’s own certificate (and optionally several intermediate certificates
depending on the PKI used) and a root certification authority (CA) certificate (Figure 3).
The client then proves its identity to the server in the CertificateVerify message by
calculating the hash value of all handshake messages sent so far and signing them with
its DSA. Today, the most-used DSAs are Elliptic Curve Digital Signature Algorithm (ECDSA)
and Rivest–Shamir–Adleman (RSA).

Figure 3. Example for a certificate chain and its application to the TLS handshake.

2.3. Breaking TLS with Quantum Computers

The operating principle of QCs differs significantly from that of classical computers
and is based on the usage of certain quantum mechanical effects. One of the biggest
differences is the unit of information. Unlike classical computers, which use bits that are
always in one of two distinct states (0 and 1), QCs use qubits that can be transformed
into super-positions of states by quantum mechanical operations. This superposition is
coupled with an inherent parallelism of computations in a QC, and, by employing effects
such as quantum entanglement and interference with quantum logic gates, QCs can be
used to efficiently solve certain mathematical problems that are practically intractable on
conventional computers. Currently, QCs are not expected to be either a successor or a
replacement for traditional computers but will most likely be used as hardware accelerators
for them in the near future.

This heterogeneous setup also is the most appropriate one for QC-based attacks on the
PKC because Shor’s algorithm, which theoretically solves the underlying problems of RSA
and ECDSA (prime factorization of large integers and the discrete logarithm) in polynomial
time, is comprised of two different parts [2]. In the first, classical part, the prime factoring
problem is reduced to the problem of finding the order of a group, which is then solved by
the QC in the second part. Although quantum computers are not yet powerful enough for
these attacks, development is progressing rapidly, and it is expected that they will be able
to execute successful attacks by 2031 [3].

In the context of TLS, this provides two different opportunities for attackers, as
described in [8]. The first possibility for attack targets the ECDHE key exchange during
the handshake and can be executed by a passive attacker by eavesdropping on one of the
public keys either in ServerKeyExchange or ClientKeyExchange. Based on the public key,
the attacker computes the corresponding secret key by applying the Shor algorithm and
is thus able to compute the same skS as the client and server. With skS , the attacker can
decrypt all application data that is sent between server and client. This attack can already
be prepared today, as encrypted data can be collected and stored with the assumption that
it can be cracked with a QC in the future (“store now, decrypt later” [13]).

The second possibility targets the DSAs and can be used for an MITM attack that
works as follows. The attacker eavesdrops on one of the certificates which is conveyed
during a TLS handshake and retrieves the holder’s secret key with Shor’s Algorithm from
the public key stored in it. Of these certificates, the root certificate offers the most extensive
possibilities, as its secret key can be used to forge other certificates. Then, the attacker
has all the possibilities of MITM attacks at his disposal as he/she can forge the server’s

Sensors 2022, 22, 2484 6 of 21

signature and use it to alter messages, thus resulting in an entire break of the TLS-implied
security. For example, the attacker may provide the client with his own public key for key
exchange, but signed with the server’s signature, or it may send fake commands. Both
cases can have serious consequences in the IoT, especially if the device is used in critical
infrastructure or in the medical sector.

2.4. Post-Quantum Cryptography

PQC has emerged to find new, QC-resistant PKCs due to the vulnerabilities of state-
of-the-art cryptography. These new PKCs are the subject of a US NIST-conducted stan-
dardization process, which is divided into multiple rounds [14]. The new algorithms are
based on different mathematical problems than conventional PKCs and based on hard
problems over lattices, codes, isogenies, multivariates or hash functions that are assumed
to be resistant against QCs. Currently, the process is in the last round, and the remaining
candidates were divided into “finalists” and “alternate candidates”, with one of the finalists
for each threatened PKC (KEMs and DSAs) to be standardized in the near future, see
Figure 4. Alternate candidates are intended as a backup in case new weaknesses of finalists
are detected during the process and may also be standardized in the future.

Figure 4. PQC algorithms that are currently considered for standardization in the associated NIST
process. KEMs are marked with blue-colored boxes and DSAs with green-colored boxes. Asterisks
and lower opacity indicate alternate candidates.

Lattice-based KEMs and DSAs are considered the prime candidates for standardization
because they have fast computations and are amongst the smallest keys, ciphertexts and
signatures. Most of them are based on derivations of the learning-with-errors (LWE) problem,
which was introduced by Regev in 2005 [15] and has received considerable attention in
cryptography since then. To further improve their performance, KYBER, SABER and
Dilithium use more structured lattices that reduce the key size required to achieve a given
level of security. This is also their main drawback, as security concerns exist regarding
the extent to which this structured-lattice-based (SLB) construction could provide critical
opportunities for algebraic attacks.

Sensors 2022, 22, 2484 7 of 21

Code-based cryptography was introduced by McEliece in 1978 and is built from error-
correction codes [16]. McEliece’s original approach uses a hidden, error-correcting, binary
Goppa code whose generator matrix is multiplied with two randomly selected, secret
matrices to build the public key, and no attack which poses a serious threat to it has been
found to this day. In the NIST process, problems from coding theory are only used to
construct KEMs. These code-based KEMs require larger keys than lattice-based KEMs
but use very different, more mature security assumptions and are a good alternative if
lattice-based KEMs become insecure.

The only candidate which is based on the super-singular isogeny walk problem is
SIKE. While SIKE has clearly been shown to have very expensive calculations, e.g., in [17],
it is equipped with the lowest bandwidth requirements and provides a unique security
assumption to the pool of KEMs.

Multivariate signature schemes have the smallest signatures and efficient signing
and verifying operations; however, their public keys are in the range of tens of kB up to
hundreds of kB. This causes very large certificate chains in TLS-like applications and limits
the space for useful applications.

The hash-based DSAs have small public keys but large signatures and extensive
calculations. However, SPHICNS+ is considered the maturest and most conservative
design and, therefore, serves as a backup in case serious vulnerabilities are found in the
lattice-based signature schemes.

The PQC algorithms are classified into five different security levels (see Table 1), and
the above proposals contain several parameter sets for the different security levels. The
minimum security requirements define how much computational resources are required to
successfully break the cryptosystem; for example, attackers need at least the same resources
as for a key search on Advanced Encryption Standard-128 (AES-128) to break NIST level
1 KEMs [14].

Table 1. NIST security levels in the PQC standardization process as defined in [14].

Security Level Minimum Security Requirements

1 AES-128
2 SHA-256
3 AES-192
4 SHA-384
5 AES-256

3. Related Work

This paper combines the application of post-quantum cryptography to servers and
embedded devices, its integration into existing protocols and energy-optimized secure IoT
infrastructures. Because these areas are themselves still the subject of research, the amount
of directly related work is very small.

On the server side, Open Quantum Safe (OQS) is one of the most important projects that
seeks to simplify prototyping of PQC on standard computers and servers [18]. In this project,
PQC algorithms have been integrated into OpenSSL implementations
(https://github.com/open-quantum-safe/openssl, accessed on 24 February 2022) for TLS
1.2 and TLS 1.3 versions. In [19], a network emulation framework was developed using the
OQS implementations to evaluate the advantages and disadvantages of PQC procedures
in TLS. They showed that in fast, reliable networks, TLS handshake completion time is
mainly determined by PKC computation, while in networks with higher packet loss rates,
communication has a stronger impact on completion time.

For the client side, the pqm4 project developed a library with assembler-optimized
versions of most PQC primitives for the ARM Cortex M4 processors that are also used in
this work [20]. Kannwischer et al. performed benchmark tests with this library and showed
that significant speed-ups can be achieved for most primitives through their optimization.
In [21], the energy demand of the calculations with the same library were measured, and it

https://github.com/open-quantum-safe/openssl

Sensors 2022, 22, 2484 8 of 21

was shown that some of the lattice-based algorithms have the lowest energy demand out
of all NIST proposals.

A fully post-quantum TLS implementation on embedded devices was presented in [22].
The authors integrated one parameter set of the post-quantum KEM KYBER and the DSA
SPHINCS+ into the mbedTLS library and conducted measurements on three different
devices, where the devices acted either as server or client. They concluded that TLS
handshakes with those two schemes are feasible on their devices; however, they omitted
the impact of the communication overhead in their measurements, observed only one KEM
and one DSA and did not provide information on the energy demand. A first observation
of some post-quantum KEMs for low-power IoT devices has been carried out in [8], and it
has been shown that dedicated hardware accelerators are not mandatory for an efficient
implementation. However, the observation did not include all NIST Round 3 KEMs, and it
is unexplored whether the same observations hold for post-quantum DSAs.

To date, research has focused solely on the cryptographic computations on embedded
systems or analyzed standard desktop applications. To the best of our knowledge, no
work has provided a holistic system view of the performance of post-quantum DSAs and
KEMs in a representative low-power IoT application. This is somewhat surprising when
considering the large amount of research on energy-optimized hardware accelerators for
PQC algorithms, e.g., [5–7], where it is claimed that hardware accelerators are necessary to
facilitate the usage of PQC on embedded devices. We close this knowledge gap in this paper
by presenting an in-depth investigation of post-quantum DSAs and KEMs in a low-power
IoT system context. With this investigation, we support NIST’s call for more performance
data of PQC in protocol-based applications [4].

4. Post-Quantum Safe IoT Infrastructure

This section describes the IoT infrastructure used in this paper as a setup to evaluate
the candidates that are considered for standardization by the US NIST. Furthermore, we pro-
pose feasible PKIs for this test setup and explain which KEMs and DSAs were investigated.

4.1. Low-Power IoT Evaluation System

IoT infrastructures consist of IoT nodes (actors or sensors), gateways and the cloud
server. In this paper, we deployed a typical secure, low-power IoT infrastructure based
on [23], see Figure 5.

Crypto
Cell

nRF52840

Edge
Devices

Raspberry Pi 3

Gateway

MQTT
ServerCrypto

Cell

nRF52840

BLE LAN/
WAN

Figure 5. Network topology of the evaluated IoT system [23].

The nRF52840 system on a chip (SoC) by Nordic Semiconductor was selected for the
battery-powered edge devices because it uses the ARM Cortex M4 micro controller unit
(MCU), which was chosen by the U.S. NIST as a reference platform for embedded systems
through the PQC process [24]. Furthermore, the SoC has been shown to meet the strict en-
ergy requirements of low-power IoT environments in previous work [23]. The SoC includes
a security subsystem (ARM CryptoCell-310), a Bluetooth 5-compatible 2.4 GHz radio, 1 MB
of flash memory and 256 KB ofrandom-access memory (RAM). The ARM CryptoCell provides
hardware acceleration for elliptic-curve DSA (ECDSA) and ECDHE key exchange and also
has hardware accelerators for AES128 and Secure Hash Algorithm 2 (SHA2). The standard

Sensors 2022, 22, 2484 9 of 21

TLS protocol, rather than variants such as Datagram Transport Layer Security (DTLS), is used
together with TCP and IPv6 to provide true end-to-end encryption between the edge device
and the server.

The server is a standard Linux server with a MQTT broker and an Intel Xeon Silver
4214 @ 2.2 GHz, which features the Advanced Vector Extension (AVX) instructions. These
instructions are used by many authors of the PQC algorithms in their optimized implemen-
tations and therefore facilitate the mitigation to PQC in our setup.

A Raspberry Pi 3 is used as the gateway, and, since both communication partners use
the standard TLS, there is no need for time-consuming decryption and re-encryption on it.
Therefore, the gateway acts as a headless router and forwards the communication from the
BLE physical layer to the Ethernet physical layer and vice versa without affecting the TLS
layer. For a trade-off between connection handling, data throughput and energy demand, a
BLE connection interval value of 20ms has been chosen [23].

Even though TLS 1.3 is the most recent version, TLS 1.2 is deployed in this setup
for the following reasons. First, TLS 1.2 is still widely used, particularly in the embed-
ded environment. A reason for this is that the library mbedTLS (https://github.com/
ARMmbed/mbedtls, accessed on 24 February 2022), which is quite popular because of
its very unrestricted licence, does not yet officially support TLS 1.3. Second, one of the
advantages of TLS 1.3 handshakes over TLS 1.2 handshakes is achieved by reducing the
number of roundtrips, which has a much smaller impact on the latency in our setup, given
PQC’s relatively large keys.

The NIST curve p-256 is used for all elliptic-curve-cryptography-based operations in
this setup, as a ECDHE_ECDSA connection is used to compare classical with post-quantum
cryptography. Analogous to conventional ECDHE-based handshakes, ephemeral keys are
generated on every new handshake with PQC to ensure PFS.

The power consumption and the latency of the relevant events in the TLS handshake
were recorded by a Power Profiler Kit 2 from Nordic Semiconductor and double-checked
by a high-resolution Keithley DMM7510 digital multimeter.

4.2. PQC-Based Public Key Infrastructure

A low complexity PKI was deployed in the IoT setup, see Figure 6. The server and IoT
node certificates are both signed by the same trusted root CA. No intermediate certificate
was used in order to limit the necessary amount of data for conveying the certificate chain
during the TLS handshake.

Besides metadata such as expiration date, subject name and organization, it is primarily
the public keys and the signature of the DSA that determine the certificate size for PQC.
In the given setup, the server sends its certificate chain (root certificate and the server
certificate) to the client, while the client transmits its own certificate. Thus, the required
bandwidth (bandwidth normally denotes the rate of data transfer—in the context of PQC,
we denote bandwidth requirements as the amount of data that must be exchanged between
server and client (public key and ciphertext in the case of KEMs and public key and
signatures in the case of DSAs))in the TLS handshake with respect to the DSAs bwDSA is

bwDSA = |pkC|+ |sigC|+ |pkS|+ |sigS|+ |pkCA|+ 3 · |sigCA| (1)

where |pkC| denotes the byte-size of the client’s public key, |sigC| denotes the size of the
client’s signature and the indices S and CA the same for server and CA, respectively. In
conclusion, the signature size of the root CA has a large impact on the required bandwidth.

https://github.com/ARMmbed/mbedtls
https://github.com/ARMmbed/mbedtls

Sensors 2022, 22, 2484 10 of 21

Figure 6. PKI that is used in the measurement setup.

Table 2 shows the six remaining DSAs in the standardization process with their key
and signature sizes in comparison to conventional state-of-the-art signature algorithms.
The table shows that the key and signature sizes of PQC methods are several orders of
magnitude larger than those of conventional methods. Furthermore, there are also very
large differences within these new algorithms. While the lattice-based Dilithium and Falcon
have moderate sizes, Rainbow, GeMSS, and Picnic have high bandwidth requirements,
and a single certificate based on any of them would already exceed the maximum TLS
handshake message size of 214 bytes. A chain of two SPHINCS+-based certificate would
also exceed this boundary, and SPHINCS+ has also been shown to have computational
intensive sign and verify operations [17]. Therefore, we only consider Dilithium and Falcon
as feasible in a typical IoT setup and did not further investigate other methods in this paper.

Table 2. US NIST Round 3 DSAs. The NIST Level shows the NIST security level according to
Table 1; |pk| and |sig| denote the size of the public key and signature in bytes. We also included the
state-of-the-art DSAs RSA and ECDSA for comparison.

Scheme Name Competition Status Problem Family Parameter-Set NIST Level |pk| |sig|

dilithium2 2 1312 2420
Dilithium [25] finalist lattice dilithium3 3 1952 3293

dilithium5 5 2592 4595

Falcon [26] finalist lattice falcon512 1 897 690
falcon1024 5 1793 1330

I_Compressed 1 58.8 k 66
Rainbow [27] finalist multivariate III_Compressed 3 258.4 k 164

V_Compressed 5 523.6 k 212

WhiteGeMSS128 1 358.2 k 30
GeMSS [28] alternate multivariate WhiteGeMSS192 3 1294 k 47

WhiteGeMSS256 5 3222 k 64

picnic3-L1 1 34 13,802
Picnic [29] alternate hash picnic3-L3 3 48 29,750

picnic3-L5 5 64 54,732

sphincs-128s 1 32 7856
SPHINCS+ [30] alternate hash sphincs-192s 3 48 16,224

sphincs-256s 5 64 29,792

Conventional Crypto (None) ECDSA sec256r1 1 65 71
RSA RSA-2048 1 256 256

Sensors 2022, 22, 2484 11 of 21

The US NIST plans to standardize only one out of these two algorithms [31]. Nonethe-
less, they have their individual benefits regarding security, bandwidth requirements and
computational complexity of the sign and verify operations. Hence, we also deploy PKIs
where the client authenticates itself by using Falcon and the server by using Dilithium and
vice versa to determine the most energy- and latency-efficient solution for our IoT setup.

Furthermore, in many applications, it may not even be necessary to make the entire
PKI quantum computer secure. Applying quantum computing will still be very expensive,
especially in the early days, and so attackers will probably increasingly go against much-
used certificates, such as the root certificate or the server, rather than attacking individual
client certificates. Therefore, we propose a heterogeneous PKI where the client authenticates
itself with classical ECDSA, whose public key is content of a post-quantum signed certificate,
while the server and root CA only use PQC.

Unlike DSAs, KEMs only require a single key and ciphertext to be exchanged, and
they are not both part of the same message either. On top of that, most candidates have
moderate key sizes, see Table 3. Therefore, the impact of their bandwidth requirements
is not as large as that of DSAs, and all of the KEMs are theoretically feasible for a typical
IoT setup at least in the level 1 parameter set. This excludes Classic McEliece, which has
extensively large public keys that exceed the RAM size of standard MCUs.

Table 3. US NIST Round 3 KEMs. The NIST Level shows the NIST security level according to
Table 1; |pk| and |ct| denote the size of the public key and ciphertext in bytes. We also included the
state-of-the-art key-exchange algorithms RSA and ECDHE for comparison.

Scheme Name Competition Status Problem Family Parameter-Set NIST Level |pk| |ct|

mceliece348864 1 255 K 128
mceliece460896 3 512 K 188

McEliece [32] finalist codes mceliece6688128 3 1 M 240
mceliece6960119 5 1 M 226
mceliece8192128 5 1.3 M 240

KYBER512 1 800 768
KYBER [33] finalist lattice KYBER768 3 1184 1088

KYBER1024 5 1568 1568

NTRUHPS2048509 1 699 699

NTRU [34] finalist lattice NTRUHPS2048677 3 930 930
NTRUHRSS701 3 1138 1138

NTRUHPS4096821 5 1230 1230

LIGHTSABER 1 672 736
SABER [35] finalist lattice SABER 3 992 1088

FIRESABER 5 1312 1472

FrodoKEM640 1 9616 9720
FrodoKEM [27] alternate lattice FrodoKEM976 3 15,632 15,744

FrodoKEM1344 5 21,520 21,632

ntrulpr653 1 897 1025
ntrulpr761 2 1039 1167

NTRUPrime [36] alternate lattice ntrulpr857 3 1184 1312
ntrulpr953 4 1349 1477

ntrulpr1013 4 1455 1583
ntrulpr1277 5 1847 1975

sntrup653 1 994 897
sntrup761 2 1158 1039
sntrup857 3 1322 1184
sntrup953 4 1505 1349
sntrup1013 4 1623 1455
sntrup1277 5 2067 1847

HQC128 1 2289 4481
HQC [37] alternate code HQC192 3 4522 9026

HQC256 5 7245 14,469

BIKE [38] alternate code BIKE_L1 1 1541 1573
BIKE_L3 3 3083 3115

SIKE_P434 1 346 330

SIKE [39] alternate isogeny SIKE_P503 2 378 402
SIKE_P610 3 462 486
SIKE_P751 5 564 596

Conventional (None) ECDHE sec256r1 1 65 65
RSA RSA-2048 1 256 256

Sensors 2022, 22, 2484 12 of 21

4.3. Software Implementation

TLS-based security with post-quantum key exchanges and DSAs was implemented
on server and edge devices. No adjustments were required on the gateway compared
to a conventional TLS-based setup as it only interfaces in the communication on the
physical layer.

4.3.1. Edge Devices

Although mbedTLS only supports TLS 1.2 instead of 1.3, it was selected over wolfSSL
for implementing TLS on the edge device due to its less restrictive license. The already
modified mbedTLS version from [8] was extended to support all NIST Round 3 KEMs and
the above selected DSAs in TLS handshakes. To support the above described PKI variations,
the functionality to create post-quantum secure certificates as well as classical certificates
that were signed by a post-quantum algorithm were implemented. The open-source library
Lightweight IP (lwIP) was used to provide the TCP/IP protocol stack.

The NIST submissions include a C-reference implementation of each PQC algorithm.
Furthermore, the pqm4 project [17] optimized most algorithms for the Cortex M4. In this
paper, the pqm4 versions were used for all KEMs except BIKE and HQC. However, for the
DSAs, the statically allocated portions of RAM in the pqm4 library were too large for the
given setup. Therefore, the NIST reference implementations were used for them.

Similar to [8], we used the ARM Cryptocell for the AES128 and SHA2 calculations
inside the PQC algorithms, where they served as building blocks for extendable output
functions (XOF). SHA3 has been implemented by the Cortex M4 assembler-optimized
version of the Keccak Team (https://github.com/crystalsnetworkdev/pq4, accessed on 24
February 2022).

4.3.2. Server

The open-source Eclipse Mosquitto is used as MQTT broker (https://github.com/
eclipse/mosquitto, accessed on 24 February 2022) on the server, which provides an applica-
tion programming interface (API) for the integration of OpenSSL. The TLS 1.2 version of the
OQS project, OQS-OpenSSL (https://github.com/open-quantum-safe/openssl, accessed
on 24 February 2022), was used to implement post-quantum security on the server. As
support for TLS 1.2 was dropped by the project in 2020, we updated the library with the
newest KEM versions. Furthermore, the library does not support post-quantum DSAs and
certificates. Therefore, we implemented these features.

5. Results and Discussion

This section covers the measurement results and their discussion. First, we measured
the latency and energy consumption of TLS handshakes with post-quantum KEMs and
compared them to conventional ECDHE-based handshakes. The overhead that was caused
by deploying KEMs with higher security levels was also investigated. Then, the latency and
energy consumption of different PKIs were examined to identify the individual advantages
and disadvantages of the DSAs. Based on these results, we calculated theoretical values for
the battery runtime of edge devices for the different KEMs and PKIs.

All measurements were carried out ten times on the client side for each algorithm-
respective PKI. We recorded the TLS handshaking procedure, starting with sending the
ClientHello message on the edge device and ending with receiving the Finished message
from the server. The figures show the mean values of the measurements, and the standard
deviation is shown in the graphs with error bars. The exact numerical values of the
measurement results are shown in Tables A1 and A2 in the Appendix A.

5.1. KEMs

We integrated the NIST Round 3 KEMs into the OQS-OpenSSL library on the server
and mbedTLS library on the client to investigate their latency, energy consumption and

https://github.com/crystalsnetworkdev/pq4
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto
https://github.com/open-quantum-safe/openssl

Sensors 2022, 22, 2484 13 of 21

memory footprint on the edge device. During the measurements, the previously introduced
PKI is used with conventional ECDSA certificates.

Figure 7 shows the TLS 1.2 handshake latencies with all NIST Round 3 KEMs except
Classic McEliece. The latency of a handshake with conventional, hardware-accelerated
ECDHE is included for comparison. We used this latency subtracted by the computation
time of ECDHE as a baseline for the remaining measurements (blue bar in the figure).
The time for performing the cryptographic calculations for the KEM (Encapsulation) or
ECDHE on the client is represented by the orange bar. The yellow bar represents the
total handshake time subtracted by the orange and blue bars. This corresponds to the
communication overhead that is caused by the larger key sizes of PQC primitives compared
to the conventional ECDHE. This bar also includes the server’s computation time for the
new algorithms, which, however, had a marginal share.

EC
DHE

BIKE
_L1

HQC_12
8

FR
ODOKE

M64
0A

ES

KY
BER

51
2

KY
BER

51
29

0S

KY
BER

76
8

KY
BER

76
89

0S

KY
BER

10
24

KY
BER

10
24

90
S

LIG
HTS

ABER
SA

BER

FIR
ES

ABER

NTR
UHPS

20
48

50
9

NTR
UHPS

20
48

67
7

NTR
UHPS

40
96

82
1

NTR
UHRSS

70
1

NTR
ULPR

65
3

NTR
ULPR

76
1

NTR
ULPR

85
7

NTR
ULPR

95
3

NTR
ULPR

10
13

NTR
ULPR

12
77

SN
TR

UP6
53

SN
TR

UP7
61

SN
TR

UP8
57

SN
TR

UP9
53

SN
TR

UP1
01

3

SN
TR

UP1
27

7

SIK
E_P

43
4

SIK
E_P

50
3

SIK
E_P

61
0

SIK
E_P

75
1

KEM

0

1

2

3

4

5

6

7

8

9

Ti
m

e[
s]

EC
C Code Lattice Isogeny

ECDHE_BL[s]
EncapsTime[s]
ComOverhead[s]

Figure 7. TLS 1.2 handshake latency for all NIST Round 3 KEMs with 20 ms BLE connection interval.

The figure shows that the cryptographic calculations of most KEMs account for a
very small fraction of the total handshake latency. This observation is contrary to the
investigations of conventional handshakes, where it was shown that the (software-based)
computation of ECDHE has a significant impact on latency [1]. In contrast, as shown by
the yellow bar, the larger public keys and ciphertexts of the KEMs cause a medium to large
increase in handshake latency. The finalists, KYBER, NTRU and SABER, and the alternate
candidate, NTRU-Prime, are the best performing ones and require roughly 25% more time
than ECDHE in the level 1 parameter set. Even with the high security parameter-sets of
those KEMs, Encaps has a low percentage of total handshake latency, which is about twice
that of ECDHE.

The corresponding energy demand is shown with a logarithmic scale in Figure 8.
Handshakes with the lattice-based finalists and NTRU-Prime require energy comparable to
those with ECDHE. This observation also holds for higher security levels of the lattice-based
KEMs. SIKE, however, requires significantly more energy than the rest of the methods due
to its complex calculations, especially at higher security levels.

Figure 9 displays the maximum stack usage of the KEMs during the Encaps operation
in our setup. As presented, KYBER512 (2.5KB) and SIKE_P434 (4KB) have the smallest
memory footprints, which is well-suited even for devices with low memory resources.
In contrast, the code-based KEMs have the largest memory footprints. This is also the
reason why we only implemented the level 1 parameter-set. On top of the stack memory
requirements, some of the KEMs also increase the required size of statically allocated
input/output buffers across the protocol stack of mbedTLS and lwIP. While conventional
PKC has little influence on those buffer sizes, PQC methods with large keys, such as
FrodoKEM, require an adjustment of those buffers across multiple layers, thus further
increasing the penalty of such large keys.

Sensors 2022, 22, 2484 14 of 21

EC
DHE

BIKE
_L1

HQC_12
8

FR
ODOKE

M64
0A

ES

KY
BER

51
2

KY
BER

51
29

0S

KY
BER

76
8

KY
BER

76
89

0S

KY
BER

10
24

KY
BER

10
24

90
S

LIG
HTS

ABER
SA

BER

FIR
ES

ABER

NTR
UHPS

20
48

50
9

NTR
UHPS

20
48

67
7

NTR
UHPS

40
96

82
1

NTR
UHRSS

70
1

NTR
ULPR

65
3

NTR
ULPR

76
1

NTR
ULPR

85
7

NTR
ULPR

95
3

NTR
ULPR

10
13

NTR
ULPR

12
77

SN
TR

UP6
53

SN
TR

UP7
61

SN
TR

UP8
57

SN
TR

UP9
53

SN
TR

UP1
01

3

SN
TR

UP1
27

7

SIK
E_P

43
4

SIK
E_P

50
3

SIK
E_P

61
0

SIK
E_P

75
1

KEM

100

101

102

En
er

gy
 [m

J]

EC
C Code Lattice Isogeny

Figure 8. TLS 1.2 handshake energy for all NIST Round 3 KEMs with 20ms BLE connection interval.

EC
DHE

BIKE
_L1

HQC_12
8

FR
ODOKE

M64
0A

ES

KY
BER

51
2

KY
BER

51
29

0S

KY
BER

76
8

KY
BER

76
89

0S

KY
BER

10
24

KY
BER

10
24

90
S

LIG
HTS

ABER
SA

BER

FIR
ES

ABER

NTR
UHPS

20
48

50
9

NTR
UHPS

20
48

67
7

NTR
UHPS

40
96

82
1

NTR
UHRSS

70
1

NTR
ULPR

65
3

NTR
ULPR

76
1

NTR
ULPR

85
7

NTR
ULPR

95
3

NTR
ULPR

10
13

NTR
ULPR

12
77

SN
TR

UP6
53

SN
TR

UP7
61

SN
TR

UP8
57

SN
TR

UP9
53

SN
TR

UP1
01

3

SN
TR

UP1
27

7

SIK
E_P

43
4

SIK
E_P

50
3

SIK
E_P

61
0

SIK
E_P

75
1

KEM

102

103

104

105

St
ac

k
Us

ag
e

[B
yt

es
]

EC
C Code Lattice Isogeny

Figure 9. Stack usage of the encapsulation operation of the NIST Round 3 KEMs.

In summary, all of the lattice-based KEMs that are still part of the NIST process are
feasible in a low-power IoT device. The benefit of using dedicated hardware accelerators
is very limited, as their latency is mostly determined by the bandwidth requirements
rather than the computation in our setup. The alternate candidate, SIKE, has a high
energy demand in all parameter sets due to its computational complexity; however, with
a sophisticated hardware accelerator it could surpass the lattice-based KEMs due to its
smaller keys and ciphertexts. In our setup, KYBER512 performs the best due to its low
stack usage. We, therefore, selected it for the following investigations of DSAs.

5.2. DSAs

In accordance with US NIST’s goals of standardizing only one method, we initially
used PKIs based on a single signature method to evaluate the overhead of pq-DSAs.
However, unlike KEMs where only one encapsulation operation is performed on the client,
DSAs are used multiple times during the handshake. Therefore, they offer higher degrees
of freedom in terms of their integration into the setup. As proposed in Section Five, we also
implemented heterogeneous PKIs that use a combination of classical and post-quantum
DSAs, as well as PKIs that use both Falcon and Dilithium.

The TLS handshake latencies based on PKI are displayed in Figure 10. The blue bar
represents the time of a KYBER512-based handshake with a fully ECDSA-based PKI. This
corresponds to the handshake latency measured in Figure 7 and was used as a baseline.
The green bar indicates the time needed to verify the server’s signature over the public
key and the CA signature over the server’s certificate. The orange bar shows the time
during which the client performs the signing operation. Similar to the previous figure, the
yellow bar represents the communication overhead caused by the migration from classical
to pq-DSAs due to the larger key sizes, signature sizes and certificates. The corresponding
energy consumption is displayed in Figure 11.

Sensors 2022, 22, 2484 15 of 21

EC
DSA

Dilit
hiu

m2

Fal
con

51
2

EC
DSA

Dilit
hiu

m2

Fal
con

51
2

Dilit
hiu

m2

Fal
con

51
2

Client DSA

0

1

2

3

4

5

6

7

8

9

Ti
m

e[
s]

Dilithium2
(Server; CA)

Falcon512
(Server; CA)

Falcon1024
(Server; CA)

Kyber512_ECDSA_HS_Time[s]
Sign_Client[s]
Verify_Server+Verify_CA[s]
ComOverhead[s]

Figure 10. TLS 1.2 handshake latency for different PKIs with post-quantum DSAs.

EC
DSA

Dilit
hiu

m2

Fal
con

51
2

EC
DSA

Dilit
hiu

m2

Fal
con

51
2

Dilit
hiu

m2

Fal
con

51
2

Client DSA

0

5

10

15

20

25

30

35

En
er

gy
 [m

J]

Dilithium2
(Server; CA)

Falcon512
(Server; CA)

Falcon1024
(Server; CA)

Figure 11. TLS 1.2 handshake energy demand for different PKIs with post-quantum DSAs.

The chart shows that, in contrast to the KEMs, all post-quantum DSAs cause a signifi-
cant increase in TLS handshake latency. PKIs that deploy Dilithium2-based server, client
and CA certificates show the largest latency (second bar from the left), which is about
four times that of the conventional ECDSA-based handshakes. Consistent with previous
observations, this is mainly caused by the large communication overhead due to the high
bandwidth requirements of Dilithium. This is different from the pure Falcon512-based PKI
(sixth bar from the left), as it reduces latency by half compared to the Dilithium2 version.
However, the signing function of Falcon512 is one of the main bottlenecks, as it has a major
influence on latency and energy demand.

Sensors 2022, 22, 2484 16 of 21

We combined Dilithium2-based client certificates with Falcon512-based server and
CA certificates to mitigate these disadvantages (fifth bar from the left). The charts show
that the latency is slightly higher compared to the pure Falcon512 solution, but the energy
demand is reduced by 30%. The lowest energy requirements and latency are achieved
with the combination of a traditional ECDSA-based client certificate and Falcon512-based
server/CA certificates, reducing the overhead of migrating to such new PKIs from 230% to
30% in energy and from 115% to 50% in latency compared to purely ECDSA-based PKIs.

In summary, post-quantum DSAs cause a strong increase in latency and energy de-
mand in low-power IoT devices if deployed in homogeneous PKIs as planned by the US
NIST. This is caused by the fact that Falcon has a computationally intense signing function
and Dilithium has efficient computations but large bandwidth requirements. However, an
efficient PKI can be built either by combining Dilithium-based client certificates and Falcon-
based server and CA certificates or by deploying a dedicated hardware accelerator for the
Falcon signing operation on the client side. To increase the efficiency further, conventional
ECDSA-based certificates can be used on the client side to protect it at least against classical
attacks, which is likely to be a high enough barrier in most applications due to the expected
limited access to quantum computers in the near future.

5.3. Battery Life Analysis

We used a representative, standard, lithium cell (1/2 AA, thionyl chloride, 3.6 V,
1.2 Ah) as the energy source, and a sleep-current of 2.5 µA was measured to analyze
the battery run time for different PKIs and KEMs. To compensate for aging effects, 70%
of the stored energy was assumed to be usable. In contrast to the previous results, we
measured not only the TLS handshake, but a full TLS-secured MQTT transaction in which
12 bytes of payload data, which could come, for example, from a sensor, were transmitted
in encrypted form. Since the length of the payload is highly application specific and in this
work we focused on the overhead of the mitigation to post-quantum secured handshakes,
the payload was kept small to facilitate the investigation of the overhead of these new
handshakes. Energy for sensor data acquisition was not included in the estimations, as it
strongly depends on the deployed sensor.

Figure 12 shows the runtime estimation for different KEMs and PKIs depending on
different communication counts per day. The KEMs are labeled with their corresponding
name in the legend, the different PKIs are denoted with cliDSA_srvDSA where cliDSA
denotes the DSA of the client certificate and srvDSA denotes the DSA of the server certificate.
The chart shows that the theoretically achievable battery runtime of the KEMs differs only
slightly for many algorithms, including the conventional ECDHE. KYBER512 with ECDSA
client certificate and Falcon512 server and CA certificates can still achieve 10 years of battery
life with more than 200 data transfers per day. Even though a fully Dilithium2-based PKI
induces a relevant overhead compared to conventional cryptography, the estimation shows
that this overhead is still very low with respect to battery life time.

Although the battery runtime is an estimation, it shows that post-quantum, TLS-
secured communication is feasible with state-of-the-art hardware, leaving sufficient energy
for sensor data collection or further applications. Furthermore, we observed that battery
runtime is not significantly affected by migrating from conventional cryptography to PQC.

Sensors 2022, 22, 2484 17 of 21

Figure 12. Battery runtime estimations for different KEMs.

6. Conclusions

In this work, we conducted an in-depth investigation on the application of new
PQC algorithms to TLS-secured, low-power IoT devices. The TLS libraries OpenSSL
and mbedTLS were extended to support the integration of NIST Round 3 KEMs, DSAs
and post-quantum safe certificates that are suitable for IoT TLS handshakes. The energy
consumption, memory footprint and latency of TLS handshakes with quantum-computer-
resistant KEMs, DSAs and PKIs were explored and evaluated in a representative low-
power IoT infrastructure to identify the trade-offs of the different algorithms. Based on our
investigation, we provided estimations for the lifetime of battery-powered IoT edge devices
that employ quantum-computer-resistant communication. Our key observations are:

• A holistic system view is necessary: Most research focuses on the computational
complexity of PQC without considering other parameters, such as the associated
communication overhead. However, a conclusive evaluation requires a broad system
view that encompasses the entire application in typical environments to determine
the advantages and disadvantages of the individual algorithms.

• PQC is feasible with SoTA hardware: Efficient implementations of post-quantum-
safe TLS are possible with off-the-shelf hardware on IoT edge devices, as the energy
consumption of PQC leaves sufficient energy for sensor data collection or other ap-
plications while still maintaining viable battery runtimes. This is contrary to many
publications that claim that dedicated hardware accelerators are required to imple-
ment PQC on resource-constrained devices, without providing conclusive data to back
this assumption up.

• Key and signature sizes are the major bottleneck: The energy and latency overhead
of most DSAs and KEMs in our IoT setup is primarily driven by the larger bandwidth
requirements rather than the computational overhead. In addition to the previous
observation, the potential energy and latency benefits of dedicated hardware accel-
erators are very limited for low-power IoT applications, especially for the popular
lattice-based KEMs and the DSA Dilithium, for which accelerators have been proposed
in many publications. The only exceptions to this are applications where Falcon is
used for client-side signing or SIKE, as then latency and power requirements are
significantly affected by computations.

• Heterogeneous PKIs reduce latency and energy consumption: A combination of
different post-quantum DSAs that exploits their individual benefits regarding band-
width requirements and computational complexity yields the most energy-efficient
implementation for low-power IoT environments. Our results show that PKIs com-
bining Dilithium-based client certificates and Falcon-based server and CA certificates

Sensors 2022, 22, 2484 18 of 21

together with KYBER-based key-exchanges achieve the best trade-off between band-
width requirements, latency and energy consumption. This is contrary to NIST’s idea
of standardizing only one procedure.

• Classical and PQC-based PKIs optimize the trade-off between security and effi-
ciency: In many applications, not all communication partners in the PKI need to
utilize post-quantum-safe certificates. If the client deploys conventional ECDSA as the
signing algorithm, the drawbacks of post-quantum-secure PKIs are greatly reduced
while maintaining a reasonable attack barrier for the near future.

These results prove that the usage of post-quantum KEMs and DSAs is already feasible
today in terms of energy demand and latency for low-power IoT devices with state-of-the-
art hardware. Nevertheless, the overhead of PQC, especially DSAs, can be significantly
reduced by decreasing the size of signatures and public keys rather than simplifying the
computations, and we would like to motivate further research in this direction.

Author Contributions: Conceptualization, M.S., F.L., C.C.R. and N.W.; Data curation, M.S. and F.L.;
Formal analysis, M.S., F.L. and C.C.R.; Funding acquisition, N.W.; Investigation, N.W.; Methodology,
M.S.; Project administration, N.W.; Resources, N.W.; Software, M.S. and F.L.; Supervision, N.W.;
Validation, M.S., F.L. and C.C.R.; Visualization, M.S., F.L. and C.C.R.; Writing—original draft, M.S.;
Writing—review & editing, M.S., F.L., C.C.R. and N.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper was partly founded by the German Federal Ministry of Education and Research
as part of the project “SIKRIN-KRYPTOV” (16KIS1069).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

6lowPAN IPv6 over low-power Wireless Personal Area Network
API Application Programming Interface
AES Advanced Encryption Standard
AVX Advanced Vector Extension
BLE Bluetooth Low Energy
CA Certificate Authority
DDoS Distributed Denial of Service
DSA Digital Signature Algorithm
DTLS Datagram Transport Layer Security
ECDHE Elliptic Curve Diffie-Hellman Ephemeral
ECDSA Elliptic Curve Digital Signature Algorithm
https HyperText Transfer Protocol Secure
IoT Internet of Things
IIoT Industrial Internet of Things
KEM Key Encapsulation Mechanism
LWE Learning with Errors
lwIP Lightweight IP
MAC Message Authentication Code
MITM Man in the Middle
MQTT Message Queuing Telemetry Transport
NIST National Institute for Standards and Technology
OQS Open Quantum Safe
PFS Perfect Forward Secrecy
PKC Public Key Cryptography
PKI Public Key Infrastructure
PQC Post-Quantum Cryptography

Sensors 2022, 22, 2484 19 of 21

QC Quantum Computer
RAM Random-Access Memory
RSA Rivest-Shamir-Adleman
TCP Transmission Control Protocol
TLS Transport Layer Security
SHA Secure Hash Algorithm
SLB Structured Lattice Based
SoC System on Chip
SotA State-of-the-Art
XOF Extendable Output Functions

Appendix A. Measurement Results

Table A1. The measured latency and energy consumption of the TLS 1.2 handshakes with post-
quantum KEMs. σ denotes the standard deviation of the measurements.

KEM HandshakeTime[ms] EncapsTime[ms] ComOverhead[ms] HandshakeEnergy[mJ]

Mean σ Mean σ Mean σ

ECDHE 1152.477 11.321 37.844 0.042 − 5.119 0.036

BIKE_L1 2379.676 158.721 75.342 0.331 1265.04 7.912 0.158

HQC_128 3357.206 49.81 40.818 0.269 2242.57 10.083 0.062

FRODOKEM640AES 7308.18 119.444 277.665 0.435 6193.544 22.142 0.094

KYBER512 1572.51 42.83 10.978 0.033 457.874 5.731 0.058
KYBER51290S 1584.885 38.034 25.948 0.189 470.249 6.245 0.074

KYBER768 1819.011 65.606 25.259 0.026 704.375 6.556 0.069
KYBER76890S 1897.963 34.607 46.429 0.301 783.327 6.903 0.047

KYBER1024 2087.257 59.828 37.718 0.099 972.621 7.319 0.072
KYBER102490S 2297.565 142.034 74.481 0.388 1182.929 8.023 0.187

LIGHTSABER 1505.041 26.326 9.414 0.005 390.405 5.494 0.043
SABER 1762.311 51.212 16.237 0.255 647.675 6.301 0.082

FIRESABER 1951.695 24.976 23.61 0.187 837.059 6.87 0.031

NTRUHPS2048509 1527.917 62.287 8.878 0.004 413.281 5.458 0.057
NTRUHPS2048677 1709.828 55.57 12.996 0.083 595.192 5.991 0.067
NTRUHPS4096821 1862.531 50.201 16.439 0.162 747.895 6.49 0.073
NTRUHRSS701 1817.35 66.083 6.054 0.005 702.714 6.254 0.072

NTRULPR653 1751.128 35.918 27.915 0.131 636.492 6.35 0.05
NTRULPR761 1777.319 32.69 31.548 0.267 662.683 6.572 0.059
NTRULPR857 1908.375 59.318 37.567 0.149 793.739 6.867 0.069
NTRULPR953 1990.866 54.779 40.924 0.276 876.23 7.146 0.051

NTRULPR1013 2046.371 30.094 43.77 0.015 931.735 7.276 0.039
NTRULPR1277 2295.367 71.919 56.118 0.237 1180.731 8.056 0.073

SNTRUP653 1748.687 33.3 41.643 0.159 634.051 6.512 0.054
SNTRUP761 1757.02 47.912 11.95 0.097 642.384 6.267 0.061
SNTRUP857 1868.684 42.781 57.621 0.199 754.048 7.107 0.082
SNTRUP953 1990.017 47.278 61.926 0.192 875.381 7.419 0.047

SNTRUP1013 2059.301 59.886 66.313 0.252 944.665 7.626 0.064
SNTRUP1277 2433.665 50.253 83.512 0.243 1319.029 8.574 0.052

SIKE_P434 2730.922 126.778 1336.099 0.644 1616.286 25.061 0.122
SIKE_P503 3387.805 24.126 2010.405 0.808 2273.169 37.143 0.077
SIKE_P610 5788.646 68.452 4253.887 1.412 4674.01 77.746 0.132
SIKE_P751 8439.040 76.830 6494.228 1.862 7324.404 118.239 0.108

Table A2. The measured latency and energy consumption of the TLS 1.2 handshakes with KYBER512
and post-quantum DSAs. σ denotes the standard deviation of the measurements.

DSA Total Time [ms] VerifyTime [ms] SignTime [ms] ComOverhead [ms] Energy [mJ]

Server Client Mean σ Mean Mean Mean Mean σ

ECDSA 4523.609 63.551 80.845 20.449 2929.927 14.937 0.091
Dilithium2 Dilithium2 5894.034 78.497 80.905 100.278 4220.489 18.856 0.656

Falcon512 5145.926 130.7 80.803 1023.276 2549.439 26.191 0.115

ECDSA 2368.846 30.365 17.81 20.709 775.405 7.506 0.04
Falcon512 Dilithium2 3714.929 63.62 17.857 137.29 2005.024 11.73 1.325

Falcon512 3269.849 41.233 17.888 926.747 770.452 18.833 0.069

Falcon1024 Dilithium2 4782.534 80.895 37.569 145.914 3064.041 15.468 1.498
Falcon512 4198.745 88.875 37.364 1022.663 1603.496 22.36 0.118

Sensors 2022, 22, 2484 20 of 21

References
1. Mades, J.; Ebelt, G.; Janjic, B.; Lauer, F.; Rheinländer, C.C.; Wehn, N. TLS-level security for low power industrial IoT network

infrastructures. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 9–13 March 2020; pp. 1720–1721.

2. Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134.

3. Mosca, M. Cybersecurity in an Era with Quantum Computers: Will We Be Ready? IEEE Secur. Priv. 2018, 16, 38–41. [CrossRef]
4. National Institute of Standards and Technology. Post-Quantum Cryptography. Available online: https://csrc.nist.gov/Projects/

post-quantum-cryptography (accessed on 17 February 2022).
5. Fritzmann, T.; Sigl, G.; Sepúlveda, J. RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR

Transactions on Cryptographic Hardware and Embedded Systems. 2020; pp. 239–280. Available online: https://tches.iacr.org/index.
php/TCHES/article/view/8683 (accessed on 17 February 2022).

6. Nejatollahi, H.; Cammarota, R.; Dutt, N. Flexible NTT accelerators for RLWE lattice-based cryptography. In Proceedings of the
2019 IEEE 37th International Conference on Computer Design (ICCD), Abu Dhabi, United Arab Emirates, 17–20 November 2019;
pp. 329–332.

7. Banerjee, U.; Ukyab, T.S.; Chandrakasan, A.P. Sapphire: A Configurable Crypto-Processor for Post-Quantum Lattice-Based
Protocols. arXiv 2019, arXiv:1910.07557.

8. Schöffel, M.; Lauer, F.; Rheinländer, C.C.; Wehn, N. On the Energy Costs of Post-Quantum KEMs in TLS-based Low-Power Secure
IoT. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, Charlottesvle, VA, USA,
18–21 May 2021; pp. 158–168.

9. IBM Corporation. IBM Security-Cost of a Data Breach Report 2020. Available online: https://www.ibm.com/security/digital-
assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf (accessed on 7 February 2022).

10. Alex Drozhzhin. Black Hat USA 2015: The Full Story of How That Jeep Was Hacked. Available online: https://www.kaspersky.
com/blog/blackhat-jeep-cherokee-hack-explained/9493/ (accessed on 13 January 2022).

11. Mirai (Malware). Available online: https://en.wikipedia.org/wiki/Mirai_(malware) (accessed on 7 February 2022).
12. Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2. 2008. Available online: https://tools.ietf.org/

html/rfc5246 (accessed on 24 February 2022).
13. Federal Office for Information Security. Migration zu Post-Quanten-Kryptografie. 2020. Available online: https://www.bsi.

bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__blob=publicationFile&v=4 (accessed on
17 February 2022).

14. National Institute of Standards and Technology. Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process. 2017. Available online: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf (accessed on 17 February 2022).

15. Regev, O. On lattices, learning with errors, random linear codes, and Cryptography. In Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005; pp. 84–93.

16. McEliece, R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory; The Deep Space Network Progress Report 42–44.
1978; pp. 114–116. Available online: https://tmo.jpl.nasa.gov/progress_report2/42-44/44N.PDF (accessed on 24 February 2022).

17. Kannwischer, M.J.; Rijneveld, J.; Schwabe, P.; Stoffelen, K. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-
M4. In Proceedings of the Second PQC Standardization Conference, Santa Barbara, CA, USA, 22–25 August 2019. Available
online: https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/
kannwischer-pqm4.pdf (accessed on 24 February 2022).

18. Stebila, D.; Mosca, M. Post-Quantum Key Exchange for the Internet and the Open Quantum Safe Project. In Proceedings of the
23rd International Conference on Selected Areas in Cryptography, St. John’s, NL, Canada, 10–12 August 2016; pp. 14–37.

19. Paquin, C.; Stebila, D.; Tamvada, G. Benchmarking Post-quantum Cryptography in TLS. In Proceedings of the Post-Quantum
Cryptography: 11th International Conference, PQCrypto 2020, Paris, France, 15–17 April 2020; Volume 12100, pp. 72–91.

20. Matthias J. Kannwischer and Joost Rijneveld and Peter Schwabe and Ko Stoffelen. PQM4: Post-Quantum Crypto Library for the
ARM Cortex-M4. 2020. Available online: https://github.com/mupq/pqm4 (accessed on 5 December 2021).

21. Saarinen, M.J.O. Mobile Energy Requirements of the Upcoming NIST Post-Quantum Cryptography Standards. In Proceedings of
the 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK,
3–6 August 2020; pp. 23–30.

22. Bürstinghaus-Steinbach, K.; Krauß, C.; Niederhagen, R.; Schneider, M. Post-Quantum TLS on Embedded Systems. In Proceedings
of the 15th ACM Asia Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020; pp. 841–852.

23. Lauer, F.; Rheinländer, C.C.; Kestel, C.; Wehn, N. Analysis and Optimization of TLS-based Security Mechanisms for Low Power
IoT Systems. In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID), Melbourne, VIC, Australia, 11–14 May 2020; pp. 775–780.

24. Dustin, M. NIST PQC Standardization Update-Round 2 and Beyond. 2020. Available online: https://csrc.nist.gov/CSRC/media/
Presentations/pqc-update-round-2-and-beyond/images-media/pqcrypto-sept2020-moody.pdf (accessed on 13 January 2022).

http://doi.org/10.1109/MSP.2018.3761723
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://en.wikipedia.org/wiki/Mirai_(malware)
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__blob=publicationFile&v=4
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
 https://tmo.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://github.com/mupq/pqm4
https://csrc.nist.gov/CSRC/media/Presentations/pqc-update-round-2-and-beyond/images-media/pqcrypto-sept2020-moody.pdf
https://csrc.nist.gov/CSRC/media/Presentations/pqc-update-round-2-and-beyond/images-media/pqcrypto-sept2020-moody.pdf

Sensors 2022, 22, 2484 21 of 21

25. Bai, S.; Ducas, L.; Kiltz, E.; Leopoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium—Algorithm
Specifications and Supporting Documentation (Version 3.1). Available online: https://pq-crystals.org/dilithium/data/dilithium-
specification-round3-20210208.pdf (accessed on 30 January 2022).

26. Fouque, P.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhan, Z. Falcon:
Fast-Fourier Lattice-Based Compact Signatures over NTRU. Available online: https://falcon-sign.info/falcon.pdf (accessed on
30 January 2022).

27. Ding, J.; Chen, M.-S.; Kannwischer, M.; Patarin, J.; Petzoldt, A.; Schmidt, D.; Yang, B.-Y. Rainbow. Available online: www.
pqcrainbow.org (accessed on 30 January 2022).

28. Casanova, A.; Faugère, J.-C.; Macario-Rat, G.; Patarin, J.; Perret, L.; Ryckeghem, J. GeMSS: A Great Multivariate Short Signature.
2020. Available online: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html (accessed on 30 January 2022).

29. Zaverucha, G.; Chase, M.; Derler, D.; Goldfeder, S.; Orlandi, C.; Ramacher, S.; Rechberger, C.; Slamanig, D.; Wang, X. The Picnic
Signature Algorithm. 2020. Available online: https://microsoft.github.io/Picnic/ (accessed on 30 January 2022).

30. Aumasson, J.; Bernstein, D.; Dobraunig, C.; Eichlseder, M.; Fluhrer, S.; Gazdag, S.; Hülsing, A.; Kampanakis, P.; Kölbl, S.; Lange,
T.; et al. SPHINCS+–Submission to the NIST Post-Quantum Project. 2020. Available online: https://sphincs.org/data/sphincs+
-round3-specification.pdf (accessed on 30 January 2022).

31. Alagic, G.; Alperin-Sheriff, J.; Apon, D.; Cooper, D.; Dang, Q.; Kelsey, J.; Liu, Y.K.; Miller, C.; Moody, D.; Peralta, R.; et al. Status
Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process; US Department of Commerce, NIST:
Gaithersburg, MD, USA, 2020.

32. Bernstein, D.J.; Chou, T.; Lange, T.; Misoczki, R.; Niederhagen, R.; Persichetti, E.; Schwabe, P.; Szefer, J.; Wang, W. Classic McEliece:
Conservative Code-Based Cryptography. 2020. Available online: https://classic.mceliece.org/nist/mceliece-20201010.pdf
(accessed on 15 Feburary 2022).

33. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-
KYBER: Algorithm Specifications and Supporting Documentation. 2021. Available online: https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf (accessed on 15 Feburary 2022).

34. Chen, C.; Danba, O.; Hoffstein, J.; Hülsing, A.; Rijneveld, J.; Schanck, J.M.; Schwabe, P.; Whyte, W.; Zhang, Z. NTRU-Algorithm
Specifications and Supporting Documentation. 2019. Available online: https://www.ntru.org/f/ntru-20190330.pdf (accessed on
17 Feburary 2022).

35. D’Anvers, J.-P.; Karmakar, A.; Roy, S.S.; Vercauteren, F. SABER: Mod-LWER Based KEM (Round 3 Submission). Available online:
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf (accessed on 25 January 2022).

36. Bernstein, D.J.; Chuengsatiansu, C.; Lange, T.; Vredendaal, C.V. NTRU Prime: Round 3. 2020. Available online:
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf (accessed on 1 February 2022).

37. Melchor, C.A.; Aragon, N.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Persichetti, E.; Zémor, G.; Bourges, I.
Hamming Quasi-Cyclic (HQC). 2021. Available online: https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf (accessed on
1 February 2022).

38. Aragon, N.; Barreto, P.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Gueron, S.; Guneysu, T.; Melchor, C.A.; et al.
BIKE: Bit Flipping Key Encapsulation. 2017. Available online: https://bikesuite.org/ (accessed on 24 February 2022).

39. Jao, D.; Azarderakhsh, R; Campagna, M.; Costello, C.; De Feo, L.; Hess, B.; Jalali, A.; Koziel, B.; LaMacchia, B.; Longa, P.;
et al. Supersingular Isogeny Key Encapsulation. 2020. Available online https://sike.org/files/SIDH-spec.pdf (accessed on 17
February 2022).

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/falcon.pdf
www.pqcrainbow.org
www.pqcrainbow.org
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://microsoft.github.io/Picnic/
https://sphincs.org/data/sphincs+-round3-specification.pdf
https://sphincs.org/data/sphincs+-round3-specification.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://www.ntru.org/f/ntru-20190330.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://bikesuite.org/
https://sike.org/files/SIDH-spec.pdf

	Introduction
	Background
	IoT Security
	TLS
	Breaking TLS with Quantum Computers
	Post-Quantum Cryptography

	Related Work
	Post-Quantum Safe IoT Infrastructure
	Low-Power IoT Evaluation System
	PQC-Based Public Key Infrastructure
	Software Implementation
	Edge Devices
	Server

	Results and Discussion
	KEMs
	DSAs
	Battery Life Analysis

	Conclusions
	Appendix A
	References

