
����������
�������

Citation: Lattanzi, E.; Donati, M.;

Freschi, V. Exploring Artificial Neural

Networks Efficiency in Tiny Wearable

Devices for Human Activity

Recognition. Sensors 2022, 22, 2637.

https://doi.org/10.3390/s22072637

Academic Editor: Jeffrey M.

Hausdorff

Received: 7 March 2022

Accepted: 28 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Exploring Artificial Neural Networks Efficiency in Tiny
Wearable Devices for Human Activity Recognition
Emanuele Lattanzi * , Matteo Donati and Valerio Freschi

Department of Pure and Applied Sciences, University of Urbino Piazza della Repubblica 13, 61029 Urbino, Italy;
m.donati20@campus.uniurb.it (M.D.); valerio.freschi@uniurb.it (V.F.)
* Correspondence: emanuele.lattanzi@uniurb.it

Abstract: The increasing diffusion of tiny wearable devices and, at the same time, the advent of
machine learning techniques that can perform sophisticated inference, represent a valuable oppor-
tunity for the development of pervasive computing applications. Moreover, pushing inference on
edge devices can in principle improve application responsiveness, reduce energy consumption and
mitigate privacy and security issues. However, devices with small size and low-power consumption
and factor form, like those dedicated to wearable platforms, pose strict computational, memory, and
energy requirements which result in challenging issues to be addressed by designers. The main
purpose of this study is to empirically explore this trade-off through the characterization of memory
usage, energy consumption, and execution time needed by different types of neural networks (namely
multilayer and convolutional neural networks) trained for human activity recognition on board of a
typical low-power wearable device.Through extensive experimental results, obtained on a public
human activity recognition dataset, we derive Pareto curves that demonstrate the possibility of
achieving a 4× reduction in memory usage and a 36× reduction in energy consumption, at fixed
accuracy levels, for a multilayer Perceptron network with respect to more sophisticated convolution
network models.

Keywords: artificial neural networks; human activity recognition; wearable devices; machine learning

1. Introduction

The continuous development of technology has made possible the production of
electronic wearable systems equipped with sensing, computation, and communication
capabilities with reduced power consumption, size, and cost. This advancement represents
a key enabler for pervasive computing applications, within the framework of the Internet
of Things (IoT). Indeed, ubiquitous sensing of various physical quantities allows to contin-
uously monitor human activity, from which knowledge can be distilled. Human activity
recognition (hereafter also denoted as HAR) consists of the recognition of typical activity
patterns from signals gathered from sensing devices. This can be of particular interest in
several fields such, for instance, health or surveillance applications [1,2].

HAR techniques are, according to a widely accepted coarse grain categorization, usu-
ally distinguished into video-based and sensor-based. The former entails the collection of
video or image data from specific devices, whereas the latter is based on motion data signals
gathered from inertial measurement unit (IMU) sensors (e.g., accelerometer, gyroscope),
or from other information sources (e.g., microphone or Bluetooth transceiver). Clearly,
sensor-based HAR represents a more flexible and cheap solution for continuous monitoring,
while being more suitable in terms of privacy issues.

Machine learning algorithms are typically applied for the recognition of activity
patterns. Classical techniques (e.g., decision trees, Support Vector Machines, Hidden
Markov Models) represent a useful approach, but often require careful feature extraction
and engineering. In this sense, neural networks (NN) provide an appealing alternative for

Sensors 2022, 22, 2637. https://doi.org/10.3390/s22072637 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6568-8470
https://orcid.org/0000-0001-6352-3122
https://doi.org/10.3390/s22072637
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072637?type=check_update&version=1


Sensors 2022, 22, 2637 2 of 21

designing end-to-end learning systems with high-performance levels, directly from raw
sensor data. In particular, deep neural networks (DNN, for short) represent nowadays the
state of the art in many machine learning applications, from computer vision to speech
recognition tasks. The price to pay to achieve the impressive performance of DNN is
the computational burden posed by training and inference activities. As a matter of fact,
an option for overcoming computational issues is represented by resorting to GPU/TPU
powered, often cloud-based, resources, which is particularly suitable for model training,
according to a “once and for all” paradigm. On the other hand, shifting inference towards
edge nodes of an IoT system provides several appealing benefits: (i) it avoids latency issues
due to communications to and from the cloud, resulting in improved responsiveness; (ii) it
enables higher levels of privacy and security by keeping most of the data on remote devices;
(iii) it can improve energy efficiency by trading off computation and communication energy
requirements.

Given the wide diffusion of tiny, low-cost, resource-constrained microcontroller units
(also denoted as MCUs) in disparate IoT devices, the possibility of performing nontrivial
inference directly on top of such devices is deemed to be of remarkable importance. In
fact, memory and computation limits posed by most common general-purpose embedded
MCUs impose tight constraints on the type and performance levels of machine learning
tasks (e.g., human activity recognition) that could be executed.

Departing from these premises, we propose in this work to investigate the efficiency
of two neural network models, namely a multilayer Perceptron (MLP) and a convolutional
neural network (CNN). The proposed analysis is aimed at characterizing this efficiency in
terms of CPU cycles, used memory, and energy consumption of the models, when a typical
HAR task has to be executed on low-power MCUs on top of a real wearable device.

Within this framework, the main contributions of our study can be summarized as
follows: (i) we propose an experimental workflow to analyze the performance of different
machine learning models implemented on resource-constrained devices targeting HAR
applications; (ii) we experimentally characterize on a wearable platform the trade-off
between energy consumption or memory usage and classification accuracy for two types
of widely used machine learning models; (iii) we explore several points of the design
space (e.g., the latency of inference for different time windows of the acquired signals and
feature selection) to provide a thorough assessment of the different models. The results
of this investigation allow drawing some indications to potentially support academic and
industrial research design of machine learning solutions to be deployed on edge computing
devices.

The remainder of the article is structured as follows: in Section 2 we overview some
state of the art works in the scientific literature related to our contribution; in Section 3 we
describe the proposed methodology; in Section 4 we illustrate the setup adopted to conduct
experiments, whose results and findings are provided Section 5; in Section 6 we conclude
with some final remarks and observations.

2. Related Works

The idea of combining machine learning (ML) and IoT is an emerging research area
that can be explored in different ways. A first distinction can be made based on where
ML algorithms are placed (i.e., on the cloud or on the edge). Running ML in the cloud, for
instance, offers potentially unlimited computational and storage resources at the cost of
transferring data through the network [3–5]. On the other hand, moving ML from the cloud
to the edge requires bringing complex algorithms to embedded devices characterized by
evident resources constraints in terms of energy, storage, and computational power [6–8].
Moreover, some hybrid approaches have been proposed studying the suitability of parti-
tioning heavy ML models on several sub-models which can be executed in a distributed
manner across different IoT nodes or across nodes and remote clouds [9–12].

Focusing on the ML on top of edge computing (also referred to as TinyML), a reduced
number of scientific contributions can be currently counted. In particular, TinyML refers



Sensors 2022, 22, 2637 3 of 21

to those platforms based MCUs with less than 1 MB of RAM and with extremely low
energy consumption (about 1mW). In this context, most of the studies are, above all, aimed
at demonstrating the possibility of executing the ML inference phase at the edge relying
on centralized servers or distributed machines for training the models [13]. Porting ML
inference on tiny devices comprises diverse optimization strategies ranging from reducing
data input size by choosing more informative features [14] to lower the signal sampling
frequency [15], and to reduce the number of bits that are used to represent a number to
decrease the memory footprint [16,17]. A recent study presented by Feedorov in 2019
resumed most of these strategies and proposed an automatic tool to design Convolutional
Neural Networks models suitable for deployment on MCUs used to classify low-size
images [18].

Another dimension that can be used to classify TinyML IoT is represented by the type
of learning tool being used. In particular, several contributions can be found in literature
aimed at porting common machine learning models, such as Naive Bayes, Support Vector
Machine, Decision Trees, or K-Nearest Neighbor, on top of IoT devices [19–21]. On the other
hand, a number of recent studies also dealt with the optimization of deep learning models
for tiny devices. For instance, Wang et al. proposed a tool to design an energy-efficient
multilayer Perceptron for microcontrollers [22]. Lane et al. report a deep characterization
of a CNN for resource constraint devices [23], while Disabato et al. [24] present a deep
investigation about the accuracy of a CNN model tailored to two application scenarios (i.e.,
image classification and speech command recognition) on top of a Raspberry Pi and of an
ARM Cortex-M7 MCU. Similarly, Wang et al. recently proposed a new run-time model
compression method to deploy image classification DNNs on MCUs [25].

Although there are many works that study machine learning on tiny devices, to the best
of our knowledge only few authors investigate also its effectiveness from an energy point
of view and no contribution can be found for what concerns human activity recognition
on wearable devices. In particular, the work by Feedorov in 2019, which proposed an
automatic tool to design CNNs, characterizes the performance achieved during image
recognition and reports, as reference values, energy consumption in the range from about
20mj to almost 400mj and an inference latency from about 30ms to 500ms depending
on the dataset used [18]. In 2021, Odema et al. analyzed the trade-off between energy
consumption and machine learning accuracy for low-power embedded devices targeted to
detect a myocardial infarction [26] while Rashid et al. proposed an energy-aware online
human eating activity recognition for wearable devices. In this case, the authors propose a
hybrid approach that periodically updates the trained model over the network in order to
meet the changes in people’s eating habits [27].

Finally, in the field of human daily activity recognition, Abdel et al. investigated
the encoding of data, captured from heterogeneous sensors, into image representation to
treat the task as an image classification problem. Authors test their proposed approach
on two different public datasets but they do not provide any information about energy
consumption and inference latency [28]. Novac et al. in 2020, in a preliminary work,
compare supervised and unsupervised learning approaches deployed into an embedded
device by analyzing the classification accuracy with respect to the ROM footprint and to the
inference time. In this work, authors focus only on the inference time without considering
time and energy spent to real-time collecting data from IMU sensors or to preprocess
signals [29]. Recently, Alessandrini et al. presented a recurrent neural network (RNN),
deployed on an embedded device, which takes in input data from Photoplethysmography
(PPG) and tri-axial accelerometer sensors to infer the current human activity [30]. Similarly,
Coelho et al. [17] and Mayer et al. [31] showed the adequacy of different deep learning
models to be run on low-power platforms. Although the HAR on top of low-power devices
is the common thread of these recent works, in none of the cases do authors analyze trade-
offs between network complexity and resources utilization nor the impact on inference
time or on measured energy consumption in real conditions.



Sensors 2022, 22, 2637 4 of 21

On the other hand, in this work we conduct a novel accurate analysis aimed at
characterizing artificial neural networks models efficiency in terms of CPU cycles, used
memory, and energy consumption, when a typical HAR task must be executed on low-
power MCUs on top of a real wearable device.

3. The Proposed Method

In this section, we describe the proposed methodology aimed at exploring the effi-
ciency of artificial neural networks by means of a fine-tuning and characterization of the
network complexity devoted to reduce the model computation needs in terms of CPU
cycles, memory usage, and energy consumption without introducing an appreciable loss
of accuracy. For this purpose, we chose a MLP and a CNN traditionally used in several
classification problems. In particular, the MLP network represents a classical machine
learning tool used by now for several decades while the CNN is a more recent tool which
belongs to the deep learning category and which proved a very interesting classification
performance and versatility. Indeed, CNNs have been demonstrated particularly suitable
for HAR tasks (see for instance [1,2]); we chose to also include MLP in our study because
they represent a well-grounded type of machine learning model that could potentially pose
a lighter burden on resource-constrained devices. Interestingly, the experimental results
show that similar performance (in terms of classification accuracy metrics) can be reached
for the application under study for both machine learning models, but with different en-
ergy consumption, memory usage, and inference latency, making it reasonable to take into
consideration the implementation of MLP within IoT edge computing HAR applications.
The two networks have been trained and tested using, as a case study, the recognition of
daily human activities, and as the wearable device a real development platform.

3.1. Perceptron Network

A Perceptron network is typically made up of a set of sensory units representing
the input layer, one or more hidden layers, which are made up of computation nodes,
and one output layer, which computes the final result. A network with only one hidden
layer is known as a Single Layer Perceptron (SLP), whereas a network with multiple
hidden layers is known as a Multi-Layer Perceptron (MLP). Because the input signals in
both cases propagate forward through the network, they are also known as feedforward
networks. Each neuron receives input signals, processes them, and transmits the result
to the neurons to which it is connected. The processing involves evaluating a transfer
function on the weighted sum of the received inputs, with each weight representing the
effectiveness of a synaptic connection (i.e., of an input line). The neural network’s learning
capabilities are achieved by adjusting the weights in accordance with the learning algorithm
of choice. Various training algorithms and performance metrics have been proposed in the
literature [32]. Before sending data to the network, data must be preprocessed by means
of a processing phase called feature extraction. This phase entails incorporating domain
knowledge into data processing in order to reduce its complexity and generate summary
descriptors that improve the performance of learning algorithms. Feature processing takes
time and requires specialized knowledge because the features vary depending on the
problem being analyzed.

3.2. Convolutional Neural Network

A CNN is essentially a type of MLP. It takes a novel approach that makes use of any
spatial or temporal information in the data. In fact, the CNN was inspired by the biological
process that occurs in the animal visual cortex, where neurons only handle responses from
specific regions of the visual field. Convolving filters are used by CNNs to handle local
regions within the data, emulating the visual cortex. The network structure is mainly
composed of an input layer, convolutional layers, pooling layers, and fully connected
layers. The input layer is responsible for collecting data and forwarding it to the next
layer. The convolutional layer, which contains several convolution filters (kernels) that



Sensors 2022, 22, 2637 5 of 21

convolve with the input data, is the main core of a CNN and it is responsible for reducing the
dimension of the input data automatically extracting useful features. The pooling layer, also
known as the subsampling layer, is then used to further reduce the number of parameters
and the resulting computational cost by incorporating max-pooling and average-pooling
operations. Finally, a fully connected layer functions as a traditional Perceptron network,
taking in input from the previous layer’s features. A CNN has traditionally been used in
the Deep-Learning approach due to its ability to eliminate the need for feature extraction
and feature selection, often at the expense of increased computational complexity and
memory usage [33].

3.3. Tuning Neural Networks Complexity

Artificial neural networks are complex systems whose performance and computational
needs depend on several parameters. These parameters can be divided into hyperparameters
and learnable parameters.

The term hyperparameters refers to those parameters that are used to control the
network structure and the learning process so that they can be divided, in turn, into
structural hyperparameters and algorithmic hyperparameters [34]. Structural hyperparameters,
also called model hyperparameters, describe the network structure and topology and are
represented, for instance, by the number of layers, the number of neurons in each layer,
the degree of connectivity, the neuron transfer function, etc. As they directly modify the
structure of the network, they affect both its effectiveness, its computational complexity,
and its memory footprint. On the other hand, algorithmic parameters are the training
algorithm, the learning rate, the momentum, the training set size, and so on, and they
are used to control the learning process. These parameters are not part of the model and
they have no influence on its performance but they affect the speed and the quality of the
learning process [34].

Finally, learnable parameters, also referred to as trainable parameters, are represented
by weights and biases of the neuron connections and are modified during the learning
phase by the training algorithms. The number of these parameters strictly depends on the
network type and on the choice of the structural hyperparameters and it straight influences
the computational complexity and memory footprint of the model.

Definitely, tuning a neural network entails tuning its parameters following a certain
objective function. Traditionally, network-tuning is done to optimize its performance in
order to obtain the highest effectiveness in terms of accuracy [35–38]. In this work, on the
contrary, we aim at tuning the network complexity to reduce the model computation needs
(CPU cycles, memory usage, and energy consumption) to meet the resources constraints of
wearable devices, and, at the same time, to minimize the loss in the model performance.
For this purpose, we train the network by means of a traditional desktop computer, without
computation constraints, and then install the trained model into the wearable device to
infer a real-time classification. Thanks to this solution we can leave the training phase as
complex as we need to obtain the high accuracy, and tune only the model computation
needs. In other words, we focus on the tuning of the structural hyperparameters and of the
number of the trainable parameters to obtain a good trade-off between inference accuracy
and resources utilization.

In particular, in this work, we study how the tuning of the complexity of a Perceptron
and of a CNN network, by properly setting its hyperparameters, influences its performances
and its suitability to be installed and run on a wearable device. For this purpose, we use a
real smartwatch, namely Hexiwear [39], on top of which we install the two neural network
models used to classify daily human activities.

3.4. The Case Study

HAR refers to the task of automatically recognizing daily activities carried out by
an individual. In particular, human activities such as walking, running, sitting, standing,
driving, sleeping, etc. are detected and classified by means of data collected from several



Sensors 2022, 22, 2637 6 of 21

sources, ranging from inertial wearable sensors (e.g., accelerometer and gyroscope) to video
capture devices (e.g., visible or infrared images and streams).

Particularly, inertial sensors have been employed in HAR systems for health-related
applications targeting, for instance, remote monitoring of elderly people, fall detection,
medical diagnosis, physical therapy for rehabilitation, and biomechanics research. Inertial
sensors have been also adopted for gait recognition approaches, with the aim of recognizing
users by their walking patterns, through motion signals collected from accelerometers and
gyroscopes mounted on board of wearable devices [40].

Despite a huge literature on the topic, there is not a common agreement on the number
and types of sensors to be adopted, neither on their positioning nor on the methods most
suitable for recognizing most common patterns.

Computer vision-based technologies have been proposed as well for HAR tasks,
although with peculiar issues that typically constrain their applicability. In fact, video
cameras or other types of external sensors are usually placed in predefined locations and
the collection of useful data can be carried out only within the range of these sensors in
order to interact with them.

Machine Learning (in particular deep learning) provides a valuable framework of
techniques that have been recently used for HAR. Indeed, Machine Learning models allow
building reliable and mathematically sound tools, that can take advantage of the increasing
amount of information that can be collected from sensing devices worn by individuals.
Motion signals can be continuously gathered, divided into chunks of predefined window
size [41] and eventually processed and classified by means of suitable tools such, for
instance, artificial neural networks.

Accurately recognizing human activity patterns such as running, walking, sitting,
climbing or descending the stairs, jumping, lying down, poses several challenging issues.
First of all, the accuracy of the classification process can be strongly affected by the position
of sensors, hence their optimal placement is key to achieving correct predictions. The use
of multiple inertial sensors located both in the upper and in the lower part of the body
may improve performance, often at the cost of decreased usability. Other issues relate to
the privacy and security of individuals, which prompt for keeping the inference phase on
top of wearable devices. As a consequence, the inference must be performed at the edge,
possibly with a reduced impact on energy consumption.

For these reasons, we focused in this study on the RealWorld HAR dataset described
by Sztyler et al. in 2017 [42]. The data set contains the acceleration, GPS, gyroscope,
light, magnetic field, and sound level data collected at a sampling frequency of 50 Hz of
the following activities: climbing stairs down and up, jumping, lying, standing, sitting,
running, and walking. Each activity was performed for ten minutes (except for jumping
which was repeated for about 2 min) by fifteen subjects of different ages and gender in
real-world conditions. Each subject was instrumented with different wearable sensors in
order to capture signals generated in different body positions such as chest, forearm, head,
shin, thigh, upper arm, and waist.

Since this work focuses on the classification performance of wearable devices such
as smartwatches, we refer only to those signals commonly available on these devices
(accelerometer and gyroscope) and collected in the subject’s forearm.

3.5. The Proposed Workflow

Figure 1 reports a graphical representation of the experimental workflow proposed in
this study. In particular, after a first step involving a pre-processing phase of the raw data
extracted from the case study dataset, the two classification networks (i.e., the Perceptron
and the CNN networks) are trained and tested using a k-fold strategy. The resulting trained
models are then optimized in order to reduce the memory footprint and the inference
latency by means of the standard quantization scheme implemented in TensorFlow Lite [43].
The next step takes as input the optimized models and translates them into a C language
representation that can be cross-compiled for the selected wearable platform. The output



Sensors 2022, 22, 2637 7 of 21

of this step consists of a binary file representing the firmware that is used to program the
wearable device to continuously read signals from its onboard sensors and to execute the
model to obtain the classification inference. Finally, the inference phase of the installed
model is characterized in terms of memory usage, CPU cycles, and energy consumption by
means of the measurement setup.

Notice that, the only two processing phases that need to meet the resources constraints
of the wearable devices are respectively the pre-processing and inference phases. The first
one must be replicated on the device to maintain consistency with the trained model input
and, obviously, the second one is the actual phase of using the neural network to classify
the HAR. All the remaining phases can be left as complex as we need to obtain the highest
classification accuracy.

RAW 
DATA

Pre-processing

K-fold
cross-validation

Perceptron
network

CNN

Model size 
optimization

Trained
Perceptron

network

Trained
CNN

Cross
compilation

Reduced
Perceptron

network

Reduced
CNN

inference
characterization

Models 
comparisonBinary

images

Executed
on wearable device

Executed
on wearable device

Figure 1. The proposed experimental workflow.

3.6. Signal Pre-Processing

The six signals extracted from the dataset (i.e., the 3-axial accelerometer and gyroscope
data) have been divided into time windows and each of these has been considered as a
sample to be used to train and to test the artificial neural networks.

In order to evaluate the classification performance of the Perceptron feed-forward
network, starting from each time window, two sets of descriptive features have been
computed. In particular, the first set contains basic statistical descriptors aimed at capturing
data tendency and variability. These descriptors are: (i) average (A); (ii) standard deviation
(S); (iii) maximum value (X); (iv) median value (M) while the second set is built with
Kurtosis (K) and Skewness (W) parameters aimed at capturing the shape of the data.
Kurtosis and Skewness, in fact, are used to describe, respectively the degree of dispersion
and symmetry of the data. In particular, Kurtosis is a measure of whether the data are
heavy-tailed or light-tailed relative to a normal distribution while, Skewness measures how
much data differ from a completely symmetrical distribution [44].

In the case of the CNN network, on the other hand, no feature extraction is needed
and the samples of the signals that make up the time window have directly been used as
input for the network.

Obviously, the size of the time window influences the performance of classification
models in different ways. First of all, it must be large enough to capture the “fingerprint” of
the human activity in order to be properly recognized but it must not be too large to include
consecutive activities. For what concerns HAR, different window lengths have been used
in the literature: starting from 1 s up to 30 s [45–49]. Of course, the size of the window
strictly depends also on the activities to be recognized and, moreover, it also affects other
aspects such as the model size and the inference computation and energy costs. For these
reasons in a later section, we report a deep sensitivity analysis of the classifiers with respect
to this parameter.



Sensors 2022, 22, 2637 8 of 21

4. Experimental Setup
4.1. The Software Platform

The software platform used to build the proposed workflow described in Section 3.5
is based on the Python open-source library for artificial neural networks called Keras [50]
running on top of TensorFlow [51]. Then, the trained model has been optimized and
converted into a C language representation by means of TensorFlow Lite framework [52].
Finally, the Arm Mbed development toolchain has been used to generate the executable
image to be used to program the wearable device [53].

4.2. The Wearable Device

As a wearable device, we used a smartwatch called Hexiwear produced by MikroElek-
tronika [39]. The main CPU is a low-power Arm Cortex-M4 from NXP running at 120 MHz
and equipped with 1MB of non-volatile flash memory and with 256 KB of SRAM. The main
CPU is connected with a triaxial accelerometer, magnetometer, and gyroscope for a total of
9 degrees of freedom (DoF), and with an OLED display with a resolution of 96 × 96 pixels.
In addition, such a device has additional capable sensors to detect external temperature,
atmospheric pressure, humidity level, and heart rate. The whole device is powered by
means of a 190 mAh Li-Po battery that, thanks to the low-power consumption of the main
CPU (about 35 mA at maximum speed), ensures a good execution time.

4.3. Energy Consumption Measurement Setup

In order to monitor the energy expenditure of the smartwatch, we measured the
voltage drop across a sensing resistor (39 Ω) placed in series with the power supply of
the device. The smartwatch was powered at 3.3 V through a NGMO2 Rohde & Schwarz
dual-channel power supply [54], and we sampled the signals to be monitored during the
experiments by means of a National Instruments NI-DAQmx PCI-6251 16-channel data
acquisition board connected to a BNC-2120 shielded connector block [55,56].

4.4. Classification Performance Metrics

For both networks, we calculate several classification performance metrics, together
with the standard deviations, during a k-fold cross-validation test with k = 5. In particular,
dealing with multi-class classifiers, the following quantities have been evaluated for each
of the eight classes (i ∈ [1 · · · 8] is an index that identifies a specific class): TPi, the number
of true positives predicted for class i; TNi, the number of true negatives predicted for class
i; FPi, the number of false positives predicted for class i; FNi, the number of false negatives
predicted for class i.

Subsequently, these indicators have been used to compute the following metrics
(corresponding to the so called macro-averaging measures) [57]:

Precision =
1
8

8

∑
i=1

TPi
TPi + FPi

(1)

Recall =
1
8

8

∑
i=1

TPi
TPi + FNi

(2)

F1score = 2 · Precision · Recall
Precision + Recall

(3)

Accuracy =
1
8

8

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(4)

5. Experimental Results and Discussion

In this section, we report the extensive experiments conceived to assess the adequacy
of the two representative network models to be used on top of a low-power wearable device



Sensors 2022, 22, 2637 9 of 21

for real-time inference of human activity. In particular, we explore the hyperparameters
space of the two networks, and then we compare the two sets of results by taking into
account the impact on the computation needs such as CPU cycles, memory usage, and
energy consumption.

5.1. Perceptron Network

The performance of the Perceptron network has been investigated while changing: (i)
the network structure and size, (ii) the size of the window processing, and (iii) the number
of input features.

5.1.1. Network Size and Structure

The size of a Perceptron network can be expressed in terms of the total amount of
neurons contained in its hidden layers. In fact, for a given input (i.e., a constant number
of input signals or features) and for a given classification task (i.e., a constant number of
classes to be recognized) the size of input and output layers are statically defined while the
size of the network can be changed by varying both the number of hidden layers and the
number of hidden neurons in each layer.

Figure 2 shows the structures of a Single Layer Perceptron (SLP) and of a Multi-Layer
Perceptron (MLP) with two hidden layers. The input size, the number of hidden neurons,
and the output size are defined respectively by m, n, and k parameters. Notice that in the
MLP, each of the two hidden layers contains n/2 neurons so that they can be compared
with the SLP configuration. Moreover, before and after the fully connected layers a dropout
layer (not shown in the figure) with a dropout rate set to 0.5 was inserted to help prevent
overfitting. Finally, as the activation function, the standard ReLU was used.

(a) (b)

Figure 2. Structure of the SLP (a) and of the MLP (b) families network.

In Table 1 the size of the two networks, expressed in terms of hidden neurons (n),
together with the number of its trainable parameters are shown. Notice that, the number of
trainable parameters is calculated for an input size (m) equal to 36 and for an output size
(k) of 8. The input size results from the extraction of the 6 features, described in Section 3.6,
from the 6 independent signals (i.e., data from the triaxial accelerometer and gyroscope)
while the output size reflects the number of classes described in Section 3.4. For sake of
clarity, each network configuration has also been identified by assigning a unique ID (first
column of the table) Finally, the table also shows that, due to the fully-connected nature
of the hidden layers, the number of trainable parameters in the MLP grows faster with
respect to the SLP when increasing the total number of hidden neurons.



Sensors 2022, 22, 2637 10 of 21

Table 1. SLP and MLP network structure defined in terms of the number of hidden neurons (n)
together with the resulting trainable parameters (p).

ID n p (SLP) p (MLP)

1 32 872 712
2 64 1736 1928
3 128 3464 5896
4 256 6920 19,976
5 512 13,832 72,712

Figure 3 reports the classification performances metrics, together with the standard
deviations, calculated during the k-fold cross-validation tests obtained by the SLP (a) and
by the MLP (b) networks when varying the network size accordingly to Table 1. Notice
that, the subscript used to index the network configurations reported on the abscissa axis
represents the unique ID of Table 1 so that the network size increases from the left to the
right of the graphs.

SLP
1

SLP
2

SLP
3

SLP
4

SLP
5

network configuration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

p
e
rf

o
rm

a
n
c
e

accuracy

precision

recall

f1-score

MLP
1

MLP
2

MLP
3

MLP
4

MLP
5

network configuration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

p
e
rf

o
rm

a
n
c
e

accuracy

precision

recall

f1-score

(a) (b)

Figure 3. Classification performance obtained when varying the structure of the SLP (a) and of the
MLP (b) networks.

For both networks, the highest performances have been measured on the configuration
containing the highest number of hidden neurons (i.e., SLP5 and MLP5) where SLP and
MLP show, respectively, an average classification accuracy of about 84.7% and 86.9%.

Figure 4 reports two confusion matrices obtained during the k-fold cross-validation
test, respectively, by SLP5 (a) and by MLP5 (b) network configurations. Although the
average accuracy of the two classifiers differs only by about 2%, the confusion matrices
point out that the MLP network obtains a more balanced precision between classes with
respect to SLP. For instance, the “Climbing up” activity was misclassified as “walking” 147
times with SLP leading to a recall of about 70.7% while with the MLP classifier it grew up
to 82.3%. Similarly, the MLP network was able to better discriminate between “Lying” and
“Sitting” increasing the recall of the former of about 4.7 percentage points.



Sensors 2022, 22, 2637 11 of 21

Clim
bing down

Clim
bing up

Jumping
Lying

Running
Sitti

ng

Standing

Walking

Predicted Class

Climbing down

Climbing up

Jumping

Lying

Running

Sitting

Standing

Walking

T
ru

e
 C

la
s
s

738

55

3

4

7

2

14

26

52

644

1

5

9

6

13

72

1

151

3

1

1

1

4

6

1

36

14

1

2

5

2

2

5

11

4

6

31

98

31

101

6

13

22

22

120

40

23

58

147

1

7

8

17

958

1002

1005

907

986

70.7%

15.5%

29.3%

3.8%

12.4%

14.9%

8.8%

15.9%

11.9%

84.5%

96.2%

87.6%

85.1%

91.2%

84.1%

88.1%

13.1% 19.7% 4.4% 6.1% 3.0% 21.4% 20.9% 19.4%

86.9% 80.3% 95.6% 93.9% 97.0% 78.6% 79.1% 80.6%

Clim
bing down

Clim
bing up

Jumping
Lying

Running
Sitti

ng

Standing

Walking

Predicted Class

Climbing down

Climbing up

Jumping

Lying

Running

Sitting

Standing

Walking

T
ru

e
 C

la
s
s

723

39

1

5

4

4

10

29

70

749

8

10

17

19

75

1

153

3

2

3

4

2

22

12

6

6

3

2

11

27

10

7

21

43

28

70

7

21

27

22

111

56

20

40

63

1

6

5

6

1009

1017

987

933

978

16.9%

17.7%

2.5%

7.7%

13.7%

10.4%

13.5%

12.6%

83.1%

82.3%

97.5%

92.3%

86.3%

89.6%

86.5%

87.4%

11.3% 21.0% 3.8% 4.1% 6.0% 15.1% 21.6% 11.0%

88.7% 79.0% 96.2% 95.9% 94.0% 84.9% 78.4% 89.0%

(a) (b)

Figure 4. Confusion matrices obtained by means of the SLP5 (a) and of the MLP5 (b) networks.

The networks trained during k-fold cross-validation experiments have then been
optimized and translated into TensorFlow Lite models in order to be installed into the
wearable device. Once installed, each model has been used to infer the activity classification
starting from the data read from the device internal sensors. During this phase, the energy
spent to carry out a single inference and the memory usage of each model have been
measured. In particular, the measured inference energy includes the contributions related
to the following phases: (i) sensor reading (accelerometer and gyroscope), (ii) feature
extraction, (iii) model evaluation, and (iv) writing the output label (HAR class) on the
device display. Notice that, as in the previous experiment it emerged that the MLP network
family outperforms the SLP one, only the former has been characterized in terms of memory
and energy needs.

Figures 5a,b report the Pareto curves plotting the trade-off between performance loss
and, respectively, memory usage and energy consumption when varying the network size.
In particular, the best trade-off between memory usage and performance loss comes from
MLP3 and MLP4. In fact, going from MLP4 to MLP5, for instance, reduces the performance
loss by only about 0.004 (i.e., 0.4%) at the cost of almost quadrupling the memory occupation
which grows from about 22 KB to 74 KB. In the same way, Figure 5b shows that, from the
energy consumption point of view, the best configurations are once again MLP3 and MLP4
which maintain the energy spent for a single inference close to 1 mJ, while for MLP5 more
than 2.4 mJ are needed.

0.1 0.15 0.2 0.25 0.3

performance loss

0

10

20

30

40

50

60

70

80

m
e
m

o
ry

 u
s
a
g
e
 [
K

B
]

accuracy

precision

recall

f1-score

MLP
1

MLP
2

MLP
3

MLP
4

MLP
5

0.1 0.15 0.2 0.25 0.3

performance loss

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

m
J
]

accuracy

precision

recall

f1-score

MLP
1

MLP
4

MLP
5

MLP
3

MLP
2

(a) (b)

Figure 5. Pareto curves reporting performance loss versus memory usage (a) and versus energy
consumption (b) of the MLP model when varying the network structure.

Notice that, since configuration MLP4 turned out to be the best trade-off between clas-
sification performance and resource utilization, succeeding experiments were performed
exclusively using this configuration.



Sensors 2022, 22, 2637 12 of 21

5.1.2. Window Size

As described in Section 3.6 the size of the processing window influences the perfor-
mance of the classification models in several ways. In this section, the results of the in-depth
analysis of this dependence are reported. In particular, Figure 6a shows the classification
metrics obtained by MLP4 network configuration when varying the window size. Interest-
ingly, for a processing window in a range from 2 to 6 s, the classification performances do
not seem to have a recognizable trend while the shortest window (i.e., 1 s) produces the
worst results.

1 2 3 4 5 6

window size [s]

0.75

0.8

0.85

0.9

0.95

p
e
rf

o
rm

a
n
c
e

accuracy

precision

recall

f1-score

1 2 3 4 5 6

window size [s]

6

8

10

12

14

16

18

20

in
fe

re
n
c
e
 t
im

e
 [
m

s
]

21

21.5

22

22.5

23

23.5

m
o
d
e
l 
s
iz

e
 [
k
B

]

inference time

model size

(a) (b)

Figure 6. Network performance obtained by the MLP4 network when varying the size of the
processing window. Figure (a) reports the classification performance while Figure (b) plots the
memory footprint and the inference time of the model calculated on the wearable device.

Another key to interpretation, however, is shown in Figure 6b where the influence of
the size of the processing window on the inference time and on the model size are reported.
In particular, the inference time of the model linearly increases when the window size
increases. This is due to the fact that increasing the window size increases the time, and
consequently the energy, needed to extract the representative features. In particular, the
inference time reported on this graph was obtained with a pre-processing phase entailing
the calculation of the average (A), the standard deviation (S), and the maximum (X) values
for each of the six input signals. Notice that, when the HAR is provided in real-time by a
low-power wearable device, the inference latency must be carefully taken under control to
be sure to meet the temporal deadlines which must not exceed the size of the processing
window. In the current experiments, the deadline is widely met considering that for the
larger processing window (i.e., 6 s) the inference time turns out to be about 19 milliseconds.

Finally, the memory footprint of the model is not affected by the size of the processing
window as the number of neurons on the input layer only depends on the number of the
calculated features. In order to maintain a good trade-off between classification perfor-
mance and resource utilization, for all the experiments conducted in this study, a window
of intermediate size (i.e., 3 s) has been chosen.

5.1.3. Feature Selection

In order to evaluate the relative influence of the proposed features on the classification
performances, we use the forward feature selection method [58]. Forward feature selection
relies on an objective function (e.g., the accuracy) which is used as a criterion to evaluate
the impact of adding a feature from a candidate subset, starting from an empty set until
adding other features does not induce any improvement in the objective function. We
applied this strategy to highlight how the features described in section 3.6 contribute to the
overall performance of the classifier.

Table 2 shows the classification performances when varying the adopted features. For
each performance metric, the maximum value achieved has been highlighted in bold.



Sensors 2022, 22, 2637 13 of 21

All metrics showed a monotone increasing trend until adding the first three features
(i.e., Average, Standard deviation, and Maximum value). Then, adding more features does
not involve a further increase in measured performances. This demonstrates that not all
features provide original information content useful for the classification process.

Table 2. Forward feature selection results obtained with the MLP4 network.

Features Accuracy Precision Recall f1-Score

A 0.761 0.758 0.758 0.755
A+S 0.859 0.873 0.868 0.869
A+S+X 0.865 0.873 0.870 0.870
A+S+X+M 0.863 0.872 0.870 0.870
A+S+X+M+K 0.862 0.870 0.867 0.867
A+S+X+M+K+W 0.859 0.871 0.866 0.867

Obviously, extracting more features also increases the computational and energy costs
of the pre-processing phase which, moreover, depends in a nonlinear manner on the selected
features. In order to guarantee the best trade-off between classification performance and
computational complexity, in all the experiments reported in this study, the average value
(A), the standard deviation (S), and the maximum value (X) have been selected.

5.2. Convolutional Neural Network

The performances of the CNN have been evaluated by varying its network structure
and size and by changing the size of the input window.

5.2.1. Network Size and Structure

A CNN used in classification tasks is generally composed of an input layer receiving
the raw signals, followed by several convolutional layers each of which is followed by a
pooling layer. In this study, we use convolutional 1D layers provided by TensorFlow to
convolve the input signal over the temporal dimension. In particular, we provide to the
input layer the six selected signals as vectors with a number of timesteps which depends
on the size of the selected input window. Downstream of the convolutional layers, a Flatten
layer distributes the convolved signals to one or more fully-connected layers which are
used to properly act as a classifier. Finally, the network terminates with a standard output
layer.

In this study, we investigated two families of CNNs (the structure of which is shown
in Figure 7) that we have identified with the labels CNN_1.1 and CNN_2.2. The family
indexed by _1.1 contains a single convolutional layer followed by a max-pooling layer and
by a single fully-connected layer while, the family indexed by _2.2 has two convolutional,
two max-pooling and two fully-connected layers. The size of each network instance is then
defined in terms of the number of convolutional filters (j), hidden neurons (n), and output
classes (k) while the size of the max-pooling layer is constant (size = 3).



Sensors 2022, 22, 2637 14 of 21

(a) (b)

Figure 7. Structure of the CNN1.1 (a) and of the CNN2.2 (b) network families. The size of each
network instance is defined in terms of number of convolutional filters (j), hidden neurons (n), and
output classes (k) while the size of the max pooling layer is constant (size = 3).

Before and after the fully-connected layers, a dropout layer (not shown in the figure)
with a dropout rate set to 0.5 was inserted to help prevent overfitting. In each layer, the
standard ReLU was used as the activation function.

In Table 3 the size of the two CNN families, together with the number of its trainable pa-
rameters, have been reported. For CNN_2.2 network, which contains two fully-connected
layers, the number of hidden neurons reported on the table is the sum of the neurons of the
two layers. Interestingly, in CNN_1.1 network the number of trainable parameters grows
faster with respect to CNN_2.2 when increasing the total number of hidden neurons. This
is due to the lack of downsampling activity of the input representation achieved by the
single couple of convolutional and pooling layers of CNN_1.1. Each network configuration,
identified by the assigned unique ID (first column of the table), has been fully tested
according to the proposed workflow.

Table 3. CNN structures defined in terms of number of hidden neurons (n) and number of convolu-
tional filters (j) together with the resulting trainable parameters (p).

ID n j p (CNN_1.1) p (CNN_2.2)

1 32 4 6644 1512
2 64 8 25,824 5544
3 128 16 101,816 21,192
4 256 32 404,328 82,824
5 512 64 1,611,464 327,432

Figure 8 reports the classification performances metrics, together with the standard
deviations, calculated during the k-fold cross-validation tests obtained by CNN_1.1 (a) and
by CNN_2.2 (b) networks when varying the network size. For both families, the highest
performances have been recorded with the configuration containing the highest number
of hidden neurons. In this case, CNN_1.1 and CNN_2.2 show, respectively, an average
classification accuracy of about 84.2% and 87.7%.



Sensors 2022, 22, 2637 15 of 21

CNN_1.1
1

CNN_1.1
2

CNN_1.1
3

CNN_1.1
4

CNN_1.1
4

network configuration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
p
e
rf

o
rm

a
n
c
e

accuracy

precision

recall

f1-score

CNN_2.2
1

CNN_2.2
2

CNN_2.2
3

CNN_2.2
4

CNN_2.2
5

network configuration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

p
e
rf

o
rm

a
n
c
e

accuracy

precision

recall

f1-score

(a) (b)

Figure 8. Classification performance obtained when varying the structure of the CNN_1.1 (a) and of
the CNN_2.2 (b) networks.

Figure 9 shows two confusion matrices obtained respectively by CNN_1.15 (a) and
by CNN_2.25 (b) network configurations. As for the comparison between SLP and MLP
networks, the confusion matrices point out that the network containing two fully-connected
layers shows a more balanced precision between classes with respect to the single layer.
For instance, similar classes such as ”Climbing up” and “Walking” are better discriminated
in CNN_2.25 where classification recall reaches 85.1% and 91.1% for ”Climbing up” and
“Walking” classes respectively.

Clim
bing down

Clim
bing up

Jumping
Lying

Running
Sitti

ng

Standing

Walking

Predicted Class

Climbing down

Climbing up

Jumping

Lying

Running

Sitting

Standing

Walking

T
ru

e
 C

la
s
s

723

39

1

4

4

2

5

32

56

675

10

9

12

18

81

2

149

4

10

4

51

26

1

5

8

7

3

6

15

9

8

29

62

29

134

6

18

18

1

18

127

51

24

57

130

1

2

10

4

12

995

996

977

868

966

74.3%

17.2%

25.7%

6.3%

9.0%

15.5%

11.4%

19.5%

13.7%

82.8%

93.7%

91.0%

84.5%

88.6%

80.5%

86.3%

10.7% 21.6% 1.3% 8.8% 5.1% 21.5% 22.8% 18.3%

89.3% 78.4% 98.7% 91.2% 94.9% 78.5% 77.2% 81.7%

Clim
bing down

Clim
bing up

Jumping
Lying

Running
Sitti

ng

Standing

Walking

Predicted Class

Climbing down

Climbing up

Jumping

Lying

Running

Sitting

Standing

Walking

T
ru

e
 C

la
s
s

33

1

5

9

5

6

26

31

12

10

13

13

58

153

1

1

3

4

3

51

19

2

3

2

4

8

28

3

3

19

33

34

87

3

17

23

1

19

122

56

9

39

55

2

13

5

10

777

774

1018

987

966

915

1018

10.9%

15.0%

2.5%

6.9%

16.3%

12.5%

15.1%

8.9%

89.1%

85.0%

97.5%

93.1%

83.7%

87.5%

84.9%

91.1%

9.9% 15.0% 1.3% 7.3% 4.8% 15.6% 21.3% 10.9%

90.1% 85.0% 98.7% 92.7% 95.2% 84.4% 78.7% 89.1%

(a) (b)

Figure 9. Confusion matrices obtained by means of the CNN_1.15 (a) and of the CNN_2.25 (b) net-
works.

Notice that, as CNN_2.2 family outperforms CNN_1.1 in terms of classification ac-
curacy, only the former has been optimized and translated into TensorFlow Lite models
in order to be installed into the wearable device. Once installed, the inference phase of
each model has been characterized regarding its energy consumption and memory usage.
In particular, for CNNs the inference does not entail features extraction so that the only
relevant contributions to the energy consumption are related to the following three phases:
i) sensor reading (accelerometer and gyroscope), ii) model evaluation, and iii) writing the
output label (HAR class) on the device display.

Figures 10a,b report the Pareto curves plotting the trade-off between performance loss
and, respectively, memory usage and energy consumption when varying the network size.
In particular, the best trade-off, both in terms of memory usage and in terms of energy
consumption with respect to the performance loss, is reached by CNN_2.23 and CNN_2.24.
In fact, further increasing the network complexity up to CNN_2.25 configuration, for
instance, reduces the performance loss of about 0.8% at the cost of almost tripling both the



Sensors 2022, 22, 2637 16 of 21

memory occupation, which grows from about 91 KB to 338 KB and the energy consumption,
which from about 39 mJ reaches about 125 mJ.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

performance loss

0

50

100

150

200

250

300

350

m
e

m
o

ry
 u

s
a

g
e

 [
K

B
]

accuracy

precision

recall

f1-score

CNN_2.2
3 CNN_2.2

2
CNN_2.2

1

CNN_2.2
5

CNN_2.2
4

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

performance loss

0

20

40

60

80

100

120

140

e
n

e
rg

y
 c

o
n
s
u
m

p
ti
o

n
 [
m

J
]

accuracy

precision

recall

f1-score

CNN_2.2
1CNN_2.2

2

CNN_2.2
5

CNN_2.2
4

CNN_2.2
3

(a) (b)

Figure 10. Pareto curves reporting performance loss versus memory usage (a) and versus energy
consumption (b) of the CNN_2.2 model for a single inference executed on the wearable device when
varying the network structure.

Notice that, since configuration CNN_2.24 turned out to be the best trade-off be-
tween classification performance and resource utilization, succeeding experiments were
performed exclusively using this configuration.

5.2.2. Window Size

In this section, the results of an in-depth analysis of the dependence of the model
performances when varying the size of the input window are reported. In particular,
Figure 11a reports the classification metrics obtained by CNN_2.24. The average values
show a slight improvement when the window size increases even if, for larger values,
there is also an increase in the corresponding standard deviations which reveal a greater
instability of the results.

1 2 3 4 5 6

window size [s]

0.75

0.8

0.85

0.9

0.95

p
e
rf

o
rm

a
n
c
e

accuracy

precision

recall

f1-score

1 2 3 4 5 6

window size [s]

100

200

300

400

500

600

700

800

in
fe

re
n
c
e
 t
im

e
 [
m

s
]

40

60

80

100

120

140

160

180
m

o
d
e
l 
s
iz

e
 [
k
B

]

inference time

model size

(a) (b)

Figure 11. Network performance obtained when varying the size of the window processing of the
CNN_2.24 network. Figure (a) reports the classification performance while Figure (b) plots the
memory footprint and the inference time of the model calculated on the wearable device.

Figure 11b shows the influence of the size of the input window on the inference
time and on the model size. Thanks to the fact that for a larger input window a larger
convolutional layer is required, both the inference time and the model size linearly increase
with the window size. So that, for instance, when the processing window increases up
to 6 s the model size becomes about 170 KB and the inference time exceeds about 750
milliseconds. This suggests that for a CNN targeted for low-power embedded systems the



Sensors 2022, 22, 2637 17 of 21

size of the input window must be further carefully chosen not to impair the effectiveness of
the system.

Even for CNN networks experiments conducted in this study, we have chosen an inter-
mediate size (i.e., 3 s) in order to obtain a good trade-off between classification performances
and resources utilization.

5.3. Network Comparison

After having explored the space of the hyperparameters to characterize the behavior
of the two types of artificial neural networks, a direct comparison between these has been
performed. First of all, we conducted a set of experiments to statistically assess whether
the accuracy of the two families of classification models is comparable or not. In particular,
a McNemar test with the confidence level of 95% has been performed for each couple of
MLP and CNN_2.2 models to test the null hypothesis that the two classifiers have equal
accuracy for predicting the true classes [59]. Table 4 reports the results of five runs of this
test. In particular, for each run, the logical value H0, which represents the decision when
testing the null hypothesis, together with the p value are reported. Notice that, a false
value of the decision indicates that the null hypothesis is not rejected with a confidence
level of 95% and this implies that the two classifiers statistically agree in the same way in
classifying the results.

Table 4. Results of the McNemar test to compare MLP and CNN_2.2 performances.

MLP1 - CNN_2.21 MLP2 - CNN_2.22 MLP3 - CNN_2.23 MLP4 - CNN_2.24 MLP5 - CNN_2.25

run H0 p H0 p H0 p H0 p H0 p

#1 true 7.36× 10−20 false 0.12134 false 0.09187 false 0.36484 false 0.26438
#2 true 7.80× 10−13 true 8.41× 10−18 true 0.00003 false 0.24403 false 0.51975
#3 true 2.87× 10−05 false 0.13615 true 0.00003 false 0.36831 true 0.00239
#4 true 2.36× 10−09 true 0.00024 false 0.16356 true 0.00001 false 0.05891
#5 true 3.45× 10−21 true 5.96× 10−09 true 0.00077 false 0.05528 false 0.10078

Each column of the table shows the results obtained when comparing the particular
configuration of the two networks denoted by the subscript ID so that, for instance, the
column MLP1 − CNN_2.21 reports the results obtained when comparing the MLP con-
taining 32 hidden neurons with the CNN consisting of two convolutional, two polling,
and two fully-connected layers containing, in turn, 32 hidden neurons. The results show
that only the last two combinations, namely MLP4 versus CNN_2.24 and MLP5 versus
CNN_2.25, which report four false values out of five, statistically agree in the classification
and can be considered interchangeable from a performance point of view. Starting from
this consideration we can argue, for instance, that the choice of whether to use a MLP4 or a
CNN_2.24 network must depend on the way in which they use the system resources, such
as memory and energy, rather than from the classification performances.

Figures 12a,b show the Pareto curves of the accuracy loss plotted versus the memory
usage and versus the energy consumption respectively of MLP and of CNN_2.2 network
families.

From the memory usage point of view, the MLP network sharply outperforms
CNN_2.2 in all configurations. For instance, MLP4 uses about 22 KB of memory while
CNN_2.24 needs more than 90 KB. Moreover, MLP5 and CNN_2.25 are even further away
using, respectively, about 76 KB and about 340 KB. Definitely, from the comparison of
the configurations reaching the best trade-off (i.e., MLP4 and CNN_2.24), it results in an
advantage of about 4x in favor of the MLP network.



Sensors 2022, 22, 2637 18 of 21

0.1 0.15 0.2 0.25 0.3

accuracy loss

2

4

8

16

32

64

128

256

512

m
e

m
o

ry
 u

s
a

g
e

 [
K

B
]

MLP

CNN_2.2

CNN_2.2
1

CNN_2.2
2

CNN_2.2
3

CNN_2.2
4

CNN_2.2
5

MLP
1

MLP
2

MLP
3

MLP
4

MLP
5

0.15 0.2 0.25 0.3

performance loss

100

101

102

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

m
J
]

MLP

CNN_2.2

CNN_2.2
1

CNN_2.2
2

CNN_2.2
3

CNN_2.2
4

CNN_2.2
5

MLP
1

MLP
2

MLP
3

MLP
4

MLP
5

(a) (b)

Figure 12. Pareto curves reporting accuracy loss Vs memory usage (a) and versus energy consumption
(b) of the MLP and of the CNN_2.2 models calculated for a single inference executed on the wearable
device when varying the network structure. The scale on the ordinate axis is logarithmic.

Moreover, considering the energy consumption, the difference between the two net-
works is even more marked with a strong advantage in favor of the MLP network. In fact,
the maximum energy consumed by the MLP network, charged to configuration MLP5,
is close to the minimum energy consumed by the lower complex CNN network (i.e.,
CNN_2.21). Finally, comparing the energy consumption of the configurations reaching the
best trade-off for the two types of network (i.e., MLP4 and CNN_2.24) we get an advantage
of about 36x in favor of the MLP network.

Summing up, for a tiny device such as a smartwatch used to continuously recognize
human activities, given an identical level of classification performance and considering
an optimization criterion based on system resources such as memory and energy, it is
convenient to use classic Perceptron networks rather than more complex deep convolutional
neural networks.

6. Conclusions, Limitations, and Future Research

In this work we have studied the resource cost–accuracy trade off on different artificial
neural networks targeted to the real-time classification of daily human activities by means
of tiny devices. This is motivated by the challenge of improving the feasibility of these
low-power wearable devices to perform inference at the edge, contributing to a more
human-centric IoT. To this purpose, we empirically investigated how the resources needs
and the classification accuracy depend on design choices and on network hyperparameters.

In the presented case of study, based on a public HAR dataset, we demonstrated
that given an identical level of classification performance, it is more convenient, from the
resource utilization point of view, to use classic Perceptron networks rather than more
complex networks such as convolutional ones. In particular, Pareto curves reporting
resource utilization Vs accuracy loss show a 4x advantage of the Multilayer Perceptron
network for what concerns the memory usage, and of about 36x considering the energy
consumption.

The major focus of this investigation was the characterization of two reference neural
network architectures; while the conducted experiments allow drawing some conclusions
to support systems development for this type of applications, several research directions
remain open to overcome the limitations of the proposed study. First of all we used
a single hardware as a reference platform for wearable devices while exploring other
alternative options could be considered in order to further augment the spectrum of the
results. Finally, extensive fine-tuning of the two studied networks by means of automatic
neural architecture search methods could improve the exploration of the design space.
Moreover, other machine learning models could be taken into account such, for instance,
recurrent neural networks or other models suitable for processing sequential data therefore



Sensors 2022, 22, 2637 19 of 21

enabling a principled exploration of other points in the design space. Extending the
proposed workflow methodology to other models clearly represents a challenge because of
the computational burden placed by the search space and by the related training of models
but would widen the findings of this work.

As an imminent future direction, we are planning to apply the early exit technique to
more accurate deep CNNs in order to dynamically reduce its computation complexity and
execute the inference, when energetically convenient, on the device while maintaining the
possibility of exploiting the complete CNN classification power on the gateway or directly
in the cloud.

In summary, our study confirms the multifaceted nature of the problem of executing
human activity recognition tasks on board of edge-computing devices characterized by
constrained resources; careful investigation of the complex interplay between hardware
and software components can provide useful hints towards designing solutions compatible
with strict energy requirements without significantly affecting accuracy levels.

Author Contributions: Conceptualization, E.L. and V.F.; methodology, E.L and V.F.; software, M.D.;
validation, M.D. and E.L; data curation, M.D.; writing—original draft preparation, E.L. and V.F.;
writing—review and editing, E.L. and V.F.; supervision, E.L.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutorials

2012, 15, 1192–1209.
2. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.

2019, 119, 3–11. doi:https://doi.org/10.1016/j.patrec.2018.02.010.
3. Bacciu, D.; Chessa, S.; Gallicchio, C.; Micheli, A. On the need of machine learning as a service for the internet of things. In

Proceedings of the 1st International Conference on Internet of Things and Machine Learning, Liverpool, UK, 17–18 October 2017;
pp. 1–8.

4. Tahsien, S.M.; Karimipour, H.; Spachos, P. Machine learning based solutions for security of Internet of Things (IoT): A survey. J.
Netw. Comput. Appl. 2020, 161, 102630.

5. Uma, S.; Eswari, R. Accident prevention and safety assistance using IOT and machine learning. J. Reliab. Intell. Environ. 2021,
1–25. https://doi.org/10.1007/s40860-021-00136-3.

6. Jensen, U.; Kugler, P.; Ring, M.; Eskofier, B.M. Approaching the accuracy–cost conflict in embedded classification system design.
Pattern Anal. Appl. 2016, 19, 839–855.

7. Cui, L.; Yang, S.; Chen, F.; Ming, Z.; Lu, N.; Qin, J. A survey on application of machine learning for Internet of Things. Int. J.
Mach. Learn. Cybern. 2018, 9, 1399–1417.

8. Samie, F.; Bauer, L.; Henkel, J. From cloud down to things: An overview of machine learning in internet of things. IEEE Internet
Things J. 2019, 6, 4921–4934.

9. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In Proceedings of the 2016 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–12.

10. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629.

11. Xu, M.; Qian, F.; Zhu, M.; Huang, F.; Pushp, S.; Liu, X. Deepwear: Adaptive local offloading for on-wearable deep learning. IEEE
Trans. Mob. Comput. 2019, 19, 314–330.

12. Osia, S.A.; Shamsabadi, A.S.; Sajadmanesh, S.; Taheri, A.; Katevas, K.; Rabiee, H.R.; Lane, N.D.; Haddadi, H. A hybrid deep
learning architecture for privacy-preserving mobile analytics. IEEE Internet Things J. 2020, 7, 4505–4518.

13. Eshratifar, A.E.; Abrishami, M.S.; Pedram, M. JointDNN: An efficient training and inference engine for intelligent mobile cloud
computing services. IEEE Trans. Mob. Comput. 2019, 20, 565–576.

https://doi.org/https://doi.org/10.1016/j.patrec.2018.02.010


Sensors 2022, 22, 2637 20 of 21

14. Elsts, A.; McConville, R.; Fafoutis, X.; Twomey, N.; Piechocki, R.J.; Santos-Rodriguez, R.; Craddock, I. On-Board Feature Extraction
from Acceleration Data for Activity Recognition. In Proceedings of the EWSN, Madrid, Spain, 14–16 February 2018; pp. 163–168.

15. Khan, A.; Hammerla, N.; Mellor, S.; Plötz, T. Optimising sampling rates for accelerometer-based human activity recognition.
Pattern Recognit. Lett. 2016, 73, 33–40.

16. Lane, N.D.; Bhattacharya, S.; Mathur, A.; Georgiev, P.; Forlivesi, C.; Kawsar, F. Squeezing deep learning into mobile and embedded
devices. IEEE Pervasive Comput. 2017, 16, 82–88.

17. Coelho, Y.L.; Santos, F.d.A.S.d.; Frizera-Neto, A.; Bastos-Filho, T.F. A Lightweight Framework for Human Activity Recognition
on Wearable Devices. IEEE Sensors J. 2021, 21, 24471–24481. doi:10.1109/JSEN.2021.3113908.

18. Fedorov, I.; Adams, R.P.; Mattina, M.; Whatmough, P.N. SpArSe: Sparse architecture search for CNNs on resource-constrained
microcontrollers. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14
December 2019; pp. 1–13.

19. Haigh, K.Z.; Mackay, A.M.; Cook, M.R.; Lin, L.G. Machine Learning for Embedded Systems: A Case Study; BBN Technologies:
Cambridge, MA, USA, 2015.

20. Alam, F.; Mehmood, R.; Katib, I.; Albeshri, A. Analysis of eight data mining algorithms for smarter Internet of Things (IoT).
Procedia Comput. Sci. 2016, 98, 437–442.

21. Gupta, C.; Suggala, A.S.; Goyal, A.; Simhadri, H.V.; Paranjape, B.; Kumar, A.; Goyal, S.; Udupa, R.; Varma, M.; Jain, P. Protonn:
Compressed and accurate knn for resource-scarce devices. In Proceedings of the International Conference on Machine Learning.
PMLR, Sydney, Australia, 6–11 August 2017; pp. 1331–1340.

22. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network
Inference at the Edge of the Internet of Things. IEEE Internet Things J. 2020, 7, 4403–4417. doi:10.1109/JIOT.2020.2976702.

23. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Kawsar, F. An early resource characterization of deep learning on
wearables, smartphones and internet-of-things devices. In Proceedings of the 2015 International Workshop on Internet of Things
towards Applications, New York, NY, USA, 1 November 2015; pp. 7–12.

24. Disabato, S.; Roveri, M. Incremental On-Device Tiny Machine Learning. In Proceedings of the 2nd International Workshop on
Challenges in Artificial Intelligence and Machine Learning for Internet of Things, Virtual Event, 16–19 November 2020; pp. 7–13.

25. Wang, Z.; Wu, Y.; Jia, Z.; Shi, Y.; Hu, J. Lightweight Run-Time Working Memory Compression for Deployment of Deep Neural
Networks on Resource-Constrained MCUs. In Proceedings of the 26th Asia and South Pacific Design Automation Conference,
Tokyo, Japan, 18–21 January 2021; pp. 607–614.

26. Odema, M.; Rashid, N.; Al Faruque, M.A. Energy-Aware Design Methodology for Myocardial Infarction Detection on Low-Power
Wearable Devices. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 18–21 January
2021; pp. 621–626.

27. Rashid, N.; Dautta, M.; Tseng, P.; Al Faruque, M.A. HEAR: Fog-Enabled Energy-Aware Online Human Eating Activity Recognition.
IEEE Internet Things J. 2021, 8, 860–868. doi:10.1109/JIOT.2020.3008842.

28. Abdel-Basset, M.; Hawash, H.; Chang, V.; Chakrabortty, R.K.; Ryan, M. Deep learning for Heterogeneous Human Activity
Recognition in Complex IoT Applications. IEEE Internet Things J. 2020, 1.
doi:10.1109/JIOT.2020.3038416.

29. Novac, P.E.; Castagnetti, A.; Russo, A.; Miramond, B.; Pegatoquet, A.; Verdier, F. Toward unsupervised human activity recognition
on microcontroller units. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia,
26–28 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 542–550.

30. Alessandrini, M.; Biagetti, G.; Crippa, P.; Falaschetti, L.; Turchetti, C. Recurrent Neural Network for Human Activity Recognition
in Embedded Systems Using PPG and Accelerometer Data. Electronics 2021, 10, 1715.

31. Mayer, P.; Magno, M.; Benini, L. Energy-Positive Activity Recognition—From Kinetic Energy Harvesting to Smart Self-Sustainable
Wearable Devices. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 926–937. doi:10.1109/TBCAS.2021.3115178.

32. Haykin, S.; Network, N. A comprehensive foundation. Neural Netw. 2004, 2, 41.
33. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the

2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.
doi:10.1109/ICEngTechnol.2017.8308186.

34. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018.
35. Bashiri, M.; Geranmayeh, A.F. Tuning the parameters of an artificial neural network using central composite design and genetic

algorithm. Sci. Iran. 2011, 18, 1600–1608.
36. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
37. Domhan, T.; Springenberg, J.; Hutter, F. Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation

of Learning Curves; AAAI Press: Palo Alto/California, USA. 2015; Volume 2015-January, pp. 3460–3468.
38. Cui, H.; Bai, J. A new hyperparameters optimization method for convolutional neural networks. Pattern Recognit. Lett. 2019,

125, 828–834.
39. Mikroe. Hexiwear: Complete IOT Development Solution. Available online: https://www.mikroe.com/hexiwear (accessed on 19 July

2020).
40. Sprager, S.; Juric, M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127.

https://doi.org/10.1109/JSEN.2021.3113908
https://doi.org/10.1109/JIOT.2020.2976702
https://doi.org/10.1109/JIOT.2020.3008842
https://doi.org/10.1109/JIOT.2020.3038416
https://doi.org/10.1109/TBCAS.2021.3115178
https://doi.org/10.1109/ICEngTechnol.2017.8308186


Sensors 2022, 22, 2637 21 of 21

41. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014,
14, 6474–6499.

42. Sztyler, T.; Stuckenschmidt, H.; Petrich, W. Position-Aware Activity Recognition with Wearable Devices. Pervasive Mob. Comput.
2017, 38, 281–295. doi:10.1016/j.pmcj.2017.01.008.

43. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

44. Kim, T.H.; White, H. On more robust estimation of skewness and kurtosis. Financ. Res. Lett. 2004, 1, 56–73.
45. Tapia, E.M.; Intille, S.S.; Haskell, W.; Larson, K.; Wright, J.; King, A.; Friedman, R. Real-time recognition of physical activities

and their intensities using wireless accelerometers and a heart rate monitor. In Proceedings of the 2007 11th IEEE International
Symposium on Wearable Computers, Boston, MA, USA, 11–13 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 37–40.

46. Reddy, S.; Mun, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using mobile phones to determine transportation modes.
ACM Trans. Sens. Netw. (TOSN) 2010, 6, 1–27.

47. Cheng, J.; Amft, O.; Lukowicz, P. Active capacitive sensing: Exploring a new wearable sensing modality for activity recogni-
tion. In Proceedings of the International Conference on Pervasive Computing, Helsinki, Finland, 17–20 May 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 319–336.

48. Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors
and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313.

49. Hou, C. A study on IMU-Based Human Activity Recognition Using Deep Learning and Traditional Machine Learning. In
Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China,
15–18 May 2020; pp. 225–234. doi:10.1109/ICCCS49078.2020.9118506.

50. Ketkar, N. Introduction to keras. In Deep Learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; pp. 97–111.
51. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A

system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

52. Google Brain Team. TensorFlow Lite for Microcontrollers. Available online: https://www.tensorflow.org/lite/microcontrollers
(accessed on 15 February 2021).

53. Arm Ltd. Mbed, Rapid IoT Device Development. Available online: https://os.mbed.com/ (accessed on 15 February 2021).
54. Rohde & Schwarz. NGMO2 Datasheet. Available online: https://www.rohde-schwarz.com/it/brochure-scheda-tecnica/ngmo2/

(accessed on 19 July 2020).
55. National Instruments. PC-6251 Datasheet. Available online: http://www.ni.com/pdf/manuals/375213c.pdf (accessed on 19 July

2020).
56. National Instruments. Installation Guide BNC-2120. Available online: http://www.ni.com/pdf/manuals/372123d.pdf (accessed

on 19 July 2020).
57. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,

45, 427–437.
58. Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng.

2005, 17, 491–502.
59. McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947,

12, 153–157. doi:10.1007/bf02295996.

https://doi.org/10.1016/j.pmcj.2017.01.008
https://doi.org/10.1109/ICCCS49078.2020.9118506
https://doi.org/10.1007/bf02295996

	Introduction
	Related Works
	The Proposed Method
	Perceptron Network
	Convolutional Neural Network
	Tuning Neural Networks Complexity
	The Case Study
	The Proposed Workflow
	Signal Pre-Processing

	Experimental Setup
	The Software Platform
	The Wearable Device
	Energy Consumption Measurement Setup
	Classification Performance Metrics

	Experimental Results and Discussion
	Perceptron Network
	Network Size and Structure
	Window Size
	Feature Selection

	Convolutional Neural Network
	Network Size and Structure
	Window Size

	Network Comparison

	Conclusions, Limitations, and Future Research
	References

