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Abstract: Over the past decade, gait recognition had gained a lot of attention in various research and
industrial domains. These include remote surveillance, border control, medical rehabilitation, emotion
detection from posture, fall detection, and sports training. The main advantages of identifying a
person by their gait include unobtrusiveness, acceptance, and low costs. This paper proposes a
convolutional neural network KinectGaitNet for Kinect-based gait recognition. The 3D coordinates of
each of the body joints over the gait cycle are transformed to create a unique input representation. The
proposed KinectGaitNet is trained directly using the 3D input representation without the necessity of
the handcrafted features. The KinectGaitNet design allows avoiding gait cycle resampling, and the
residual learning method ensures high accuracy without the degradation problem. The proposed
deep learning architecture surpasses the recognition performance of all state-of-the-art methods for
Kinect-based gait recognition by achieving 96.91% accuracy on UPCV and 99.33% accuracy on the
KGB dataset. The method is the first, to the best of our knowledge, deep learning-based architecture
that is based on a unique 3D input representation of joint coordinates. It achieves performance
higher than previous traditional and deep learning methods, with fewer parameters and shorter
inference time.

Keywords: deep convolutional neural network; hierarchical feature extraction; resampling;
kinect-based gait recognition; behavioral biometric

1. Introduction

Human gait is the repeated pattern of dynamic motions exhibited by the different body
joints [1]. Recurrent stances of heel strike, standing, and heel off are exhibited during walking [2].
Unique characteristics extracted from the recurrent locomotion of the body joints are exploited
in the biometrics for the identification of a person [1]. The general acceptability of obtaining
gait from a distance, low cost, and variety of data acquisition sensors, and in general, a high
accuracy of identification of a person from a distance make gait recognition one of the most
popular behavioral biometrics [3]. Gait recognition has numerous applications, such as person
identification [4,5], human activity recognition [6], gender recognition [7], emotion recognition
from human posture [8], search and rescue operations [9,10], access control [11], medical
diagnosis, treatment, and rehabilitation [12,13].

Supervised machine learning models trained with distinctive features extracted from
the biometric trait pave the way to automate the simulation of the biometric identifica-
tion [14,15]. Gait-based person identification with the help of traditional machine learning
models have been studied considerably over the past decade [16]. The accelerated pace of
the development of the powerful deep learning methods has opened up unprecedented
opportunities to leverage them in many domains. Domains of computer vision, compu-
tational intelligence, cognitive architectures, human–computer interaction, trustworthy
decision making, defense, robotics, and biometrics benefit from the development of power-
ful deep learning architectures that are lightweight and versatile, and they provide high
performance without overfitting. Performance of the image classification [17], face recogni-
tion [18], facial expression recognition [19], person verification [20], and others [21,22] are
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enhanced, exploiting the power of deep learning. However, such approaches have been in
their infancy in the biometric domain, and they have been concerned with Kinect-based
person identification based on human gait [16].

One of the first successful works that introduced deep learning neural network archi-
tecture for Kinect-based gait recognition appeared in [23]. Aside from the deep learning
approach, there have been many successful approaches devised over the past decade that fa-
cilitate the successful recognition of humans based on Kinect-based gait biometrics [24–26].
These approaches had a number of deficiencies. Handcrafted classifying features were
proposed for Kinect-based gait recognition in [5,23,25,26]. The extraction of handcrafted
features requires specialization in the target domain and the selection of uncorrelated
distinctive features is difficult to perform. In addition, traditional machine learning meth-
ods for gait recognition relied on the computationally expensive pre-processing steps and
expensive feature selection methods. A deep convolutional neural network provides new
opportunities to overcome the above challenges and thus to improve recognition perfor-
mance. However, when a deep convolutional network is considered for feature extraction
and recognition purposes simultaneously, degradation problems may arise because the
error rates in training are increased after the convergence [27,28].

Microsoft Kinect produces a color-based depth video frame with the human skeleton
from the 2D color image. The proposed architecture KinectGaitNet addresses the aforemen-
tioned challenges while overcoming degradation problems typical for deep convolutional
neural networks. The main contributions of the proposed method can be outlined as
follows. First, a unique 3D input representation of joint coordinates during the gait cycle is
proposed. Thus, without extracting handcrafted features, the proposed input representa-
tion serves as the input of the CNN architecture for hierarchical feature extraction. Second,
a new convolutional neural network architecture called KinectGaitNet based on residual
learning is designed. Two types of residual learning blocks are introduced in such a way
that the degradation problem is mitigated and the number of trainable parameters does
not increase. Third, the KinectGaitNet architecture is being trained on variable length
gait cycles, without the need of resampling to a fixed length. This is accomplished by
the introduction of the global average pooling layer before the decision layer. Finally, the
Adam optimization method [29] is applied to optimize the weights of the KinectGaitNet
for training the model faster and providing robustness to the model, which works with
the adaptive learning rate. Two publicly available benchmark datasets, the UPCV gait
dataset [7] and Kinect Gait Biometry dataset [24], are used to evaluate the performance of
the proposed method.

2. Literature Review

The Microsoft Kinect sensor is well suited for indoor and outdoor environments
because of the markerless motion analysis, easy accessibility of sensor data, and cost-
effectiveness. The Kinect sensor can generate 3D skeleton data at the speed of 30 frames
per second [30]. Moreover, the extraction of the body joints tracked by the Kinect sensor
shows the accuracy and precision of less than 2 mm [31]. Clark et al. [32] validated
the applicability of the Kinect sensor for gait analysis by conducting experiments on the
kinectmatic, postural, and spatiotemporal analysis.

The work on model-based gait recognition using the Kinect sensor was started by
Preis et al. [4], who introduced eleven handcrafted static and two dynamic features with
Rule-based, Decision Tree (DTree), and Naïve Bayes classifiers. In the same year, temporal
features of eighteen angles calculated from the selected body joints were extracted to
investigate the gait attributes using the K-means clustering method [33]. Later, Joint
Relative Distance (JRD) and Joint Relative Angle (JRA) features were proposed in [25],
and the rank-level fusion technique was applied to fuse those features. Andersson and
Araujo [24] applied Multi-Layer Perceptron (MLP) architecture; however, the performance
of the K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) classifiers were
better than that of MLP architecture. Yang et al. [26] extracted relative distance features
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from selective body joints and determined their average and standard deviation over the
frames of a gait cycle. Recently, by performing feature extraction from selected body joints,
Sun et al. [5] extracted static and dynamic features to train the traditional KNN classifier.

From the aforementioned related works, it is evident that prior research relied on
handcrafted features to train the traditional classifiers. However, traditional classifiers
can not learn hierarchical feature representation from the samples of the input data. In
addition, uncorrelated handcrafted feature extraction demands target-specific knowledge.
Handcrafted feature extraction also requires a feature selection step to remove features that
cause a negative contribution to the performance due to correlation with other features. A
first attempt at integrating deep learning with Kinect-based gait recognition was made in
2019. The researchers utilized three hidden layers to design deep neural network [34]. Their
method lacked the solution of managing different length gait sequences and thus required
an additional step of the majority voting method after determining the prediction labels
of each of the frames of a gait sequence. Furthermore, frame-by-frame prediction causes
prediction errors because of the similarity of a particular frame with another person’s gait
pattern. Another work extracted joint relative distance and joint relative angle features
and determined the average and standard deviation of the handcrafted features over
30 frames [35]. Accumulated features were trained using a convolutional neural network
and optimized by the Stochastic Gradient Descent optimizer. After the re-implementation
of this method, the recognition performance was below 15% on both the UPCV and Kinect
Gait Biometry datasets. There are several reasons for low accuracy. First, since the CNN
architecture is trained with the handcrafted features, the uniform kernel can not be used to
extract hierarchical features using the CNN architecture. Second, the model suffers from
overfitting. Third, the gait cycle is not considered for handcrafted features. As a result, this
method is not included in the experimental section.

Recently, Bari and Gavrilova [23] proposed a deep learning neural network architec-
ture trained using better hand-engineered Joint Relative Cosine Dissimilarity (JRCD) and
Joint Relative Triangle Area (JRTA) features. In [23], the method depends on the perfor-
mance of JRCD and JRTA features and requires high model parameters because of the
neural network design using a multi-layer perceptron approach. In addition, method [23]
resamples the gait cycle to make a fixed size feature vector to train the network. In our
paper, the aforementioned shortcomings of emerging research on using deep learning for
gait recognition are addressed. Our approach avoids the extraction of static and dynamic
handcrafted features from selective body joints, and we also establish that features extracted
by the improved convolutional neural network can outperform recent state-of-the-art meth-
ods using the variable length of the gait cycle among the individuals. Since handcrafted
features are not the input of the proposed method, KinectGaitNet is able to utilize a uniform
kernel for the convolution to extract distinctive features.

3. Proposed Method

The proposed methodology presents several novel contributions. The transformation
approach is introduced to transform the coordinates of the body joints into a 2D matrix
based on the gait cycle. Then, 2D matrices are merged to create a 3D matrix using x, y, and
z coordinates. A Convolutional Neural Network (CNN) is proposed to extract a low-level
to high-level distinctive hierarchical feature map and learn a person’s identification from
the samples of 3D matrices. Since the input of the CNN architecture is the 3D matrix
generated from the body joints, handcrafted features are avoided, and hierarchical features
are extracted directly from the body joints. The proposed CNN architecture is designed
in such a way that the CNN architecture can handle the variable length of the gait cycles
without resampling of the 3D matrix to a fixed dimension. The residual learning [27] blocks
are introduced to design the architecture of the CNN model to mitigate the degradation
problem with the reduced model parameters. The Adam optimizer is used to minimize the
loss of the objective function.
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There are two phases for the Kinect-based gait recognition. During the registration
phase, features are extracted by the proposed convolutional neural network using residual
learning from the skeleton-based gait sequences. Extracted features in different layers
of the CNN model are trained and optimized during the registration phase. Optimized
features are used during the identification phase. During the identification phase, unknown
Kinect skeleton-based gait sequences are used. The trained CNN model is applied to the
prediction of a person’s identification. The flowchart of the proposed system is shown in
Figure 1.

Figure 1. Overall system flowchart of the proposed framework.

3.1. Gait Cycle Detection

A cyclic pattern of motion is observed from the body joints of the human body at the
time of walking. A gait cycle is detected by tracking the Euclidean distances between two
ankles. Since a walking sequence can be affected by the noise, the noise reduction filter is
required to detect local maxima to determine a complete gait cycle. First, a moving average
filter is applied, and a median filter is further introduced to suppress the noise in the results
of the Euclidean norm between two ankles. After the noise reduction, three consecutive
local maxima are detected to extract a complete gait cycle. All the local maxima of the noise
reduced signal are denoted in Figure 2. The 3D coordinates of each of the body joints of a
gait cycle are used to prepare the input of the proposed KinectGaitNet. Each of the gait
cycles of a walking sequence exhibits unique gait attributes that need to be extracted and
trained using the CNN model.

Figure 2. Euclidean norm between ankles is shown in red color. The result of noise reduction filters
is shown in blue color. Local maxima is marked using the * symbol.
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3.2. 3D Matrix Generation from the Body Joint Coordinates

Three-dimensional (3D) coordinates of each of the body joints over a gait cycle are
used to generate a unique 3D matrix. Each of the body joints is represented using an (x, y, z)
vector in the Kinect skeleton model. The number of body joints and the number of frames
in a gait cycle are represented by Nb and N f , respectively. The x coordinates of Nb body
joints are extracted from each of the frames of a gait cycle. In a similar way, Nb number of y
and z coordinates are retrieved. The flowchart of the 3D matrix generation process using
the x, y, and z coordinates of each of the body joints over the frames of a gait cycle is shown
in Figure 3. Since the number of frames in a gait cycle is not the same for every person, the
value of N f is different from person to person.

Figure 3. Flowchart of a 3D matrix generation from the body joints over the frames of a gait cycle.

3.3. Proposed Convolutional Neural Network

In this paper, a unique residual learning-based convolutional neural network is pro-
posed for the Kinect-based gait recognition. The architecture of the proposed CNN model
is shown in Figure 4. The purpose of designing the residual learning-based CNN architec-
ture is to extract hierarchical distinctive features taking the variable dimensions of the 3D
matrices as input while avoiding the degradation problem. A 3D matrix comprised of x, y,
and z coordinates of each of the body joints over a gait cycle is the input for the proposed
CNN architecture. If there are total N gait cycles extracted from all persons’ skeleton-based
gait sequences, the input shape of the proposed CNN model becomes N × N f × Nb × 3
where N f is not a fixed value. The identification labels of each of the persons are converted
into the one-hot encoded format. If there are total P persons’ gait sequences available in a
dataset, the shape of the one-hot encoded identification label is N × P. Both the 3D matrix
and one-hot encoded identification label are fed into the first layer of the CNN model.

The convolutional layer, batch normalization layer, and activation layer are the first
three layers of the proposed CNN model. The spatial and temporal relationships among
the body joints and the relationship among x, y, and z coordinates are extracted using
the convolutional filters. Extracted features are required to be normalized to make faster
convergence of the training with stability. Therefore, the batch normalization layer is
subsequently included to transform the extracted features in linear fashion after the con-
volution layer. The scaled feature map is activated using the Rectified Linear Unit (ReLU)
activation. The ReLU activation function is chosen for faster computation, monotonic
derivative, reducing the likelihood of vanishing gradient, and faster training. The first three
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layers are responsible for extracting, scaling, and activating low-level features. Further
layers of the KinectGaitNet extract high-level features based on low-level features using
residual learning.

(a)

(b)

(c)
Figure 4. Residual block ([kernel = K × K, filters = F, stride = S] ×R) means residual blocks are
stacked one after another R times and K × K kernel of F filters are used in the convolutional layer.
Based on the value of S, one of the residual blocks of Figure 4a,b is selected. (a) Architecture of
residual block when stride length is set to 1. (b) Architecture of residual block when stride length is
set to 2. (c) Architecture of the KinectGaitNet.

There are two types of residual blocks introduced in the proposed architecture in order
to extract the hierarchical high-level feature map. The residual block takes the output of
the previous layer, size of the kernel, number of filters, and stride length as an input. If the
stride length is set to 1 in the residual block, the architecture of the residual block shown in
Figure 4a is selected. On the other hand, if the stride length is set to 2 in the residual block,
the architecture of the residual block shown in Figure 4b is applied. When the stride length
is set to 1, the skip connection is introduced from the input matrix to the results of the
batch normalization layer (see Figure 4a). To implement the skip connection, the merging
layer of the addition type is used to add the original input matrix to the residual block
and the output of the batch normalization layer. The merged results are fed into the ReLU
activation layer. When the stride length is set to 2, a convolution operation is applied at first
using the provided number of filters with 1 × 1 kernel. Next, the batch normalization layer
is used to normalize the outputs. Consider the result of this batch normalization operation
is represented as Bx1. The shortcut connection is added from Bx1 to the results of the batch
normalization layer, according to Figure 4b, using the merging layer of addition type. The
merged results are passed to the activation layer. The architectures of Figure 4a,b with skip
connection are included in the KinectGaitNet to address the degradation problem, since
the high-level feature extraction block is a deeper network.
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Traditionally, the result of the final convolutional layer is flattened into the fully
connected layer before the decision layer. However, a fully connected layer can not be
added after the last residual block because the extracted feature map is in a variable
dimension. Since the variable dimension of the 3D matrix is the input of the KinectGaitNet,
the dimension of the extracted feature map after the residual block is not consistent for
every gait cycle. The feature map needs to be accumulated in such a way that a consistent
feature map can be generated and the accumulation process is learnable. To achieve that,
we feed the output of the final residual block into a global average pooling layer [36].
The global average pooling layer provides the ability of the KinectGaitNet to support the
variable dimension of 3D matrices. It also significantly reduces the number of trainable
parameters. Finally, the feature maps are transformed in such a way that the output of the
global average pooling operation is closely related to the classification categories.

The softmax activation function is applied at the decision layer to classify persons’
identities in a multi-class gait recognition system. The categorical log loss objective function
is optimized using the Adam optimizer to utilize the optimization gain of AdaGrad and
RMSProp [37]. Furthermore, the Adam optimizer provides the robustness while optimizing
the hyperparameter with an adaptive learning rate.

4. Experimental Results

The performance of the proposed KinectGaitNet is evaluated using two publicly
available benchmark datasets. The UPCV dataset [7] contains five gait sequences for
30 participants recorded using the Microsoft Kinect sensor at a real-time speed of 30 fps.
Among the 30 participants, an equal number of male and female participants contributed
to the dataset. The Kinect Gait Biometry (KGB) dataset [24] contains five gait sequences
for each of the 164 participants, who walked from left to right in a clockwise direction and
returned in the opposite direction. An X-Box 360 Kinect sensor was used to collect the
walking sequences of both males and females ranging from 17 to 45 years old. College
students were the major contributing volunteers in the KGB dataset.

The gait cycle detection algorithm is applied to detect multiple gait cycles from the gait
sequences of both datasets. The 3D matrix generation method is applied to prepare the input
of 3D matrices from the gait cycles. The proposed residual learning-based KinectGaitNet
model is trained using the samples of 3D matrices, and optimized weights are stored after
the registration process. The optimized weights of the trained KinectGaitNet model are
used in the identification phase. Five-fold cross-validation is conducted on both datasets,
since five gait sequences of each of the participants of both datasets are available. Therefore,
the proposed model can be evaluated by every gait sequences of each of the individuals to
show the fairness of the model for each of the sets.

4.1. Performance of Optimization Method and Batch Size

The weights of the proposed CNN architecture are optimized using the Adam opti-
mization method. Furthermore, Root Mean Square Propagation (RMSProp) and Stochastic
Gradient Descent (SGD) optimization methods are applied to optimize the categorical
cross-entropy objective function. The performances of the three optimization methods are
compared in terms of recognition accuracy, precision, recall, and F-score. Table 1 shows
the average recognition results of the SGD, RMSProp, and Adam optimization methods
on the UPCV dataset. The proposed 3D matrix generation and KinectGaitNet with ReLU
activation and SGD optimizer achieve the lowest recognition accuracy of 80.63%. RMSProp
improves accuracy by 15% over SGD. The recognition accuracy, precision, recall, and F-
score of 96.91%, 96.66%, 96.17%, and 96.02%, respectively, are achieved using the Adam
optimizer. Thus, the Adam optimizer provides the best recognition performance on the
UPCV dataset.
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Table 1. Average recognition performance of the proposed convolutional neural network with ReLU
activation function and different optimization methods on the UPCV dataset. The best performance
is shown in bold.

Optimizers Accuracy Precision Recall F-Score

SGD 80.63 73.88 74.87 72.69
RMSProp 95.41 94.87 94.43 94.01

Adam 96.91 96.66 96.17 96.02

The average recognition performance of the proposed CNN model with the ReLU
activation function and different optimization methods on the KGB dataset is shown in
Table 2. The performances of the SGD, RMSProp, and Adam optimizers are close to each
other. The recognition accuracies of 99.25%, 99.27%, and 99.33% are achieved by the SGD,
RMSProp, and Adam optimization methods, respectively. The Adam optimizer again
secures the best recognition accuracy, precision, recall, and F-score on the KGB dataset.

Table 2. Average recognition performance of the proposed convolutional neural network with
the ReLU activation function and different optimization methods on the KGB dataset. The best
performance is shown in bold.

Optimizers Accuracy Precision Recall F-Score

SGD 99.25 99.27 99.25 99.25
RMSProp 99.27 99.31 99.31 99.27

Adam 99.33 99.36 99.35 99.33

It is worth pointing out that the batch size of 32 is used in the experiments mentioned
in Tables 1 and 2. Therefore, it is studied further to finalize the contribution of the batch size
hyperparameter while training the proposed CNN architecture. Since the Adam optimizer
minimizes the objective function better than SGD and RMSProp, an experiment on the
batch size is performed using the Adam optimizer and ReLU activation function. Table 3
shows the average recognition performance of the proposed CNN model on the UPCV
dataset trained using different batch sizes. Similar experiments using different batch sizes
are also conducted on the KGB dataset (see Table 4). It is evident from Tables 3 and 4 that
the recognition performance is gradually decreased if the batch size is increased from 32
to 128. The accuracies of 3.11% and 0.14% are decreased on the UPCV and KGB datasets,
respectively. Therefore, the performance of the proposed CNN model is best when the
proposed CNN model is optimized by the Adam optimizer and is trained using a batch
size of 32.

Table 3. Average recognition performance of the proposed KinectGaitNet with ReLU activation
functions, Adam optimizer, and different batch sizes on the UPCV dataset. The best performance is
shown in bold.

Batch Size Accuracy Precision Recall F-Score

32 96.91 96.66 96.17 96.02
64 94.75 93.02 92.06 92.26

128 93.80 92.88 91.67 91.74
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Table 4. Average recognition performance of the proposed KinectGaitNet with ReLU activation
functions, Adam optimizer, and different batch sizes on the KGB dataset. The best performance is
shown in bold.

Batch Size Accuracy Precision Recall F-Score

32 99.33 99.36 99.35 99.33
64 99.30 99.34 99.35 99.31

128 99.19 98.96 98.92 98.93

4.2. Performance of Pooling Method

The proposed method avoids resampling of the gait cycles to a fixed length. The
Global Average Pooling (GAP) method is proposed to be added after the fifth residual
block to handle a variable dimensional feature map and make the variable representation of
the feature map to a fixed-length representation. Activations of different feature maps are
accumulated using the GAP layer. The performance of the GAP is compared with Spatial
Pyramid Pooling (SPP) [38] and Global Max Pooling (GMP) [39] methods. While using an
SPP layer in the architecture, we add three levels of pyramid-wise pooling regions of 1, 2,
and 4 size. The performance of the SPP, GMP, and GAP on the UPCV dataset is shown in
Table 5. The performance of the SPP layer is the lowest among the three pooling methods.
GMP achieves around a 5% better identification rate than SPP. However, GAP secures the
highest recognition accuracy of 96.91%, precision of 96.66%, recall of 96.17%, and F-score
of 96.02%.

On the KGB dataset, KinectGaitNet achieves 94.95% and 98.85% recognition accuracies
with the SPP and GMP layers, respectively. The proposed architecture with the GAP layer
has the higher accuracy, precision, recall, and F-score among these three pooling methods
on the KGB dataset (see Table 6). Therefore, it is evident that KinectGaitNet with a GAP
layer provides the best performance on both datasets. Furthermore, KinectGaitNet has
the characteristics of handling variable dimensional gait cycles of individuals without the
necessity of resampling the gait cycle to a fixed length.

Table 5. Average recognition performance of KinectGaitNet with different pooling methods on the
UPCV dataset. The best performance is shown in bold.

Pooling Accuracy Precision Recall F-Score

Spatial Pyramid 80.37 80.73 77.76 76.74
Global Max 85.58 83.48 83.15 81.56

Global Average 96.91 96.66 96.17 96.02

Table 6. Average recognition performance of KinectGaitNet with different pooling methods on the
KGB dataset. The best performance is shown in bold.

Pooling Accuracy Precision Recall F-Score

Spatial Pyramid 94.95 95.68 95.64 95.07
Global Max 98.85 98.92 98.93 98.87

Global Average 99.33 99.36 99.35 99.33

4.3. Analysis of Training and Validation

The training loss and validation loss over epochs demonstrate whether the model is
generalizing or memorizing. If the training loss and validation loss gradually decrease
over epochs, a generalized pattern is learned by the model. Thus, the model overfitting
can be identified from the learning curve. Since a five-fold cross-validation experiment
is conducted, the average training loss and validation loss of the KinectGaitNet on the
UPCV dataset are shown in Figure 5a. As the training loss and validation loss decrease, the
training accuracy and validation accuracy increase gradually.
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(a) (b)
Figure 5. The average training accuracy and validation accuracy of KinectGaitNet on the UPCV and
KGB datasets. (a) On UPCV dataset. (b) On KGB dataset.

Figure 5b shows the average training loss and validation loss of the proposed CNN
model on the KGB dataset. From Figure 5a,b, it can be pointed out that the trend of
validation loss is downward over the epochs. Moreover, validation loss does not increase
after it reaches a plateau, and there is no overfitting. Similar to validation loss, training
loss does not show an upward trend after reaching a plateau on both datasets. Thus, the
degradation problem is absent in the proposed deep learning architecture. Additionally,
the experimental result supports that KinectGaitNet shows fairness to each of the training
and test sets and does not suffer from overfitting.

4.4. Overall Performance Comparison

The performance of the proposed CNN model is evaluated using the Cumulative
Match Characteristic (CMC) curve. The CMC curve of the proposed method on the UPCV
dataset is shown in Figure 6a. Rank-1 recognition accuracy starts with 96.91% and reaches
100% at rank-4 on the UPCV dataset. On the other hand, the rank-1 recognition accuracy of
the proposed method on the KGB dataset is 99.33%. It approaches 99.97% at rank-10 (see
Figure 6b).

(a) (b)

Figure 6. Performance comparison of the CMC scores of the proposed method with the
methods [4,5,23,26] on the UPCV and KGB datasets. (a) On UPCV dataset. (b) On KGB dataset.

The performance of the proposed method is compared with the methods [4,5,23,26].
Comparisons of rank-1 to rank-10 CMC scores of the proposed method with the studied
prior research on the UPCV dataset and KGB dataset are shown in Figure 6a,b, respectively.
The proposed method achieves 100% accuracy at rank-4 on the UPCV dataset, whereas
prior research can not achieve 100% accuracy at rank-10. On the other hand, on the KGB
dataset, rank-1 recognition accuracy is 99.33%. The recognition accuracy of 99.98% is
achieved at rank-10, whereas 88.95%, 94.03%, 97.42%, and 99.60% recognition accuracies
are achieved at rank-10 by the state-of-the-art methods [4,5,23,26], respectively. In summary,
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the proposed method achieves a higher identification rate at each rank than the comparators
on both datasets.

The Receiver Operating Characteristic (ROC) is a performance metric for the classi-
fication. The probability measurement in the True Positive Rate (TPR) vs. False Positive
Rate (FPR) shows the separability among the classes. Since five-fold cross-validation is
conducted in our experiment, the macro-average is calculated to plot the ROC curve. The
ROC curve on the UPCV dataset is showin in Figure 7a. The normalized area under the
curve (nAUC) of ROC is 0.9936 on the UPCV dataset. On the other hand, the ROC curve on
the KGB dataset is shown in Figure 7b. The nAUC score of the proposed method is 0.9949
on the KGB dataset.

(a) (b)

Figure 7. ROC curves on the UPCV and KGB datasets. (a) On UPCV dataset. (b) On KGB dataset.

On the other hand, Equal Error Rate (EER) is another performance metric for the
biometric security. The smaller the EER score is, the better the verification system. The
EER scores of the proposed method on UPCV and KGB datasets are 0.0202 and 0.0101,
respectively. The nAUC and EER scores of the proposed Kinect-based gait recognition
method on both datasets are compared with four prior works (see Tables 7 and 8). The
proposed method secures the highest nAUC score and the lowest EER score against all the
prior research studied in this research on both datasets.

Table 7. nAUC and EER of the proposed method and the prior works on the UPCV dataset. The best
performance is shown in bold.

Method nAUC EER

Sun et al. [5] 0.7866 0.2929
Yang et al. [26] 0.9285 0.1212
Preis et al. [4] 0.9475 0.1010

Bari and Gavrilova [23] 0.9927 0.0202
Proposed method 0.9939 0.0202

Table 8. nAUC and EER of the proposed method and the prior works on the KGB dataset. The best
performance is shown in bold.

Method nAUC EER

Sun et al. [5] 0.9038 0.1717
Preis et al. [4] 0.9279 0.1010

Yang et al. [26] 0.9696 0.0505
Bari and Gavrilova [23] 0.9946 0.0101

Proposed method 0.9949 0.0101

Trainable and non-trainable parameters are determined to calculate the total parameter
count of the proposed CNN architecture. Since there are 30 participants in the UPCV dataset
and 164 participants in the KGB dataset, a fully connected layer of 30 nodes and 164 nodes
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is added after the global average pooling layer for the identification in the UPCV and KGB
datasets, respectively. The total count of the model parameters on both datasets is shown in
Table 9. The total number of parameters of the method [23] is 4496926 on the UPCV dataset
and 4514212 on the KGB dataset. Therefore, the proposed KinectGaitNet has over nine
times fewer parameters than the architecture in method [23].

Table 9. Parameter count of the KinectGaitNet.

Type of the
Parameters

UPCV
Dataset

KGB
Dataset

Trainable parameter 469438 478148
Non-trainable parameter 2464 2464

Total 471902 480612

The system configurations for determining the inference time of the proposed CNN
model are Intel Core i7-8700 CPU of 3.20 GHz, 16 GB of RAM, and GPU of NVIDIA GeForce
GTX 1080. The running time of identification of a 3D matrix to a person is 3.30 × 10−4 s,
whereas the running time of prediction by the method [23] is 3.85 × 10−4 s. Therefore, the
proposed method is 14.3% faster than method [23].

4.5. Comparison with State-of-the-Art Works

Prior works, such as those of Ball et al. [33], Preis et al. [4], Ahmed et al. [25],
Sun et al. [5], and Yang et al. [26], proposed handcrafted features to train the machine
learning model for Kinect-based gait recognition. More recently, Bari and Gavrilova [23]
introduced two unique geometric features to train their proposed deep learning neural
network (DLNN) architecture. Our proposed method does not introduce handcrafted
features; rather, it introduces the 3D matrix generation method to prepare the coordinates
of the body joints for the training of the residual learning-based convolutional neural
network. The proposed CNN model extracts optimized hierarchical features using the
backpropagation algorithm. Performance comparison of the proposed method with prior
research on the UPCV and KGB datasets is shown in Tables 10 and 11, respectively.

Table 10. Performance comparison of the proposed method with prior research on the UPCV dataset.
The best performance is shown in bold.

Methods Accuracy Precision Recall F-Score

Ball et al. [33] 57.00 53.19 57.87 51.32
Preis et al. [4] 78.00 74.27 73.41 70.43
Sun et al. [5] 82.67 80.50 80.19 79.67

Yang et al. [26] 86.67 85.48 83.76 83.08
[25] + (DLNN + tanh + Adam [23]) 93.33 91.15 90.70 89.73

Bari and Gavrilova [23] 95.30 94.40 94.02 93.27
KinectGaitNet + ReLU + Adam 96.91 96.66 96.17 96.02

Joint relative cosine dissimilarity (JRCD) and joint relative triangle area (JRTA) [23]
provide better recognition results than prior research. The KinectGaitNet achieves higher
recognition results than [23] in terms of accuracy, precision, recall, and F-score. On both
the UPCV and KGB datasets, the proposed CNN architecture with ReLU activation, global
average pooling, and Adam optimizer secures higher accuracy than [23] with nine times
fewer parameters and 14.3% faster inference time. It also extracts better distinctive features
than the traditional machine learning models introduced in [4,5,23,26,33]. Tables 10 and 11
support the aforementioned claim. The KinectGaitNet secures the best recognition perfor-
mance on both benchmark datasets. On the UPCV dataset, the highest recognition accuracy,
precision, recall, and F-score are 96.91%, 96.66%, 96.17%, and 96.02%, respectively. On the
KGB dataset, the highest recognition accuracy, precision, recall, and F-score are 99.47%,
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99.49%, 99.49%, and 99.48%, respectively. Moreover, the CMC scores are better at each rank,
the normalized area under the curve is higher, and the equal error rate is lower than in
prior research.

Table 11. Performance comparison of the proposed method with prior research on the KGB dataset.
The best performance is shown in bold.

Methods Accuracy Precision Recall F-Score

Ball et al. [33] 37.55 37.84 38.11 34.25
Preis et al. [4] 75.46 77.70 75.34 73.71
Sun et al. [5] 79.76 80.12 79.32 75.74

Yang et al. [26] 94.88 94.67 95.02 93.92
[25] + (DLNN + tanh + Adam [23]) 95.62 95.92 95.94 95.14

Bari and Gavrilova [23] 98.08 98.00 98.26 97.81
KinectGaitNet + ReLU + Adam 99.33 99.36 99.35 99.33

5. Conclusions and Future Work

In this paper, the residual learning-based convolutional neural network KinectGaitNet
is proposed for Kinect-based gait recognition. A new 3D matrix generation algorithm is
proposed. Resampling of the gait cycle to a fixed length is avoided using the global average
pooling layer in the KinectGaitNet. The proposed method is evaluated on two benchmark
datasets of Kinect-based gait recognition. On the UPCV and KGB datasets, 96.91% and
99.33% accuracies are achieved, respectively. The achieved recognition performance is
superior to all recently proposed state-of-the-arts methods. The running time of predic-
tion is 14.3% faster, and the parameter count is reduced by 89.03% over the most recent
method. This performance is achieved because of the proposed residual learning-based
CNN architecture, no resampling of the gait cycle, and absence of the handcrafted features.
In the future, the effect of the missing body joints will be investigated to develop the gait
recognition system applicable to real-life scenarios. An improved CNN architecture for
better hierarchical feature extraction can be the extension of the proposed method. Finally,
experimentation with different walking trajectories and testing the performance of the
method under varied clothing conditions can be another future research direction.
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