
����������
�������

Citation: Wang, X.; Zhang, L.;

Zhao, K.; Ding, X.; Yu, M. MFDroid:

A Stacking Ensemble Learning

Framework for Android Malware

Detection. Sensors 2022, 22, 2597.

https://doi.org/10.3390/s22072597

Academic Editors: Alexios Mylonas

and Nikolaos Pitropakis

Received: 14 February 2022

Accepted: 21 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MFDroid: A Stacking Ensemble Learning Framework for
Android Malware Detection
Xusheng Wang 1, Linlin Zhang 2,*, Kai Zhao 1, Xuhui Ding 1 and Mingming Yu 2

1 School of Cyber Science and Engineering, College of Information Science and Engineering, Xinjiang
University, Urumqi 830046, China; wang_xs98@foxmail.com (X.W.); zhaokk@xju.edu.cn (K.Z.);
xhding2021@163.com (X.D.)

2 School of Software, Xinjiang University, Urumqi 830046, China; yumm0408@foxmail.com
* Correspondence: zllnadasha@xju.edu.cn

Abstract: As Android is a popular a mobile operating system, Android malware is on the rise,
which poses a great threat to user privacy and security. Considering the poor detection effects
of the single feature selection algorithm and the low detection efficiency of traditional machine
learning methods, we propose an Android malware detection framework based on stacking ensemble
learning—MFDroid—to identify Android malware. In this paper, we used seven feature selection
algorithms to select permissions, API calls, and opcodes, and then merged the results of each feature
selection algorithm to obtain a new feature set. Subsequently, we used this to train the base learner,
and set the logical regression as a meta-classifier, to learn the implicit information from the output
of base learners and obtain the classification results. After the evaluation, the F1-score of MFDroid
reached 96.0%. Finally, we analyzed each type of feature to identify the differences between malicious
and benign applications. At the end of this paper, we present some general conclusions. In recent
years, malicious applications and benign applications have been similar in terms of permission
requests. In other words, the model of training, only with permission, can no longer effectively or
efficiently distinguish malicious applications from benign applications.

Keywords: Android malware; ensemble learning; machine learning; static analysis; feature selection

1. Introduction

Android is the mobile operating system with the highest market share in the world.
As of December 2021, the market share of Android was as high as 70% [1]. As the number
of Android users has risen in recent years, malware, such as financial losses and privacy
disclosure, have become more common. In many Asian countries, the risk of being infected
with malware is much higher. There are many app stores provided by various third-party
vendors and many smartphones have been rooted. There are about 1.61 billion active
mobile devices in China, of which, about 78.6% run Android as the operating system [2].
Therefore, from the perspective of Android information security, it is necessary to research
malware detection technology and improve detection performance.

At present, there are two mainstream malware detection methods, static detection and
dynamic detection [3,4]. The techniques involved in static detection include decompilation,
reverse analysis, and static system call analysis. Static analysis does not need to run the
application, it uses decompilation tools to perform lexical analysis, semantic analysis, etc.,
on the static code to extract features. APK files contain many features, such as permissions,
API calls, signatures, network addresses, and hardware structures. All features can be used
as a basis for judging whether an Android application is malicious. Another detection
technique is dynamic detection, which places the application in a sandbox isolated from
the outside world and observes the behavior of the application. Dynamic analysis involves
analyzing the behavior characteristics of the application without disturbing the external
software and hardware environment. If the behavior of the application is found to be

Sensors 2022, 22, 2597. https://doi.org/10.3390/s22072597 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0920-5411
https://doi.org/10.3390/s22072597
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072597?type=check_update&version=1

Sensors 2022, 22, 2597 2 of 19

inconsistent with the routine, it is judged as malware. Dynamic features are mainly
extracted from the “behavior” that occurs when an Android application is running, and the
most important of these features are the underlying system call information and network
traffic interaction information. Every application requires the operating system to provide
the most basic resources and services to achieve its functions. At the same time, due to the
characteristics of Android system architecture, applications belonging to the application
layer cannot directly interact with the operating system, so the application also needs to
use system calls to perform certain tasks, such as file read, write, and open [5].

With the development of machine learning technology, more researchers have applied
it to Android malware detection [6]. They extract features of Android application through
static analysis or dynamic analysis and utilize machine learning classification models to
detect Android malware. Although malware detection based on a single model has been
clearly studied, the performance of each classifier varies due to differences in training data
and feature selection algorithms. To overcome the shortcoming of single-model-based
methods, an ensemble learning method is proposed. It combines multiple individual
classifiers and usually achieves better generalization performance than a single model.
Therefore, we built a stacking ensemble framework, called MFDroid, for malware detection.
We collected 1664 real applications from 4 app markets in China to evaluate the detection
performance of MFDroid. At the same time, we performed statistical analysis on our dataset.
The results show that MFDroid proposed in this study is effective, which can significantly
distinguish malicious applications from benign applications. The main contributions of
this paper are as follows:

1. We constructed a real-world Android malware dataset and conducted a comprehen-
sive analysis for the dataset, showing the differences between malicious and benign
applications.

2. We combined the results of seven feature selection algorithms and fed them into the
model for training. The results show that the F1-score of our method is significantly
higher than other feature selection algorithms.

3. We propose an Android malware detection framework based on stacking ensemble
learning—MFDroid.

The remainder of this paper is organized as follows: Section 2 presents related work
and the current state of research on dataset construction, static analysis methods, machine
learning, and ensemble learning. The details of the dataset are described in Section 3. In
Section 4, we present the proposed framework and method in detail, and then in Section 5,
we analyze the experimental results on our dataset with our proposed method. Our
conclusions are summarized in Section 6.

2. Related Work

Due to the increase of malware on smart devices, Android malware detection has
become an important research topic, and extensive studies have been produced. Concerning
the general process of Android malware detection, including dataset construction, static
feature extraction, feature selection, machine learning methods, and ensemble learning
methods, we review the related work in the field of malware detection.

2.1. Construction of Dataset

In recent years, the permissions requested by Android malware have been very close
to benign applications. Older datasets can no longer meet the needs of accurate detection,
so it is necessary to build a newer dataset for malware detection.

Arp et al. [7] presented a dataset of real Android applications and real malware, and
they collected an initial dataset of 131,611 apps. The samples were collected between
August 2010 and October 2012.

Allix et al. [8] constructed AndroZoo, an Android application dataset of over 17,854,943
apps, including Google play, each of which was analyzed by dozens of different antivirus
products to mark malware.

Sensors 2022, 22, 2597 3 of 19

Martín et al. [9] constructed a large comprehensive feature dataset consisting of
22,000 real malware and benign applications. Their work could help anti-malware tool
researchers develop new mechanisms and tools for Android malware detection.

Given the early creation of the above datasets, it is not possible to conduct research
on the latest Android application security situation. Therefore, we create a new dataset
containing APKs collected during 2019–2020.

2.2. Static Analysis

Static analysis involves utilizing decompilation tools to extract features through lexical
analysis, semantic analysis, etc., of applications. APK files contain many features, such as
permissions, API calls, signatures, network addresses, and hardware structures, etc., which
can be used as a basis for judging whether an Android application is malicious.

Li et al. [10] proposed a malware detection system SIGPID based on permission usage
analysis, and developed three levels of pruning by mining permission data to identify
important permissions that could effectively distinguish benign applications from malicious
applications. SIGPID utilized machine learning-based classification methods to classify
different families of malware and benign applications.

Tao et al. [11] proposed MalPat, an automatic malware detection system that auto-
matically extracts key features from tens of thousands of applications to help the Android
app market fight malware. Using statistical analysis techniques, they delved into different
usages of permissions and APIs and revealed their ability to distinguish malware from
benign applications. MalPat took full advantage of the characteristics of machine learn-
ing methods and used it earlier in the system architecture to learn the latent features of
existing data.

Alazab et al. [12] proposed an efficient classification model that combined permission
requests and API calls. Three different grouping strategies were proposed to select the most
valuable API calls to maximize the likelihood of identifying Android malware applications.
An in-depth analysis of different public and private packages, classes, and methods was
performed to evaluate the effectiveness and accuracy of the proposed method when dealing
with large datasets.

Although the above research uses the fine-grained feature of API call, it does not
use Opcode, which is also a fine-grained feature, as one of the features. Some studies
have shown that incorporating Opcode into the feature sets for experiments is helpful to
understand the complexity and behavior of applications [13]. Therefore, this paper adopts
three features: permission, API call, and Opcode.

2.3. Machine Learning

A machine learning classification model can further discover features and hidden
rules between features and make predictions by fitting known data.

Cai et al. [14] proposed a novel feature-weighted-based Android malware detection
scheme that combined the optimization of weight mapping functions and classifier parame-
ters, called JOWMDroid. First, eight categories of features were extracted from the Android
application package, and then the information gain was used to select a certain number of
the most important features for malware detection. Next, initial weights were calculated
for each selected feature through three machine learning models, and then five weight
mapping functions were designed to map the initial weights to the final weights. Finally,
the parameters of the weight mapping function and the classifier were jointly optimized by
the differential evolution algorithm.

Mahindru et al. [15] proposed an effective and efficient web-based Android mal-
ware detection solution, MLDroid, capable of detecting malware applications based on
permissions and API calls. They implemented different supervised, unsupervised, semi-
supervised, and hybrid machine learning algorithms to train MLDroid, enabling it to
achieve higher detection rates.

Sensors 2022, 22, 2597 4 of 19

Jannat et al. [16] proposed a system to analyze and detect Android malware using
machine learning. They solved problems in two ways—dynamic analysis and static analysis.
The best results were obtained in dynamic analysis using the random forest (RF) algorithm,
which is an extended variant of the decision tree (DT) algorithm. In addition, researchers
used various datasets for static and dynamic studies.

Utilizing only one machine learning algorithm makes the experiment subject to skewed
data, and the computational overhead is relatively large. In addition, it may be affected by
the initial setting, is sensitive to noise, and cannot handle high-dimensional features well.
Therefore, we used an ensemble learning approach to overcome the limitations of a single
machine learning algorithm, thereby improving the accuracy of malware detection.

2.4. Ensemble Learning

Ensemble learning involves combining multiple weakly supervised models to get a
better (and more comprehensive) strongly supervised model. The key idea of ensemble
learning is that, even if a weak classifier gets a wrong prediction, other weak classifiers can
correct the error.

Aboaoja et al. [17] proposed an ensemble behavior-based early evasion malware
detection framework. The developed framework consists of three main stages, evasion
behavior collection, correlation-based feature extraction and selection, and model building
stage. The framework was able to efficiently identify complex malware behaviors using
ensemble learning methods and make final decisions based on the results of the majority
voting strategy.

Zhu et al. [18] proposed a stacking integration framework, SEDMDroid, to identify
Android malware. Principal component analysis was performed on each feature subset to
detect accuracy by retaining all principal components and using the entire dataset to train
each base learner multilayer perception (MLP). Then, a support vector machine (SVM) was
used as a fusion classifier to learn implicit supplementary information from the outputs of
ensemble members and produce final predictions.

Idress et al. [19] proposed a new permission- and intent-based framework, PIndroid, to
identify Android malware applications. PIndroid was the first solution to accurately detect
malware using a combination of permissions and intent, complemented by an ensemble
approach. The authors applied statistical significance tests to investigate the correlation
between permissions and intent and found statistical evidence of a strong correlation
between permissions and intent that could be leveraged to detect malware applications.

Rana et al. [20] proposed and evaluated various machine learning algorithms by
applying an ensemble-based learning approach to identify Android malware associated
with a substring-based classifier feature selection (SBFS) strategy. They used the DREBIN
dataset and achieved better results with an ensemble learning approach.

Given that the ensemble method combines the results of multiple machine learning
algorithms, it can improve the prediction performance considerably. We construct a stacking
ensemble learning framework composed of five base learners and a meta classifier to
achieve effective and efficient malware detection. The stacking ensemble method utilized
in our paper uses all of the training data to perform k-fold cross-validation for multiple
models in the first layer, so that each model has a predicted value, and then it trains the
models in the second layer with these predicted values as new features.

3. Dataset

This study explored the statuses of Android malware applications, so we constructed a
real-world Android malware dataset. From 2019 to 2020, we collected a total of 1664 Android
apps in 15 categories from 4 app markets in China: Huawei application market (https:
//appstore.huawei.com/ accessed on 30 November 2019), Xiaomi application market
(https://app.mi.com/ accessed on 1 February 2020), 360 application market (https://
ext.se.360.cn/ accessed on 2 March 2020), and the Wandoujia application market (https:
//www.wandoujia.com/ accessed on 5 May 2020), including 806 malicious apps and

https://appstore.huawei.com/
https://appstore.huawei.com/
https://app.mi.com/
https://ext.se.360.cn/
https://ext.se.360.cn/
https://www.wandoujia.com/
https://www.wandoujia.com/

Sensors 2022, 22, 2597 5 of 19

858 benign apps (Table 1). The 15 categories were finance and economics, home and life,
chatting and socializing, travel and transportation, photography and videography, fashion
and shopping, practical tools, video and music, sports, book reading, efficient office, news
and information, learning and education, health care and entertainment. We identified
whether the collected Android applications were malicious or benign by using the Virus-
Total web tool, which was an online malware detection tool that used multiple anti-virus
engines to detect uploaded APK files, and returned detection reports to determine whether
the files were infected by viruses, worms, trojans, and various types of malware [21]. We
marked APK files according to the number of engines in the report provided by VirusTotal,
when an APK file was detected as malicious by at least three engines, it was marked as
malicious, otherwise it was benign. The specific features of the dataset are shown in Table 2.

Table 1. Number of applications.

Category Count

Malware 806
Benign 858
Total 1664

Table 2. Number of dataset features.

Feature Count

Permission 146
Opcode 218
API call 3183
Activity 4071
Service 3219

Receiver 4633
apiPackage 212

4. MFDroid

In this section, we introduce the proposed Android malware detection framework in
detail, as is shown in Figure 1, which is divided into three stages: feature preprocessing,
feature selection, and stacking ensemble method.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

Figure 1. The architecture of MFDroid.

4.1. Data Preprocessing

We preprocess the data by utilizing AndroPyTool, a tool for extracting static and dy-

namic features from APK, which combines various well-known Android application anal-

ysis tools such as DroidBox, FlowDroid, Strace, and AndroGuard. AndroPyTool uses the

above tools to perform pre-static analysis, static analysis, and dynamic analysis on APK

files, and generate feature files in JSON format [9]. As shown in Figure 2, the first step is

to check whether the sample is a valid APK file and filter out the corrupted APK files that

cannot be decompiled. The second step uses AndroPyTool to extract the feature infor-

mation of each sample and store it in JSON format for subsequent feature extraction and

vectorization. The third step uses regular expressions to extract features, such as permis-

sions, opcodes, and API calls from the JSON file generated by AndroPyTool. The last step

is to vectorize the extracted features. If a certain bit of the feature vector is 0, it means that

the feature does not appear in the APK file, and if it is 1, the opposite is true. A total of

3547 features, including permissions, opcodes and API calls, were mapped to the vector

space for subsequent feature selection. Detailed feature information is shown in Table 3.

Table 3. Representation of feature vectors.

Feature Category Amount Combined Vector

Permission 0–1 146 The three features

formed a 3547-dimen-

sional vector

Opcode 0–1 218

API call 0–1 3183

Figure 1. The architecture of MFDroid.

Sensors 2022, 22, 2597 6 of 19

4.1. Data Preprocessing

We preprocess the data by utilizing AndroPyTool, a tool for extracting static and
dynamic features from APK, which combines various well-known Android application
analysis tools such as DroidBox, FlowDroid, Strace, and AndroGuard. AndroPyTool uses
the above tools to perform pre-static analysis, static analysis, and dynamic analysis on
APK files, and generate feature files in JSON format [9]. As shown in Figure 2, the first
step is to check whether the sample is a valid APK file and filter out the corrupted APK
files that cannot be decompiled. The second step uses AndroPyTool to extract the feature
information of each sample and store it in JSON format for subsequent feature extraction
and vectorization. The third step uses regular expressions to extract features, such as
permissions, opcodes, and API calls from the JSON file generated by AndroPyTool. The
last step is to vectorize the extracted features. If a certain bit of the feature vector is 0, it
means that the feature does not appear in the APK file, and if it is 1, the opposite is true.
A total of 3547 features, including permissions, opcodes and API calls, were mapped to
the vector space for subsequent feature selection. Detailed feature information is shown
in Table 3.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21

Figure 2. The process of data preprocessing.

4.2. Feature Selection Methods

In this section, we elaborate on the seven feature selection algorithms utilized by

MFDroid and introduce the feature selection strategy used in this study.

4.2.1. Feature Selection Algorithms

The tree-based feature selection method is an information gain algorithm. The prin-

ciple is that—the more the same types of leaf nodes are contained in a feature, the more

significant the feature is in training. The tree model can calculate the feature value through

learning and training importance and calculate the feature contribution index, so it can be

used to remove irrelevant features. In this study, we used three tree-based feature selec-

tion algorithms: decision tree (DT), gradient boosting decision tree (GBDT), and extra-

trees (ET).

Chi-square test (Chi2) is a hypothesis testing method in which the distribution of a

statistic approximately obeys the chi-square distribution when the null hypothesis is es-

tablished, and it is used to determine whether two variables are independent [22]. The

correlation between categorical variables can be judged by calculating the chi-square

value of two categorical variables. The larger the chi-square value, the greater the rela-

tionship between the two categorical variables and the lower the independence; other-

wise, the smaller the relationship between the two categorical variables, the higher the

independence. When the chi-square value reaches 0, it means that the factors are the same.

Genetic algorithm (GA) is a search and optimization technology inspired by the bio-

logical evolution process [23,24]. Based on the rule of survival of the fittest, it searches for

the optimal solution through various genetic operations. The population in the genetic

algorithm represents the possible solution set of the problem, and a population is com-

posed of a certain number of individuals encoded by genes, and each individual corre-

sponds to a possible solution to the problem. The genetic algorithm will randomly gener-

ate the initial population according to different coding methods, and iteratively evolve

according to the principle of survival of the fittest until a suitable solution set is found.

The support vector machine based on recursive feature elimination (SVM-RFE) fea-

ture selection algorithm is a backward recursive elimination feature selection algorithm

that uses the classification performance of the support vector machine as the feature se-

lection evaluation standard, and has high recognition performance [25]. The SVM-RFE

Figure 2. The process of data preprocessing.

Table 3. Representation of feature vectors.

Feature Category Amount Combined Vector

Permission 0–1 146
The three features formed a

3547-dimensional vector
Opcode 0–1 218
API call 0–1 3183

4.2. Feature Selection Methods

In this section, we elaborate on the seven feature selection algorithms utilized by
MFDroid and introduce the feature selection strategy used in this study.

4.2.1. Feature Selection Algorithms

The tree-based feature selection method is an information gain algorithm. The prin-
ciple is that—the more the same types of leaf nodes are contained in a feature, the more
significant the feature is in training. The tree model can calculate the feature value through

Sensors 2022, 22, 2597 7 of 19

learning and training importance and calculate the feature contribution index, so it can be
used to remove irrelevant features. In this study, we used three tree-based feature selection
algorithms: decision tree (DT), gradient boosting decision tree (GBDT), and extra-trees (ET).

Chi-square test (Chi2) is a hypothesis testing method in which the distribution of
a statistic approximately obeys the chi-square distribution when the null hypothesis is
established, and it is used to determine whether two variables are independent [22]. The
correlation between categorical variables can be judged by calculating the chi-square value
of two categorical variables. The larger the chi-square value, the greater the relationship
between the two categorical variables and the lower the independence; otherwise, the
smaller the relationship between the two categorical variables, the higher the independence.
When the chi-square value reaches 0, it means that the factors are the same.

Genetic algorithm (GA) is a search and optimization technology inspired by the
biological evolution process [23,24]. Based on the rule of survival of the fittest, it searches
for the optimal solution through various genetic operations. The population in the genetic
algorithm represents the possible solution set of the problem, and a population is composed
of a certain number of individuals encoded by genes, and each individual corresponds to a
possible solution to the problem. The genetic algorithm will randomly generate the initial
population according to different coding methods, and iteratively evolve according to the
principle of survival of the fittest until a suitable solution set is found.

The support vector machine based on recursive feature elimination (SVM-RFE) feature
selection algorithm is a backward recursive elimination feature selection algorithm that
uses the classification performance of the support vector machine as the feature selection
evaluation standard, and has high recognition performance [25]. The SVM-RFE method
removes the features with the smallest ranking coefficient through continuous iteration,
then uses SVM to retrain the remaining features to obtain new feature rankings, and finally
obtains a sorted list of features. Using the sorted list, define several nested feature subsets
F1 ⊂ F2 ⊂ . . . ⊂ F to train the SVM, and evaluate the pros and cons of these subsets with
the SVM prediction accuracy rate, to obtain the optimal feature subset.

The degree of correlation between different variables can be measured by mutual
information (MI) [26]. The smaller the mutual information, the less common information,
and the more independent the two variables are; on the contrary, the more common in-
formation, the more related the two variables are. According to the definition of mutual
information, if and only when two random variables are independent of each other, the mu-
tual information is 0; when the two variables are highly correlated, the mutual information
of the two variables will also be large.

4.2.2. Union of Feature Selection Results

On the feature vector space after data preprocessing, seven feature selection algo-
rithms, including ET, GBDT, DT, Chi2, GA, SVM-RFE, and MI were applied. We extracted
the feature index dictionary stored by each feature selection algorithm, took the union to
combine the selection results of these single feature selection algorithms, stored the com-
bined result as a dictionary, and selected from the original feature vector space according
to the feature index in the dictionary. The final feature set was used in this study.

As shown in Table 4, each feature selection algorithm selected a different number of
features. Therefore, the single feature selection algorithm has limitations, such as some
important features may be omitted. This study utilizes the union strategy to merge the
results of the 7 feature selection algorithms, and finally 2376 features remain, which are
feed to the model for training. In addition, we also use the intersection strategy to test, and
the results show that the feature set generated by the intersection strategy was not effective
in the experiment. Because different feature selection algorithms have different internal
mechanisms, the results of each feature selection algorithm are quite different. Therefore, it
is necessary to choose union strategy.

Sensors 2022, 22, 2597 8 of 19

Table 4. The number of features selected by each feature selection algorithm.

Algorithm ET GBDT DT Chi2 GA SVM-RFE MI

Amount 1452 1319 1500 1500 1687 1893 1366

4.3. Stacking Ensemble Method
4.3.1. Base Learners

This study used SVM, GBDT, XGBoost, LightGBM, and CatBoost as base learners,
and used the new feature set generated by the union strategy to train each base learner to
guarantee accuracy.

SVM is often used to solve binary classification problems [27]. Given a sample training
set (xi, di), i = 1, 2, . . . , N, xi ∈ Rn, di ∈ {±1}, the principle of SVM is to try to find a hy-
perplane (w·x) + b = 0, x, w ∈ Rn, b ∈ R, so that the hyperplane satisfies the classification
requirements; that is, find the optimal value of the weight vector w and the bias b, so as to
satisfy the formula:

di

(
wTxi + b

)
≥ 1− ξi i = 1, 2, . . . , N (1)

where slack variable ξi ≥ 0, i = 1, 2, . . . , N.
GBDT is a gradient boosting integration method, which is a method that adopts

boosting technology. The main idea of GBDT is to follow the gradient descent direction
of the loss function of the previously established model every time a model is built. If the
classifier model can be built in the direction that the loss function continues to decrease,
the performance of the classifier model improves. By minimizing the loss function L(θ),
parameter θ is obtained, and its calculation formula is shown in the formula.

θ = θ − α· ∂

∂θ
L(θ) (2)

In the m-th iteration of GBDT, the classifier parameters of the first m-1 iterations are
fixed. Therefore, in the m-th iteration, only the loss function of the m-th classifier needs to
be minimized to obtain the corresponding classifier.

The XGBoost algorithm is an evolutionary form of the GBDT algorithm [28]. Its base
learner usually selects a decision tree model and generates a new tree through continuous
iteration to learn the residual between the actual value and the predicted value of all
current trees and accumulate the results of all trees as the result, to get the highest possible
classification accuracy. The objective function of the XGBoost algorithm is shown in
Formula (3):

obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

θ(fk) =
n

∑
i=1

[
ft(xi)gi +

1
2
(ft(xi))

2hi

]
+ θ(ft) (3)

where gi and hi are the first and second derivatives of the loss function, respectively, and
θ(ft) is the structure of the t-th tree.

The LightGBM algorithm is another evolutionary form of the GBDT algorithm [29].
The algorithm uses a depth-limited leaf-wise strategy to find the node with the largest
gain value from the current leaf nodes to split; it limits the depth of the tree to prevent
overfitting and reduces the time to find the optimal depth tree. At the same time, when
the number of splits is the same, the error can be reduced and a higher precision can be
obtained. In the process of building a tree, the process of finding the optimal splitting node
is the most wasteful in terms of time and computer resources. For this, LightGBM uses
histogram algorithm, gradient based one-side sampling, mutually exclusive features, and
the binding algorithm (exclusive feature building, EFB) to improve operating efficiency.

CatBoost is a machine learning framework based on GBDT, which is designed to solve
the discrete feature problem existing in GBDT [30]. CatBoost uses the oblivious tree as the
base predictor, and the index of the leaf node of the oblivious tree is converted into a binary

Sensors 2022, 22, 2597 9 of 19

vector whose length is the depth of the tree. CatBoost performs binarization operations on
various types of features and statistical information, and then inputs the binary features
into the model to calculate the predicted value. The binary features are stored in vector
B, and the value of leaf nodes is stored in a vector of size 2d, d is the depth of the tree. For
sample x, its binary vector representation is:

d−1

∑
i=0

2i·B(x, f (t, j)) (4)

where B(x, f) represents the binary-type feature value of the sample x obtained from the
vector B, and f (t, j) represents the numerical value of the binary feature in the t-th tree.

4.3.2. Meta-Classifier

In our study, logistic regression is used as a meta-classifier, and logistic regression is
proposed to deal with classification problems. Traditional linear regression only implements
regression, and its basic form is as follows:

y = ωTx + b (5)

The predicted value produced by linear regression is a series of real values, but to solve
a classification problem, the predicted value should be 0 or 1, so it is further transformed
with the help of the continuous function Sigmoid:

y =
1

1 + e−x (6)

The sigmoid function can convert the prediction result of linear regression into the
conditional probability that the sample belongs to a certain category, and then with the
help of the preset classification threshold, the classification result can be obtained. For the
two-class problem, by incorporating b into the weight vector ω, the probability that the
sample belongs to the positive and negative classes can be obtained:

P(Y = 1|x) = exp(ω·x)
1 + exp(ω·x) (7)

P(Y = 0|x) = 1
1 + exp(ω·x) (8)

Equations (7) and (8) are logistic regression models. According to Equation (7), when
the predicted value of the linear function tends to positive infinity, the probability value of
the predicted sample being a positive class is close to 1, otherwise it is close to 0.

4.3.3. Ensemble of Classifiers

The stacking ensemble learning prediction method is shown in Figure 1. The base
learner is composed of each single prediction model. First, the original dataset is used to
train multiple base learners. In the training process, to reduce the risk of model overfitting,
K-fold cross-validation is generally used to train base learners. Then, the prediction results
of the base learner are formed into a new dataset, and then the secondary learners are
trained to obtain the final prediction results [18]. The specific steps of the algorithm are
as follows:

1. Divide the original dataset into two parts: the original training set D and the original
testing set T.

2. Perform K-fold cross-validation on the base learner: randomly divide the original
training set D into K equivalents (D1, D2, . . . , Dk), and each base learner uses one of
them as the K-fold test set, and the rest the K-1 copies are used as the K-fold training
set. Each base learner is trained using the K-fold training set, and predictions are made

Sensors 2022, 22, 2597 10 of 19

on the K-fold test set, and the prediction results of each base learner are combined as
the training set D̃ of the secondary learner.

3. Each base learner makes predictions on the original test set T, and the prediction
results are averaged as the validation set T̃ of the secondary learners.

4. The secondary learner obtains the new dataset generated from the base learner: the
training set D̃ and the validation set T̃, and then performs learning and training, and
outputs the final prediction result.

The stacking ensemble learning prediction method uses K-fold cross-validation to
reduce the risk of overfitting of the model and uses the prediction results of multiple base
learners to perform secondary training (see Algorithm 1). This method can overcome the
limitations of a single learner and integrate variously; it is a machine learning method that
improves the accuracy and generalization of prediction results.

In stacking the ensemble learning prediction method, the base learner can choose a
strong learner, and the secondary learner can choose a simple learner, which could make
the fusion effect better and avoid overfitting.

Algorithm 1 Stacking with K-fold Cross Validation

Input: training data D = {Xi, yi}m
i=1 (Xi ∈ Rn, yi ∈ Y)

Output: an ensemble classifier H
1: Step 1: adopt cross validation approach in preparing a training set for second-level classifier
2: Randomly split D into K equal-size subsets: D = {D1 ,D2, ···,DK}
3: for k = 1 to K do
4: Step 1.1: learn first-level classifiers
5: for t = 1 to T do
6: Learn a classifier hkt from D\DK
7: end for
8: Step 1.2: construct a training set for second-level classifier
9: for Xi ∈ DK do
10: Get a record

{
X′i , yi

}
, where X′i = {hk1(Xi), hk2(Xi), ···, hkT(Xi)}

11: end for
12: end for
13: Step 2: learn a second-level classifier
14: Learn a new classifier h′ from the collection of

{
X′i , yi

}
15: Step 3: relearn first-level classifiers
16: for t = 1 to T do
17: Learn a classifier ht
18: end for
19: return H(X) = h′(h1(X), h2(X), ···, hT(X))

4.4. Evaluation Metrics

To train the model, we split the data, of which 75% was used for training and 25% for
testing. To evaluate the performance of MFDroid, some evaluation criteria were introduced,
such as confusion matrix, accuracy, precision, recall, F1-score, and ROC curves. In this
study, the binary classification machine learning results were classified by the confusion
matrix, as shown in Table 5. The confusion matrix includes information about the predicted
classification results based on machine learning and the actual classification results.

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision = TP
TP+FP (10)

Recall = TP
TP+FN (11)

F1− score = 2× Precision× Recall
Precision + Recall

(12)

Sensors 2022, 22, 2597 11 of 19

where TP is the amount of malware apps correctly detected, FP is the amount of benign
apps wrongly predicted as malware, FN is the amount of malware cases misclassified as
benign software, and TN is the amount of benign apps correctly detected.

Table 5. Confusion matrix.

Predicted Actual Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

5. Experiments and Results
5.1. Dataset Analysis

In this section, we analyze different types of features. Evaluating datasets from
different feature perspectives is a useful mechanism to identify differences in features
between malicious and benign applications and to draw general conclusions.

5.1.1. Permissions Required Analysis

Table 6 shows the top 20 permissions used by malicious applications and benign applica-
tions. Most samples of different types need to apply for INTERNET, ACCESS_NETWORK_
STATE and WRITE_EXTERNAL_STORAGE permissions, so there is no obvious differ-
ence. The WRITE_SETTINGS permission allows programs to read or write system settings.
Moreover, 79% of malicious apps have applied for this permission, and 64% of benign
apps have applied for this permission. In particular, our research analyzes 24 danger-
ous permissions officially announced by Android and counts the application frequency
of dangerous permissions in malicious applications and benign applications. As can be
seen from Figure 3, there are three permissions related to SMS messages, the SEND_SMS
permission allows the application to send SMS messages, the RECEIVE_SMS permission
allows the application to receive SMS messages, and the READ_SMS permission allows the
application to read SMS messages. These three permissions show obvious differences in
different types of applications, and the frequency of malicious applications applying for
SMS message-related permissions is significantly higher than that of benign applications.
As we all know, some malicious applications may cause serious property damage or privacy
leakage to users by stealing SMS messages, such as verification codes and other private
messages. At the same time, the PROCESS_OUTGOING_CALLS permission, which allows
applications to view the number being dialed during an outgoing call and can choose to
redirect the call to another number or abort the call entirely, is significantly more frequently
applied in malicious apps than in benign ones. The official Android documentation marks
its protection level as dangerous, and it can be used to access very sensitive information.

It is worth noting that, whether it is ordinary permissions or dangerous permissions,
the frequency of permission applications for malicious applications and benign applications
is not significantly different, and further analysis shows that the use of specific permissions
is also very similar. Therefore, it is difficult to achieve the detection effect in the past only
by relying on permissions as a feature of machine learning algorithms. More fine-grained
API calls, Opcode, etc., are required as features to participate in the detection. Various types
of application features are conducive to improving the performance of detection.

5.1.2. API Calls Analysis

The mechanisms inherent in API calls make it possible to identify relevant differences
between applications with good or illegal intents. In this study, we selected some typical
API calls for statistical analysis according to the common attack types of Android malware.
As shown in Table 7, among the Android/telephony/TelephonyManager API calls, 87% of
malicious applications call this package, on the contrary, only 46% of benign applications
call this package. In permissions analysis, we observed that phone-related services were
used more frequently in malware samples.

Sensors 2022, 22, 2597 12 of 19

Table 6. Top 20 most common permissions in malicious and benign apps.

Malware Benign

Permission % Permission %

INTERNET 100% INTERNET 99%
ACCESS_NETWORK_STATE 100% WRITE_EXTERNAL_STORAGE 99%

WRITE_EXTERNAL_STORAGE 100% ACCESS_NETWORK_STATE 99%
ACCESS_WIFI_STATE 100% ACCESS_WIFI_STATE 94%
READ_PHONE_STATE 99% READ_PHONE_STATE 90%

READ_EXTERNAL_STORAGE 94% READ_EXTERNAL_STORAGE 86%
WAKE_LOCK 90% WAKE_LOCK 82%

ACCESS_COARSE_LOCATION 89% VIBRATE 81%
GET_TASKS 88% CAMERA 80%

VIBRATE 88% ACCESS_COARSE_LOCATION 77%
CHANGE_WIFI_STATE 87% ACCESS_FINE_LOCATION 76%

ACCESS_FINE_LOCATION 86% CHANGE_WIFI_STATE 72%
CAMERA 82% GET_TASKS 71%

WRITE_SETTINGS 79% RECEIVE_BOOT_COMPLETED 65%
SYSTEM_ALERT_WINDOW 76% REQUEST_INSTALL_PACKAGES 64%

MOUNT_UNMOUNT_FILESYSTEMS 74% WRITE_SETTINGS 64%
RECEIVE_BOOT_COMPLETED 72% RECORD_AUDIO 61%
CHANGE_NETWORK_STATE 70% SYSTEM_ALERT_WINDOW 60%

REQUEST_INSTALL_PACKAGES 67% MOUNT_UNMOUNT_FILESYSTEMS 59%
RECORD_AUDIO 66% CHANGE_NETWORK_STATE 58%

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21

Figure 3. A total of 24 dangerous permissions in the percentages of malicious applications and be-

nign applications, respectively.

Table 6. Top 20 most common permissions in malicious and benign apps.

Malware Benign

Permission % Permission %

INTERNET 100% INTERNET 99%

ACCESS_NETWORK_STATE 100% WRITE_EXTERNAL_STORAGE 99%

WRITE_EXTERNAL_STORAGE 100% ACCESS_NETWORK_STATE 99%

ACCESS_WIFI_STATE 100% ACCESS_WIFI_STATE 94%

READ_PHONE_STATE 99% READ_PHONE_STATE 90%

READ_EXTERNAL_STORAGE 94% READ_EXTERNAL_STORAGE 86%

WAKE_LOCK 90% WAKE_LOCK 82%

ACCESS_COARSE_LOCATION 89% VIBRATE 81%

GET_TASKS 88% CAMERA 80%

VIBRATE 88% ACCESS_COARSE_LOCATION 77%

CHANGE_WIFI_STATE 87% ACCESS_FINE_LOCATION 76%

ACCESS_FINE_LOCATION 86% CHANGE_WIFI_STATE 72%

CAMERA 82% GET_TASKS 71%

WRITE_SETTINGS 79% RECEIVE_BOOT_COMPLETED 65%

SYSTEM_ALERT_WINDOW 76% REQUEST_INSTALL_PACKAGES 64%

MOUNT_UNMOUNT_FILESYSTEMS 74% WRITE_SETTINGS 64%

RECEIVE_BOOT_COMPLETED 72% RECORD_AUDIO 61%

CHANGE_NETWORK_STATE 70% SYSTEM_ALERT_WINDOW 60%

REQUEST_INSTALL_PACKAGES 67% MOUNT_UNMOUNT_FILESYSTEMS 59%

RECORD_AUDIO 66% CHANGE_NETWORK_STATE 58%

5.1.2. API Calls Analysis

The mechanisms inherent in API calls make it possible to identify relevant differences

between applications with good or illegal intents. In this study, we selected some typical

API calls for statistical analysis according to the common attack types of Android

Figure 3. A total of 24 dangerous permissions in the percentages of malicious applications and benign
applications, respectively.

Sensors 2022, 22, 2597 13 of 19

Table 7. Percentage of common API calls by attack type in malicious and benign applications.

Attacks API Calls Malware Benign

Telephone Android/telephony/TelephonyManager 87% 46%

Location

Android/telephony/gsm/GsmCellLocation 62% 34%
Android/location/Address 80% 38%
Android/location/Location 80% 39%

Android/location/LocationManager 77% 39%

Camera Android/hardware/Camera 57% 29%

Storage
Android/os/Environment 90% 45%

Android/content/Context/getExternalFilesDir 75% 36%
Java/Io/Bytearrayoutputstream 94% 47%

5.1.3. Opcodes Analysis

In this subsection, we examine the use of opcodes. Table 8 is the top 20 opcodes used by
malicious applications and benign applications. Typically, an opcode-based analysis of the
frequency of use does not yield a relevant conclusive assessment. Our dataset demonstrates
that there is no large difference between the top 20 frequently used opcodes for malicious
and benign applications. However, opcodes are instructions executed by applications that
must be used by all applications to perform scheduled activities. Therefore, it is of great
significance to take opcode as one of the characteristics of detecting Android malware.

Table 8. Top 20 most common opcodes in malicious and benign apps.

Malware Benign

Opcode % Opcode %

const/16 100% const-wide/16 100%
const/4 100% const/16 100%

goto 100% const/4 100%
if-eqz 100% goto 100%
if-nez 100% if-eqz 100%

invoke-direct 100% if-nez 100%
invoke-static 100% invoke-direct 100%
invoke-super 100% invoke-static 100%
invoke-virtual 100% invoke-super 100%

move-exception 100% invoke-virtual 100%
move-result 100% move-exception 100%

move-result-object 100% move-result 100%
new-array 100% move-result-object 100%

new-instance 100% new-array 100%
return-object 100% new-instance 100%
return-void 100% return-void 100%
sget-object 100% sget-object 100%
sput-object 100% sput-object 100%
aput-object 100% throw 100%

const-wide/16 100% move-object 100%

5.2. Analysis of Feature Selection Results

Our study used eight feature selection methods, namely ET, GBDT, DT, Chi2, GA,
SVM-RFE, MI, and non-selection (NS), experiments with MFDroid, each feature selection
algorithm selected a different number of features. It can be seen from Figure 4 and Table 9
that the experimental results of the single feature selection algorithm are not significantly
different (see Figures 5 and 6). It is worth noting that the number of features selected by
ET is small but its experimental results are high. GA has the largest number of features
selected among the seven feature selection algorithms, and the experimental results are the
best. Considering the limitations of the single feature selection algorithm, some important
features may be missed. Therefore, this study adopts the union strategy to merge the
results of the seven feature selection algorithms, and finally retains 3547 features and sends

Sensors 2022, 22, 2597 14 of 19

them to the model for training. Experiments show that the F1-score of the union strategy
reaches 96.0%, which is 2.3% higher than that of GA, and the accuracy value is 2.4% higher.
Therefore, the feature selection method using the union strategy is accurate and effective.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21

5.2. Analysis of Feature Selection Results

Our study used eight feature selection methods, namely ET, GBDT, DT, Chi2, GA,

SVM-RFE, MI, and non-selection (NS), experiments with MFDroid, each feature selection

algorithm selected a different number of features. It can be seen from Figure 4 and Table

9 that the experimental results of the single feature selection algorithm are not signifi-

cantly different (see Figures 5 and 6). It is worth noting that the number of features se-

lected by ET is small but its experimental results are high. GA has the largest number of

features selected among the seven feature selection algorithms, and the experimental re-

sults are the best. Considering the limitations of the single feature selection algorithm,

some important features may be missed. Therefore, this study adopts the union strategy

to merge the results of the seven feature selection algorithms, and finally retains 3547 fea-

tures and sends them to the model for training. Experiments show that the F1-score of the

union strategy reaches 96.0%, which is 2.3% higher than that of GA, and the accuracy

value is 2.4% higher. Therefore, the feature selection method using the union strategy is

accurate and effective.

To compare our work more easily with other existing studies, we introduce the Om-

niDroid dataset to test our model (see Figures 7–9). As shown in Table 9, our adopted

feature selection union strategy outperforms other feature selection algorithms and our

model outperforms other comparative methods on OmniDroid. Compared with [31], our

method performs better on the static features of OmniDroid.

Table 9. Evaluation metrics for different feature selection methods on ours and OmniDroid.

No. Algorithm
Accuracy Precision Recall F1-Score

Ours OmniDroid Ours OmniDroid Ours OmniDroid Ours OmniDroid

1 ET 0.930 0.901 0.947 0.896 0.917 0.907 0.932 0.902

2 GBDT 0.911 0.899 0.928 0.905 0.898 0.892 0.913 0.898

3 DT 0.904 0.883 0.911 0.886 0.903 0.879 0.908 0.882

4 Chi2 0.914 0.902 0.929 0.893 0.903 0.913 0.916 0.903

5 GA 0.935 0.920 0.944 0.922 0.931 0.916 0.937 0.919

6 SVM-RFE 0.923 0.883 0.938 0.874 0.927 0.895 0.925 0.884

7 MI 0.918 0.865 0.951 0.863 0.889 0.867 0.919 0.865

8 NS 0.873 0.844 0.905 0.851 0.843 0.835 0.873 0.843

9 Intersection 0.788 0.809 0.744 0.758 0.903 0.908 0.815 0.882

10 Union 0.959 0.934 0.967 0.941 0.954 0.926 0.960 0.933

Figure 4. Feature selection results comparison on our dataset. Figure 4. Feature selection results comparison on our dataset.

Table 9. Evaluation metrics for different feature selection methods on ours and OmniDroid.

No. Algorithm
Accuracy Precision Recall F1-Score

Ours OmniDroid Ours OmniDroid Ours OmniDroid Ours OmniDroid

1 ET 0.930 0.901 0.947 0.896 0.917 0.907 0.932 0.902
2 GBDT 0.911 0.899 0.928 0.905 0.898 0.892 0.913 0.898
3 DT 0.904 0.883 0.911 0.886 0.903 0.879 0.908 0.882
4 Chi2 0.914 0.902 0.929 0.893 0.903 0.913 0.916 0.903
5 GA 0.935 0.920 0.944 0.922 0.931 0.916 0.937 0.919
6 SVM-RFE 0.923 0.883 0.938 0.874 0.927 0.895 0.925 0.884
7 MI 0.918 0.865 0.951 0.863 0.889 0.867 0.919 0.865
8 NS 0.873 0.844 0.905 0.851 0.843 0.835 0.873 0.843
9 Intersection 0.788 0.809 0.744 0.758 0.903 0.908 0.815 0.882

10 Union 0.959 0.934 0.967 0.941 0.954 0.926 0.960 0.933
Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Figure 5. ROC curves of different feature selection methods on our dataset.

Figure 6. Confusion matrix of different feature selection methods on our dataset.

Figure 7. Feature selection results comparison on OmniDroid dataset.

Figure 5. ROC curves of different feature selection methods on our dataset.

Sensors 2022, 22, 2597 15 of 19

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Figure 5. ROC curves of different feature selection methods on our dataset.

Figure 6. Confusion matrix of different feature selection methods on our dataset.

Figure 7. Feature selection results comparison on OmniDroid dataset.

Figure 6. Confusion matrix of different feature selection methods on our dataset.

To compare our work more easily with other existing studies, we introduce the Om-
niDroid dataset to test our model (see Figures 7–9). As shown in Table 9, our adopted
feature selection union strategy outperforms other feature selection algorithms and our
model outperforms other comparative methods on OmniDroid. Compared with [31], our
method performs better on the static features of OmniDroid.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Figure 5. ROC curves of different feature selection methods on our dataset.

Figure 6. Confusion matrix of different feature selection methods on our dataset.

Figure 7. Feature selection results comparison on OmniDroid dataset. Figure 7. Feature selection results comparison on OmniDroid dataset.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

Figure 8. ROC curves of different feature selection methods on OmniDroid dataset.

Figure 9. Confusion matrix of different feature selection methods on OmniDroid dataset.

5.3. Detection Performance Evaluation of MFDroid

To verify the effect of the multi-model fusion framework MFDroid proposed in this

study in the field of Android malware detection, combined with the five-fold cross-vali-

dation method, SVM, GBDT, XGBoost, LightGBM, CatBoost, and MFDroid proposed in

this study were compared. The experimental results are shown in Figure 10 and Table 10.

Through comparison, it is found that the evaluation index of MFDroid is significantly

higher than that of other single models. Compared with SVM, GBDT, XGBoost, LightGBM

and CatBoost, the F1-score of MFDroid is increased by 4.9%, 7.4%, 4.6%, 3.6%, and 3.0%,

and the accuracy value is increased by 5.1%, 7.9%, 4.8%, 3.8% and 3.1%, respectively. It

was proven that MFDroid has high accuracy and stability in the field of Android malware

detection (see Figures 11 and 12).

Figure 8. ROC curves of different feature selection methods on OmniDroid dataset.

Sensors 2022, 22, 2597 16 of 19

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

Figure 8. ROC curves of different feature selection methods on OmniDroid dataset.

Figure 9. Confusion matrix of different feature selection methods on OmniDroid dataset.

5.3. Detection Performance Evaluation of MFDroid

To verify the effect of the multi-model fusion framework MFDroid proposed in this

study in the field of Android malware detection, combined with the five-fold cross-vali-

dation method, SVM, GBDT, XGBoost, LightGBM, CatBoost, and MFDroid proposed in

this study were compared. The experimental results are shown in Figure 10 and Table 10.

Through comparison, it is found that the evaluation index of MFDroid is significantly

higher than that of other single models. Compared with SVM, GBDT, XGBoost, LightGBM

and CatBoost, the F1-score of MFDroid is increased by 4.9%, 7.4%, 4.6%, 3.6%, and 3.0%,

and the accuracy value is increased by 5.1%, 7.9%, 4.8%, 3.8% and 3.1%, respectively. It

was proven that MFDroid has high accuracy and stability in the field of Android malware

detection (see Figures 11 and 12).

Figure 9. Confusion matrix of different feature selection methods on OmniDroid dataset.

5.3. Detection Performance Evaluation of MFDroid

To verify the effect of the multi-model fusion framework MFDroid proposed in
this study in the field of Android malware detection, combined with the five-fold cross-
validation method, SVM, GBDT, XGBoost, LightGBM, CatBoost, and MFDroid proposed in
this study were compared. The experimental results are shown in Figure 10 and Table 10.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 10. Comparison of results between MFDroid and single classifier.

Table 10. Evaluation metrics of MFDroid and single classifier.

No. Model Accuracy Precision Recall F1-Score

1 SVM 0.908 0.924 0.898 0.911

2 GBDT 0.880 0.881 0.889 0.886

3 XGBoost 0.911 0.916 0.912 0.914

4 LightGBM 0.921 0.922 0.926 0.924

5 CatBoost 0.928 0.935 0.926 0.930

6 MFDroid 0.959 0.967 0.954 0.960

Figure 11. ROC curve of MFDroid and single classifier.

Figure 10. Comparison of results between MFDroid and single classifier.

Table 10. Evaluation metrics of MFDroid and single classifier.

No. Model Accuracy Precision Recall F1-Score

1 SVM 0.908 0.924 0.898 0.911
2 GBDT 0.880 0.881 0.889 0.886
3 XGBoost 0.911 0.916 0.912 0.914
4 LightGBM 0.921 0.922 0.926 0.924
5 CatBoost 0.928 0.935 0.926 0.930
6 MFDroid 0.959 0.967 0.954 0.960

Through comparison, it is found that the evaluation index of MFDroid is significantly
higher than that of other single models. Compared with SVM, GBDT, XGBoost, LightGBM
and CatBoost, the F1-score of MFDroid is increased by 4.9%, 7.4%, 4.6%, 3.6%, and 3.0%,
and the accuracy value is increased by 5.1%, 7.9%, 4.8%, 3.8% and 3.1%, respectively. It

Sensors 2022, 22, 2597 17 of 19

was proven that MFDroid has high accuracy and stability in the field of Android malware
detection (see Figures 11 and 12).

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 10. Comparison of results between MFDroid and single classifier.

Table 10. Evaluation metrics of MFDroid and single classifier.

No. Model Accuracy Precision Recall F1-Score

1 SVM 0.908 0.924 0.898 0.911

2 GBDT 0.880 0.881 0.889 0.886

3 XGBoost 0.911 0.916 0.912 0.914

4 LightGBM 0.921 0.922 0.926 0.924

5 CatBoost 0.928 0.935 0.926 0.930

6 MFDroid 0.959 0.967 0.954 0.960

Figure 11. ROC curve of MFDroid and single classifier. Figure 11. ROC curve of MFDroid and single classifier.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 21

Figure 12. Confusion matrix of MFDroid and single classifier.

6. Conclusions and Future Work

We built a real-world Android malware dataset and proposed an Android malware

detection framework based on stacking ensemble learning, called MFDroid, to accurately

and effectively detect the application software on the Android operating system, and filter

out the malware, to maintain the software quality of the Android application market and

the information security of users. First, the framework combined the results of seven fea-

ture selection algorithms to obtain a new feature set. Then, combined with the advantages

and characteristics of various learners, we set five base learners in the first layer of the

stacking ensemble learning framework, and the second layer used logistic regression as a

meta-classifier. The results showed that MFDroid was an effective Android malware de-

tection framework.

Regarding the limitations of a single feature selection algorithm, we conducted ex-

periments on each feature selection algorithm, and the performance index of our method

was higher than that of a single feature selection algorithm, which also indirectly proves

that a single feature selection algorithm will miss some features. Regarding the limitations

of a single machine learning algorithm—a single machine learning algorithm will be af-

fected by data skew, and the computational overhead is relatively large. In addition, it

may be affected by the initial setting, is sensitive to noise, and cannot handle high-dimen-

sional features well. In the future, we will explore static and dynamic features that can

describe application behavior more comprehensively, by using multiple types of features

to improve detection accuracy.

Author Contributions: Conceptualization, L.Z., X.W.; methodology, X.W.; software, X.W.; valida-

tion, X.W., M.Y.; formal analysis, X.W., K.Z.; investigation, X.D.; resources, X.W., M.Y., X.D.; data

curation, X.W.; writing—original draft preparation, X.W.; writing—review and editing, L.Z.; visu-

alization, X.W., M.Y.; supervision, L.Z.; project administration, L.Z.; funding acquisition, L.Z. All

authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Natural Science Foundation of Xinjiang Uygur

Autonomous Region under grants 2019D01C062, 2019D01C041, 2019D01C205, and 2020D01C028;

in part by the National Natural Science Foundation of China under grant 12061071; in part by the

Higher Education of Xinjiang Uygur Autonomous Region under grant XJEDU2020Y003, and

XJEDU2019Y006; in part by the Tianshan Innovation Team Plan Project of Xinjiang Uygur

Figure 12. Confusion matrix of MFDroid and single classifier.

6. Conclusions and Future Work

We built a real-world Android malware dataset and proposed an Android malware
detection framework based on stacking ensemble learning, called MFDroid, to accurately
and effectively detect the application software on the Android operating system, and filter
out the malware, to maintain the software quality of the Android application market and
the information security of users. First, the framework combined the results of seven feature
selection algorithms to obtain a new feature set. Then, combined with the advantages

Sensors 2022, 22, 2597 18 of 19

and characteristics of various learners, we set five base learners in the first layer of the
stacking ensemble learning framework, and the second layer used logistic regression as
a meta-classifier. The results showed that MFDroid was an effective Android malware
detection framework.

Regarding the limitations of a single feature selection algorithm, we conducted experi-
ments on each feature selection algorithm, and the performance index of our method was
higher than that of a single feature selection algorithm, which also indirectly proves that a
single feature selection algorithm will miss some features. Regarding the limitations of a
single machine learning algorithm—a single machine learning algorithm will be affected
by data skew, and the computational overhead is relatively large. In addition, it may be
affected by the initial setting, is sensitive to noise, and cannot handle high-dimensional
features well. In the future, we will explore static and dynamic features that can describe
application behavior more comprehensively, by using multiple types of features to improve
detection accuracy.

Author Contributions: Conceptualization, L.Z., X.W.; methodology, X.W.; software, X.W.; validation,
X.W., M.Y.; formal analysis, X.W., K.Z.; investigation, X.D.; resources, X.W., M.Y., X.D.; data curation,
X.W.; writing—original draft preparation, X.W.; writing—review and editing, L.Z.; visualization,
X.W., M.Y.; supervision, L.Z.; project administration, L.Z.; funding acquisition, L.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Natural Science Foundation of Xinjiang Uygur
Autonomous Region under grants 2019D01C062, 2019D01C041, 2019D01C205, and 2020D01C028; in
part by the National Natural Science Foundation of China under grant 12061071; in part by the Higher
Education of Xinjiang Uygur Autonomous Region under grant XJEDU2020Y003, and XJEDU2019Y006;
in part by the Tianshan Innovation Team Plan Project of Xinjiang Uygur Autonomous Region
under grant 202101642; in part by the National College Student Innovation Training Project under
grant 202010755020; in part by the National College Student Innovation Training Project under
grant 202010755021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author has no relevant interest to disclose.

References
1. Statcounter. Mobile Operating System Market Share Worldwide. Available online: https://gs.statcounter.com/os-market-share/

mobile/worldwide/ (accessed on 13 January 2022).
2. AV-Comparatives. Mobile Security Review 2021. Available online: https://www.av-comparatives.org/tests/mobile-security-

review-2021/#google-android (accessed on 13 January 2022).
3. Yuan, W.; Jiang, Y.; Li, H.; Cai, M. A Lightweight On-Device Detection Method for Android Malware. IEEE Trans.Syst. ManCybern.

Syst. 2021, 51, 5600–5611. [CrossRef]
4. Vinod, P.; Zemmari, A.; Conti, M. A machine learning based approach to detect malicious android apps using discriminant

system calls. Future Gener. Comput. Syst. 2019, 94, 333–350.
5. Wong, M.Y.; Lie, D. IntelliDroid: A Targeted Input Generator for the Dynamic Analysis of Android Malware. In Proceedings of

the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 21–24 February 2016; pp. 21–24.
6. Mcdonald, J.; Herron, N.; Glisson, W.; Benton, R. Machine Learning-Based Android Malware Detection Using Manifest Per-

missions. In Proceedings of the 54th Hawaii International Conference on System Sciences, Hawaii, HI, USA, 4–8 January 2021;
pp. 69–76.

7. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K. DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 23–26
February 2014; pp. 1–12.

8. Allix, K.; Bissyandé, T.F.; Klein, J.; Le Traon, Y. Androzoo: Collecting millions of android apps for the research community. In
Proceedings of the 13th IEEE/ACM Working Conference on Mining Software Repositories (MSR), Austin, TX, USA, 14–15 May
2016; pp. 468–471.

9. Martín, A.; Lara-Cabrera, R.; Camacho, D. Android malware detection through hybrid features fusion and ensemble classifiers:
The AndroPyTool framework and the OmniDroid dataset. Inf. Fusion 2019, 52, 128–142. [CrossRef]

https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://www.av-comparatives.org/tests/mobile-security-review-2021/#google-android
https://www.av-comparatives.org/tests/mobile-security-review-2021/#google-android
http://doi.org/10.1109/TSMC.2019.2958382
http://doi.org/10.1016/j.inffus.2018.12.006

Sensors 2022, 22, 2597 19 of 19

10. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-an, W.; Ye, H. Significant Permission Identification for Machine-Learning-Based Android
Malware Detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]

11. Tao, G.; Zheng, Z.; Guo, Z.; Lyu, M.R. MalPat: Mining patterns of malicious and benign Android apps via permission-related
APIs. IEEE Trans. Reliab. 2017, 67, 355–369. [CrossRef]

12. Alazab, M.; Alazab, M.; Shalaginov, A.; Mesleh, A.; Awajan, A. Intelligent mobile malware detection using permission requests
and API calls. Future Gener. Comput. Syst. 2020, 107, 509–521. [CrossRef]

13. Gaviria de la Puerta, J.; Sanz, B. Using Dalvik opcodes for malware detection on android. Logic. J. IGPL 2017, 25, 938–948.
[CrossRef]

14. Cai, L.; Li, Y.; Xiong, Z. JOWMDroid: Android malware detection based on feature weighting with joint optimization of
weight-mapping and classifier parameters. Comput. Secur. 2021, 100, 102086. [CrossRef]

15. Mahindru, A.; Sangal, A.L. MLDroid—Framework for Android malware detection using machine learning techniques. Neural
Comput. Appl. 2021, 33, 5183–5240. [CrossRef]

16. Jannat, U.S.; Hasnayeen, S.M.; Shuhan, M.K.B.; Ferdous, M.S. Analysis and Detection of Malware in Android Applications Using
Machine Learning. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering
(ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; pp. 1–7.

17. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-rimy, B.A.S. Toward an Ensemble Behavioral-based Early Evasive Malware Detection
Framework. In Proceedings of the 2021 International Conference on Data Science and Its Applications (ICoDSA), Bandung,
Indonesia, 6–7 October 2021; pp. 181–186.

18. Zhu, H.; Li, Y.; Li, R.; Li, J.; You, Z.; Song, H. SEDMDroid: An Enhanced Stacking Ensemble Framework for Android Malware
Detection. IEEE Trans. Netw. Sci. Eng. 2021, 8, 984–994. [CrossRef]

19. Idrees, F.; Rajarajan, M.; Conti, M.; Chen, T.M.; Rahulamathavan, Y. PIndroid: A novel Android malware detection system using
ensemble learning methods. Comput. Secur. 2017, 68, 36–46. [CrossRef]

20. Rana, M.S.; Sung, A.H. Evaluation of Advanced Ensemble Learning Techniques for Android Malware Detection. Vietnam. J.
Comput. Sci. 2020, 7, 145–159. [CrossRef]

21. VirusTotal. VirusTotal: Free Online Virus, Malware and URL Scanner. Available online: https://www.virustotal.com/ (accessed
on 13 January 2022).

22. Wang, X.; Wang, W.; He, Y.; Liu, J.; Han, Z.; Zhang, X. Characterizing Android apps’ behavior for effective detection of malapps
at large scale. Future Gener. Comput. Syst. 2017, 75, 30–45. [CrossRef]

23. Lee, J.; Jang, H.; Ha, S.; Yoon, Y. Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic
Algorithm. Mathematics 2021, 9, 2813. [CrossRef]

24. Fatima, A.; Maurya, R.; Dutta, M.K.; Burget, R.; Masek, J. Android Malware Detection Using Genetic Algorithm based Optimized
Feature Selection and Machine Learning. In Proceedings of the 42nd International Conference on Telecommunications and Signal
Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 220–223.

25. Takahashi, T.; Ban, T. Android Application Analysis Using Machine Learning Techniques. AI Cybersecur. 2019, 151, 181–205.
26. Macedo, F.; Oliveira, M.R.; Pacheco, A.; Valadas, R. Theoretical foundations of forward feature selection methods based on

mutual information. Neurocomputing 2019, 325, 67–89. [CrossRef]
27. Han, H.; Lim, S.; Suh, K.; Park, S.; Cho, S.-J.; Park, M. Enhanced android malware detection: An svm-based machine learning

approach. In Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea,
19–22 February 2020; pp. 75–81.

28. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

29. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.

30. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363.
31. Rodrigo, C.; Pierre, S.; Beaubrun, R.; El Khoury, F. BrainShield: A Hybrid Machine Learning-Based Malware Detection Model for

Android Devices. Electronics 2021, 10, 2948. [CrossRef]

http://doi.org/10.1109/TII.2017.2789219
http://doi.org/10.1109/TR.2017.2778147
http://doi.org/10.1016/j.future.2020.02.002
http://doi.org/10.1093/jigpal/jzx031
http://doi.org/10.1016/j.cose.2020.102086
http://doi.org/10.1007/s00521-020-05309-4
http://doi.org/10.1109/TNSE.2020.2996379
http://doi.org/10.1016/j.cose.2017.03.011
http://doi.org/10.1142/S2196888820500086
https://www.virustotal.com/
http://doi.org/10.1016/j.future.2017.04.041
http://doi.org/10.3390/math9212813
http://doi.org/10.1016/j.neucom.2018.09.077
http://doi.org/10.3390/electronics10232948

	Introduction
	Related Work
	Construction of Dataset
	Static Analysis
	Machine Learning
	Ensemble Learning

	Dataset
	MFDroid
	Data Preprocessing
	Feature Selection Methods
	Feature Selection Algorithms
	Union of Feature Selection Results

	Stacking Ensemble Method
	Base Learners
	Meta-Classifier
	Ensemble of Classifiers

	Evaluation Metrics

	Experiments and Results
	Dataset Analysis
	Permissions Required Analysis
	API Calls Analysis
	Opcodes Analysis

	Analysis of Feature Selection Results
	Detection Performance Evaluation of MFDroid

	Conclusions and Future Work
	References

