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Abstract: Circular synthetic aperture radar (CSAR), which can observe the region of interest for
a long time and from multiple angles, offers the opportunity for moving-target detection (MTD).
However, traditional MTD methods cannot effectively solve the problem of high probability of false
alarm (PFA) caused by strong clutter. To mitigate this, a novel, three-step scheme combining clutter
background extraction, multichannel clutter suppression, and the degree of linear consistency of
radial velocity interferometric phase (DLRVP) test is proposed. In the first step, the spatial similarity
of the scatterers and the correlation between sub-aperture images are fused to extract the strong clutter
mask prior to clutter suppression. In the second step, using the data remaining after elimination of
the background clutter in Step 1, an amplitude-based detector with higher processing gain is utilized
to detect potential moving targets. In the third step, a novel test model based on DLRVP is proposed
to further reduce the PFA caused by isolated strong scatterers. After the above processing, almost all
false alarms are excluded. Measured data verified that the PFA of the proposed method is only 20%
that of the comparison method, with improved detection of slow and weakly moving targets and
with better robustness.

Keywords: multichannel circular SAR; ground-moving-target indication (GMTI); clutter suppression;
along-track interferometry (ATI); the heterogeneous clutter environment

1. Introduction

Synthetic aperture radar (SAR) is widely used in military and civil fields due to its high-
resolution imaging of ground scenes, large coverage area, and all-weather capability [1–3].
The ground-moving-target detection mode of SAR is playing an increasingly important
role for battlefield surveillance, traffic monitoring, and other applications [4–7].

The commonly used moving-target detection methods can be divided into two types:
single-channel [5,8–10] and multichannel [3,11–14]. The single-channel moving-target-
detection method uses the Doppler shift and Doppler rate characteristics of moving targets
in SAR images [5,9]. The Doppler-shift method based on a Doppler frequency filter can only
detect targets whose Doppler is outside the clutter spectrum (the clutter spectrum is the
Doppler spectrum [15] formed by radar echoes generated by uninteresting reflectors), so it
is not suitable for detecting targets with slow radial velocity. On the other hand, the method
based on Doppler-rate estimation requires iteration or time-frequency analysis, which is
computationally expensive. In order to improve the performance of parameter estimation
and reduce the computational complexity of single-channel GMTI, Wang [4] proposed a
method for moving-target trajectory reconstruction in single-channel CSAR by using prior
knowledge of road information. In the Radon–Wigner distribution domain, an efficient
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estimation method using geometry information is proposed to realize the calculation of two
parameters instead of extensive parameter search; this effectively reduces computational
complexity [10]. In [16], a fast ground-moving-target indication and parameter estimation
algorithm based on prior knowledge of road networks is proposed, which effectively
reduces the calculation required. However, it is often difficult to obtain road information in
real-time, especially for military applications. Due to the lack of spatial degrees-of-freedom
in azimuth, the single channel system cannot perform clutter suppression. Thus, it is
difficult to detect slowly moving targets and low signal-to-clutter-ratio (SCR) targets. The
above disadvantages tremendously restrict the application of the single-channel system.

Different from the single-channel system, the multichannel system has more spatial
degrees-of-freedom in azimuth and can realize clutter suppression, thus improving SCR,
which effectively enhances detection and parameter estimation performance for slowly
moving targets [17]. To detect slowly moving targets submerged in the main-lobe clutter
spectrum, multichannel methods such as displaced phase center antenna (DPCA) [11,18,19],
ATI [7,20,21], space–time adaptive processing (STAP) [12,22], and robust principal compo-
nent analysis (RPCA) [23–25] have been widely developed. DPCA and ATI are sensitive to
the inevitable noise and are suboptimal for systems with more than two channels. STAP
can reduce the minimum detectable velocity in a strong clutter environment by keeping the
energy of the moving target constant while minimizing the output energy of clutter [12,26].
Unfortunately, the computational complexity of STAP is high due to having to search the
maximum of the test statistic and calculate the clutter covariance matrix pixel by pixel.
In addition, the calculation of the clutter covariance matrix requires a large number of
homogeneous clutter training samples without moving targets, which is difficult to meet in
a heterogeneous environment [26]. By the fact that the moving targets are spatially sparse
and have linear interferometric phases between different channels, RPCA can distinguished
strong stationary clutters with low rank structure [23–25].

However, when large radar cross section (RCS) or highly heterogeneous clutter exist,
the residual energy of interference is still strong after using the above clutter suppression
methods, which will lead to a significant number of false alarms and reduce the accuracy
of parameter estimation [27,28]. The so-called strong clutter residues in this paper are
mostly produced by common artificial scatterers. These objects have a large RCS. Limited
by the ability of clutter suppression, there will still be strong residual energy after clutter
suppression. The existing methods are difficult to adapt to the complex environment,
especially in urban areas.

Based on the above analysis, it can be concluded that if we can extract the position
distribution of a large RCS from a SAR image in advance, clutter suppression can eliminate
the strong clutter. In order to implement this idea, we propose a new method to extract the
position of large RCS from sub-aperture images. Different from linear SAR, a CSAR system
moves along a circular trajectory, which enables long-time and multi-aspect observation of
a scene [4,29,30].

In fact, strong reflectors can be considered isotropic and coherent when the difference
in viewing angles is small [5,31–33]. In addition, pixels of these static scatterers in the SAR
image have the characteristics of large amplitude, continuous distribution, and strong spa-
tial structure. Therefore, we can extract position information of a strong clutter background
by using the spatial structure information of strong scatterers and the correlation between
multi-angle observations.

In order to realize the above purpose, a novel, three-step scheme based on strong
background extraction, multichannel clutter suppression, and the DLRVP test is proposed.
In the first step, the spatial similarity of the scatterers themselves and the correlation
between the sub-aperture images are fused to extract the strong clutter background as the
prior information of large-RCS clutter suppression. To avoid interference of large RCS
targets, a double-threshold method is used to extract the clutter background. In the second
step, for the data after clutter suppression and strong clutter background elimination, a new,
amplitude-based detector is utilized to detect potential moving targets with a relatively low
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threshold. After the above two steps, most of the false-alarm targets have been excluded,
and the position of each potential moving target in the image is obtained. However, there
are still some isolated strong scattering points or edges of man-made objects that cannot
be eliminated by the above two steps. In the third step, a novel detection model based on
the linear consistency of the interference phase is constructed to reduce false alarm targets
caused by isolated strong clutter.

The flow of the proposed method is summarized as follows. Step I: Extract the
coordinates of strong static clutter in the observed scene; use ‘1’ to indicate that the pixel
is strong clutter and ‘0’ to indicate that the pixel is non-strong clutter, thus forming a
background-mask map. Step II: Register the image to be detected with the mask map
generated by Step I. Remove the pixels in the strong clutter position, and the remaining
pixels are used for target detection. Step III: Calculate the DLRVP value of each target
detected by Step II, and perform CFAR detection again to eliminate false alarm targets in
the detection results of Step II.

In this paper, four-channel, airborne, X-band data is used to verify the correctness
and effectiveness of the proposed method. We compared the detection performance of
the proposed method with the DRVC method [14], the GO-DPCA method [11], and the
weighted DPCA [34]. The results of measured data verified that the PFA of the proposed
method is only 20% that of the comparison method and has better robustness.

The reminder of this paper is structured as following. Section 2 introduces the system
geometry and the signal model of CSAR GMTI. In Section 3, the proposed three-step scheme
is described in detail and compared with existing detection methods through simulation
analysis. In Section 4, the effectiveness of the proposed method is demonstrated by using
actual data collected by a four-channel airborne CSAR system. Finally, according to the
results of simulated and measured data, we summarize the proposed method in Section 5.

2. Geometry and Signal Model of Multichannel CSAR System

This paper takes the sub-aperture image obtained by the back-projection (BP) algo-
rithm as the research object. In this section, the image geometry and the moving-target
model of multichannel CSAR GMTI are described.

2.1. Geometry

The observation geometry of a multichannel CSAR-GMTI system is shown in Figure 1.
The platform moves at a constant angular velocity ω along a circular track with radius r
and hovering height H and has M spatial channels with a fixed distance d that are parallel
to the flying direction. The first channel serves as both a transmitting and receiving channel,
while the other channels only receive echoes. Let ta denote the slow time variable, so the
instantaneous azimuth angle of the antenna phase center (APC) of the reference channel
can be expressed as θta = θ0 + ωta, where θ0 is the initial azimuth angle of the reference
channel. The instantaneous coordinates Ci = (xi, yi, zi)

T of the ith (i = 1, 2 · · ·M) APC are
given by [30]:

xi(ta) = r cos(θta) + (i− 1)d sin(θta)
yi(ta) = r sin(θta)− (i− 1)d cos(θta)
zi(ta) = H

. (1)

At time ta = 0, a ground-moving target is located at position P0 = (x0, y0, z0)
T . The

moving target is assumed to move along a straight line at a constant velocity on flat ground.
The velocities of the moving target along the X-Y-Z axis are vx, vy, vz, respectively. Thus,

the instantaneous coordinates P =
(
xp, yp, zp

)T of the moving target can be written as
following [30]:

xp(ta) = x0 + vxta

yp(ta) = y0 + vyta

zp(ta) = z0 = h
(2)
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where h denotes the altitude of the observation scene.
Based on the above analysis, we can deduce that the instantaneous slant range Ri(ta)

between the APC of the ith channel and the moving target can be expressed as [29,30]:

Ri(ta) =
∣∣∣−→OP−−→OCi

∣∣∣
=
√(

xi(ta)− xp(ta)
)2

+
(
yi(ta)− yp(ta)

)2
+ (H − h)2

(3)

where vta and vtr are defined as the projection of target’s motion velocity in the flight
direction and the radial direction of the platform at time ta, respectively.

(a) (b)

Figure 1. The observation geometry of multichannel CSAR-GMTI. The red dashed line represents the
path of a moving target; coordinates P1 and P2 represent the locations of the same moving target in
different sub-aperture images: (a) lateral view; (b) vertical view.

For the kth sub-aperture, the second-order Taylor series expansion of (3) at ta = tk can
be written:

Ri(ta) ≈ Ri(tk) + Ri
′(tk)(ta − tk) + Ri

′′(tk)(ta − tk)
2. (4)

Let xp,tk and yp,tk represent the position coordinates of the target at tk. So the primary
and secondary Taylor expansion coefficients can be derived as follows:

R
′
i(tk)

=
rω(yp,tk cos(θtk )−xp,tk sin(θtk ))

Ri(tk)
+

(i−1)d(vta−ω(xp,tk cos(θtk )−yp,tk sin(θtk )))
Ri(tk)

+ vtr
(5)

Ri
′′(tk) =

v2
x + v2

y − 2vtarω + ω2r
(
xp,tk cos

(
θtk

)
+ yp,tk sin

(
θtk

))
− Ri

′2(tk)

2Ri(tk)
(6)

where
vta = −vx sin

(
θtk

)
+ vy cos

(
θtk

)
(7)

vtr =
vxxp,tk + vyyy,tk − r

(
vx cos

(
θtk

)
+ vy sin

(
θtk

))
Ri(tk)

(8)

2.2. Signal Model

The adjacent antennas are distributed along the circular flight track in Figure 2. The
system adopts a single-channel transmitting and all-channel receiving working mode.
Regard Channel 1 as the reference channel and the other channels as the auxiliary channels.
The chirp signal is used as the transmitting signal. In this mode, the echo of the auxiliary
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antenna has a bistatic effect. After range compression, the echo signals in the kth sub-
aperture received by the reference channel and the ith channel can be written, respectively,
as [11,35]:

S1(tr, ta) = σ0rect
[

ta − tk
Tsub

]
sinc

{
πB
(

tr−
4R1(ta)

c

)}
exp
[
−j

2π fcR1(ta)

c

]
(9)

Si(tr, ta)

= σ0rect
[

ta−tk
Tsub

]
sinc

{
πB
(

tr− R1(ta)+Ri(ta)
c

)}
exp
[
−j 2π fc

c (R1(ta) + Ri(ta))
] (10)

where σ0 is represents the amplitude of the echo, tr is fast time, and c is the speed of
light. The symbol B is frequency bandwidth, fc is carrier frequency, rect(·) is the rectangle
window, and Tsub and tk denote the synthetic aperture time and center time, respectively,
of the kth sub-aperture.

Figure 2. The geometry of ATI for CSAR (the red dot represents the center of the observation scene).

According to the principle of equivalent phase center [35–37], after compensating
for the constant phase term, the phase centers of the auxiliary channel can be considered
equivalent to a single transmitting and receiving antenna. After co-registration with respect
to the reference channel in the azimuth direction, the slant distance between the target and
the ith antenna can be written [35]:

2Ri,reg(ta) = R1(ta + ∆ti,a) + Ri(ta + ∆ti,a) (11)

where ∆ta is the time delay caused by the azimuth displacement between the phase center
of the ith channel and reference channel; it can be calculated as follow:

tan(ω∆ti,a) =
−(i− 1)d

2r
≈ ω∆ti,a. (12)

For the ith channel, there exists di(ta) that satisfies Equation (13):

2Ri,reg(ta) = R1(ta + ∆ti,a) + Ri(ta + ∆ti,a)

= 2R1(ta) + di(ta)
. (13)

Substituting Equations (12) and (13) into Equation (4), we can obtain:

di(ta) = R1(ta + ∆ti,a) + Ri(ta + ∆ti,a)− 2R1(ta)

= Ri(tk)− R1(tk) + 2R1
′(tk)∆ti,a +

(
Ri
′(tk)− R1

′(tk)
)
(ta + ∆ti,a − tk)

+
(

Ri
′′(tk)− R1

′′(tk)
)
(ta + ∆ti,a − tk)

2 + 2R1
′′(tk)

[
2∆ti,a(ta − tk) + ∆t2

i,α

]
= vtr∆ti,a +Rn(ta)

(14)
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whereRn(ta) is a polynomial about ta. In the synthetic aperture time, the value ofRn(ta)

is less than λ/16, so it can be ignored.
After delay correction, the signal of channel ith can be expressed as [3,30]:

Si(tr, ta) = σ0rect
[

ta − tk
Tsub

]
sinc

{
πB
(

tr −
2Ri,reg(ta)

c

)}
exp
[
−j

4π fc

c
Ri,reg(ta)

]
. (15)

Based on the above discussion, after azimuth-matched filtering, the interferometric
phase of the moving target between the ith channel and the reference channel can be
calculated by [3,19,30]:

ϕATI = arg(Z1Z∗i ) =
2πdi(ta)

λ
≈ −2π(i− 1)dvtr

λrω
(16)

where Z1 and Zi are complex images of the first and ith channels, respectively, arg()
returns the phase of a complex number, [·]∗ is the sign of complex conjugate, and λ is the
wavelength of the radiation.

From (16), we can get the spatial steering vectors of a moving target and the stationary
clutter in the image domain, which can be written as [3]:

αs(vtr) =

[
1, ej 2πdvtr

λrω , · · · , ej 2π(M−1)dvtr
λrω

]T
∈ CM×1

αC = [1, 1, · · · , 1]T ∈ CM×1

(17)

where [·]T denotes the transpose of the matrix.
After time-delay compensation between channels, SAR focusing, image registration,

and phase calibration to make each pixel independent and identically distributed, the
complex data of pixel (p, q) in M images can be arranged in a vector Z(p, q) by the following
model [3,38,39]. Two statistical hypotheses have to be distinguished:

H0 : Z(p, q) = ZC + ZW = δC(p, q)αC + n(p, q)
H1 : Z(p, q) = ZT + ZC + ZW = δS(p, q)αS(vtr) + δC(p, q)αC + n(p, q)

(18)

where Z(p, q), δC(p, q), δs(p, q), n(p, q) represent the complex data of the processed SAR,
the stationary ground clutter, the moving target, and the white noise signal, respectively.
The clutter vector ZC and white vector ZW are assumed to be circularly symmetric, complex,
Gaussian, random vectors, that is, mutually uncorrelated real and imaginary parts, with
zero means. The samples of ZC are highly mutually correlated because they are obtained
from the same perspective in short time interval. Hypothesis H0 means that a moving
target is absent, and hypothesis H1 assumes that a moving target exists. Therefore, we
can detect the slowly moving target submerged in the main lobe of the clutter spectrum
according to the difference of steering vectors between moving target and static clutter.

3. The Proposed Detection Scheme for CSAR GMTI

The main goal of this chapter is to develop a new detection method for slowly mov-
ing targets that can effectively reduce the false alarm rate caused by strong clutter. For
uninteresting targets, we use two methods to remove the impact on detection. First, if the
Doppler frequency of the irrelevant target is in the side-lobe of the clutter spectrum, we can
remove it by bandpass filtering in the Doppler domain. Second, if the Doppler frequency
of the irrelevant target is in the main lobe of the clutter spectrum, we can remove it during
tracking, localization, and target identification.

The proposed detection scheme mainly includes three steps, and its detailed flow chart
is shown in Figure 3. Firstly, multi-angle sub-aperture imaging obtained by the circular
SAR is used to extract the strong clutter background as the prior information for the next
step. Secondly, for the multichannel sub-aperture image after image registration, channel
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equalization, and interferometric phase correction, the method proposed in Section 3.2 is
used for clutter suppression and primary detection. In this step, in order to improve the
probability of detection and further reduce detection omissions, we used a lower detection
threshold when performing CFAR. At this point, the location of the potential target is
obtained. Finally, for the potential moving targets obtained in the previous step, the new
detection method proposed in Section 3.3 is used for secondary detection to reduce false
alarms caused by isolated strong scattering points.

In Sections 3.1–3.3, the three key components of the detection method proposed in this
paper will be analyzed in detail.

Figure 3. The flowchart of the proposed detection scheme. Each square contains multiple pixels: the
‘1’ square denotes strong clutter, the red square denotes the position of the moving targets detected,
and the green square denotes the position of false alarms.

3.1. Step I: Clutter Background Extraction

Without prior information, it is difficult to eliminate the false alarm caused by strong
background clutter. In fact, strong scatterers are mostly artificial targets such as houses,
vehicles, and bridges. When the observation angle difference is small, they can be con-
sidered as isotropic and coherent. In addition, the pixels of these static scatterers in the
SAR image have the characteristics of large amplitude, continuous distribution, and strong
spatial structure. Therefore, we can extract position information of the strong clutter back-
ground by using the spatial structure of strong scatterers and the correlation between
multi-angle observations.

This section designs a method to extract strong clutter background by combining
sub-aperture correlation, clutter signal strength, and spatial similarity information. With-
out changing the basic distribution of actual clutter, the contrast information between
strong clutter and surrounding clutter is maximized so as to accurately extract the position
information of strong scatterers in the scene.
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The process of extracting the strong clutter background is mainly divided into two
steps. Firstly, we divide 360 degrees into N sub-apertures equally [40] (the size of the
sub-aperture is determined by the SAR resolution [4,8]), and the two adjacent sub-apertures
partially overlap. Then, the radar echoes received by each sub-aperture are imaged to obtain
N sub-aperture images. Calculate the correlation coefficients of two adjacent sub-aperture
images to obtain N-1 correlation coefficient maps. Then the appropriate threshold is selected
according to the statistical histogram of the correlation coefficients of all sub-apertures. For
a single pixel location, when the corresponding N-1 correlation coefficients are all greater
than the threshold, the pixel location is considered to be a strong scatterer. Secondly, the
strong clutter detected in the previous step and its surrounding pixels are selected for
amplitude and spatial similarity detection, so as to extract the structural information of the
entire strong scatterer. The strong clutter background obtained in the above two steps is
used as the prior information for later detection to reduce the probability of false alarms
and improve the detectability of weak targets.

This article only cares about the amplitude of the correlation coefficient, not its phase.
With reference to the classic calculation method of sample cross-correlation coefficient [38],
the correlation coefficient between adjacent sub-aperture images can be written as:

γ =

∣∣∣∣∣∣∣∣∣∣
K
∑

k=1
C1(k)C∗2 (k)√

K
∑

k=1
|C1(k)|2

√
K
∑

k=1
|C2(k)|2

∣∣∣∣∣∣∣∣∣∣
, 0 6 γ 6 1 (19)

where C1(k) and C2(k) represent the pixel values of two adjacent sub-apertures, * denotes
complex conjugate, and K is the number of pixels included in the sample window.

The bilateral CFAR detection method is used to jointly detect the amplitude and spatial
similarity of the strongly correlated pixels and their surrounding pixels, so as to extract
the continuous, concentrated, and strong structure information of the strong scatterers. Its
mathematical model can be written as [34,39,41]:

Icombinedj
= Iintensity j · Ispatial j (20)

where Iintensity j is the intensity information of each pixel of the image, and Ispatial j repre-
sents the spatial similarity between each pixel in the image and its neighboring pixels,
which is determined by the geometry and spatial distribution of the scatterer. The two
represent different target features. The purpose of multiplying the two in Equation (20) is
to construct a detection method that considers both image intensity information and spatial
distribution information.

Assuming that the intensity of the center pixel of the sliding window N(ω) is Ix,y , Ij
represents the intensity of the surrounding pixels, and fh is the kernel density estimator
with the standard normal distribution as the kernel function. Then the similarity between
adjacent pixels characterized by the kernel density estimator can be written as [41]:

Ispatialj
=

fh=1(I)−min( fh=1(I))
max( fh=1(I))−min( fh=1(I))

fh=1
(

Ix,y
)
= ∑

j∈N(ω)

exp(−1
2
(

Ix,y − Ij
)2
)

(21)

The kernel density estimator is used to characterize the similarity information between
pixels. Compared with the detection method that only uses intensity information, it can
well reflect the aggregation degree and structure information of the strong scatterers in
the image.
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After processing by (20), an image whose amplitude and spatial similarity have been
fused is obtained, and then CFAR detection is performed on it, thereby extracting the strong
clutter background.

As shown in Figure 3, the detailed process of strong clutter background extraction is
as follows:

1. Divide the circumference into N sub-apertures, obtain N SAR images, and register
the N images.

2. Calculate the correlation coefficient of two adjacent sub-aperture images, obtain N-1
correlation coefficient maps, calculate the mean value and variance of the correlation table
coefficient of each pixel point, and generate a correlation coefficient statistical histogram and
a variance histogram. Calculate the correlation coefficient threshold ρth and the correlation
coefficient variance threshold ρstd,th and perform CFAR detection.

3. Select the pixel detected in the previous step and its surrounding pixels and calculate
the spatial similarity according to Equation (21).

4. Use Equation (20) to perform joint detection of amplitude and spatial similarity to
generate a mask map composed of ‘0’ and ‘1’.

3.2. Step II: Clutter Suppression and Primary Detection

Take the first channel as the reference channel, and subtract the image of the reference
channel from the images of the second to Mth channels to obtain M-1 residual images. After
clutter suppression, the difficult problem we face is how to use M-1 residual clutter images
to achieve high-performance CFAR detection. Traditional methods usually perform CFAR
detection on each residual image, such as the subspace projection (SP) [22,42] method and
the images differential (ID) [43,44] method, and then synthesize the CFAR results of M-1
times to obtain the final detection results. These methods only use a single baseline when
detecting a residual image, which cannot guarantee that moving targets with different
radial velocities can obtain the highest processing gain, resulting in missed target detection.
In addition, these methods require M-1 times CFAR detection, and there is no doubt that
their computational complexity will be very high.

In order to improve the target-detection performance of traditional methods, referring
to the idea of GO-CFAR, a CFAR method combined with multichannel DPCA is designed
in this paper. The data of pixel (p, q) in M-1 residual images can be arranged in a vector
DPCA(p, q) by the following model. We take the data with the largest energy in this vector
as the detection data, and the mean value of the vector as the background data, so as to
obtain two new images. The detailed processing flow of go DPCA is shown in Figure 4a.
The pixel to be detected and background pixel value can be expressed as:

DPCAmax(p, q) = max(|DPCA1(p, q)|, · · · , |DPCAM−1(p, q)|)
DPCAmean(p, q)= mean(|DPCA1(p, q)|, · · · , |DPCAM−1(p, q)|). (22)

The two images are jointly used for moving-target detection. The processing gains of
three methods are compared and analyzed, as shown in Figure 4b. It can be seen from the
simulation results that the processing gain of the SP algorithm is low, and the ID algorithm
is prone to speed ambiguity, which leads to missing alarms, while the proposed method
has the highest processing gain and a wide speed-adaptation range. In order to prevent
the moving-target signal from leaking to the adjacent unit, in addition to the pixels to be
detected, several adjacent pixels should be selected as the protection unit. The protection
unit does not participate in the estimation of the background clutter, helping to avoid the
interference of the moving-target signal on the background.

Next, we will analyze the hypothesis test model and probability distribution charac-
teristics of the proposed method. Amplitude statistical hypotheses of the pixel (p, q) of the
mth channel are given by:

H0 : ρ(p, q) = |DPCAC,m(p, q) + DPCAN,m(p, q)|
H1 : ρ(p, q) = |DPCAT,m(p, q) + DPCAC,m(p, q) + DPCAN,m(p, q)| (23)
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where ρ(p, q) represents the amplitude of the pixel after clutter suppression, and
DPCAC,m(p, q), DPCAT,m(p, q), DPCAN,m(p, q), respectively, represent the complex data
of the stationary ground clutter, the moving target, and the complex Gaussian noise signal
processed by DPCA. Hypothesis H0 means that a moving target is absent, and hypothesis
H1 assumes that a moving target exists.

(a) (b)

Figure 4. The principle of Step II and gain curves. Θ corresponds to SP algorithm; ∆ corresponds
to ID algorithm). (a) The flowchart of Step II; (b) The processing gain curves of moving targets by
three methods.

The next step is to select the distribution model and estimate the parameters from
the image data. Every statistical distribution has its own applicable scenarios. In order to
describe clutter precisely, the distribution model and parameter estimation method should
be selected according to the specific application. Take the 0.3 m X-band SAR image as
an example to study the amplitude distribution of the high-resolution SAR image after
clutter suppression. The observation scene in Figure 5a is rural areas, including houses,
farmland, trees, and other clutter, which can be considered as a heterogeneous clutter
environment. Figure 5c shows the results of histogram-fitting of the data in Figure 5b
through four probability distributions, which are generalized gamma distribution (GΓD),
Weibull distribution, gamma distribution, the square root of gamma distribution, and
Rayleigh distribution, respectively. It can be seen from the figure that the fitting effect of
GΓD distribution is the best. For a heterogeneous clutter environment and high-resolution
SAR image, the amplitude after clutter suppression no longer obeys the square root of
gamma distribution but follows a heavy-tailed distribution [36,45,46]. Therefore, the GΓD
distribution is used to characterize the background clutter in this paper. It is used for
homogenous or inhomogeneous SAR-amplitude intensity image with multiple types of
terrain, such as urban areas, farmland, and mountains.

The probability density function (PDF) of GΓD is written by [45]:

f (x) =
|v|kk

σΓ(k)

( x
σ

)kv−1
exp
(
−k
( x

σ

)v)
, δ, |v|, k, x > 0 (24)

where Γ(k) denotes the gamma function, and k, σ, v represent the shape parameters, power,
and scale, respectively.

The key step prior to CFAR is how to accurately estimate the distribution parameters
and calculate the threshold. Parameter estimation methods mainly include method of
moments (MoM), the maximum-likelihood method, and the method of log-cumulants
(MoLC). Compared to the other two methods, MoLC has higher parameter estimation
accuracy. The relationship between the first three log-cumulants of GΓD and parameters k,
σ, and v is written by [46]:
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k1 = ln σ +
(Ψ(k)− ln k)

v

k2 =
Ψ(1, k)

v2

k3 =
Ψ(1, k)

v3

(25)

where Ψ(x), Ψ(n, x), respectively, represent the digamma function and n-order Polygamma
function, and k1, k2, k3 are the first three log-cumulants of GΓD (its calculation method is
given in [46]). The adaptive detection threshold T can be calculated using local background
clutter around the pixels to be detected in the sliding window. Let F(x) be the corresponding
cumulative distribution function (CDF). The PFA can be given by [36,46]:

Pfa = 1− ∫ T
−∞ f (x)dx = 1− F(x). (26)

The incomplete gamma function is represented by Q(x, k). Taking Equation (24) into
Equation (26), we can obtain the CDF of the background clutter as by [45]:

F(x) =


Q
(

k
(x/σ

)v, k
)

, v > 0

1−Q
(

k
(x/σ

)v, k
)

, v < 0
. (27)

By submitting Equation (27) to Equation (26), we can obtain the adaptive detection
threshold T as by [45,46]:

T =


σ

{
1
k

Qinv

(
1− Pf a, k

)} 1
v
, v > 0

σ

{
1
k

Qinv

(
Pf a, k

)} 1
v
, v < 0

(28)

where Qinv(x, k) represents the inverse function of Q(x, k).
From the above analysis, we obtain PDF, CDF, and detection threshold calculation

methods. Now we verify the effectiveness of the proposed method through actual SAR
data. In order to judge the performance of fitting, Kullback–Leibler divergence (KL) is
used to evaluate the difference between the two probability distributions of the statistical
histogram and fitting result. A smaller value of KL means that the distribution is more
suitable for the data.

In a SAR-GMTI system, the PFA expresses the probability of an event that a “non-
target” pixel can be detected as a “target” pixel. We use the ratio of the number of detected
“no target” pixels to the number of image pixels to represent the actual false alarm rate
(Actual FAR). The actual probability of a false alarm can be estimated by [45,47]:

P̂fa =
ND − Ntrue

NaNr
(29)

where Na and Nr represent the number of pixels in the azimuth and range directions of the
SAR image, respectively. ND represents the number of detected pixels, and Ntrue represents
the number of pixels occupied by the real targets.

The KL value and Actual FARs of the four methods are listed in columns 2 and 3 of
Table 1, respectively. It can be seen from the table that GΓD has the minimum KL value
and Actual FAR, which means it is the most effective method to fit the background among
the four methods. However, Figure 5d intuitively shows that the residual energy of strong
clutter is still large after clutter suppression. After the clutter-suppression operation, the
clutter-to-noise ratio (CNR) is still greater than 13 dB. This remaining clutter will produce a
large number of false alarms. In Figure 5a,b,d, the X-axis represents the sampling point in
the range direction, and the Y-axis represents the sampling point in the azimuth direction.
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(a) (b)

(c) (d)

Figure 5. Clutter suppression and the PDF fitted by step II. (a) X-band 0.3 m resolution SAR image;
(b) clutter suppression result; (c) PDF fitting result; (d) amplitude before and after clutter suppression:
red and green ellipses indicate the amplitude of strong clutter before and after clutter suppression,
respectively.

The false alarm caused by strong clutter cannot be removed by traditional clutter
suppression methods. Next, we combine the a priori strong clutter background obtained
in Step I to further eliminate false alarm targets. The strong clutter background extraction
result is shown in Figure 6a, and Figure 6b is an enlarged view of the red rectangular area
in Figure 6a. Figure 6c–f only show the detection results of the two distributions (and the
Weibull distribution) before and after combined Step I. The fourth column of Table 1 gives
the Actual FARs of Step I and Step II combined. Comparing the processing results of the
two methods, the clutter suppression method proposed in this paper can effectively reduce
the number of false alarms caused by strong clutter.

Table 1. KLs and Actual FARs, Pfa = 10−5.

Distribution Function KL
Actual FARs

Only Step II Combined Step I
and Step II

GΓD 0.03337 0.00106 0.00003
Rayleigh 0.41125 0.01131 0.00331
Weibull 1.62303 0.01812 0.00729

Square root GΓD 1.88569 0.01823 0.00738
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Detection results of the two methods: red pixels denote the position of false alarm. (a) Ex-
tracted strong clutter background; (b) enlarged view of red rectangular area in (a); (c) detection results
of GΓD only by Step II; (d) detection results of GΓD Step I and Step II combined; (e) detection results
of Weibull distribution only by Step II; (f) detection results of Weibull Step I and Step II combined.

3.3. Step III: A New Test Based on DLRVP

After the above two steps, most of the false alarm targets have been excluded, and the
position of each potential moving target in the image has been obtained. However, there
are still some isolated strong scattering points or edges of man-made objects that cannot be
eliminated by the above two steps, as shown in Figure 6d,f. In order to solve this problem
and realize radial velocity estimation, a new detection method based on interference phase
after clutter suppression is proposed. The interferometric phase caused by the radial
velocity of the moving target has a linear relationship between different channels, but there
is no such relationship for static clutter. Therefore, we can use the above characteristic of
multi-baseline interferometric phase to distinguish moving targets from stationary clutter.
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Due to the size and defocus of the target itself, each moving target occupies multiple
pixels in the high-resolution SAR image. Based on the above analysis, this paper puts
forward two hypotheses. Firstly, it is assumed that the moving target is rigid and the speed
of each part is consistent. Second, it is assumed that the target only runs forward without
rotation [48–50] in the synthetic aperture time (usually about ten seconds for airborne SAR).
These two assumptions are suitable for most ground-moving targets, such as passenger
cars, trucks, etc. Therefore, the radial velocities of each component of a moving target can
be considered to be equal. Assuming that the moving target contains K pixels in the SAR
image, for heterogeneous clutter, the product model of kth pixel of M channels is given by:

Z(k) =


z1(k)
z2(k)

...
zM(k)

 = µ(k) + ∆(k) · C(k) + N(k) ∈ CM×1

µ(k) = a · d(ϑ) = αejϕ


1

exp(jϑ)
...

exp(j(M− 1)ϑ)


(30)

where ϑ = 2πdvtr/λrω denotes the interferometric phase caused by the radial velocity
of the moving target as shown in (16), and d(ϑ) represents the spatial steering vector of
a moving target. The complex amplitude a is described as the reflectivity of the moving
target, while ∆ represents the texture feature describing the fluctuation of the clutter.

For heterogeneous clutter, the PDF of clutter texture ∆ is given by [38]:

f∆(σ) =
2(v− 1)v

Γ(v)
(σ)−(2v+1)exp

(
−v− 1

σ2

)
(31)

where Γ(v) denotes the gamma function, and v represents a shape parameter that describes
the degree of clutter unevenness [51] (the larger the value of v, the more even the terrain).

This section takes the interferometric phase after clutter suppression as the research
focus. In this paper, the difference between adjacent channels is used to suppress clutter.
After DPCA, we can obtain M-2 interferometric phase diagrams. The interferometric phase
of the kth pixel of the mth interferometric diagram is obtained by the following equation:

X(k) =


z2(k)− z1(k)
z3(k)− z2(k)

...
zM(k)− zM−1(k)

 = ∆µ(k) + ∆C(k) + n(k) ∈ C(M−1)×1

φm(k) = arg{Xm+1(k) · X∗1(k)}

(32)

where m = 1, · · · , M− 2, and φm(k) ≈ mϑ when a moving target is present, and ∆µ(k),
∆C(k) represent the residual signal of moving target and clutter after clutter suppression,
respectively. Noise is expressed in n(k).

The multivariate PDF of (X(1), · · · , X(K))T can be written by [33]:

fX(1),··· ,X(K)(X(1), · · · , X(K))

= (v−1)−2KΓ(v+2K)
π2Kdet(R)KΓ(v)

(
1 +

K
∑

k=1

(X(k)−∆µ(k))∗R−1(X(k)−∆µ(k))
v−1

)−(v+2) (33)

where R represents the covariance matrix of clutter plus noise.
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The first element of the inverse of the Fisher information matrix can be used as an
estimate of the Cramér–Rao bound (CRB) of the ATI phase [14,33]:

(
J−1
)

11
=

(v− 1)
2Kvα2

(
d∗ϑR−1dϑ −

∣∣d∗ϑR−1dT
∣∣2

d∗TR−1dT

)−1

(34)

where α is the amplitude of the moving target after clutter suppression, and the vector dϑ

is the first derivative of the spatial steering vector dX = (1, · · · , exp(j(M− 2)ϑ))T . So the
CRB of the multichannel interference phase can be written by [38]:

σϑ =
√
(J−1)11

=

√
(v−1)
2Kvα2

(
d∗ϑR−1dϑ −

|d∗ϑ R−1dT|2
d∗TR−1dT

)−1

.
(35)

When the moving target is absent, the PDF of φm can be written by [14]:

fφm(φ) =
Γ(n+1/2)(1−ρ2

m)ρm cos(φ−ϕm)

2
√

πΓ(n)(1−ρ2
mcos2(φ−ϕm))

n+1/2 +
(1−ρ2

m)
n

2π 2F1

(
n, 1; 1

2 ; ρ2
mcos2(φ− ϕm)

)
(36)

where ρm and ϕm, respectively, represent the amplitude and phase of the complex correla-
tion coefficient between X1 and Xm+1.

Table 2 lists the simulation parameters of the four-channel SAR, and the theoretical PDF
and statistical histogram of φm under H0 and H1 assumptions are shown in Figure 7. The
simulation results verify that the phase corresponding to the peak of the PDF in Figure 7b
is twice that in Figure 7a when there is a moving target.

Table 2. Simulation parameters.

Parameter Value

Wavelength 0.032 m
Channel number 4

Adjacent channel spacing 0.1 m
Platform velocity 100 m/s

Velocity of moving target 1 m/s
CNR 13 dB
SCR 5 dB

Channel correlation coefficient 0.96
Clutter heterogeneity 3.1

As shown in (30) and Figure 7, the simulation results verify that the interference phase
caused by the radial velocity of the moving target has a linear relationship between different
channels, while the interferometric phase has no such relationship when only clutter exists.
Therefore, we can use the above characteristic of the multi-baseline interferometric phase
to distinguish a moving target from stationary clutter. Ideally, the interferometric phase
of a moving target obtained from the M-2 interferograms after clutter suppression can be
expressed by:

ΦR = [φ1,1, · · · , φ1,M−2; φ2,1, · · · , φ2,M−2; φK,1, · · · , φK,M−2]
T

= ϑ · [1, · · · , M− 2; · · · ; 1, · · · , M− 2]T ∈ (M−2)×K.
(37)

Considering the phase-wrapping problem, we consider transforming φR into
Euler domain:

ΦEU
R = ejΦR ∈ C(M−1)×K (38)
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(a) (b)

Figure 7. The theoretical PDF and histogram of interference phase: (a) φ1; (b) φ2.

Ideally, it is assumed that the scattering characteristics of K pixels occupied by moving
targets are consistent and image registration, channel equalization, and interferometric
phase correction are completed. Based on the above analysis, a new moving-target test
variable based on multi-baseline interferometric phase is defined as (39):

β =

∣∣∣∣∣∣ ∆
(
φEU

R
)H

γ(ϑ)√
∆
(
φEU

R
)H

φEU
R ∆H

√
γ(ϑ)Hγ(ϑ)

∣∣∣∣∣∣. (39)

The element values of ∆ ∈ R1×K are equal under homogeneous conditions, i.e.,
∆ = [1, · · · , 1]. The detection test represents the consistency between the observation matrix
φEU

R and the spatial steering vector γ(ϑ) = [exp(jϑ), · · · , exp(j(M− 2)ϑ)]T ∈ C(M−2)×1.
Based on the above analysis, we can define a new detection method with the following

hypotheses:

β̂
H0
≶
H1

η (40)

where η denotes the detection threshold. When β̂ is greater than η, it is considered that
there is a moving target; while β̂ is less than η, there is no moving target. In practice, it is
difficult to obtain analytical expressions of false alarm probability and detection threshold.
Thus, the detection threshold is determined by histogram fitting and a look-up table.

The maximum likelihood estimation of the ATI phase and radial velocity are given by:

ϑ̂ML = max
ϑ

∣∣∣∣∣∣ ∆
(
φEU

R
)H

γ(ϑ)√
∆
(
φEU

R
)H

φEU
R ∆H

√
γ(ϑ)Hγ(ϑ)

∣∣∣∣∣∣ (41)

v̂tr =
λrω

2πd
ϑ̂ML. (42)

The new detection method not only considers the velocity consistency of moving
targets, but also makes use of the linear characteristics of multichannel interferometric
phase of moving targets. When the moving targets are present, the interferometric phase
of a moving target satisfies the linear relationship—the value of β is close to one. On the
contrary, when only clutter exists, the interferometric phase no longer satisfies the linear
relationship, the value of β is much smaller than one.

However, in practice the clutter is extremely heterogeneous, which means that the
elements of vector ∆ are not all equal. System error, non-stationary clutter, low signal-
to-noise ratio, and other factors weaken the linearity of the interference phase between
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different channels, which will lead to the amplitude of β deviate from one. Therefore, it is
necessary to analyze the peak position and the numerical distribution of β.

Firstly, the peak position of β is analyzed. Let ∆φm = φm −mφ0 (in fact ∆φm fluctuates
near zero); for K→ ∞, the estimated value of β can be rewritten as:

β̂ = 1
M−2

∣∣∣∣M−2
∑

m=1
E
{

ej∆φm
}∣∣∣∣

= 1
M−2

∣∣∣∣M−2
∑

m=1
E{cos(∆φm) + j sin(∆φm)}

∣∣∣∣
= 1

M−2

∣∣∣∣M−2
∑

m=1
E{cos(∆φm)}

∣∣∣∣
≈ 1

M−2

∣∣∣∣M−2
∑

m=1
cos
{

E
(√

∆φ2
m

)}∣∣∣∣
(43)

where E
(√

∆φ2
m

)
is the standard deviation of φm. The analytical expression of β̂ is not easy

to obtain. Therefore, we use the CRB of ϑ to estimate the value of β̂. When the target exists,
the peak position of β is approximately located at:

β̂ = cos(σϑ). (44)

From Equation (35), we can see that the main factors affecting the performance of β̂
for a moving target are the number of looks K, the output SCNR, and the shape parameter
of clutter. Next, the variation of peak position and detection probability with the above pa-
rameters is analyzed. Then, the influence of the above factors on the proposed test method
is verified by Monte Carlo simulation. Finally, by comparing with the existing methods
(such as traditional ATI, DPCA, and DRVC from the literature [14]), the effectiveness of
this method for moving-target detection is illustrated. The following simulation is for
non-stationary clutter, and the shape parameter of clutter is uniformly set to 3.1.

The specific simulation results are analyzed as follows:

• 1. Peak position analysis of β̂.
The CRBs of β̂ for three methods with different input SCNR are shown in Figure 8a.
As can be seen from the figure, under the same simulation parameters, the peak
value of the proposed method is the highest. Figure 8b shows the histogram of
the new test and the DRVC test when the moving target is absent, and Figure 8c
gives the histogram of above two methods when a moving target is present. When
SCNR = 0 dB, the theoretical value of β̂ is 0.9787, which is quite close to the simulation
results in Figure 8c. From the simulation results, we prove that the proposed method
can obtain greater β̂ value under hypothesis H1, which means that this method has
better detection performance.

• 2. Main factors affecting β̂.
Figure 8d shows the histograms of the new test with different values for K (K = 20,
60, and 100). When the K value becomes larger, the peak position moves to the
left and the width of PDF becomes narrower, which indicates better moving-target-
detection performance. Figure 9a gives the Monte Carlo simulation results of β̂ under
different inputs for SCNR. When SCNR = −5 dB, the value of β̂ has reached 0.9470,
indicating that the new detection method can identify weak targets. Figure 9b shows
the simulation results of β̂ in the range of radial velocities of −1.5 m/s to 1.5 m/s.
It can be seen that the new test has a narrower speed notch, which shows that the
proposed method has better ability to detect slow targets; also, its minimum detectable
speed is lower. The relationship between β̂ and CNR is shown in Figure 9c. When
CNR = 3 dB, the value of β̂ has reached 0.9471, which means that the proposed method
can adapt to a low-clutter environment (such as water surface and sea surface).
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• 3. Detection performance of the new test.
In order to prove the superiority of the proposed method, four existing detection
methods (ATI, DPCA, DPCA+ATI, and DRVC) are compared and analyzed under the
same simulation conditions. The ROC of the above methods obtained by Monte Carlo
simulator is shown as Figure 9d. When the value of Pfa is as low as 10−7, the value
of PD can still reach 0.9687. However, under this condition, the detection probability
of DRVC is just 0.1261, and the detection probability of the other methods is lower.
Under the same false-alarm probability, the proposed method can get the highest
detection probability because it considers the linear characteristics of interferometric
phase between channels.

• 4. Influence of radial velocity fluctuation on the new test.
This paper assumes that the motion characteristics of each component of the moving
target are consistent. However, in practical situations, factors such as terrain fluctu-
ations, target rotation [48,49], and rapid maneuvers will weaken the consistency of
target motion. Therefore, it is necessary to analyze the influence of radial velocity
fluctuation on detection performance. The ROC of DRVC and the proposed test with
different speed standard deviations σvr are shown in Figure 9e. Under the same simu-
lation conditions, with the increase of σvr, the detection probability of the proposed
test and DRVC method decreases. However, the DRVC method has a larger decline,
which shows that the proposed method has better speed robustness than the DRVC
method and can better adapt to moving targets with certain speed fluctuations.

(a) (b)

(c) (d)

Figure 8. Simulation analysis of peak position of β̂: vtr = 3 m/s, CNR = 13 dB. (a) The CRB of β̂ with
different input SCNR; (b) The histogram of β̂ under hypothesis H0; (c) The histogram of β̂ under
hypothesis H1; (d) The histogram of β̂ with different K.

Compared to the other four methods, the advantages of the proposed method are
summarized as follows:
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• Peak position is larger and the false alarm probability is lower;
• Narrower speed notch with a smaller minimum detectable speed;
• Lower input SCNR requirements for moving targets;
• Higher detection probability than the four other methods;
• Stronger speed robustness and can better adapt to speed fluctuation;
• Can better suppress strong static isolated clutter.

(a) (b)

(c) (d)

(e)

Figure 9. The performance analysis under hypothesis H1. (a) β̂ with different inputs for SCNR,
vtr = 4 m/s, CNR = 13 dB; (b) β̂ with different values for radial velocity of moving target, SCR = 10 dB;
(c) β̂ with different input for CNR, SCR = 5 dB; (d) ROC of five detection methods obtained by Monte
Carlo simulations, SCR = 0 dB, vtr = 4 m/s; (e) ROC of two detection methods with different σvr.

4. Experimental Results

In this paper, four-channel airborne X-band data was used to verify the correctness
and effectiveness of the proposed method. The radar working mode was one channel to
transmit and four channels to receive simultaneously. The main parameters are shown in
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Table 3. The experimental platform is shown in Figure 10a. The experimental observation
scene was a rural area with rich ground features (e.g., houses, roads, orchards, paddy fields,
and other landforms with various clutter forms), which could better verify the adaptability
of the method proposed. In the experiment, the three tricycles in Figure 10b were used as
the cooperative target to verify the detection performance of the proposed method. Each
tricycle was equipped with a corner reflector with an RCS of 1 m2 and a GPS device to
measure the position and speed of the vehicle. In the experiment, the movement speed was
controlled to be less than 3 m/s. The flight platform flew in a circle with a radius of 5 km
in a clockwise direction. The BP algorithm was used to image the experimental data. The
number of pixels in each image was 8000× 8000. The pixel pitch was 0.1 m × 0.1 m, and
the corresponding scene size was 800 m × 800 m.

(a) (b)

Figure 10. Flight platform and cooperative targets: (a) airborne SAR flight platform; (b) cooperative
targets.

Table 3. Main parameters of experimental data.

Parameter Value

Band width 2000 MHz
Carrier frequency 10.0 GHz
Channel number 4

Pulse repletion frequency 2000 Hz
Velocity of moving target <3 m/s
Adjacent channel spacing 0.095 m

Platform velocity 70 m/s
Flight radius 5 km

4.1. Experiment A: Clutter Background Extraction

In the experiment, 44 continuous sub-aperture images were selected for research, corre-
sponding to the aperture angle swept by the flying platform of approximately 36◦. In order
to ensure the correlation between adjacent sub-aperture images, only 2000 pulses were offset
between two adjacent sub-aperture images during imaging, and the corresponding angular
deviation was only 0.8◦. Therefore, it can be considered that the scattering characteristics
of the strong scatterer are approximately identical between adjacent sub-apertures.

In order to reflect the difference between the position of the stationary target and the
moving target in the image over time, we selected sub-aperture SAR images No. 1, No. 21,
and No. 44 at three angles (about 0◦, 18◦ , 36◦) to synthesize RGB images, as shown on the
left side of Figure 11. You can find four moving targets in the picture, three of which are
cooperative targets, marked as T1, T2, and T3, and the other is a non-cooperative target,
marked as T4.

Figure 12a,b are the mean value and standard deviation of the correlation coefficient
of 44 adjacent sub-aperture images in the time dimension, and the distribution histograms
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of the correlation coefficient and its standard deviation are shown in Figure 12c. It can be
seen from the figure that the correlation coefficients for the position of the strong static
clutter are relatively high, basically above 0.9.

Figure 11. An RGB image synthesized from three sub-aperture SAR images with different angles;
enlarged views of the moving-target area. The sub-aperture angles corresponding to R, G, and B are
0 ◦, 18◦, and 36◦, respectively.

(a) (b)

(c) (d)

Figure 12. Correlation coefficient and its standard deviation. (a) Mean value of correlation coefficient;
(b) standard deviation of correlation coefficient; (c) statistical histograms of correlation coefficient
and its standard deviation; (d) correlation coefficients of the stationary target and the moving target
vary with the aperture angle.
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The imaging position of a moving target is different in different sub-apertures, so the
motion trajectory is formed in the standard deviation image of the correlation coefficient.
The distribution of the correlation coefficient of a single pixel in different sub-aperture im-
ages is shown in Figure 12d. In the experiment, the thresholds of the correlation coefficient
and its standard deviation are set to 0.94 and 0.03, respectively. Figure 13 shows part of
the strong clutter background and the corresponding background extraction results. From
the figure, it can be seen that the proposed method can extract the contour and position
information of the strong scatterer in the scene. The above experimental results prove the
rationality of using the correlation coefficient between adjacent sub-apertures to eliminate
strong clutter.

Figure 13. Strong clutter (first row) and extracted background (second row); from left to right:
villages, houses, vehicles parked at intersections, and metal sprinklers in pools.

4.2. Experiment B: Clutter Suppression and Primary Detection

Next, we use the procedure in Section 3.2 to process the experimental data to achieve
primary detection of moving targets in the scene area. Figure 14a,b show the interferometric
phase of channel 1 and channel 4 before and after phase correction. It can be be observed in
Figure 14a that there is a relatively obvious flat-ground phase before the phase correction.
Then, using Equation (25) to suppress the clutter, the obtained clutter suppression result
DPCAmax is shown in Figure 14c. It can be seen from the figure that most of the clutter is
effectively suppressed, but there is still a strong clutter residue in the strong clutter area, as
shown in Figure 14d. If the moving target is detected directly in these areas, a large number
of false alarms will be generated. The clutter suppression results and interferometric phase
of the target area are shown in Figure 15.

In the experiment, the false alarm probability is set as Pfa = 10−7. Figure 16a shows the
result of CFAR detection using only Step II, and Figure 16a shows the result of combining
Step I and Step II for CFAR detection. Table 4 shows the detection threshold and the number
of targets for the two processing methods. The experimental results prove that using the
extracted clutter background as the prior information can effectively reduce the number of
false alarms. At the same time, a lower detection threshold is obtained, which improves
the detection ability of low-SCNR targets.

Table 4. Test results of Experiment B.

Method Detection Threshold Number of Targets

Step II Only 1762.5816 111
Step I and Step II Combined 553.9167 38
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(a) (b)

(c) (d)

Figure 14. Interferometric phase and clutter suppression results. (a) Interferometric phase of channel
1 and channel 4 (before correction); (b) interferometric phase of channel 1 and channel 4 (after
correction); (c) DPCAmax; (d) suppression results in strong clutter areas.

Figure 15. The clutter suppression results (first row) and interferometric phase (second row) of the
target areas.

After the detection result of Figure 16a is clustered, there are still many false alarm
targets, especially at the edges of strong scatterers or isolated scatter points. The intensity
of these pixels is high, but the spatial similarity calculated by the method in Section 3.1 is
low, which results in some pixels not being extracted as strong clutter background. In this
case, even if Step I and Step II are combined to detect some pixels, false alarms will still be
generated. Therefore, it is necessary to use the method in Section 3.3 to solve this problem.
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(a) (b)

Figure 16. The detection results of Experiment B; green dots and green circles represent detected
targets. (a) Only Step II; (b) Step I and Step II combined.

4.3. Experiment C: The Proposed Detection Method and Radial Velocity Estimation

Based on the four-channel real data collected by the airborne SAR, we compare the
detection performance of the proposed method with the DRVC method [14], the GO-DPCA
method [11], and weighted DPCA [34].

Aiming at the problem that there are still many false alarms after Step I and Step II
processing, this paper proposed a new moving-target-detection method. The proposed
method uses the linear relationship between the interferometric phase generated by the
radial velocity of the moving target and the space baseline to further reduce false alarms
(see Section 3.3 for details). By setting different false alarm probabilities Pfa, the number
of pixels K occupied by the moving target in the image and whether or not the clutter
background extracted by Step I is used, it was verified that the new detection method
has more excellent detection performance and robustness than the existing DRVC and
GO-DPCA methods and the weighted DPCA.

Figure 17a shows the change of the number of targets detected by DRVC and the
method in this paper with the K value in the two cases of whether or not the clutter
background extracted by Step I was used. Figure 17a shows the variation of the number
of targets detected by the method in this paper with the K value under different Pfa.
Table 5 shows the number of targets and P̂fa (calculated by Equation (29)) detected by
DRVC, GO-DPCA, the weighted DPCA and the proposed method when Pfa = 10−7. It can
be clearly seen from the comparison that the method proposed in this paper can effectively
reduce the PFA. Compared to the DRVC method, when K = 5, the PFA of the proposed
method is just 20% that of the DRVC method, and, at smaller values for K, the proposed
algorithm can reach convergence.

(a) (b)

Figure 17. The number of detected targets for various values of K: (a) DRVC and proposed method;
(b) under different Pfa.
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Table 5. Target detection results of three methods: Pfa = 10−7; Na = 8000; Nr = 8000; Ntrue = 6.

Method K
5 10 15 20 25 30 35 40 45 50

Proposed ND 16 8 8 7 7 7 6 6 6 6
P̂fa/10−7 1.563 0.313 0.313 0.0156 0.0156 0.0156 0 0 0 0

DRVC ND 70 61 55 48 46 42 42 40 39 35
P̂fa/10−7 10.000 8.594 7.656 6.563 6.250 5.625 5.625 5.313 5.156 3.125

GO-DPCA ND 140
P̂fa/10−7 20.938

W-DPCA ND 163
P̂fa/10−7 24.531

Figure 18 shows the results of DRVC and the proposed method under the conditions
of K = 40 and Pfa = 10−7. The proposed algorithm detected six targets, among which
T1∼T3 were cooperative targets and T4∼T6 were non-cooperative targets. In order to
further confirm that there were no false-alarm targets in the detection results, we analyzed
their amplitude and phase diagram. The interferometric phase between the first and
fourth channels was taken as the observation phase, and DPCAmax was the observation
amplitude. A 300 × 150 data block around the target was intercepted to analyze the joint
distribution of amplitude and phase. The amplitude and phase diagram of each target
is shown in Figure 18. It can be seen from the figure that T1, T4, and T5 are severely
defocused. The intensity of T6 is weaker and occupies fewer pixels. The interference phases
of the six targets are 0.6865, −1.09, −0.8107,−0.7649,−0.6841, and −0.5248 rad, and the
corresponding radial velocities are 0.8147, −1.1974,−0.9620,−0.81620, and −0.90727 m/s.
The experimental results prove the proposed detection method can detect slow and weak
targets with lower false-alarm probability and stronger robustness.

Figure 18. The amplitude and phase diagrams of the moving targets (T1∼T6).

5. Conclusions

Aiming at the fact that the existing moving-target-detection methods cannot over-
come the false-alarm problem caused by strong clutter residuals, a novel airborne CSAR
moving-target-detection scheme is proposed. The scheme includes three steps: clutter
background extraction, multichannel clutter suppression, and DLRVP detection. The im-
portant innovation of the proposed method is to use the linear relationship between the
spatial baseline and the interferometric phase caused by the radial velocity of the moving
target to eliminate the interference of strong clutter. In order to further prove that the
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proposed method has certain advantages compared to existing detection methods (DPCA,
ATI, DPCA + ATI, DRVC, and weighted DPCA), the statistical distribution characteristics,
peak position, detection probability, and resistance to speed fluctuations of the proposed
model are simulated and analyzed. The measured data verify that the PFA of the proposed
method is only 20% that of the comparison method and has better robustness.
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