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Abstract: The use of face masks has increased dramatically since the COVID-19 pandemic started
in order to to curb the spread of the disease. Additionally, breakthrough infections caused by the
Delta and Omicron variants have further increased the importance of wearing a face mask, even for
vaccinated individuals. However, the use of face masks also induces attenuation in speech signals,
and this change may impact speech processing technologies, e.g., automated speaker verification
(ASV) and speech to text conversion. In this paper we examine Automatic Speaker Verification (ASV)
systems against the speech samples in the presence of three different types of face mask: surgical,
cloth, and filtered N95, and analyze the impact on acoustics and other factors. In addition, we
explore the effect of different microphones, and distance from the microphone, and the impact of
face masks when speakers use ASV systems in real-world scenarios. Our analysis shows a significant
deterioration in performance when an ASV system encounters different face masks, microphones,
and variable distance between the subject and microphone. To address this problem, this paper
proposes a novel framework to overcome performance degradation in these scenarios by realigning
the ASV system. The novelty of the proposed ASV framework is as follows: first, we propose a fused
feature descriptor by concatenating the novel Ternary Deviated overlapping Patterns (TDoP), Mel
Frequency Cepstral Coefficients (MFCC), and Gammatone Cepstral Coefficients (GTCC), which are
used by both the ensemble learning-based ASV and anomaly detection system in the proposed ASV
architecture. Second, this paper proposes an anomaly detection model for identifying vocal samples
produced in the presence of face masks. Next, it presents a Peak Norm (PN) filter to approximate
the signal of the speaker without a face mask in order to boost the accuracy of ASV systems. Finally,
the features of filtered samples utilizing the PN filter and samples without face masks are passed to
the proposed ASV to test for improved accuracy. The proposed ASV system achieved an accuracy
of 0.99 and 0.92, respectively, on samples recorded without a face mask and with different face
masks. Although the use of face masks affects the ASV system, the PN filtering solution overcomes
this deficiency up to 4%. Similarly, when exposed to different microphones and distances, the PN
approach enhanced system accuracy by up to 7% and 9%, respectively. The results demonstrate the
effectiveness of the presented framework against an in-house prepared, diverse Multi Speaker Face
Masks (MSFM) dataset, (IRB No. FY2021-83), consisting of samples of subjects taken with a variety of
face masks and microphones, and from different distances.

Keywords: automatic speaker verification; audio forensics; anomaly detection; face masks; COVID-19;
surgical; filtered N95; cloth face masks
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1. Introduction

Around the globe, life has changed drastically since the emergence of COVID-19.
Variants of COVID-19, Alpha, Beta, Gamma, and Delta, and now Omicron, are proliferating
rapidly and have affected millions of people. Moreover, the pandemic has caused significant
social and economic disruption in daily life. As a consequence, the corporate and educational
sectors have been partially or fully closed for extended periods of time. To counter this,
Public Health Officials (PHO) and the World Health Organization (WHO) recommend
various safety precautions and Standard Operating Procedures (SOP); i.e., vaccination, the
use of face masks, social distancing, an increase in sanitization, and others. Although the
most effective way to protect ourselves is to get vaccinated, the WHO recently released a
statement urging both fully vaccinated and non-vaccinated people to continue to wear masks
and practice social distancing in order to protect themselves and others from the recent
variants of COVID-19. Since the virus is constantly changing through mutation, many new
variants are expected to occur in near future. Additionally, cases [1–3] have been reported
where vaccinated people became infected with the Delta and Omicron variants of COVID-19,
thus wearing face masks and maintaining social distance may be mandated for COVID
prevention for the foreseeable future. Similarly, in the United States, the Center for Disease
Control (CDC) has recommended the continued use of face masks in order to minimize
droplet dispersion and aerosolization of the COVID-19 virus and its variants [4]. Therefore,
along with the other precautions, face masks have proved effective for the prevention of
the spread of COVID-19. Consequently, face masks are becoming the new normal, and an
essential part of the daily routine, as countries all over the globe mandate the use of face
masks in public and the workplace. The logical extension of these trends and findings is
that the use of face masks may be the new paradigm for many years to come.

While the use of face masks has led to a decrease in the spread of COVID-19, it
has been at the expense of accuracy in voice-enabled and facial recognition applications.
Additionally, this pandemic has discouraged the use of touch-based thumb recognition as an
authentication mechanism as a result of the implementation of COVID-19 SOP’s. Moreover,
facial recognition applications have also experienced authentication difficulties due to the
different types of user face coverings. As a result, face biometric-based verification and the
use of touch-based thumb recognition has been less reliable during the COVID-19 pandemic.
These facts have amplified the need for voice biometrics for the authentication of various
applications, e.g., banking and home automation, as voice-based authentication systems
are safe and less likely to cause transmission of the virus. Since there is no restriction on
vocal interaction in following the social distancing SOP’s recommended by the WHO and
PHO, ASV systems for authentication are being heavily employed during the pandemic.
Current ASV Systems, however, are not well prepared to handle the artifacts introduced in
audio signals due to the use of face masks. Further, there are intrinsic and extrinsic factors
that cause undesirable variations in the speech signals produced while wearing a mask.
Intrinsic variability refers to human factors in speech production, i.e., vocal effort, speaking
rate, and emotion. Extrinsic variability refers to how the acoustic speech signal reaches
the recognition system or a human listener. Transmission media and distance effects are
examples of extrinsic variables which introduce both the environmental noise (surrounding
signals) and channel distortion due to the microphone or transmission channel, e.g., a
telephone line or Internet Protocol (IP) network. Prior to COVID-19, ASV systems used
vocal samples of the speakers in order to perform user verification and did not need to
account for distortion due to facial masks. In contrast, the use of face masks during the
conversation is now widespread.

An obstacle between the ASV system and the speaker, e.g., different types of facial
covering: surgical, N95, or cloth masks, a balaclava, or a niqab, can attenuate the vocal
samples to a great extent, particularly as the distance from the microphone increases, e.g.,
during the use of a hands-free device while driving. Thus, ASV systems need a robust
countermeasure capable of filtering out artifacts introduced by the use of face masks from
speech signals in order to obtain accurate speaker verification. Additionally, extrinsic
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factors, along with the face masks, raise some potential research questions for pre-trained
ASV systems: (1) What is the impact of different types of face mask on pre-trained ASV
systems? As we know, different types of face mask cause distinct attenuation in vocal
samples. Therefore, the type of facial covering must be analyzed utilizing a variety of masks,
i.e., surgical, cloth, N95, etc. (2) Differing microphones used in ASV systems can impact
vocal samples differently. Good quality microphones contain noise reduction systems that
produce better quality vocals; lower quality microphones are not able to deal as effectively
with environmental noise. What happens when a user attempts to authenticate with a
different face mask and using a different microphone? Will the pre-trained ASV system
be able to recognize that user? (3) Distance between the speaker and ASV systems must
also be analyzed as audio samples experience attenuation over distance. For example, it is
very common these days to make phone calls using a car’s embedded microphone while
driving, and the differing distance may prove challenging for ASV systems. Additionally,
users need to follow the social distance SOP’s under COVID-19 precautions, which may
introduce distance-based artifacts.

It is therefore necessary to investigate what happens when a registered user utilizes a
face mask, records from different distances, and uses a different microphone for recognition.
Can a pre-trained ASV system recognize the user’s vocals with these variations?

These questions provided the motivation for the development of a solution to realign
ASV systems. We performed a detailed analysis in which the subject’s speech sample,
recorded without face masks and with three different face masks, including surgical, cloth,
and filtered N95, was analyzed. For the initial experiment, we used voice samples from
a single subject recorded in an indoor environment, i.e., a room. For each of the speech
samples, the configuration and recording setup was the same, including the microphone
and the distance between the microphone and speaker. We transformed the spectrum of
speech signals using an FFT and plotted the signals in each time frame of the utterance, as
shown in Figures 1 and 2. We also plotted a speech sample without a mask against each of
the masked samples in order to analyze the added distortion.

Figure 1. Spectrogram analysis of speech samples with and without a face mask.

From the plots of speech samples and previous studies [5–7], we observed that the
amplitude of cloth and N95 signals was adversely affected and a modest effect on the
signal magnitude was perceived when the subject used a surgical face mask. Further,
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when the spectrum of each face mask was plotted against the spectra of no mask speech it
was revealed that the cloth and N95 face masks suppressed signal amplitude significantly.
Particularly, when the frequency was greater than 1 kHz, cloth and surgical face masks
drastically attenuated the signal, while a N95 mask introduced moderate attenuation
when frequencies were higher than 2 kHz. Moreover, cloth face masks modulate lower
frequencies of the speech signal when the amplitude exceeds 1.5 kHz, as shown in Figure 1.
These extensive variations in the speech samples motivated us to examine the performance
of ASV systems with different face masks, microphones, and specified distances, and
concluded that thorough experiments covering these variables are required. Additionally,
there is a dire need to develop a robust ASV system that is capable of accurate user
verification under these extrinsic circumstances; i.e., wearing a face mask, utilizing a
different microphone, over distance.

Figure 2. Comparison of different masked speech samples against samples without a mask.

This study has two main goals: First, to determine the effect of face masks on ASV
systems which are trained on audio samples without masks, utilizing a single microphone
and from a specified distance. Retraining ASV systems by using voice samples taken with
face masks on is infeasible, therefore there is a need to make pre-trained ASV systems
capable of recognizing speakers utilizing different face masks.

Our second goal is to develop a robust countermeasure to protect ASV systems by
combating face mask effects in order to make them more effective for speaker verification.
For this purpose, we need to analyze the impact of the variation and attenuation in vocal
samples introduced by different masks. Additionally, mask impact varies from environment
to environment (indoor and outdoor), microphone to microphone (iPhone microphone,
Samsung microphone), and distance to distance (close to mouth, from 45 cm and 90 cm,
such as in cars, etc.). These must also be analyzed. Previous studies in this domain have
typically utilized small corpora collected under laboratory conditions. Moreover, fewer
experiments and analyses were done in order to explore the effects of masks on acoustic
signals. To the best of our knowledge, the impact of masks on ASV systems has not yet been
studied under real-world conditions, such as those mentioned above. Similarly, different
varieties of mask, (Cloth, Surgical, N95), have not been thoroughly examined to date.

This research focuses on the analysis of following factors in order to determine the
effects of face masks under different circumstances:
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• Detailed analysis of three commonly used face masks (surgical, cloth, N95) on audio
signals.

• Performance analysis of ASV systems pre-trained on vocal samples without mask
against those with masks.

• Impact of different face masks with different microphones collectively on ASV systems.
• Impact of different face masks and variable distances from the ASV systems (i.e., close

to mouth in phone calls, from 1.5 feet ≈ 45 cm, and from 3 feet ≈ 90 cm in the car, etc.).

In this paper, after performing a detailed performance analysis of existing ASV sys-
tems we propose a new robust solution comprised of the following modules. The major
contributions of the proposed work are:

• A novel feature extractor, “Ternary Deviated Overlapping Patterns (TDoP)”, is pro-
posed and fused with the Mel Frequency Cepstral Coefficients (MFCC), and Gamma-
tone Cepstral Coefficients (GTCC) for effective representation of input speech signals
in order to achieve accurate speaker recognition.

• A robust anomaly detection model is presented to detect and segment the vocal
samples into those with and without face masks.

• A filter-based approach is presented to exclude the impact of face mask from vocal
samples segmented by the anomaly detection model.

• An improved and accurate ASV model with ensemble learning is presented that can
verify speakers agnostic of face mask, from multiple microphones, and from variable
distance without retraining.

The remainder of this paper is organized as follows: Section 2 provides a critical
analysis of the existing literature. Section 3 includes the problem statement of this research
study. Section 4 provides a discussion of the proposed method. Experimental results and
analysis are presented in Section 5 to show the performance of the proposed method, and
finally, the conclusion of the paper is provided in Section 6.

2. Related Work

There has been limited research on the impact of face masks on acoustic signals
performed to date, and most of the prior work on face masks has focused on medical
equipment only, e.g., surgical masks and N95 respirators. A summary of the prior work
on the impact of face masks on ASV systems, along with the classification of masked and
unmasked vocal samples, is presented below.

2.1. Effects of Masks on ASV System

Face masks add significant artifacts to speech, which in turn causes intelligibility prob-
lems. As a direct consequence, this attenuation has led to a decline in the performance of
ASV systems during the current pandemic. Limited research has been done to examine the
impact of face masks. In [8], Saeidi et al. analyzed the effects of four different face coverings:
helmets, rubber masks, surgical masks, and hoods/scarves, on speaker recognition systems.
The i-vector feature set was used, along with the Gaussian probabilistic linear discriminant
analysis model, for speaker recognition. It was observed that a system trained on non-
masked samples achieved a 91.88% average true positive rate, however this experiment
was limited on the number of trials available for each mask type. Later on, Saeidi et al. [9]
investigated the passive effect of masks on the sound of the speaker’s voice in ASV systems.
Four mask types: surgical, scarf, motorcycle helmet and latex/Halloween, were used in this
study. After determining the passive effect of each of these mask types on speaker audio,
compensation for mask effects was done by applying a direct inversion with respect to the
magnitude transfer function of the face mask. This compensation significantly improved
the results on the verification of samples from latex/Halloween masks and motorcycle
helmets, as these had the greatest impact on the speaker’s voice.

Face masks are known to affect the intelligibility of spoken words. Few analyses
have been performed on the identification of spoken words under different mask condi-
tions. Along this line, Loukina et al. [10] examined the impact of wearing face masks



Sensors 2022, 22, 2638 6 of 28

on the assessment of the spoken English language proficiency test. This study included
data samples from 597 candidates who participated in the language proficiency test in
Hong Kong. This test consists of a 20 min session comprised of four questions related
to spontaneous speech. A total of 1188 audio samples were collected via headphones.
These samples were given as input to an automated speech recognition system developed
using the Kaldi toolkit. Experimental results revealed that face masks had a significant
impact on speech patterns and the acoustic properties of the audio signal. To overcome
this limitation, Ristea et al. [11] proposed an improved speech detection method for ASV
systems in which the user was wearing a mask. Masked samples were transformed to
simulate audio of the unmasked samples, and vice versa. This augmentation was done
using cycle-consistent generative adversarial networks (GAN’s). Next, cycle-consistent
GAN’s were trained on new samples which had been augmented to simulate the opposite
type, i.e., masked for unmasked. The spectrogram obtained from the original and translated
utterances were then fed to a residual neural network (ResNet) model with different depths,
and these networks were integrated into an ensemble via an SVM classifier. When training
the ResNet models with their proposed augmentations, a 0.9% improvement in average
recall value was observed. This method achieved an unweighted average recall (UAR) of
74.6%, an improvement over the baseline model which achieved a UAR of 71.8%. However,
this method is computationally more complex due to the need to run each audio sample
through a cycle-consistent GAN.

2.2. Effects of Masks on Speech Acoustics

Face masks, other than transparent masks, prevent visual access to speaker lips,
which in turn creates a barrier to communication. This in itself hinders speech perception,
especially in noisy environments or when the listener possesses a hearing impairment.
Recently, we have seen an exponential growth in studies analyzing the impact of face
masks on speech. The authors of [12] conducted an analysis of the effect of surgical
masks and noise on communication between healthcare professionals and patients. This
study involved one talker and 15 listeners. Mendel et al. concluded in [12] that surgical
masks did not create as much impact on speech understanding as the level of noise in
a typical dental office. After that, Lamas et al. [13] conducted an investigation on the
effects of different fabric face coverings on speech acoustics and intelligibility. This study
concluded that surgical masks affected the acoustic signal significantly when compared to
the following categories: no covering, niqāb, balaclava, handkerchief, scarf, fleece material,
nylon stockings, and a loudspeaker cover fabric. It was also observed that surgical masks
had an effect on frequency responses between 2.5–12.5 kHz and 14–24 kHz.

Limited research has been done to analyze the recognition of spoken words without
the presence of background distortion. For this purpose, Fecher et al. [7] conducted a study
to investigate audio only and audio-visual consonant recognition from speakers wearing
different types of face coverings. This study, which was done in both the quiet and noisy
conditions, found that participants used extra-oral facial cues to identify the consonants
in spoken words. When face coverings obscure these movements, perception accuracy
was adversely affected. Magee et al. [6] performed an acoustic analysis of speech using
three common face mask types: N95, surgical, and cloth. The acoustic measures of audio
under masks were analyzed using the timing, frequency, perturbation, and power spectrum
of the signals. Attenuation at higher frequencies was reported i.e., above 3 kHz for N95
and 5 kHz for surgical and cloth masks. However, a solution to overcome these frequency
fluctuations was not provided in this paper [6]. Corey et al. [5] also examined the effect of
acoustic attenuation due to the surgical, cloth, and transparent face masks. The experimental
results in [5] were different from those found in [6], as this study found all masks attenuate
frequencies above 1 kHz. Further, it was observed that the attenuation was highest in front
of the speaker. Moreover, face masks material also has an impact. The acoustic performance
of transparent masks was worse when compared to surgical and cloth masks. In [14],
Toscano et al. performed the recognition of spoken sentences in multi-talker babble with
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four different face masks including a surgical, N95 respirator, and two cloth masks. The
impact of face masks on speech recognition was examined in the presence of background
noise. Mean accuracy was calculated at two different noise levels (high and low) in order
to determine the effect of the mask separately. For low level noises, no mask effect was
observed, while in high level noise a drop of 18.2% in mean accuracy was reported.

2.3. Classification between Masked and Unmasked Audio

The classification of masked over unmasked speech is perhaps the most significant
challenge yet to be addressed. Although limited research is available to observe the
impact of face masks under some circumstances, the detection of the presence of a face
mask from an audio sample is still a challenging task. Limited research was found on
the classification of masked and non masked samples. In [15], Das et al. proposed a
voice classification method based on the absence or presence of a face mask. For this
purpose, audio features consisting of linear filter banks, instantaneous phase, and long-
term information were used to capture the artifacts of speech with and without a face mask.
More specifically, Linear Frequency Cepstral Coefficients (LFCC), Instantaneous Frequency
Cosine Coefficients (IFCC), and Constant-Q Cepstral Coefficients (CQCC) were employed
to train a Gaussian Mixture Model (GMM) for speech classification both with and without
a face mask. The performance of this method was evaluated on the Mask Augsburg Speech
Corpus (MASC), released by Compare in 2020. The MASC corpus is comprised of audio
samples from 32 German speakers, both male and female, and has a total duration of 10 h.
The fusion of these features, along with four baseline features, achieved an Unweighted
Average Recall (UAR) of 73.5%. In [16], the authors conduct an in-depth analysis of the
approaches submitted to the Mask SubChallenge (MSC) of the INTERSPEECH Compare
challenge series. This challenge was conducted to determine whether a speaker was
wearing a surgical mask or not via their audio speeches. The authors introduced the MASC
database comprised of structured and unstructured text, and evaluated the top performing
techniques submitted to the MSC challenge. A general classification framework comprised
of specific, generic, features, and algorithm-based approaches was used to analyze the
submitted approaches. Moreover, the authors identified three major factors that contributed
to the effectiveness of the approaches in the challenge: ensemble learning, transfer learning,
and data generation (augmentation). The best reported approach integrated a multi-band
spectrogram with multiple CNNs, pretrained on imagenet. This approach achieved the
highest UAR of 80.1%. Although this study primarily focused on the identification of a
single type of face mask (surgical), the author emphasized the significance and necessity of
addressing masks in voice-enabled biometrics systems. According to Kawase et al. [17],
the impact of mask-wearing appears to arise from the loss of visual information that the
brain employs to mitigate for auditory information deterioration. Some studies [18,19]
investigated the acoustic consequences of wearing a mask. The affected frequencies were
observed to range between 1 and 8 kHz, with the highest influence occurred between 2 and
4 kHz. These frequencies correspond to the ranges needed for voice biometrics, which are
1 kHz and 3–4.5 kHz [20].

A visual classification of face masks was also done using an LeNET model [21]. A
Multi-Task Cascaded Neural Network (MTCNN) was used to detect the face region. The
presented system classified the faces into two classes: masked face and unmasked face.
Biometric verification of the masked and unmasked faces for user recognition achieved
a 98.12% accuracy. In contrast, Patel et al. [22] used MFCC and Cochlear Filter Cepstral
Coefficients (CFCC), along with instantaneous frequency features, to train a GMM to detect
audio related attacks. The authors reported that the countermeasures relied more on the
robust features rather than the classifiers.

Recently, Nguyen et al. [18] analyzed the acoustic characteristics of vocals with and
without masks. Surgical and KN95 masks were used to determine the impact of face
masks on acoustic signals. Five statistical measurements, including mean spectral levels,
energy ratio, vocal intensity, Smoothed Cepstral Peak Prominence (CPPS), and harmonics-
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to-noise ratio were used to represent attenuation in the signal. The results of this study
revealed that KN95 masks had a more significant impact than surgical masks. This work
did not provide a solution to overcome the attenuation effect. On the other hand, instead
of observing the various categories of face masks, Klumpp et al. [23] analyzed the impact
of surgical masks only by presenting a method to classify the audio samples based on the
existence of surgical masks. This classification uses phoneme recognition via two deep
recurrence phonetic recognizer networks to determine if the speaker is wearing a mask
or not. The first recognizer was trained on the German Verbmobi corpus, which contains
593 speakers, 307 female, and 286 male, and the recognizer was trained with 31 target
phonemes, including silence. This recognizer was then used to compute phonetic labels for
the audio in the MASC database. For each phoneme detected, it was assumed that it could
have been produced either while wearing a mask or not, creating a target space of 61 total
phonemes, including silence, which was expected to stay the same with or without a mask.
This system achieved a UAR of 70.8%.

2.4. Face Mask Corpus Creation

The ASV community has developed a few corpora using audio samples where the
speaker is masked in order to determine the impact of face masks. Natalie et al. [24]
presented an audio-visual face cover corpus to examine speaker recognition under different
mask conditions. This audio visual face cover corpus is comprised of high quality audio
and video recordings of 10 native British English speakers wearing different types of face-
wear: balaclava, hoodie/scarf, rubber mask, and surgical mask. According to this study,
the impact of face-wear on acoustic signals is likely to stem from two different sources: the
acoustic impedance characteristics of the mask material, and modification of the output
signal due to face-wear’s interaction with the speech articulates and/or the air stream.
Minor re-positioning will result in a rise in prominent acoustic and perceptual changes.
It was concluded in [24] that face-wear should be treated as yet another factor causing
inter-/intra-speaker variability in the “forensic trace” which is present in the context of the
audio-video speech signal. To analyze different aspects of face masks, Fecher [24] created
an Audio-Visual Face Cover Corpus (AVFCC), which includes audio and video of speakers
with different masks and head-wear. The corpus consists of data from ten speakers, five
male and five female, aged 21–36. All of the participants are native English speakers having
South standard British accents. This corpus contains samples with eight types of face
covering, among them surgical mask, hoodie and scarf combination, balaclava with lip
hole and balaclava without lip hole, tape, and niqāb. The recording devices used were a
headband microphone and two shotgun microphones. Two cameras were used, one in
front, facing directly at the speaker, and another half profile camera off to the side.

Recently, a multi-domain English speech recognition corpus, GigaSpeech [25], with
10,000 h of high quality labeled audio was developed. The GigaSpeech corpus consists of
five subsets of different sizes: 10 h, 250 h, 1000 h, 2500 h, and 10,000 h. The audio was first
collected from audio books, YouTube and podcasts covering varieties of topics, e.g., arts,
science, and sports, among others. Along with the dataset, a new forced alignment and
segmentation pipeline was proposed in order to create the sentence segments suitable for
speech recognition. Although this corpus covers the need for data samples for training and
testing by deep learning approaches, it does not contain samples with face masks. Moreover,
the existing corpus contains certain limitations in terms of the number of unique voices,
microphone variability, environment specifications, and distance from the microphone to
the subject.

3. Problem Statement

ASV systems used prior to the COVID-19 pandemic were trained on vocal samples
without face masks. As a result of the pandemic, people use face masks to stay safe from
COVID-19 and its variants. According to the WHO and the CDC, the spread of COVID-19



Sensors 2022, 22, 2638 9 of 28

and its variants is expected to increase until 70% of the world population is vaccinated,
necessitating a need for more robust ASV systems.

Emergency vaccination programs around the globe are working tirelessly in an effort
to vaccinate the majority of the world’s population but it will take some time due to
challenges, among them resistance against vaccines, availability of vaccines, a limited
number of approved vaccines, and a variety of complex sociopolitical issues. Recent studies
have shown that vaccinated people may get infected by COVID-19 variants and can spread
the virus to others. This highlights the importance of wearing face masks and maintaining
social distance in order to protect others from COVID-19, so face masks may be the new
reality for the foreseeable future. Thus, there is a desperate need to analyze the effects of face
masks or facial coverings on pre-trained ASV systems. For example, are pre-trained ASV
systems effective enough to recognize users wearing any type of face mask or covering, as
shown in Figure 3? Additionally, other factors, i.e., microphone, environment, and speaker
distance must also be examined along with the effects of masking. To overcome the impact
of face masks on vocal samples, a robust detection model is required in order to effectively
segment vocals into those with and without masks. Since the retraining of existing ASV
systems to accommodate users who may be intermittently wearing a mask is infeasible,
a dire need exists to develop more robust ASV systems which are capable of recognizing
users either with or without a face mask. Development of a face mask effect filtering
technique and robust feature set to make pre-trained ASV systems more compatible is
essential to this task.

Figure 3. The impact of commonly used face masks on existing ASV systems.

4. Proposed Method

This paper provides a framework for the realignment of ASV systems in order to
verify speakers with different face masks, including those who are unmasked, utilizing
different microphones, and at varying distances from those microphones. To accomplish
this, an effective feature descriptor is needed that is able to better capture the properties of
vocal tract variations of different speakers with or without face mask. The effectiveness of
local acoustic patterns in audio spoofing countermeasures for better capturing the traits
of bonafide and spoof samples in [26] motivated us to develop the local Ternary Deviated
overlapping patterns (TDoP) descriptor for ASV systems. For this purpose, we propose
a 22D novel TDoP feature descriptor to better capture the vocal dynamics of different
speakers in the time domain and fuse them with 14D GTCC and 14D MFCC features to
extract the relevant information in frequency domain. We use the resulting 50D fused
feature set in the following two modules: (A) Anomaly detection- trained on samples
obtained from users without face masks on, this module detects speech utterances with
face masks and sends these samples to the proposed Peak Norm (PN) filter, and (B) an
ensemble classifier used to train and test the ASV model. Additionally, the identified
samples classified as anomalous (i.e., with face mask on) by the anomaly detection module
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are filtered with a Peak Norm (PN) filtering solution to remove face mask effects, and
external attenuation, i.e., microphones, distance, etc. The architecture of the proposed work
is presented in Figure 4.

Figure 4. Proposed architecture for automatic speaker verification.

4.1. Feature Extraction

External factors, i.e., distance, microphone, and face masks, affect the acoustic prop-
erties of audio signals and cause performance degradation in speaker verification. In the
proposed solution, we use a 50D fused features-set, including TDoP, GTCC, and MFCC, for
anomaly detection, to detect face masked samples, and as an ASV classifier.

4.1.1. Ternary Deviated Overlapping Patterns

We present the Ternary Deviated overlapping Patterns (TDoP) to extract integral
features from speech samples. TDoP feature extraction consists of five phases that include
overlapping windows, ternary, integral, and deviated pattern extraction, and 22D TDoP
extraction. The overall process of TDoP feature extraction is shown in Figure 5. In the first
phase, the input speech signal, consisting of N samples is divided into i = {1, 2, 3, . . . , f }
overlapping windows W(i). Each W(i) contains 8 neighboring samples, along with a central
sample ci. In the overlapping windows, we use a step size of one, where each sample is
selected as a central sample ci along with its left and right neighbors, as shown in Figure 5.

After this, we use three-level conditions to extract the ternary patterns from the
obtained windows. For this purpose, instead of using manual thresholds, we compute an
adaptive deviation threshold Tµ from each overlapped window W(i). The Tµ is computed
as follows:

Tµ =

√
∑n

i=1 W(i) · (αi −Λ)2

N
(1)

where αi and Λ refer to the sample and mean deviation of the window and N denotes the
total number of samples. After obtaining the adaptive threshold Tµ, we extract the ternary

based patterns ω(W(i)
(n), ci, Tµ) from each of the overlapped windows. For this purpose, we

compute the three level thresholds using the center sample denoted as ci and the obtained
threshold Tµ. The three level thresholding includes two adaptive thresholds that vary from
window to window of the speech signal. The pattern extraction is performed as follows:

ω(W(i)
(n), ci, Tµ) =


−1 i f W(i)

(n) < LTµ

0 i f LTµ ≤W(i)
(n) ≤ UTµ

1 i f W(i)
(n) > UTµ

(2)
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where
UTµ = ci + Tµ (3)

LTµ = ci − Tµ (4)

UTµ and LTµ are the adaptive upper and lower thresholds of the window, n and i
represent the neighboring samples and the overlapped windows, while Tµ denotes the
deviation thresholds of the windows. The adaptive threshold Tµ controls the extraction
of the ternary patterns. For instance, values in the audio samples depend on various
factors, i.e., the surrounding environment, speaker voice, and volume, along with the
devices used during recording. In this case, manual threshold selection without prior
knowledge of the audio leads to an inaccurate extraction of the patterns. In contrast,
adaptive thresholds, i.e., Tµ, obtained through the actual sample values of the recording
varies according to the specifications of each speech sample. Therefore, for ternary pattern
extraction ω(W(i)

(n), ci, Tµ) we define the lower LTµ and upper UTµ thresholds computed
using the obtained adaptive Tµ and the central sample ci. For instance, if the central sample
ci has an integral value 0.07, the deviation threshold Tµ is obtained as 0.037, this makes
the lower threshold LTµ (0.07 − 0.037 = 0.033) and the upper threshold UTµ becomes
(0.07 + 0.037 = 0.107). For ternary patterns, the integral value 1 is assigned to the samples
greater than the upper threshold 0.107 and −1 is used for the samples below the lower
threshold. The values between the upper and lower threshold are replaced with the integral
value 0 as shown in Figure 5.

Figure 5. Extraction of the proposed Ternary Deviated Overlapped Patterns (TDoP).

Next, we extract the higher and lower patterns from the obtained ternary patterns of
the signals. For this purpose, the obtained ω(W(i)

(n), ci, Tµ) are further decomposed into a
two-level representation, as shown in Equations (5) and (6).

HW(i)
(n) =

{
1 i f ω(W(i)

(n), ci, Tµ) = 1

0 Otherwise
(5)
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LW(i)
(n) =

{
1 i f ω(W(i)

(n), ci, Tµ) = −1

0 Otherwise
(6)

where HW(i)
(n) and LW(i)

(n) represent the higher and lower binary representation of the sig-

nal. In case of higher patterns HW(i)
(n), the value of 1 from ternary patterns ω(W(i)

(n), ci, Tµ)

remains unchanged while the rest of the values (−1,0) are replaced with the integer 0. Con-
versely, in the lower patterns LW(i)

(n), the value of−1 from the ternary features ω(W(i)
(n), ci, Tµ)

is replaced with 1 and the rest of the values (1,0) are replaced with 0. After that, the ternary-
based patterns are converted into two levels, higher and lower, patterns with the numerical
representation of positive integers (1,0). In the next phase, we extract the integral repre-
sentation of the obtained non-negative higher and lower patterns. For this purpose, the
extracted windows of 1’s and 0’s are converted into their equivalent decimal numbers as
shown in Equations (7) and (8).

Ihigh(W(i)) =
n=0

∑
n=7

Hpw(W(i))× 2(n−1) (7)

Ilow(W(i)) =
m=0

∑
m=7

Lpw(W(i))× 2(m−1) (8)

where Ihigh(W(i)) and Ilow(W(i)) contain the integral representation of the higher Hpw and
lower Lpw patterns. At this stage, we extract the two-level integral representatives of the
audio signal. Although the integral patterns are extracted using three-level thresholds, the
extracted higher and lower patterns still contain too many zero-valued patterns, which can
affect the performance of speaker verification. To overcome this limitation, we employ a
deviation threshold extraction on the obtained integral patterns Ihigh(W(i)) and Ilow(W(i)).
For this purpose, we select the W(i) windows with length l = 4 and compute the adap-
tive deviated threshold µτL from Ilow(W(i)) and µτH from Ihigh(W(i)) using Equation (2).
The size of the window is decreased to capture more significant integral representatives.
Next, we extract the values greater than the obtained deviation threshold. The rest of
the values, along with all zero values below the threshold, are ignored in favor of the
more robust deviated features. The extraction of the deviated integral features is shown in
Equations (9) and (10).

HTDoP = Ihigh i f Ihigh(W
(i)
n ) > µτH (9)

LTDoP = Ilow i f Ilow(W
(i)
n ) > µτL (10)

where µτL and µτH represent the lower and higher deviation thresholds, i and n denote
the window and neighboring samples, and HTDoP and LTDoP refer to the higher and lower
non-zero deviated patterns. Finally, we obtain deviated integral patterns with the robust
integral representation of the speech samples. In the last phase we compute the histogram
of LTDoP and HTDoP patterns using Equations (11) and (12). The histograms of Ln

TDoP
and Hn

TDoP are computed by applying the Kronecker Delta function. The Hist function,
provided by MathWorks, is used to group the data into an equivalent number of bins.

HHT
TDoP = Hist(

22

∑
n=1

(Hn
TDoP) (11)

LHT
TDoP = Hist(

22

∑
m=1

Ln
TDoP) (12)
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where LHT
TDoP and HHT

TDoP refer to the 22D lower and higher patterns of the speech signal
and n, m represents the number of bins. LHT

TDoP and HHT
TDoP are the integral representatives

of similar audio. Therefore, for the robust TDoP features, we added LHT
TDoP to the lower

histogram HHT
TDoP, as shown below.

ATDoP = HHT
TDoP + LHT

TDoP (13)

where ATDoP represents the final 22D robust ternary deviated patterns. Our TDOP features
analyze the audio frames locally by considering only 8 samples at a time, and employs
the standard deviation based adaptive threshold approach while generating the ternary
features, which makes them better able to capture even minor variation traits from the
voice of different speakers, with or without a mask. Afterwards, we extract GTCC and
MFCC to create a 50D fused features-set, which is used for speaker verification.

4.1.2. Mel Frequency Cepstral Coefficients (MFCC)

Mel Frequency Cepstral Coefficients have proven very useful for various applications,
i.e., voice recognition [27], speech recognition [28], and acoustic classification [29], and
have become the de-facto standard for audio parameterization. They are perhaps the
most extensively used speech features in the field of voice/speaker recognition [30–32].
MFCC features are able to extract perceptually significant elements of the speech spectrum,
and this impressive performance is the motivating factor for using them in the proposed
method. The acoustic characteristics of vocal samples vary constantly throughout the
signal. In order to accurately extract MFCC features, we divide the audio signal into small
time-scale frames F[t], which may also be referred to as windows. The length of the frame
F[t] controls the sensitivity of the MFCC features. For instance, if the length of the window
is short, there are not sufficient samples to extract reliable features. Conversely, in the case
of long windows, the signal changes continuously throughout the frame. Therefore, after a
detailed analysis, we divided the audio signal A[n] into T frames F[t] of length l = 30 ms
with an overlap of 15 ms. After framing, the Hamming Window Function (HWF) was then
used to minimize signal discontinuity from the beginning and end of each extracted frame
F[t]. Next, a Discrete Fourier Transform (DFT) was used to extract the power spectrum of
the obtained windows. After that, a filter bank is used to extract the Mel-scales M(FB)

k of the
DFT windows. Next, we extracted the log Mel-spectrum by applying a logarithmic function
to the extracted Mel-scales. Finally, a Discrete Cosine Transform (DCT) was applied on
the extracted log-spectrum in order to derive the MFCC features. The overall extraction of
MFCC is shown below.

Am f cc =
k

∑
j=1

(logMFB
k )cos

[
δ(k− 1

2
)

π

k

]
(14)

where M(FB)
k represents the Mel-scales, k and δ is the number of Mel-scales and spectrum.

The resultant Am f cc contains the 14D MFCC coefficients of the speech samples.

4.1.3. Gammatone Cepstral Coefficient (GTCC)

Gammatone Cepstral Coefficients are a linear-based filter specified by impulse re-
sponses and the product of gamma and sinusoid patterns. Taking as a basis the MFCC
computation scheme, GTCC incorporates biologically inspired filters that have proven to be
significant in auditory processing [33]. Gammatone function models the human auditory
filter response. The authors of [34] reported a resemblance between the Gammatone filter’s
impulse response and the one acquired from humans. According to the results reported,
GTCC’s performance is much better than that of other state-of-the-art audio features. In
addition, GTCC features are also known to be robust in noisy environments [34]. This ex-
ceptional performance of these bio-inspired features motivated us to assess their influence
on speaker verification. For GTCC feature extraction, an input audio signal A[n] is divided
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into short windows for the Spectra temporal analysis with N samples as n = {1, 2, 3, . . . , f },
and W(n), 0 < n ≤ N − 1. The input signal A[n] is divided into 30 (Millisecond) ms short
windows with an overlap of 15 ms as shown in Equations (15) and (16).

W(i)
GT = A[n]×W(z) (15)

W(z) = (p− q)cos
[

2π × z
Z− 1

]
(16)

where p and q represent the length and the size of overlapping windows, z, which denotes
the number of windows, ranges between 0 < z ≤ Z− 1 and Z represents the total number of
windows. A Fast Fourier Transform is applied on the obtained windows W(z) to emphasize
the irrational signal frequencies. After that, a Gammatone (GT) filter bank, composed of
frequency responses, is used to extract the energy sub-band of the transformed windows.
Finally, a log function and DCT are employed on the resultant windows of the GT filter
bank. The log and DCT functions are analogous to human loudness perception, correlate
the logarithmic-compressed filter outputs, and obtain better energy compaction. The GTCC
features are extracted as:

Agtcc =
2
ω

(1/2) ω

∑
η=1

log10(Xη)cos
[

πη

ω
(ϕ− 1

2
)

]
(17)

where Xη is the energy of the η sub-band, ω refers to the number of Gammatone filters,
and ϕ denotes the number of GTCC features. The obtained Agtcc contains the 14D GTCC
features of the transformed audio signal.

In the next step, the integral features ATDoP and cepstral coefficients, including AGTCC
and AMFCC, are concatenated to create the 50D fused feature-set for speaker verification.
The fused features are extracted as follows:

A[n] f = AGTCC ^ AMFCC ^ ATDoP (18)

where A[n] f represents the 50D fused features-set, AGTCC, AMFCC, and ATDoP refer to the
GTCC, MFCC, and TDoP features, respectively, and ^ is the concatenation operator.

More specifically, A[n] f includes the 28D cepstral coefficients of GTCC and MFCC
(14D each), and 22D integral TDoP features. The extracted feature set was used during
the training and testing of the ASV system. In the proposed framework, the ASV system
was trained on speech samples recorded without a mask, and testing is performed on
the samples recorded using a face mask. We then employed an anomaly detection model,
which detected and segmented the speech samples (with and without face mask) in order to
train and test the ASV system. The proposed anomaly detection model is discussed below.

4.2. Anomaly Detection

The detection of the presence of a face mask in an audio sample is mandatory if the
attenuation due to face masks in speech signals is to be mitigated. To do this, a linear
regression-based anomaly detection model was proposed to segment the audio signal into
two types, those recorded with a face mask and those without wearing a face mask. In the
proposed framework, we trained the ASV model with the indicated features extracted from
input speech signals recorded without face masks, while the testing was performed on
signals recorded with a face mask. More precisely, during the testing of the ASV system, we
employed the anomaly detection model to test the segmented samples without a face mask,
while the samples where a face mask was detected were passed to the PN filter instead of
the ASV classifier, as shown in Figure 4.
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4.2.1. Training

In the training phase, we used the extracted feature set of speech signals recorded
without wearing a face mask to train our ASV system. Since TDoP features are integral,
and GTCC and MFCC have fractional representation, we normalized all features using the
min-max normalization shown below:

A[n̄]norm =
A[n] f − A[n] f

min

A[n] f
max − A[n] f

min

(19)

where A[n] f represents the set of extracted features, and A[n] f
max and A[n] f

min denote the
maximum and minimum values. After the normalization process, all feature values lie in
the range between 0 and 1. Next, a linear regression model was used for training the model,
as shown in Equation (20).

A[n]prid = α× A[n̄]norm + ϑ (20)

where A[n̄]norm denotes the normalized features, n̄ is the total number of speech samples,
and α and ϑ represent the slope and intercept of the extracted features. Next, an anomaly
detection threshold was obtained using the Mean Squared Error (MSE) of the fused
features. This threshold was used to differentiate signals with a face mask from those
without a mask. We then computed the loss function A[n̄]NM

τ1 of the speech samples
without face masks using the obtained A[n]prid as shown in Equation (21).

A[n̄]NM
τ1 =

1
n

n

∑
i=1

[A[n]prid − (A[n]norm)
2] (21)

Next, we tested the regression model and segmented the speech samples into those
with and without a face mask by using the obtained A[n̄]NM

τ1 .

4.2.2. Testing

In this phase, we tested the model on speech signals recorded with different face
masks. For this purpose, first, the pre-processing of min-max normalization was applied to
obtain the identical representation of the testing samples using Equation (19). After that,
the loss function was computed using the mean squared error, as in the training of the
model. Finally, the computed loss function from the testing samples was compared with
the anomaly detection threshold under the following condition: if the loss function of the
sample was higher than the anomaly detection threshold, the sample was considered to
have an anomaly (face mask), while samples with a loss value below the threshold were
categorized as samples recorded without a face mask.

LFw(W(i)) =

{
WF

Mask i f A[n]NM
τ1 < A[n]mask

τ2

WO
Mask Otherwise

(22)

In the above equation, WF
Mask and WO

Mask denote the samples with and without face
mask, respectively, A[n]NM

τ1 represents the anomaly detection threshold, and A[n]mask
τ2

denotes the loss threshold calculated from the audio samples. The samples with a loss
value greater than the anomaly detection threshold are attenuated samples. The loss
function is greater due to the presence of face masks and/or other extrinsic factors such as
distance, microphone, etc. Using the anomaly detection model we are able to segment the
speech samples into those recorded with and those without face masks.

4.3. Peak Norm Filtering

In this subsection, we present a solution to overcome the observed attenuation caused
by face masks and external factors, i.e., distance and microphones. The spectral and



Sensors 2022, 22, 2638 16 of 28

time-domain analysis of the signals demonstrates that each type of variation and mask
introduces a distinct distortion in the acoustic pattern, and the added distortion leads to
deterioration of performance of the ASV system. To overcome this decline, we employ the
Peak Norm (PN) solution to stabilize the speech signals recorded with distinct variation.

By convention, the magnitude of an audio signal can span the range between min = −1
and max = +1, so the maximum magnitude variation that can take place is 2. As we have
shown, the magnitude of a signal is adversely affected by the presence of a face mask
and/or external factors. To combat this, in the proposed solution we adjust the magnitude
of the speech signals by bringing the Pulse-code modulation (PCM) value to the required
level. For this purpose, an input audio signal is partitioned into x = {1, 2, 3, . . . , w} windows
W(x) of 15 ms. After that, we applied an inverse FFT and extract the impulse responses of
the signals, as shown in Equations (23) and (24).

W(x) = A[n]×W(x)W(ir) = FFT−1(W(x)) (23)

where W(x) represents the window and W(ir) denotes the impulse response of the windows.
After these transformations, we use pulse code modulation to extract the real part of the
values from the obtained impulse responses. More specifically, during modulation the
magnitude of the speech signal is continuously sampled at uniform intervals. After that,
each of the obtained samples was further quantized to the closest sample within the interval
range. In the next step, we computed the magnitude decibel (dB) values as shown below:

W(pcm) =
x

∑
a=1

PCM[W(ir)] (24)

W(x)
dBFS = T · log10

W(pcm)
max

W(pcm)
min

(25)

where T has a value of 20, and W(pcm)
max and W(pcm)

min represent the maximum and minimum
values of the windows. Next, we extract the peak threshold and bring the magnitude of the
speech sample to the desired level, as shown below:

FSTh =
v

∑
u=1

W(x)
F × 10

k
m (26)

where v represents the number of samples, and k and m denote the required levels of
restoration. In our case, we used k = −6 and m = 20 because we obtained the best results
utilizing these parameters. Finally, the magnitude of the speech samples is recovered using
the peak threshold as shown in Equation (28).

FSFilt = FSTh ×
1

max(abs)(W(ir))
×W(i)

dBFS (27)

In this equation, FSTh represents the peak threshold, abs refers to the absolute value,
while W(ir) denotes the impulse responses of the signal. Finally, the resultant FSFilt includes
the restored speech sample with the improved level of magnitude. In the next section, we
report on the classifier used for the training and testing of the proposed system.

4.4. Classification with Ensemble Learning

In this phase, we use the extracted fused features and an ensemble classifier with
subspace discriminate to train and test the ASV system. Different types of ensemble learn-
ing, e.g., bagging, boosting, and sub-spacing with reduced variance and bias, have proven
significant in the training of weak classifiers. In particular, attribute bagging, also called sub-
space ensemble, performed adequately in signal processing, e.g., acoustic classification [29]
and audio recognition [35]. More specifically, instead of the entire feature set, subspace
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bagging utilizes Linear discriminant Analysis (LDA) and Random Discriminant Analysis
(RDA) to extract random low dimensions of the features. Moreover, random subspace
features require less memory consumption and offer proficient handling of the missing
and lower dimensions. In the current work, we use a bagging ensemble with subspace
discriminate for training and testing of the ASV system. More specifically, the features
are arranged using the Random Subspace Method (RSM) to train the weaker classifiers of
the data. To analyze the performance of the proposed feature set, the ASV model is first
trained on speech samples recorded without face masks. We start by classifying the speech
samples into multi-classes i.e., φι= {class(a), class(b), class(c) . . . . . . , class(v)}. Next, en-
semble learning with subspace discriminate is used to train and aggregate the output of
each weak-learner in order to determine the final prediction. After that, the features of
each class are divided into a subset of features using the RSM function. The randomly
selected weak classifiers are then used, along with the obtained subset features, to predict
the suitable class. Each weak classifier votes for the appropriate class. Accordingly, the
final prediction of the class is obtained by aggregating the highest number of votes for the
specific class. Finally, the ASV model is trained with the values predicted by the subspace
modeling. The final output of the classifier is obtained through the equation shown below:

class(φ) = argmax(yi ,λ,C)

(
v

∑
u=1

h(Cω(y), λ)

)
(28)

In the above equation, φ denotes the class from {a, b, c, . . . , v}, C represents the subset
features, ω is the classifier, and h denotes the predictor of the model. After training the model
with the extracted features, as shown in Figure 4, detailed testing is performed to show the
effectiveness of proposed framework and the results are reported in the next section.

5. Experiments and Results
5.1. Dataset

Performance of the proposed system was evaluated on our custom-developed Multi-
Speaker Face Mask (MSFM) dataset. The MSFM dataset consists of the speech samples
from 20 subjects, including 4 native United States (US) citizens (1 female, 3 males) and
16 non-natives (9 females, 7 males). The speech samples were recorded in real-time, indoor
and outdoor environments, e.g., bedroom, kitchen, balcony, playground, etc. The speech
samples were recorded in the English language, both with and without wearing face masks.

MSFM subjects employed three different types of face masks while recording: surgical,
cloth, and N95. In addition, the MSFM dataset includes the speech samples from different
microphones (wired, wireless, cell phone), made by different manufacturers (iPhone, Sam-
sung, Huawei, Redmi, Infinix), recorded at three different distances (close to mouth, from
45 cm, and from 90 cm). The MFSM dataset was prepared after institutional review board
(IRB) approval (IRB No. FY2021-83) at Oakland University. The MSFM dataset consists of
692 speech samples with a total length of 11 h 54 m, at a sampling rate of 48 kbps.

Specifically, 326 speech samples were recorded without wearing a face mask and
366 samples were recorded with the three different face masks (surgical, cloth, and N95).
Also, 200 speech samples were recorded with a single microphone and 63 samples were
recorded with multiple microphones (wired, wireless, cell phone). In addition, 126 speech
samples, 63 each, were recorded at a distance of 45 cm and 90 cm from the microphone. For
the speech samples with face masks, 240 samples were recorded with a single microphone
and close distance, 63 samples were recorded with multiple microphones and 126 samples
were recorded from the 45 cm and 90 cm distances, as mentioned in Table 1.

The speech samples were further sub-clipped into 2000 sub-samples without face
masks and 1000 with face masks in order to overcome the limitation of training samples for
the anomaly detection model. Speech samples with three different face masks, multiple
microphones, and varying distances make the MSFM dataset more challenging for the ASV
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system. To the best of our knowledge, no existing corpus involves as much variation in the
data used for the speaker verification.

Table 1. Details of the Multi Speaker Face Mask (MSFM) dataset.

Audio Mask Type Devices Subjects Microphone Distance Samples

Without Mask – Single 20 Single Close 200
Without Mask – Multiple 7 Multiple Close 63
Without Mask – Single 7 Single 45 cm 63
Without Mask – Single 7 Single 90 cm 63

With Masks N95, Cloth, Surgical Single 20 Single Close 240
With Masks N95, Cloth, Surgical Multiple 7 Multiple Close 63
With Masks N95, Cloth, Surgical Multiple 7 Multiple 45 cm 63
With Masks N95, Cloth, Surgical Single 7 Single 90 cm 63

5.2. Performance Comparison using Baseline GMM Classifier

The Gaussian mixture model (GMM) is a probabilistic model that represents the pres-
ence of subsets with parametric estimates using a finite number of Gaussian distributions.
The GMM has been shown to be effective in a variety of acoustic applications. For instance,
in the most recent ASVSpoof2021 [36] competition and preceding challenges, a GMM was
used as the baseline classification model [37–39], and a GMM is employed in speaker
verification using fronted acoustic features, such as MFCC [39]. Therefore, as described
in [39], we examined speech samples using well-known MFCC features and GMM-based
classification to evaluate how face masks influenced existing ASV systems. In order to
assess speech samples, the entire speech signal recorded without face masks is trained
using the GMM model. The parameters for each speaker are then estimated using the
Maximum Likelihood Method (MLM). For fitting the mixture-of-Gaussian models, we
used the expectation-maximization (EM) approach in testing. We implemented the GMM
model with the expectation-maximization (EM) algorithm provided by the scikit-learn
organization [40]. During the GMM model’s training, we employed diagonal co-variances
and 9 components with 20 iterations. In the testing of speech samples without a face mask,
the GMM model obtained an accuracy of 98.7%. Conversely, when we evaluated the model
with speech samples recorded with three different face masks (surgical, cotton, and N95),
the model’s accuracy dropped to 69%. Thus, the accuracy of the GMM model was shown
to drop by approximately 30% when face masks were used during the recording of the
speech samples. By this experiment we can infer that the traditional acoustics features and
baseline GMM classification [39] failed to perform speaker verification when the speaker
used face masks. This indicates that current ASV systems need to be re-aligned.

5.3. Performance Evaluation of the Proposed System

Performance of the ASV system was evaluated using the error rate, precision, recall,
accuracy, F1-score, Kappa index, Matthews Correlation Coefficient (MCC), and Classifica-
tion Success Index (CSI). We trained the ASV system, with the proposed features, to identify
subjects with their speech samples. We used speech samples obtained without wearing
a face mask for training and testing of the ASV system. The ASV system was also tested
against the speech samples recorded by users wearing different face masks in order to show
the impact of face masks on ASV systems. We designed a multi-stage experiment to test
the ASV system against the speech samples recorded with multiple microphones (wired,
wireless, cell phone) and fixed distance. In the first stage, we tested the ASV system on
audio samples with and without face masks, recorded with multiple microphones. In the
second stage, the ASV system was evaluated against speech samples with and without face
masks, recorded at a 45 cm and 90 cm distances between the subject and the microphone.

We employed the proposed features to train different ensemble classifiers and obtained
the best results with ensemble subspace discriminant. We employed the ensemble subspace
discriminant classifier in the proposed work. We tuned our ensemble classifier on 30 distinct
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learners and 21 subspace dimensions and achieved the highest accuracy 0.96 and UAR 0.98
with these parameters. The results are reported in Table 2. All of the ensemble classifiers
were analyzed for accurate subject verification. For the speech samples without face masks,
the proposed system, using the ensemble subspace discriminant classifier, achieved an
accuracy of 0.99. Similarly, for the speech samples recorded with different face masks, the
proposed system achieved an accuracy of 0.92. We achieved the accuracy of 0.63, 0.25, 0.47,
and 0.69 using a Bagged tree, Subspace KNN, Rusboosted, and Boosted trees, respectively.
These results demonstrate the significance of a subspace discriminate classifier on ASV.
Moreover, our system achieved the lowest error of 0.01, and precision, recall, and F1-scores
of 0.99, Kappa and CSI of 0.98, and MCC of 0.99 for the audio samples without face masks.
Further, we achieved an error rate of 0.08, Kappa of 0.86, MCC 0.90 and CSI of 0.98 for the
audio samples recorded with one of the three face masks.

Table 2. Results of proposed method on different ensemble classifiers.

Classifier Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Bagged 0.91 Without Masks 0.10 0.90 0.89 0.89 0.90 0.70 0.90 0.94
Tree – With Masks 0.37 0.66 0.64 0.64 0.63 0.21 0.67 0.60

Subspace 0.70 Without Masks 0.70 0.30 0.31 0.31 0.30 0.84 0.23 0.23
KNN – With Masks 0.75 0.22 0.24 0.23 0.25 0.74 0.23 0.23

Subspace 0.99 Without Masks 0.01 0.99 0.99 0.99 0.99 0.98 0.99 0.98
Discriminant – With Masks 0.08 0.91 0.92 0.91 0.92 0.86 0.90 0.98

Rusboosted 0.73 Without Masks 0.27 0.73 0.73 0.72 0.73 0.73 0.71 0.70
Trees – With Masks 0.45 0.57 0.55 0.56 0.55 0.68 0.67 0.56

Boosted 0.95 Without Masks 0.01 0.97 0.98 0.99 0.95 0.68 0.99 0.99
Trees – With Masks 0.31 0.74 0.70 0.67 0.69 0.40 0.67 0.56

The Receiver Operating Characteristic (ROC) of the proposed system for anomaly
detection and ASV is presented in Figure 6. From these ROC curves, we can conclude that
our system offers a remarkable performance for anomaly detection and ASV.

Figure 6. ROC curves of the anomaly detection and ASV system.

5.4. Performance Comparison of Standalone and Fused Features

We tested the performance of TDoP, GTCC, and MFCC features, both individually and
in their fused combinations for ASV, against speech samples recorded with and without
face masks. For this, we tested each of the descriptors, and their fusion, on the ensemble
subspace discriminate classifier and the results are shown in Table 3. Despite the fact that
MFCC features were the most widely employed and retrieved perceptually significant
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elements of the speech spectrum, they failed to perform effectively due to the presence
of noisy speech samples in the proposed MSFM dataset. Similarly, GTCC simulates hu-
man auditory filter responses, which have been shown to be resilient to noise. However,
capturing biological aspects is insufficient when the dataset (like MSFM) has too much
diversity, i.e., various microphones, varied distances, and multiple face masks. On the
contrary, the proposed TDoP features by employing the standard deviation based adaptive
thresholding scheme successfully captures the significant characteristics from the speech
signal containing dynamic variations. It is important to mention that we also tested the
feature fusions along with the standalone features, and the fused TDoP, GTCC, and MFCC
features produced the best results in speech verification. Due to the high variability in
the MSFM dataset, i.e., environment, microphone, and distances, the fused features-set
consisting of TDoP, GTCC, and MFCC outperforms the standalone features as well as
other combinations. Thus, we employed the TDoP-GTCC-MFCC fused features-set in
the proposed work. These results show that the fused TDoP, GTCC, and MFCC features
achieved the best results in speech verification. It can also be observed that due to the
significant diversity in the MSFM dataset, i.e., environment, microphone, and distances,
standalone features do not perform well as the fused features. However, the fusion of
TDoP with GTCC and MFCC achieved the best results on all of the combinations. This
led us to choose the TDoP-GTCC-MFCC features fusion for this work. Our fused features
(TDoP-GTCC-MFCC) achieved an accuracy and precision of 0.99, recall of 0.97, F1-score of
0.98, and an error rate of 0.01 on the samples recorded without a mask, and achieved an
accuracy and precision of 0.91, recall of 0.92, F1-score of 0.91, and an error rate of 0.08 on
the speech samples recorded with different face masks.

Table 3. Comparative analysis of the proposed and other spectral features with (a) TDoP (b) GTCC
(c) MFCC (d) TDoP-GTCC (e) TDoP-MFCC (f) MFCC-GTCC (g) TDoP-MFCC-GTCC.

Features Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

(a)
0.95 Without Masks 0.05 0.96 0.95 0.94 0.95 0.47 0.95 0.95

– With Masks 0.12 0.88 0.91 0.88 0.88 0.18 0.88 0.86
– Filtered Masks 0.10 0.89 0.90 0.89 0.90 0.20 0.89 0.87

(b)
0.94 Without Masks 0.10 0.90 0.91 0.89 0.90 0.32 0.89 0.88

– With Masks 0.15 0.86 0.85 0.85 0.85 0.03 0.85 0.78
– Filtered Masks 0.10 0.92 0.90 0.90 0.90 0.05 0.90 0.87

(c)
0.91 Without Masks 0.13 0.87 0.90 0.86 0.87 0.60 0.87 0.86

– With Masks 0.25 0.78 0.75 0.75 0.75 0.24 0.74 0.68
– Filtered Masks 0.14 0.86 0.86 0.86 0.86 0.30 0.85 0.78

(d)
0.97 Without Masks 0.03 0.98 0.97 0.97 0.97 0.73 0.97 0.97

– With Masks 0.12 0.89 0.88 0.88 0.88 0.07 0.89 0.82
– Filtered Masks 0.08 0.93 0.91 0.91 0.92 0.08 0.91 0.90

(e)
0.97 Without Masks 0.08 0.92 0.92 0.92 0.92 0.24 0.92 0.88

– With Masks 0.13 0.87 0.88 0.87 0.87 0.21 0.97 0.81
– Filtered Masks 0.10 0.91 0.89 0.89 0.90 0.08 0.89 0.86

(f)
0.96 Without Masks 0.05 0.96 0.95 0.95 0.95 0.12 0.94 0.95

– With Masks 0.12 0.88 0.88 0.88 0.88 0.10 0.88 0.82
– Filtered Masks 0.09 0.93 0.91 0.90 0.91 0.12 0.91 0.88

(g)
0.99 Without Masks 0.01 0.99 0.97 0.98 0.99 0.10 0.98 0.99

– With Masks 0.08 0.91 0.92 0.91 0.92 0.03 0.90 0.84
– Filtered Masks 0.04 0.96 0.96 0.90 0.96 0.47 0.94 0.92

We also observed deterioration in the results when tested on the speech samples with
masks. An increase of 7%, 5%, 12%, 9%, 5%, 7%, and 7% in the error rate was observed
for TDoP, GTCC, MFCC, TDoP-GTCC, TDoP-MFCC, MFCC-GTCC, and TDoP-MFCC-
GTCC, respectively. Additionally, we evaluated the performance of the standalone and
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fused features on the PN filtering samples. During the evaluation, we used the filtered
standalone and fused features-set to test the ensemble subspace discriminate classifier for
ASV. We obtained an accuracy and precision of 0.96, recall of 0.96, an F1-score of 0.95, and
an error rate of 0.04. In contrast with the comparative descriptors, we achieved error rates
of 0.10, 0.10, 0.14, 0.08, 0.10, and 0.09 for TDoP, GTCC, MFCC, TDoP-GTCC, TDoP-MFCC,
and MFCC-GTCC, respectively. PN filtering improved the accuracy of each descriptor
on face masked signals but none of the existing features achieved better results than the
proposed features. Although the difference in the error rate of the proposed features for
audio samples (with and without mask) is high, the proposed PN filtering mitigates this
deficiency using the TDoP features. Moreover, the proposed anomaly detection model
achieved accuracy, precision, recall, and F1-scores of 0.99 for the classification of speech
samples with and without face mask.

5.5. Performance Comparison Using Different Machine Learning Classifiers

The performance of the ASV systems relies on the front-end features, (i.e., cep-
stral/spectral, frequency, and phase-based features) as well as back-end classifiers used to
determine the class of the speakers. In order to make a fair comparison, performance of the
proposed system was evaluated against well-known Machine Learning (ML) classifiers.
For this, we trained an ASV system with five ML classifiers including Decision Trees [41],
K-Nearest Neighbor (KNN) [42], Naïve Bayes [43], Support Vector Machines (SVM) [44]
and Linear Discriminant Analysis (LDA) [45]. All classifiers were tested on speech samples
with and without face masks, and the results are listed in Tables 4–7. For this experiment,
we trained all classifiers using 80% speech samples recorded without face masks and tested
against the remaining 20%. In addition, the ML classifiers were also tested against the
speech samples with face masks.

In the first stage of this experiment, we measured the performance of our features on
the decision trees classifier. In the decision trees experiment, we created decision trees with
three different levels including fine, medium, and coarse distributions containing 100, 20,
and 4 nodes, respectively. A Gini diversity index was used for the split criterion of the
trees. The results are listed in Table 4, and show that the fine trees performed better than
the medium and coarse trees. We achieved an error rate of 0.15, precision of 0.83, recall
of 0.85, an F1-score of 0.84, and accuracy of 0.85. In contrast, we achieved an error rate of
0.43, and precision, recall, F1-score, and accuracy of 0.57 for the speech samples with face
masks. These results reveal that the decision trees were unable to perform well for speaker
verification due to the diversity in speech samples. Particularly, for the speech samples
with face masks, the tree constructions (fine, medium, and coarse) produced a high error
rate of 0.43, 0.52, and 0.81, respectively. Further, these results demonstrate that coarse trees
using a smaller number of splits provided lower performance.

Next, we tested the effectiveness of the proposed features on an SVM classifier using
the linear, quadratic, and cubic kernels. The results are reported in Table 5. For unmasked
speech samples, We obtained the best results on the quadratic kernel, achieving an ac-
curacy of 0.99. In contrast, for the masked speech samples, we achieved the best results
(0.86 accuracy) on the linear kernel. The quadratic kernel performed well for face mask
samples, however the performance dropped for masked speech samples. In contrast, the
SVM with a linear kernel performed best on the face mask samples. Moreover, we used
the level 1 box constraint and one vs. one multi-class method, and achieved the best
results using these parametric settings. In the third stage, we evaluated our features on the
KNN classifier. For this, we tested six distributions including fine, medium, coarse, cosine,
cubic, and weighted KNN kernels. The results are presented in Table 6. We achieved a
minimum error rate of 0.11 with the fine KNN kernel. The weighted distribution provided
the second-best least error rate, 0.16, of all of the experiments. In contrast, coarse KNN
produces the highest error rate of 0.77 and 0.79 for masked and unmasked speech samples.
Finally, we tested the performance of our features on linear discriminant and Naïve Bayes
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classifiers. For Naïve Bayes, we examined the performance on the Gaussian and Kernel
distributions. The results are reported in Table 7.

Table 4. Verification results of decision trees.

Kernels Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Fine 0.79 Without Masks 0.15 0.83 0.85 0.84 0.85 0.24 0.84 0.84
– With Masks 0.43 0.57 0.57 0.57 0.57 0.73 0.62 0.52

Medium 0.73 Without Masks 0.28 0.73 0.72 0.72 0.72 0.01 0.73 0.72
– With Masks 0.52 0.49 0.47 0.48 0.48 0.79 0.50 0.48

Coarse 0.21 Without Masks 0.75 0.24 0.22 0.25 0.25 0.87 0.25 0.24
– With Masks 0.81 0.19 0.17 0.19 0.19 0.88 0.18 0.19

Table 5. Verification results of support vector machines.

Kernels Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Linear 0.97 Without Masks 0.02 0.97 0.98 0.97 0.98 0.73 0.97 0.97
– With Masks 0.14 0.85 0.86 0.85 0.86 0.34 0.85 0.78

Quadratic 0.97 Without Masks 0.01 0.96 0.98 0.97 0.99 0.10 0.98 0.98
– With Masks 0.16 0.84 0.84 0.84 0.84 0.34 0.85 0.78

Cubic 0.96 Without Masks 0.03 0.97 0.98 0.96 0.97 0.10 0.98 0.98
– With Masks 0.18 0.85 0.81 0.83 0.82 0.41 0.83 0.75

Table 6. Verification results of K-Nearest Neighbor (KNN).

Kernels Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Fine 0.96 Without Masks 0.01 0.97 0.98 0.99 0.99 0.99 0.40 0.99
– With Masks 0.11 0.86 0.88 0.89 0.89 0.12 0.88 0.83

Medium 0.86 Without Masks 0.10 0.94 0.90 0.90 0.90 0.45 0.90 0.95
– With Masks 0.19 0.80 0.82 0.80 0.81 0.60 0.74 0.70

Coarse 0.18 Without Masks 0.77 0.25 0.22 0.23 0.23 0.84 0.85 0.85
– With Masks 0.79 0.19 0.21 0.19 0.21 0.88 0.98 0.20

Cosine 0.86 Without Masks 0.10 0.92 0.90 0.90 0.90 0.36 0.90 0.93
– With Masks 0.24 0.75 0.77 0.75 0.76 0.66 0.70 0.64

Cubic 0.87 Without Masks 0.10 0.92 0.90 0.89 0.90 0.36 0.90 0.92
– With Masks 0.21 0.81 0.78 0.77 0.79 0.62 0.73 0.67

Weighted 0.96 Without Masks 0.01 0.97 0.98 0.99 0.99 0.40 0.99 0.99
– With Masks 0.16 0.85 0.84 0.83 0.84 0.41 0.83 0.76

Table 7. Performance analysis on the naïve bayes and linear discriminant.

Kernels Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Gaussian 0.95 Without Masks 0.12 0.87 0.89 0.87 0.88 0.05 0.89 0.87
Naïve – With Masks 0.36 0.65 0.64 0.65 0.64 0.74 0.69 0.67

Kernel 0.93 Without Masks 0.10 0.90 0.91 0.90 0.90 0.24 0.98 0.90
Naïve – With Masks 0.39 0.61 0.63 0.62 0.61 0.74 0.62 0.65

Linear 0.99 Without Masks 0.01 0.99 0.99 0.99 0.99 0.73 0.97 0.98
Discriminant – With Masks 0.10 0.90 0.89 0.88 0.90 0.16 0.91 0.86

The Naïve Bayes distributions performed well for unmasked speech samples but
performance declined drastically when the subjects wore different types of face masks.
Particularly, we achieved an error rate of 0.12 and 0.10 with Gaussian and Kernel Bayes,
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respectively, on the unmasked samples. In contrast, 0.36 and 0.39 were achieved during the
testing of masked speech samples. For linear discriminant, our features-set outperformed
the state-of-the-art classifiers and provided the second-best results (after ensemble with
subspace discriminant). Most significantly, the proposed system achieved error rates of 0.10
and 0.01 on the masked and unmasked samples. More precisely, a decrease of 0.09% in the
precision, 0.10% in the recall, and 0.11% in the F1-score were observed in comparison with
the unmasked testing. These scores in the statistical measurements prove the robustness of
the proposed features with the linear discriminant classifier.

This experiment reveal that the linear discriminant classifier performs second-best,
after the ensemble learner with subspace discriminant classifier. In addition, the results
demonstrate that the proposed feature-set produced significant results within the linear
nature of classifiers, i.e., Linear discrimination, ensemble learner with linear discriminant,
and SVM with a linear distribution. In contrast, the classifiers with cubic and coarse
distributions produce the highest error rates. It should be noted from the results that
the performance of all ML classifiers showed a decline when tested with the masked
speech samples. However, we overcome this limitation by applying the proposed anomaly
detection and PN filtering solution in the ASV system.

5.6. Analysis of Multiple Face Masks on ASV Systems

The purpose of this experiment was to examine the effect of different face masks
(surgical, cloth, and N95) on ASV systems. When confronted with several face masks, the
results of five comparative ML-based and the proposed ensemble-based ASV classifiers
reveal performance flaws in ASV systems. It is therefore important to keep track of how
each face mask affects the ASV system. For this purpose, we conducted an experiment to
examine how different face masks (surgical, cloth, and N95) influenced the ASV system.
We tested the equal number of speech samples from each speaker and face mask. The
results are mentioned in Table 8. These results demonstrate the degree of influence of
various categories of face masks on ASV systems. The findings show that the ASV system
severely misclassified the speech samples recorded using cloth masks. The proposed ASV
system achieves the 0.93%, 0.94%, and 0.95% accuracies against cloth, N95, and surgical
face masks, respectively. The results show that the ASV system severely misclassified the
speech samples recorded using cloth face masks, with a 0.07 percent error rate. On the
other hand, N95 was comparatively equal to the cloth face mask, and surgical face mask
has the lowest impact with a lower error rate of 0.05%. Despite the fact that cloth masks
have been found to be the most impacted face masks in the proposed ASV system, their
influence is mostly dependent on fabric density.

Table 8. Comparative analysis of multiple face masks.

Face Mask Err Pr Re F1 Accuracy Kappa MCC CSI

Surgical 0.05 0.96 0.95 0.94 0.95 0.34 0.93 0.95
Cloth 0.07 0.93 0.92 0.93 0.93 0.05 0.89 0.92
N95 0.06 0.94 0.93 0.94 0.94 0.34 0.93 0.91

5.7. Analysis of Different Distance and Face Masks on ASV systems

This experiment was performed to determine the impact of distance between the
speaker and ASV system on verification. We analyzed the performance of the ASV system
when the verification was performed from an approximate 45 cm and 90 cm distances, i.e.,
in a vehicular embedded microphone and subject. For this purpose, we tested the ASV
system with speech samples of seven subjects recorded at distances of 45 cm and 90 cm
between the subject and the microphone. In addition to the distance, we also tested the
performance of the ASV system against speech samples recorded wearing different types
of face masks (cloth, surgical, N95). We compared the performance of the ASV system with
a close, 45 cm and 90 cm distant recording and the results are stated in Table 9. The results
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demonstrate that the performance of the ASV system is significantly degraded when the
distance increases from close to approx 45 cm and 90 cm away. The error rate increased
from 0.01 to 0.04 when we changed the distance up to 45 cm between the subject and the
microphone. When the face masks speech samples were evaluated, the error rate of the
ASV system increased from 0.08 to 0.12 and 0.14 against the 45 cm and 90 cm distances.
From these results, it is notable that distance (with or without face masks) has a significant
impact on ASV systems. Particularly, the performance of the ASV system dropped up to 7%,
when the subjects used face masks from 90cm distance. However, PN filtering overcomes
the performance deficiencies caused by distance. Our PN solution improved the error rate
from 0.12 to 0.07 when testing face masked speech samples from 45cm and 0.15 to 0.06
against 90cm distance. In addition, the results stated in Table 9 demonstrate that the PN
solution improves the ASV system performance up to 4% for unmasked users, and up to
8% against masked samples. For instance, accuracy of the system was increased from 0.92
to 0.96 in close-to-microphone testing and from 0.88 to 0.93 in 45cm and 0.85 to 0.94 in 90cm
distance testing.

Table 9. Comparative analysis of close and distance samples.

Distance Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Close
Without Masks 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.98

With Masks 0.08 0.91 0.92 0.91 0.92 0.86 0.90 0.90
Filtered Masks 0.04 0.95 0.96 0.95 0.96 0.88 0.95 0.94

45 cm away
Without Masks 0.04 0.98 0.98 0.98 0.96 0.35 0.96 0.98

With Masks 0.12 0.88 0.89 0.87 0.88 0.30 0.87 0.85
Filtered Masks 0.07 0.93 0.93 0.93 0.93 0.33 0.93 0.90

90 cm away
Without Masks 0.04 0.98 0.98 0.98 0.96 0.84 0.85 0.93

With Masks 0.15 0.86 0.85 0.86 0.85 0.38 0.85 0.82
Filtered Masks 0.06 0.94 0.94 0.93 0.94 0.38 0.93 0.90

Hence, the results demonstrate the necessity of the PN solution in ASV systems.
Further, it can be argued that under the existing COVID-19 circumstances, the performance
of pre-trained ASV systems is negatively impacted when subject verification is performed
from a specified distance (e.g., 45 cm and 90 cm in social distancing). However, the PN
filtering overcomes the deficiencies of distance, as well as those caused by face masks, and
can be used for the realignment of ASV systems without the need for retraining.

5.8. Analysis of Multiple Microphone and Face Masks on ASV Systems

This experiment was conducted to examine the impact of microphone type in auto-
matic speaker verification. We analyzed the performance of ASV systems with different
types of microphones (wired, wireless, cellphone). For this experiment, we tested the
ASV system with speech samples of seven subjects, recorded with different microphones.
The results of this experiment are reported in Table 10. It is worth discussing that the
type of microphone performed an important role in automatic speaker verification and
can adversely affect the ASV system, as revealed in this experiment. For instance, when
we tested one-third of the subjects with different microphones than the ASV was trained,
the error rate of the ASV system increased from 0.01 to 0.14. In addition to the changed
microphones, when the subjects with different types of face masks were tested, the error
rate increased up to 12%. However, with the PN solution, the error rate recovered to a
considerable range of 0.13. More specifically, the accuracy increased from 0.80 to 0.87,
precision and recall improved from 0.84 to 0.89, and the F1-score raised from 0.81 to 0.87.
Consequently, this aspect of the analysis suggests that the performance of pre-trained ASV
systems needs to be further analyzed, and the PN solution may be employed to improve
the performance.
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Table 10. Comparative analysis of trained and changed microphones.

Microphone Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Without Masks 0.01 0.99 0.97 0.98 0.99 0.10 0.95 0.99
Trained With Masks 0.10 0.91 0.92 0.91 0.92 0.08 0.90 0.84

Filtered Masked 0.04 0.95 0.96 0.95 0.96 0.47 0.94 0.92

Without Masks 0.14 0.90 0.89 0.85 0.86 0.10 0.87 0.88
Changed With Masks 0.20 0.84 0.84 0.81 0.80 0.12 0.80 0.81

Filtered Masked 0.13 0.89 0.89 0.87 0.87 0.34 0.86 0.90

5.9. Analysis of Retraining of Asv Systems

According to the extensive experiments and the results reported in Tables 4–7 the
existing ASV systems failed to perform effectively when the speaker used multiple face
masks, microphones, and authenticated from varied distances. The result, reported against
five comparative ML classifiers, indicates a deficit in ASV system accuracy and reliability
when confronted with multiple face masks. To observe the performance of the retrained
ASV system, we carried out an experiment to see how well the ASV system performed
after being retrained with the face masks speech sample. For this, we used speech samples
recorded without face masks as well as three distinct face masks to train and test the ASV
system. The results are reported in Table 11, and hybrid (with and without face masks)
training and testing show that after retraining with face mask speech samples, the ASV
systems’ accuracy improves significantly. The accuracy of the ASV system increased by 6%,
from 0.92 to 0.98.

Table 11. Comparative analysis of trained and retrained ASV system.

ASV Training Testing Err Pr Re F1 Accuracy Kappa MCC CSI

Trained Without Mask Without Masks 0.01 0.99 0.99 0.99 0.99 0.98 0.99 0.97
Without Mask With Masks 0.08 0.91 0.92 0.91 0.92 0.03 0.90 0.84

Retrained Hybrid Hybrid 0.02 0.98 0.98 0.98 0.98 0.99 0.99 0.98

Although retraining the ASV system can be adopted to overcome face masks chal-
lenges, it is a time-consuming approach in terms of data collection and computational
complexity. In addition, the massive amount of data (face mask speech samples from each
speaker) required to retrain the ASV frameworks is, at best, problematic. Therefore, the
finding demonstrates the necessity for the proposed cost-effective PN filtering method to
eliminate the requirement for the retraining of the ASV systems. Moreover, the proposed so-
lution also overcomes the need for additional data, along with its associated computations,
and works sufficiently with multiple microphones and a wide range of distances.

We used Matlab 2020 for the implementation of the proposed and comparative meth-
ods. Furthermore, the proposed methods were implemented on an Intel(R) Core(TM)
i5-5200U CPU @ 2.20 GHz system with 16 GB of memory.

6. Conclusions

According to the best of our knowledge, this research study is a first attempt to
investigate the impact of the ensemble of type of face mask, microphone, and distance on
ASV. The existing Gammatone and Mel cepstral coefficients are not sufficient to handle
the added distortions when it comes to speaker verification. This paper presented a novel
ASV framework to improve speaker verification capability without requiring users to give
additional voice samples recorded with face masks. Experimentally, our proposed fusion
of TDoP features, along with MFCC and GTCC coefficients, outperformed the standalone
state-of-the-art descriptors. In addition, the proposed anomaly detection and PN solution
optimally detects and recovers speech samples recorded with variations over face covering,
microphone and distance. According to the findings of the experiments, the cloth mask
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has the most influence on the ASV system, the surgical mask has the least, and N95 has a
moderate effect. Moreover, extensive experiments demonstrate a desperate need for the
realignment of existing ASV systems. The improvement of accuracy from 0.92 to 0.96 with
the PN solution signifies the effectiveness of the proposed framework for automatic speaker
verification. In accordance with the methods proposed in this study, some computational
intelligence algorithms, such as monarch butterfly optimization (MBO) [46], earthworm
optimization algorithm (EWA) [47], colony predation algorithm (CPA) [48], and Harris
hawks optimization (HHO) [49] may be used to enhance the efficiency of the algorithm.

In the future, we would like to extend the proposed framework for speech to text
conversion and speech intelligibility. We also plan to evaluate the impact of face mask on
ASV and voice spoofing countermeasures jointly [50], and on the single and multi-order
voice replay spoofing countermeasure [51], and voice cloning detection [52].
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