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Abstract: Wireless sensor networks (WSNs) have taken a giant leap in scale, expanding their applica-
bility to a large variety of technological domains and applications, ranging from the Internet of things
(IoT) for smart cities and smart homes to wearable technology healthcare applications, underwater,
agricultural and environmental monitoring and many more. This expansion is rapidly growing every
passing day in terms of the variety, heterogeneity and the number of devices which such applications
support. Data collection is commonly the core application in WSN and IoT networks, which are
typically composed of a large variety of devices, some constrained by their resources (e.g., processing,
storage, energy) and some by highly diverse demands. Many challenges span all the conceptual
communication layers, from the Physical to the Applicational. Many novel solutions devised in the
past do not scale well with the exponential growth in the population of the devices and need to
be adapted, revised, or new innovative solutions are required to comply with this massive growth.
Furthermore, recent technological advances present new opportunities which can be leveraged in
this context. This paper provides a cross-layer perspective and review of data gathering in WSN and
IoT networks. We provide some background and essential milestones that have laid the foundation
of many subsequent solutions suggested over the years. We mainly concentrate on recent state-of-
the-art research, which facilitates the scalable, energy-efficient, cost-effective, and human-friendly
functionality of WSNs and the novel applications in the years to come.

Keywords: wireless sensor networks (WSNs); Internet of things (IoT); data gathering; wearables;
compressed sensing; network coding; mobile sink; energy harvesting

1. Introduction

Wireless sensor networks (WSN) are data measurement and gathering networks
based on small hardware (HW) units capable of sensing, monitoring, or measuring their
surroundings. The sensed data are transmitted directly or by relay via other sensors to
some sink or server or a base station. The ultimate objective of such a configuration is to
provide control or exploration capabilities over an area where the network is deployed.
WSN characteristics can vary substantially: they can be composed of a few to hundreds of
thousands of sensors; the monitored terrain can range from a small coverage area (e.g., the
human body) to a vast realm (e.g., a forest area for fire detection); the sensed variables of
interest of the surroundings are diverse (e.g., weather or health parameters, acceleration,
pollution); and the sensors can have different characteristics (e.g., size, computational
power, energy source).

The Internet of things (IoT) aims to improve day-to-day life. The concept includes
smart cities, smart homes, pervasive health care, assisted living, environmental monitoring,
surveillance, and so on. The IoT paradigm relies on interconnecting a large number of
devices (things) linked by the Internet via heterogeneous access networks through which
they can exchange information with one or more Internet gateways that can process the
data, take action, and forward them to another destination if needed. Since many IoT
devices are expected to be wireless, and since sensing is one of the main tasks and tools
utilized by the IoT paradigm, IoT systems will rely extensively on WSN technology. The
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scale of scenarios where WSN are deployed nowadays is vast. Traditionally, WSN were
classified based on their placement (e.g., terrestrial, underground, multimedia) [1]. Since
WSNs are closely associated with IoT, contemporary classification tends to re-attribute the
notions of the WSN domain to the IoT domain [2] and classify them based on their primary
objectives, such as smart cities [3,4], healthcare [5], retail and leisure [6], utilities (e.g., smart
home energy control, water metering and leak detection, and other general infrastructure
monitoring networks) [7], agriculture and environmental safety (e.g., smart farming and
harvesting, pest control [8–10], seismology monitoring [11,12], oceanology [13]), and more.

As previously explained, one of the main tasks of both WSN and IoT systems is
data collection and dissemination. Reports are collected from the devices, and updates
and operational assignments are distributed. Maintenance and functional assessments
are also collected and disseminated. Data collection and dissemination in very dense
networks such as WSNs and IoT networks which span heterogeneous devices, a significant
percentage of which are expected to be small, with very constrained processing, storage,
and energy resources and with minimal network capabilities, is challenging and draws
significant attention both by the industrial and academic communities. Some of these
challenges include: (i) Information management — the amount of information collected or
needing to be disseminated to the relevant entities is enormous, and some is expected to be
redundant, both in terms of the information sent by each device, which can be compressed,
and in terms of same information received by different entities. Accordingly, innovative
techniques are required for data compression to reduce transmitted data over wireless
channels and aggregation techniques that exploit the redundancy between information sent
by the different entities. (ii) Data analysis and reaction — the expected vast data exchange
and the low latency requirement (at least for some of the information collected) require
processing and analysis of data in real-time or near real-time, to enable timely decision
making and instantaneous action-taking.

The ability to successfully transmit and gather vast streams of data incoming from an
enormous number of devices and sensors and finally to successfully analyze them, in order
to automatically control a much larger scope of everyday life systems, directly couples
the process of data gathering with Big Data related challenges (e.g., [14–17]). Furthermore,
leveraging Cloud Computing platforms offers significant advances in data analytical abil-
ities (e.g., [18–20]). It provides new horizons to further develop and increase the size of
WSN/IoT networks both in the sense of the number of sensing units and in the sense of
the amount of the acquired data (e.g., [21–23]). (iii) Connectivity — collecting and dissem-
inating data from and to many devices, potentially through vast, dense, heterogeneous
networks, will be one of the biggest challenges of the future of IoT; accordingly, novel
MAC protocols and coding schemes should be devised to comply with this challenge. With
this respect, air time utilization and energy efficiency are of primary importance for the
MAC layer protocol design. Any MAC layer protocol should ensure that devices utilize the
wireless channel frugally and with minimum energy consumption. (iv) Security and Pri-
vacy — Connecting enormous numbers of devices to the Internet exposes the IoT network
to serious security vulnerabilities. All the more so since the relevant entities are limited.
Accordingly, issues such as authenticity, data encryption, and vulnerability to attacks (e.g.,
device impersonation) are critical for the IoT paradigm’s continuous growth (e.g., [24]).
In addition, since the information transmitted over the WSN and IoT networks can be
highly confidential (e.g., health reports, device tracking), the collection and dissemination
of this information create significant challenges related to data protection and privacy.

This survey will explore the state-of-the-art of data collection and dissemination as-
pects in WSNs and IoT environments mentioned above. We will review essential milestones
yet mainly focus on recent publications and present the new trends and research directions.
Our resources included mainly Google Scholar, IEEE Xplore and our university’s library
databases, utilizing the keywords of this paper. We also used important references from
the bilbiography of the initial papers and ones that cited them. Data collection spans all the
networking layers, from the physical implementation of transmitting bits across a commu-
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nication medium to the application layer. Due to the wide-ranging scope of the topic, we
will not be able to cover all its aspects (for example, in this paper, we will not discuss the
critical topic of security and privacy). Some of the issues will be covered more thoroughly
than others. However, since some of the topics we discussed rely on the general wireless
communication technology and on broad setup protocols which are not data-gathering ori-
ented per se, on some of the topics, we will provide a more comprehensive background and
describe protocols that are aimed at a broader domain than data-gathering. For example,
many medium access control (MAC) and wireless routing protocols are designed for a
wide range of topologies, traffic patterns, quality of service requirements, etc. Even though
they can be applied, they are not explicitly designed for data gathering. We will include
some more general yet essential studies in our survey. To grasp the whole picture and to
better understand some data-gathering-related issues, in some cases, we will delve into the
pertinent background and stray into some peripheral topics. We will cover topics related to
all layers of the protocol stack. Sometimes classification based on a stack is not clear-cut, as
some of the issues involve multiple stacks.

In particular, the survey comprises the following topics:
The device’s platform, which accommodates the sensing unit, can highly impact the

performance of the application utilizing it and specifically the data-gathering application,
and vice versa, the application (e.g., data gathering) can impact the platform architecture
when designed in application-oriented manner or when some of the essential features and
requirements are taken into account in the platform design process. The same mutual
effect also applies to the WSN infrastructure and the network architecture (e.g., topology,
system organization). We start with reviewing studies pertaining to the general device’s
platform and infrastructure-related novelties (Section 2). We cover new domains which
were only recently exposed to WSN and IoT networks and introduced new opportunities for
algorithm design in such networks. Some of these novel technologies have revolutionized
the way applications can utilize each particular device as well as the shared network and
have enabled new algorithm opportunities and design challenges across the entire protocol
stack which we describe throughout this survey.

Next follows Section 3 which provides a focused summary of recent advances in
compressed sensing—a signal processing technique that can take advantage of sparsity
and redundancy of the data. In the context of data gathering procedures, compressed
sensing is utilized to reduce report payload at several levels, which include reduction of
the sensed data size and the transmitted report size, by pruning the devices that need to
send reports and by compressing the combined relayed data before forwarding it toward
its destination (the sink). We provide a basic compressed sensing background and review
the state-of-the-art in the context of data gathering in WSN.

Section 4 considers the medium access control (MAC) sublayer. In wireless communi-
cation, channel utilization is critical and broadly influences several performance aspects
such as throughput, latency, power utilization, delivery ratio, and more. Over the years,
numerous algorithms and protocols have been suggested for wireless channel access in
general, and WSNs with their specific characterization in particular. In Section 4, we review
only a small fraction of the countless MAC protocols that have been designed for WSNs.
We mainly concentrate on protocols that highlight a conceptual approach or trend and
review some of the more recent MAC protocols in data gathering in WSN and IoT networks,
which address new challenges such as highly dense networks, congested channels, and
very limited resources.

We ascend the protocol stack and in Section 5 we address routing aspects. As with the
MAC sublayer, routing protocols in multi-hop wireless networks have also been extensively
studied. We start by providing several milestones in the context of data gathering in
WSNs. We continue with more recent studies which mainly include enhancements to the
aforementioned protocol, taking into account new challenges such as scalability demands
and energy-related advances which present new opportunities yet impose new constraints.
We continue with studies that leverage the multi-hop topology to realize a network-coding
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mechanism. Finally, we discuss a new paradigm that extends the traditional setup in which
the sensed data need to be routed toward a static central monitoring station (sink), and
utilize a mobile sink (or sinks) that traverse the terrain and can help in collecting the devices’
reports. We review several state-of-the-art schemes in this mobile sink paradigm.

The final section of this survey is dedicated to wearable technology in the form of
smart devices that are attached to the human body to monitor the user and their envi-
ronment. Wearable technology involves challenges in all the aspects discussed in the
previous sections, yet they introduce new opportunities for high-demand applications with
unique performance requirements and constraints. Even though we do not attempt to
provide a comprehensive review of the numerous applications suggested over the years, we
emphasize this prominent application layer and discuss several applications in Section 6.

As previously explained, we roughly partitioned the topics covered in this survey
based on the communication layers and organized the sections accordingly. We note
that this partition is somehow artificial, as many innovations in data-gathering involve
more than one layer. Furthermore, many technological advances and research areas affect
multiple domains in different layers and are visited in more than one section. Figure 1
depicts the schematic structure of the paper. In the figure, the ovals represent the main
research domains covered in the paper. The hexagons represent the most prominent
research tool innovations and techniques utilized by data-gathering, which are covered in
the paper. The arrows represent the inter-relation between them. For example, technologies
such as energy harvesting (EH) or Machine Learning (ML) and Artificial Intelligence
(AI) are utilized by innovations in all the layers starting from the platform hardware to
the application layer. However, network coding is mainly utilized by the network layer.
Unmanned Aerial Vehicle (UAV) is leveraged by both the MAC and the Network layers.

Architecture
Section 2

MAC
Section 4

Routing
Section 5

Wearables 
and WBAN
Section 6

Application
Oriented

Mobile Sink 
& UAV

Utilization

Compressed
Sensing

Section 3

Network
Coding

Machine
Learning

Energy 
Harvesting

Cloud
Based

Standards 
& Protocols

Figure 1. Research directions. While we organize the sections according to the layers, this diagram
shows how research directions are connected across different layers. The ovals denote the major
research areas (which are associated with sections in the paper), and the hexagons refer to more
specific sub-areas, technological innovations, and research tools. The arrows represent a schematic
inter-relation between them.

2. WSN Architecture—Arising Platforms and Novel Infrastructure Concepts

Our primary focus in this survey is data gathering in the context of wireless commu-
nication networks. The units that generate the data (typically sensors) are application-
dependent and can serve a large variety of realms, e.g., health, environmental, activity
monitoring, etc. Even though the sensing unit is the essence, we will not cover it thor-
oughly, and we will only skim through it sporadically when discussing applications and
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their specific requirements. Nonetheless, the term “sensor” typically refers to the whole
platform or device in which the sensing unit is only one component out of many, such as
processing unit, transceiver unit, power unit, antenna, and more, several of which can be
integrated into the device according to the particular application needs. The sensing unit
itself has its own requirements and constraints, and in many situations cannot be altered.
In addition, the integrated unit architecture and the platform design can be subject to
various stringent constraints. For example, size requirements can impose a strict constraint
on the device design; low power consumption, low production cost, and self-operation can
represent additional constraints. Accordingly, the device architecture is fundamental and
affects many other factors in the system. For example, power supply affects the life span
(or the time needed to replace the batteries); it also affects transmission range, memory,
and processing unit, which in turn can affect the algorithms that can be executed on the
device, etc.

Extensive research has been conducted on the design and architecture of the end
device and the infrastructure. We leave a detailed description of the basic components such
as the sensing unit, transceiver, antenna, processing unit, etc., as well as the underlying
hardware beyond the scope of this survey. To this end, the objective of the rest of this section
refers to how data-gathering objectives may impact both the design of specific sensors
and the WSN infrastructure. By the latter, we mean topology, system organization used to
gather the data, and algorithms to implement the data gathering. It is noteworthy that the
sensors’ characteristics also dictate the topology and, consequently, the data aggregation
algorithms. In the sequel, we mention several platform architecture designs as well as
several network-wide architectures, mostly from recent years. Additional similar studies
appear throughout the survey, yet they are organized in chapters according to the area in
which they propose the most significant novelty. Figure 2 presents a schematic description
of the section. Since several papers presented in this section cover more than one topic, and
since, as previously mentioned, this section is not presumed to provide an exhaustive list
of all papers or topics covered by the scope of WSN architecture, and some of the topics are
not covered at all or covered by only a few representative papers, the description is broad
and only highlights the main topics covered in the section.

Architecture
Section 2

Sensor’s Platform Network

Power Supply (Battery\EH) 
Section 2.2

Application Oriented
Section 2.1

Topology
Section 2.3

Application Oriented
Section 2.4

Figure 2. Schematic description highlighting the main topics covered in the section.

2.1. Application-Oriented

Many sensor platforms are application-oriented. Occasionally, their suggested ar-
chitecture can be applied to other applications; however, their design and evaluation are
typically aimed at a specific one. Hence, in many cases, both hardware and software
technological developments are introduced for effective functioning. One of the most
common tasks of WSN is the obvious one of monitoring a terrain. There are many variants
of WSN monitoring. For example, the requirement can be to monitor every point in the
Field of Interest (FoI) vs. monitoring a limited number of specific locations or targets (aka
target coverage) vs. just monitoring a border of a region to detect intruders (aka barrier
coverage). The coverage problem typically involves selecting a subset of sensors that fulfill
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the monitoring objective while maintaining network connectivity. The sensors’ capabilities
and the monitoring objective determine the network topology.

We present several recent examples that mainly concentrate on connectivity and data
gathering under the constraints of the monitoring objective. Biswas et al. [25] focus on
energy-efficient data gathering in target coverage problem, in which an n sensor WSN
needs to monitor T specific targets, and there exists a route (multi-hop) from each source to
the sink. The paper assumes that the source nodes that sense the targets and initiate data
packets into the network are known, and deals with the forwarding of these packets to
the sink. The paper proposes a distributed data gathering algorithm in which after each
node discovers its neighbors and their hop-count to the sink, it will forward data packets
(when required) to its neighbor with maximum remaining energy and a lower hop count
to the sink (the remaining energy is assumed to be known). Ammari [26] focuses on the
k-coverage problem in which each point in the FoI is required to be covered by at least k
sensors at any time, and each active sensor participating in the monitoring task is required
to be connected to the sink (possibly via a multi-hop route). The paper assumes that the
sensors are heterogeneous (they do not have the same characteristics) and mobile, hence
the sensors can move toward any region of interest in the deployment field to participate in
any deficient k-coverage area and can also act as mobile proxy sinks that collect sensed data
from the sensors and deliver them to the sink. Ammari [26] partitions the problem into
two problems which are solved sequentially. Namely, the mobile k-coverage problem, which
selects a minimum subset of active sensors that solve the k-coverage problem and the data
gathering problem, and devise a forwarding scheme from the active sensors to the sink such
that the energy consumption due to sensor mobility and communication is minimized.

Mdemaya and Bomgni [27] utilize mobile sensors to achieve area coverage. These
mobile sensors can be moved and relocated to cover holes after the random deployment.
The authors suggest a two-phase approach. According to the first one, the monitoring
area after the initial random deployment is identified (by the BS), and mobile nodes are
relocated to cover the monitoring holes detected after the initial deployment, trying to
ensure full coverage of the AoI by the static and relocated sensors. At the second stage, the
proposed algorithm schedules the sensors’ activity (awakening and transmission times)
that minimizes the energy consumption of the nodes while collecting and sending data
to the base station. To this end, the paper distinguishes between “normal” nodes and
cluster heads. A survey that reviews algorithms and techniques related to the connectivity-
coverage issues in WSN can be found in Boukerche and Sun [28].

Occasionally, WSN architectures and designs are more application-oriented. For
example, Cerchecci et al. [29] propose a sensor node topology that uses low-cost and low-
power components for energy-efficient waste management in the context of smart cities.
The architecture described in [29] suggests a node architecture for measuring the filling
level of trash bins and utilizes LoRa LPWAN (low-power wide-area network) technology
for real-time data transmission to collect the measured data in a remote data collection
center. The design of a sensor node that can detect the presence of water on home floors and
provide early warning of water leaks is suggested by Teixidó et al. [30]. The paper presents
and deploys both hardware and software of the network components (flood sensing nodes,
actuator nodes, and a control central); communication within the sensor network relies
on the IEEE 802.15.4 standard. Borrero and Zabalo [31] present a low-cost agriculture-
oriented system. The suggested system is based on LoRa technology and can collect various
measurements, such as humidity, ambient temperature, soil moisture, and temperature,
and enables a farmer to access all of the information necessary to achieve efficient irrigation
management of crops in real time. The developed wireless sensor node has been optimized
both in hardware and software and exhibits very low power consumption.

2.2. Energy-Harvesting (EH)

One of the main concerns of the sensor platform’s design is the source of energy.
Typically, the energy source is a battery attached to the sensor platform. It is utilized to
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provide power to all the required operations, e.g., wireless transmission, computation,
memory, etc. The battery properties (e.g., technology used and size) can determine its
lifespan as well as several other properties, e.g., transmission range. In many systems,
the battery is a burden, as it increases the cost of the system, constrains the platform size,
and most importantly, requires to be replaced occasionally. The challenge of saving power
spans all the protocol stack; energy considerations show up in each part of this survey. As
with the other layers, PHY layer innovations have also been suggested as to how to utilize
battery power efficiently.

An alternative approach to overcome the battery hurdle is to embed a mechanism
that harvests energy. Such a mechanism can be embedded alongside the battery to ex-
tend its lifespan, or more commonly, it can completely replace the battery so that all the
functions rely on it. Batteryless WSNs that rely solely on energy-harvesting (EH)-WSN
can compromise performance; for example, their transmission range can be shorter, the
available energy can constrain their awake time, and so on. One of the main challenges is to
locate the ambient resource from which the energy can be harvested. Many studies have ex-
plored different energy sources that can supplement energy, such as solar, vibration, wind,
motion, electromagnetic, and more. Numerous comprehensive technological overviews
with their advantages and limitations, energy harvesting modeling, challenge expectations,
and prospects can be found in, for example, Refs. [32–37]. A more recent system design
review on battery-free and energy-aware WSNs, which utilize ambient energy or wireless
energy transmission, is given in [38]. It addresses energy supply strategies and provides
insight into energy management methods and possibilities for energy saving at the node
and network levels.

Khalid et al. [39] suggest a zero-power wireless sensor architecture that consists of
a capacitive sensor (a sensor that associates the parameter of interest with the change in
the capacitance), an RFID chip, a circulator (allows power flow between three defined
ports), and an antenna (batteryless). The conceptual idea is that the sensor reflects the
signal received from the RFID, with a change in phase, which is relative to the sensed value.
Design and implementation of an energetically autonomous WSN platform for ambient
monitoring in indoor environments are suggested by Abella et al. [40]. The proposed self-
powered autonomous sensor node platform relies on embedded photo-voltaic (PV) panels
to harvest the energy, a microcontroller and an RF transceiver with an attached antenna.
The suggested architecture was prototyped and validated experimentally. Lee et al. [41]
propose a floating wireless device with energy harvesting capability. The floating device is
energetically self-sustaining for extended operational hours. It supports long-range com-
munication between wireless sensor nodes and a gateway relying on the LoRa technology
while deployed over a water surface. The floating device can be used as an environmental
monitoring station to remotely collect weather and water quality information. Ref. [42]
present the design of a wireless sensor node, powered by solar energy, that collects en-
vironmental data and can transmit it across vast distances (directly to the cloud). The
architecture presented therein relies on low-power wide-area network (LPWAN) protocols
that provide a long-range communication system with limited data to transmit and high
energy efficiency. The authors utilize Sigfox technology in their proof-of-concept design.

As previously mentioned in numerous papers, surveys and tutorials exploring dif-
ferent aspects of energy harvesting in WSN exist (a sliver of which we present herein).
We will revisit EH when we discuss various aspects of data aggregation, such as routing
enhancement for EH-WSN (under EH constraints), on which we elaborate in Section 5.2 or
when discussing wearables in Section 6.

2.3. Topology

Throughout the survey, the interaction of WSN and IoT will arise in multiple contexts.
While this survey mainly deals with data gathering by means of wireless units, an IoT unit
presumes a more high-level entity for localized data gathering. To assess the connection
between these two concepts, the reader is advised to refer to the most recent work by
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Devadas et al. [43], for example, where the authors enumerate the IoT data management
frameworks, challenges and issues. The chapter focuses on three layers of data management
in IoT networks, communication, storage and processing. In addition, deployment of IoT
Data management for smart home and smart city is described.

It is essential to distinguish between a one-directional WSN platform, where sensors
merely gather the data and activate a specific infrastructure and set of technologies to further
send it to a sink, and a bi-directional WSN platform, where the sensors are expected to be
able to act according to control messages received from a sink. In the latter case, the sink
might be a higher-level entity (e.g., a cloud-based server). While the general data-gathering
techniques are usually agnostic of the control direction, additional constraints might be
imposed. Delay of the responses, latency, BW usage efficiency, security, and privacy are
some of the demands to consider. Another example of a bi-directional platform can be
seen in social sensor clouds (SSC), which connect a social network with a sensor network
via a cloud infrastructure. See, for example, Zhu et al. [44], which presents a scenario of a
smart village and provides discussion on various aspects including green planning, energy
concerns, and speed of data gathering and sharing. In Dinh and Kim [45], an on-demand
WSN platform is designed. The authors suggest a data-gathering protocol that addresses
bandwidth consumption and delivery latency and minimizes the number of requests
to save resources. An infrastructure where sensors form groups belonging to private
owners constitutes a special case. This may be the case in a smart city environment; this
means that privacy and/or security considerations should be prioritized. This is the topic
addressed by Zhu et al. [46]. The authors provide a trust-assisted cloud for WSN but have
throughput issues in mind. Kuo et al. [47] suggest a WSN-based IoT platform that provides
a reliable connection between sensors in the field and the database on the Internet. The
proposed platform is based on the IEEE 802.15.4e time-slotted channel-hopping protocol
with resource-constrained devices supporting heterogeneous applications. The paper
suggests a scheme that compensates the clock drift for every timeslot to maintain the clock
synchronization required for the time-slotted channel-hopping protocol.

Edge computing, as discussed by Satyanarayanan [48], allows distributing the data
gathering burden across multiple cloudlets, which might be highly beneficial for large
WSN. This platform paradigm aims to improve many important aspects: reduced latency
of data delivery, increased bandwidth, scalability, resilience to possible cloud outages,
and privacy control. However, the platform presumes an initial capital investment and
later maintenance.

A virtual sensor network was proposed by Abdelwahab et al. [49]. Once a user-
initiated sensing request is dispatched to a cloud, a suitable set of sensors is found for
the task. The decision is made according to the cost function, which depends on the
specific (e.g., monetary) cost of using sensors from the designated set, the benefit that
can be received from using these sensors, and their effectiveness in distances and delays
(calculated, e.g., in number of hops from sensor to a sink/gateway), also expressed as
virtual links. The cost might be customized, while a general virtualization problem is
formulated and the algorithm is provided.

Integration of unmanned aerial vehicles (UAVs) and WSN for crop monitoring in
precision agriculture is described by Popescu et al. [50]. The authors suggest a down-up
scheme, where the collected data is hierarchically processed from the ground level to the
cluster head (CH) level, then collected by the UAV level and finally delivered to the cloud
for analysis and possible feedback. Particular emphasis is put on outlying measurements
from specific sensors, as they can indicate either a possible sensor failure or an upcoming
unusual event inside the agricultural field. The measured data were processed through a
consensus algorithm. Concurrently, it suppressed outlier values left for further examination
for the cloud-based analysis. In addition, this study focused on the UAV trajectory planning
to collect the data observed by the WSN. Actual deployment with several tens of sensors
and several CHs is provided and analyzed. Note that we dedicate Section 5.4 to data
gathering assisted by a mobile unit.
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An implementation of a ubiquitous consumer data service for transmitting short mes-
sages to any computing platform is provided by Datta et al. [51]. The authors demonstrate
a data cycle model that allows any device with sensor(s) to report data encoded in short
messages. The raw data reaches a central or distributed computing platform, where it
undergoes transformation and evolves into rich and structured valuable information for
higher-layer applications. The proposed data cycle model and DataTweet architecture are
aimed at smart city and large-scale crowd-sensing-based IoT scenarios.

2.4. Application-Oriented Network Architecture

We continue by covering special types of WSN platforms for data gathering and
specialized application-driven architecture types. Ayele et al. [52] suggest an IoT network
architecture for wildlife monitoring systems (WMS) for scenarios in which animals exhibit
sparse mobility, which results in sporadic wireless links. In addition, they suggest a
data forwarding enhancement that adopts the flood-store-carry-and-forward paradigm
suggested in the seminal ZebraNet study by Juang et al. [53], in which in order to send data
to the sink, the nodes disseminate it among themselves until it reaches the sink. Specifically,
each node stores the data needing to be conveyed, waits for connectivity with other nodes,
and distributes the data to them, and they repeat the same process. Accordingly, the data is
spread throughout the entire network (i.e., flooding) and will eventually be received by the
sink. The authors in [52] suggest leveraging locally available routing parameters to improve
opportunistic data forwarding algorithms by managing the data replication decision.

Saleh et al. [54] suggest extending the lifetime of a wireless sensor network used in
mobile healthcare applications by increasing the number of bits transmitted per symbol, and
specifically to rely on a quaternary interconnect scheme in which each transmitted symbol
modulates two bits. A complementary neural network, static RAM-based architecture is
suggested to reduce energy consumption in storage and transmissions during the data
dissemination process. A WSN dedicated to home deployment for elderly healthcare and
early health emergency alarm is discussed by Alsina-Pagès et al. [55]. The authors first raise
privacy concerns related to the monitoring, and accordingly, advocate that only sound-
based surveillance aimed to merely indicate alarming situations is appropriate. In order
to further conform to the privacy demands, they focus on distributed architecture (rather
than on a centralized one), where each of the WSN sensors sends encrypted identifiers of
their measurement. The identification of events is built on feature extraction. This is done
on the frequency domain by first dividing the incoming signal into blocks with Hamming
sliding window, then transforming into the frequency domain using Discrete Fourier
Transform (DFT) to evaluate the contribution of every band of the spectrum. The final
coefficients are obtained after Discrete Cosine Transform (DCT). The conclusive parts of the
proposed algorithm classify the coefficients, feeding them into Support Vector Machines
which classifies the estimated audio event. The authors assert that the classification results
could be further improved by incorporating a deep artificial neural network (ANN) into
their system.

In AbeBer et al. [56], a similar method was implemented for urban noise monitoring.
Namely, while STFT was utilized for the noise preprocessing, the classification of noise
levels and events was performed by convolutional neural networks (CNNs). The authors
used several previously published networks; see references therein. Similar methods for
noise monitoring WSN were introduced by Siamwala et al. [57]. The frequency-domain
analysis was performed. Then, classification by statistical methods was accomplished
(Gaussian mixture model was used). In addition, the authors in [57] provide an elaborate
WSN architecture, where energy-harvesting solar panels augment the sensors’ lifetime and
the sensors’ state-of-charge is transmitted and tracked by central, more powerful nodes.

3. Compressed Sensing

Many data-gathering applications rely on numerous self-powered smart devices to
collect real-time data and convey it via a wireless medium to a central entity or entities
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(e.g., the cloud) to further process it and act upon it. Such devices are expected to perform
two basic operations—sensing and wireless connectivity. Two important hindering aspects
that derive from these operations influence the performance and need to be considered
are: (i) energy consumption associated with these two operations, especially when many of
these devices are typically simple with limited computation abilities and battery lifetime
(ii) airtime utilization, which can also degrade the performance causing high delays, jitter,
battery consumption, etc. Accordingly, one of the main challenges in combating these
limitations is reducing the report payload, which affects each report’s transmission time
and channel utilization. Reducing the payload of the sensed data can be accomplished at
different levels; it can be done in the sensing stage by reducing the size of the sensed data, as
well as in the report preparing stage by compressing the report size, and in the transmission
stage, by selecting which devices need to send reports, thus limiting redundant information.
When the reports need to travel multiple hops before reaching their destination, this can
be done at the relay stage by pruning, unifying, and compressing reports. In the sequel,
we discuss Compressed Sensing (CS). This novel paradigm can reduce report payload at
several levels mentioned above, hence lowering the sensing operation’s transmission time
and energy consumption.

Compressed sensing is a signal-processing technique that is most advantageous when
the subject signal is sparse in some domain, such that a minimal non-zero vector of coeffi-
cients can represent it. The signal sparsity enables a high-quality reconstruction, which is
attained by finding the solution to an under-determined linear system of equations with
the smallest possible number of non-zero values. Thus, a convex minimization problem
needs to be solved to perform the recovery. Note that the CS technique performs non-
uniform sampling of the data signal with an average sample rate usually smaller than
the minimal rate mandated by the Nyquist–Shannon sampling theorem. A detailed view
of the technique can be found in Balouchestani et al. [58] and Donoho [59]. Various net-
working domains can utilize compressed sensing, for example, Feizi et al. [60] depict some
applications of CS over networks and elucidate the connection between CS and traditional
information-theoretic techniques in source coding and channel coding. Particularly, CS is
highly suitable for sensed data gathering in wireless sensor networks (e.g., physical phe-
nomena or a scenery), as it can leverage the expected high spatial and temporal correlation
between sensing reports sent by neighboring sensors at different times in order to acquire
the CS paradigm’s desired sparsity. In the following, we review several such data-gathering
schemes that utilize CS.

Luo et al. [61,62] consider a densely deployed monitoring sensor network in which
reports traverse multiple hops before reaching their destination, a sink. These studies
rely on the concept that sensors’ readings are spatially correlated; hence, there exists a
transform domain in which the sensed signals can be sparsely represented. Both propose
a compressive data-gathering (CDG) procedure in which sensors distributively encode
their reports by projecting them on a random space basis using random coefficients. These
encoded reports can be decoded at the sink using compressive sensing techniques. Specif-
ically, CDG is designed for multi-hop networks where messages need to travel multiple
hops before reaching their destination. The sampling process that characterizes the CS
compression process is performed individually at each sensor by simple multiplications
and additions. Particularly, CDG suggests that rather than forwarding individual sensor
readings, each sensor uses each of its reports (measurements) to construct and send M
different messages, each comprising a weighted sum of the sensor’s own report with other
sensors’ reports traversing it (relaying). Formally, denote by vector d = [d1, d2, . . . , dN ]

T

the measurements (readings) obtained by all the sensors, where N is the number of nodes in
the WSN and di denotes the measurement (reading) obtained by sensor si. The sink obtains
M messages (weighted sums) represented by the vector y = Φd = φ1d1, φ2d2, . . . , φN dN ,
where Φ is an M× N (M << N) matrix comprising the series of coefficients generated
by the sensors, and in particular, φi is the i-th column vector of Φ, which denotes the
random coefficients selected by sensor i. Luo et al. [61] suggest that the measurement
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matrix (coefficients matrix) Φ should be a full random matrix with its entries being i.i.d.
Gaussian random numbers drawn according to N (0, 1

M ). The paper suggests that each
weighted sum coefficient be chosen pseudo-randomly based on each sensor’s ID in order
to avoid the burden and high overhead required to collect these coefficients by the sink
if they are chosen randomly. Ref. [62] extends the random coefficient selection suggested
in [61] to an only partly random matrix in which the entries of a sub-matrix are still drawn
according to N (0, 1

M ). Yet, for the rest of the matrix, two options are suggested, either an
upper triangular matrix with non-zero entries drawn according to N (0, 1

M ), or the identity
matrix. CDG exploits the compressive sampling theory and shows that when the sensor
readings are compressible, the sink will be able to accurately recover the reports even when
the number of weighted sums (messages) each sensor generates for each report (M) is
much lower than the number of reporting sensors (N). For example, on a route comprising
N sensors, the sink needs to collect only M << N messages to encode the information sent
by all the N sensors.

Several studies further explore the sparsity of the sensed signal and its projection
matrix, as well as the number of messages (M) that should be delivered to the sink. For
example, Wang et al. [63] argue that most natural signals are nonstationary and ordinarily
variable in the temporal and spatial domains. In CS, these directly influence the recon-
struction process and the number of required measurements; consequently, setting a fixed
number of measurements with a fixed transform basis (coefficient matrix Φ) can result
in poor performance (inaccurate measurement reconstruction). Accordingly, Ref. [63]
suggests an adaptive data-gathering scheme based on CS, which utilizes an autoregressive
(AR) model to exploit the local spatial correlation between sensed data of neighboring
sensor nodes. The suggested reconstruction scheme adapts to the variation of sensed data
by adjusting the AR parameters. The number of measurements is adjusted adaptively
with the sensed data by evaluating the recovery result and approximating the number of
measurements required to satisfy the accuracy demand.

To reduce the transmission overhead, Xu et al. [64] propose the compressed sparse
function (CSF) scheme. The basic concept of CSF is, rather than encode the sensed data
by projecting it on a basis on which it can be represented sparsely, as in typical CS-based
schemes, to compress the sensed data in the form of sparse functions, which are sent to the
source. The source can recover the function using techniques from polynomial approxi-
mation/interpolation theory and use them to compute data values that were not reported.
Specifically, CSF finds a function that maps the sensors’ identifiers and their readings, which
can be expressed in a very sparse way, and only communicates this function to the sink.
After the sink recovers the function, it can recover all the N sensor readings. Xu et al. [64]
show that the CSF approach can provide good recovery accuracy (better than the CDG
scheme suggested by [61]) while substantially reducing the message overhead (mainly in
tree-structured networks). Li et al. [65] present a general CS framework for WSNs and IoT
and show how the proposed framework can be utilized to reconstruct the compressible
information. The suggested framework comprises three phases: (i) information sensing
to detect and compressively sample event signals; (ii) compressed sampling, in which the
system samples information traversing the networks; and (iii) reconstruction algorithms, in
which the system accurately reconstructs the original signal from the compressed samples.

Different studies tackle the sampling issue and suggest different approaches to reduce
the number of reports sent such that only a subset of the sensors sense the object or
phenomenon at a time. Several studies explore how sensed data is conveyed to the sink
with the insight that the compression is at least attained along the path to the sink, and is
therefore affected by it. For example, Dhanapala et al. [66] show that a random-walk-based
sampling, rather than the conventional uniform-sampling-based CS for function recovery,
can be used for phenomena awareness either at a sink or at other sensors without a sink,
with minimal additional sampling. As the distribution of the samples has a significant effect
on the recovery, Ref. [66] suggests an upper bound for the probability of successful recovery
with a given error percentage. The derived bound provides an approximate number of
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samples required to recover a function under a selected basis and a sampling scheme.
Zheng et al. [67] further argue that random walk provides a more practical approach for
the data-gathering application in WSNs and explores the sparsity of collecting non-uniform
measurements while sampling along multiple random paths. The paper suggests that
the M× N measurement matrix will be characterized by M independent random walks.
Specifically, each of the M matrix rows corresponds to the set of vertices visited by the
respective random walk. The paper analyzes the required number of random walks (M)
and their corresponding lengths (how many entries on each row are non-zero) under the
proposed random walk algorithm.

Zheng et al. [68] suggest a cluster-based data-gathering mechanism, in which the
terrain is divided into cells; in each cell, a node is randomly selected as the cell head,
which collects the data from the cell members and forwards it to the sink. Zheng et al. [68]
suggest two forwarding mechanisms, one relying on centrally defined tree-based for-
warding, and another that is a gossip-based approach. The projection process is similar
to Luo et al. [61,62], being based on random coefficients. Another clustering-based hi-
erarchical data aggregation protocol that relies on CS, termed HDACS, is suggested by
Xu et al. [69]. Specifically, HDACS constructs a multilevel hierarchical structure and adap-
tively sets multiple compression thresholds based on cluster sizes at different levels of the
data aggregation tree to optimize the amount of transmitted data. The encoding procedure
is adapted from [62], where each cluster-head recovers (decodes) all received messages
from its descendants (retrieves the original data) before compressing and sending it to its
parent cluster-head.

Motivated by reducing power consumption, Lan and Wei [70] also suggest a
compressibility-based clustering algorithm for hierarchical compressive data gathering. In
this study, the network is decomposed into a logical chain, and sensor nodes are grouped
based on the compressibility of their readings instead of by a random clustering approach.
This clustering approach strives to minimize the average compression ratio of all clusters by
greedily selecting the set of nodes based on the compression ratio. It then tries to maximize
the number of compressible clusters so as to determine the suitable transmission mode
for each cluster using a mode threshold that is a function of the number of nodes and the
number of hops from a cluster-head to a sink.

To reduce the number of sensors involved in each CS measurement, Wu et al. [71]
propose a sparsest random scheduling scheme for compressive data gathering in large-
scale wireless sensor networks (WSNs), leveraging the spatial-temporal properties in the
sensory data. The central theme of this study is that the measurement matrix is designed
based on the representation basis and sensory data and according to the sensor network
requirements rather than the network environment. By combining compressed sensing
and network coding in the data-gathering scheme, Yin et al. [72] introduce a multi-hop
topology in which the sink node adaptively adjusts the measurement formation according
to the reconstruction of received measurements at each data-gathering epoch. The sink
node dictates the data aggregation performed to balance the energy consumption among
sensor nodes.

Xu et al. [73] exploit the CS paradigm for network tomography. Specifically, Ref. [73]
leverages the fact that, typically, only a small fraction of network entities such as links or
nodes are responsible for anomalies or degradation in network performance, as a limited
number of congested links can be responsible for significant delays or high packet drop
rates, and suggests utilizing CS theory in order to identify these few entities based on end-
to-end measurements. Zheng et al. [74] provide an analysis of the capacity and delay of
data gathering with compressive sensing in wireless sensor networks. The paper considers
a random topology where sensor nodes are randomly deployed in a region, for both
single-sink and multi-sink scenarios, and characterizes the capacity and delay performance
improvement that the CS paradigm can achieve for data gathering. In particular, for
the single sink, a simple routing scheme for data gathering with CS is suggested, and
a tight capacity in the order sense is presented. In particular, the suggested routing
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scheme with pipelining scheduling algorithm for data gathering shows that the proposed
single-sink scheme can achieve a capacity gain of Θ( n

M ) over the baseline transmission

scheme, and the delay can be reduced by a factor of Θ(

√
nlogn
M ), where M is the number

of random projections required for reconstructing a snapshot, and n is the number of
randomly deployed nodes. For the multi-sink case, their architecture shows that the per-
session capacity of data gathering with CS is Θ( n

√
nW

Mnd
√

ns logn
), and the per-session delay is

Θ(M
√

n
logn ), where W is the data rate. The number of sinks present in the network is nd,

and the number of randomly selected source nodes is ns. They validate the theoretical
results with simulations for the scaling laws of the capacity in both single-sink and multi-
sink networks.

4. Medium Access Control (MAC)

Next, we move to the Data-Link layer and specifically to the medium access control
(MAC) mechanism, which highly affects the performance of data gathering protocols, as
it influences several performance aspects, such as reliability, latency, channel utilization,
power utilization (which impact the lifespan of a sensor in particular and the network in
general), etc. Even though many access protocols were suggested over the years for shared-
channel networks, wired and wireless, due to their unique properties and requirements,
extensive research has been conducted on MAC protocols targeted to WSN. Many WSN
MAC protocols were designed to comply with various traffic patterns. Accordingly, in the
sequel, we provide a short WSN-MAC protocol overview for ones that can support yet
are not necessarily particular to data-gathering. We review a fraction of the vast literature
on the topic and the numerous MAC protocols devised over the years. Figure 3 depicts a
schematic partition of the papers discussed throughout this section according to the main
MAC classes.

MAC
Section 4

Synchronous 

Transmitter-Initiated Receiver-Initiated 

Asynchronous 

Others
Section 4.2

Duty-Cycle
Section 4.1

Figure 3. Schematic description highlighting the main MAC classes covered in the section.

Energy consumption is one of the main concerns of WSN, and as previously explained,
it needs to be considered in the design of protocols and algorithms in all the layers of the
protocol stack. The highest energy consumer of a sensor or an IoT device is its transceiver,
which consumes energy regardless of whether it is transmitting or only awake listening to
ongoing traffic (e.g., [75]). One of the more prevalent solutions to save power is to embrace
a duty-cycle mechanism in which the device is asleep most of the time (its transceiver is in
low power mode), and is awake for transmitting or receiving data only a small fraction
of the time. Another important aspect of wireless sensor networks (WSN) is channel
utilization, that is, in a typical WSN, when multiple devices are trying to send reports
simultaneously, air time is a crucial network resource. Particularly when the network is
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dense with multiple devices in the same neighborhood, issues such as coordinating between
the users to avoid collisions and preventing users from occupying the channel for long
time intervals are fundamental. Note that such issues can highly affect the performance in
a dense network topology even when reports are not frequent. Accordingly, utilizing the
channel (air time) efficiently is a crucial component for any such system’s operation and
performance. These two highly vital aspects justify the significance given to the design of
medium access control (MAC) protocols that are particular to WSNs. Numerous protocols
have been suggested to cope with different WSN objectives and demands (e.g., [76,77]).
This paper focuses on MAC protocols for WSNs, particularly on duty-cycled-based ones.

4.1. Duty-Cycle MAC Protocols

Traditionally, duty-cycle MAC protocols can be classified as either synchronous or
asynchronous. In synchronous protocols the awake time interval is synchronized such that
all devices are awake (or asleep) at the same time intervals (e.g., S-MAC [78], T-MAC [79]).
Since the awake time intervals are quite limited, they can be highly congested and prone
to collisions. Several synchronous protocols have devised mechanisms to attenuate this
congestion and to allow more devices to transmit in each cycle, for example, DW-MAC [80],
which allocates the awake time for transmission reservations that will be executed during
the sleep interval.

In asynchronous protocols, each device has its own wake-up schedule. Accordingly,
the main challenge is setting a rendezvous time when both the sender and the receiver are
awake and devising a signaling mechanism that informs both that they are awake and can
communicate. Asynchronous MAC protocols can further be divided into two categories,
transmitter- or receiver-initiated. In transmitter-initiated protocols, the transmitter initiates
the transmission by capturing the channel waiting for its designated receiver to wake
up. For instance, in B-MAC [81], the transmitter transmits a long preamble capturing the
channel prior to the data transmission, waiting for its intended receiver to wake up and
reply. In X-MAC [82], the transmitter transmits a sequence of short preambles allowing
the intended receiver to interrupt, notifying the receiver that it is awake. In WiseMAC [83],
the transmitter learns the wake-up time of its intended receiver and starts the preamble
transmission just prior to this wake-up time.

The second approach, the receiver-initiated paradigm, relies on the receiver, whenever
awake and ready to receive data, to initiate the data exchange. The basic receiver-initiated
MAC concept was introduced in RI-MAC [84], in which whenever the receiver wakes up,
it transmits a predefined preamble, signaling to its potential transmitters that it is awake
and ready to receive data. Several protocols took up the RI-MAC paradigm and suggested
modifications and enhancements. Some protocols strived to reduce the energy consumed
while a sender stays awake, waiting for its intended receiver to wake up. For instance,
PW-MAC [85] and AP-MAC [86] suggested that each transmitter will learn its receiver’s
expected wake-up time, and instead of staying awake waiting for its designated receiver to
wake up, will wake up just before its intended receiver’s wake-up instance.

Another receiver-initiated enhancement is suggested by A-MAC [87], which aims to
reduce the time in which a receiver and, consequently, its potential transmitters stay awake,
by trying to determine whether there are pending packets for transmission and if it needs
to stay awake or if it can go back to sleep after probing the channel. The enhancement
relies on an additional frame, termed “auto-ack”, sent by pending transmitters, which
follows the receiver’s probe packet and proceeds with the data transmission. The “auto-ack”
frame is such that the receiver can decode a superposition of several such frames and
determine whether there is traffic being sent. Even though the energy saved per cycle is
negligible, the cumulative savings per day can be significant due to the numerous times
a device wakes up probing the channel. RIVER-MAC [88] suggests two enhancements,
one aiming at reducing the awake time a sender is waiting for its intended receiver to
wake up, and one that aims at improving the RI-MAC collision resolution mechanism by
letting an active receiver keep controlling the channel after invoking the collision resolution
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mechanism, and specifically during the silent backoff interval. MAR-RiMAC [89] suggested
an amendment to the receiver-initiated approach, and in particular RI-MAC, to cope with
the perpetual collisions, common in dense networks and heavy traffic loads, in which
many devices are trying to transmit to the same entity (sink or relay). MAR-RiMAC relies
on a reservation-based mechanism in which the reservations are short signals that can
be transmitted simultaneously. After the designated receiver decodes the identity of the
devices, it sends a transmission request and polls them sequentially, with no idle intervals.

As mentioned in Section 2, relying on EH requires adaptations that typically relate
to the harvested energy source. For example, how to balance the harvested energy and
the energy consumption can be a crucial factor in whether or not a scheme or protocol
can be adopted by a network that relies on EH, and can be the primary factor impacting
their performance. Adaptation requirements to support EH-based sensors span the whole
network stack, including the MAC sublayer. Adaptation of receiver-initiated duty-cycle
MAC protocol for energy-harvesting-powered wireless sensor networks, in which besides
the usual MAC challenges, both transmitter and receiver need to have sufficient power for
successful transmission, is given by Liu et al. [90].

4.2. MAC Protocols for Other Setups

Next, we review some MAC protocols and MAC adaptations for various setups,
such as multi-channel, multi-radio, busy-tone utilization, or different from the duty-cycle
approach. DURI-MAC [91] adopts the traditional busy-tone scheme and allocates a sub-
channel for control such that while receiving data on the data channel, a busy signal
is transmitted on the control channel, which notifies neighboring nodes of the ongoing
transmission, and therefore helps avoid interference from hidden terminals. EM-MAC [92]
utilizes multiple orthogonal radio channels and allows devices to dynamically select the
channels for their transmissions based on the channel conditions they sense without the
utilization of a control channel. Accordingly, EM-MAC can avoid using channels that are
currently heavily loaded, inferior due to interference, or jammed. Typically, the traffic
load sent by a node is spatially and temporally variable. Different nodes need to send
different traffic loads due to their tasks, topological location, and the amount of traffic they
need to relay. Furthermore, the same node can experience different loads at different time
intervals due to events or requests triggering different traffic loads. Accordingly, several
studies have explored an adaptive duty-cycle approach. For example, Ye and Zhang [93]
have developed a reinforcement-learning-based self-adaptive sleep/wake-up scheduling
approach. In the proposed method, each node (device) divides the time into time-slots,
which are not necessarily synchronized between neighboring nodes. Each node decides
whether to sleep or wake up in each time slot, and while awake, it decides whether to listen
or transmit. The decision is based on its current situation and its estimation of its neighbors’
situations and is attained via Q-learning.

Gamm et al. [94] devise an alternative approach to duty-cycle, which utilizes two
radios: the primary radio transceiver and an additional wake-up radio (WuR). The wake-up
radio is a low-power receiver triggered by an external event and can turn on the main
transceiver when required. Oller et al. [95] provide a detailed characterization of a specific
WuR, the SubCarrier Modulation WuR (SCM-WuR), through physical experiments and
measurements, evaluating it for different performance metrics and comparing it to other
wake-up radio-based systems. The authors of [95] model and simulate their own designed
WuR hardware platform, which is compared to four widely employed MAC protocols for
WSN under three real-world network deployments [96]. Spenza et al. [97] further design
and prototype a very-low-power-consumption (<1.3 µW), high-sensitivity (up to−55 dBm),
fast-reactivity (wake-up time of 130 µs), and selective-addressing wake-up receiver (WRx)
and describe its integration to a wireless sensor node. The authors leverage their WRx and
present ALBA-WUR, a cross-layer solution for data gathering in wireless sensing systems.
Similar to duty-cycled MAC protocols, wake-up radio-based protocols also distinguish
between transmitter-initiated WuR (TI-WuR) protocols in which the transmitter wakes up
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its potential receivers (e.g., [98,99]) vs. receiver-initiated WuR (RI-WuR) that adopt the
RI-MAC paradigm such that when a receiving node is ready to collect data, it wakes up all
the nodes in its neighborhood by broadcasting a wake-up call (e.g., [100,101]).

An energy-harvesting-based MAC protocol for cognitive radio networks (CRNs) is
suggested by Hawa et al. [102], in which the secondary users (SUs) utilize the transmis-
sions by primary users (PUs) to harvest energy. Accordingly, the suggested protocol
interlaces SUs’ data transmissions within these PUs’ transmission holes. The proposed
energy-harvesting/data-transmission schedule considers the imbalance between the small
amount of energy collected per PU’s transmission and the energy required by an SU
data transmission.

Next, we mention several WSN MAC protocols that were specially designed for
particular data-gathering setups in WSN and IoT networks, exploiting the special associ-
ated attributes (e.g., that the traffic patterns are always from sensors to the sink, or that
there exists a set of predefined messages that need to be sent). Cohen et al. [103] design
and analyze a data collection protocol based on information theoretic principles. In the
suggested protocol, each sensor needs to convey one out of a bank of known messages
to a sink. The protocol assumes a large population of sensors and devises a scheme in
which a sink (or relay) can simultaneously collect messages from up to K sensors, without
knowing in advance which sensors will transmit, and without requiring any synchroniza-
tion, coordination, or management overhead. D-3 [104] exploits the fact that the traffic in
data-gathering applications flows in a certain direction (toward a single or multiple sinks)
to devise a wake-up that can significantly reduce end-to-end delay. Specifically, D-3 lays
out the awake schedule of communicating nodes such that a packet can be forwarded
toward its destination sequentially, without the need for a node to wait for its next-hop
relay to wake up (i.e., the wake-up schedule is such that a relay wakes up in time to receive
a packet just received by its predecessor).

5. Routing for Data Gathering in WSN

We keep climbing the layers, and in this section we address issues related to the
Network layer. We start with a short review of WSN routing protocols. We note that
routing-related aspects were also referred to in other sections of this survey. We mainly
focus on the prominent and more recent protocols. We do not provide a comprehensive
review of routing protocols in multihop WSNs and mainly explore routing protocols
suitable for data gathering. Figure 4 provides a schematic distribution of the discussed
papers into main topics. As with the schematic partition in the other sections, in order
not to have too many, the topics are chosen such that the theme on each one encompasses
several papers. The papers’ partition is rough: some papers can appear in more than one
topic while others are only related to the topic.

We start with general WSN settings and then continue with routing protocols under
energy harvesting constraints. Then we explore the utilization of network coding for data
gathering, which leverages the multi-hop routing, allowing relays (intermediate nodes)
to code the incoming packets before forwarding them toward the sink. We conclude this
section by examining a different paradigm. Rather than utilizing the traditional approach of
forwarding the sensed data via multiple relay nodes before reaching the sink, this paradigm
relies on a Mobile Sink (MS) that traverses the network and collects the sensed data from
the sensors it passes through.

5.1. Common WSN Routing Protocols for Data Gathering

The common setup for a data collection network comprises a set of devices (e.g.,
sensors) and one or multiple sinks that collect the reports. In many such scenarios, the
sensors are unevenly dispersed over the terrain and in some cases can be mobile, can have
a different distance to the sink(s), and the data needs to traverse multiple hops before
reaching the sink, in which commonly the sensors themselves serve as relays toward
the sink. Consequently, the performance experienced by different sensors (e.g., energy
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consumption, latency, reliability) can be markedly diverse. Various solutions, including
energy-aware routing, compressed sensing, efficient MAC novelties and architectural
innovations, have been suggested to try to improve the overall performance and to balance
its variability; many are scattered throughout this survey under different subjects (e.g.,
Sections 3, 4 and 6). In the sequel, we provide a brief review of routing protocols for WSN
in general and data gathering in particular.

Routing
Section 5

Cluster-Based 
Section 5.1.1

Energy Harvesting 
Based

Section 5.2

WSN Routing
Section 5.1

Network coding
Section 5.3

UAV Utilization
(Mobile Sink) 

Section 5.4

RPL 
Section 5.1.3 

Opportunistic 
Section 5.1.2

Cluster-Based 
Section 5.2.1 

Mobile Charger 
Section 5.2.2 

Cluster-Based 
Section 5.4.2

Direct 
Section 5.4.1 

Figure 4. Schematic partition of the papers discussed in this section into the main routing topics
covered in the section.

5.1.1. Cluster-Based Routing Protocols

A significant milestone in WSN routing protocols is the low-energy adaptive clustering
hierarchy (LEACH) protocol [105]. The basic LEACH protocol is an adaptive clustering-
based protocol that dynamically selects sensor nodes as cluster-heads. Each cluster-head
aggregates data from its cluster members and relays it to the sink. In order to distribute
the high energy consumption imposed on cluster-heads between all the sensor nodes,
the cluster-heads are dynamically selected according to a predefined probability that
depends on the number of desired clusters. The resulting protocol causes continuous
clustering hierarchy reelection, which facilitates energy balancing. The original version
presented by Heinzelman et al. [105] considers a setup in which all sensor nodes can
directly communicate with the sink; hence, each cluster-head can directly relay the collected
information from its cluster members to the sink. However, as described in the paper,
LEACH can be easily extended to a hierarchical cluster setup in which the cluster-head
nodes of each tier are also organized in clusters such that each cluster-head relays its
aggregated data to its higher-layer cluster-head, and so on up to the top layer of the
hierarchy, at which point the data are sent to the sink.

Since its publication in 2000, numerous protocols have relied on LEACH’s clustering
paradigm, suggesting enhancements and improvements for various setups and require-
ments. For instance, EE-LEACH [106,107] aims at improving the energy efficiency of
LEACH by considering the sensor’s residual energy throughout the stages of the proto-
col. Specifically, EE-LEACH assumes that node deployment is implemented according
to a two-dimensional Gaussian distribution. It forms clusters and selects their respective
cluster-heads based on the residual energy of neighboring nodes. The relay nodes that
forward the data aggregated by cluster-heads to the sink are selected based on their residual
energy. A clustering procedure based on recursive rectangular partitioning of the network
grid following the k-d tree algorithm is demonstrated by Anzola et al. [108]. The authors
adjust a protocol that combines their clustering methods and report that it performs better
than LEACH. Several surveys have summarized the successors of the LEACH protocol
(e.g., [107]).
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PEGASIS [109] was designed to address the overhead resulting from the cluster
formation in LEACH. Specifically, PEGASIS replaces the clusters with a node-chain in which
each node receives the data from its predecessor and transmits it to its successor in the chain.
The data is gathered while getting fused along the chain until eventually, a designated
node transmits it to the sink. PEGASIS relies on nodes having global knowledge of the
network and shows that a simple greedy algorithm for the forwarding chain construction,
in which nodes select their closest neighbors as the next hops in the chain, is sufficient to
significantly reduce energy consumption. Similar to LEACH, and in order to balance the
energy depletion in the network, different nodes transmit the fused data to the sink on
each data-gathering round. P-LEACH [110] offers a hybrid between LEACH and PEGASIS
that relies on cluster formation where cluster-heads collect and forward traffic. Rather
than forward the traffic directly to the sink, or create a hierarchical cluster setup in which
cluster-heads are also grouped into clusters with another cluster-head, P-LEACH adopts
chain-based forwarding such that the cluster-heads are arranged in a chain along which
the collected data is forwarded, as suggested by PEGASIS.

Several LEACH enhancements have relied on bio-inspired algorithms. For example,
Siew et al. [111] utilize adaptive particle swarm optimization (APSO). This widely used
swarm intelligence method mimics swarming behavior in bird flocking and fish schooling
to guide its members to search for globally optimal solutions for cluster-head location
selection. Tam et al. [112] extend LEACH to a 3D setting by employing a method based on
fuzzy clustering and particle swarm optimization (PSO). Cui et al. [113] suggest a variant
of the bat algorithm, which simulates bat prey echolocation behavior, to optimize the
cluster-head selection for LEACH protocol. A routing path selection using an ant colony
optimization algorithm is presented by Jiang and Zheng [114]. Clustering by mimicking
groups of yellow goatfish is discussed by Rodríguez et al. [115]. The authors claim that
the presented meta-heuristic is more efficient in avoiding local minima. An extension of
LEACH for an IoT-designated industrial environment is presented by Karunanithy and
Velusamy [116]. This work provides uniform CH selection, uniform CH dispersion over
the industrial grid of IoT-based sensors, and tree-based routing selection that promises to
be more energy efficient than known counterparts. The energy exploitation is claimed to be
equal among nodes.

Mehmood et al. [117] devise a dynamic-size cluster-based routing protocol for WSN
comprising a large number of sensors that are spread over a large area (the paper suggests
pollution monitoring as a candidate application). The primary objective of the presented
scheme is to effectively select CHs to be responsible for the main communication with BS
and additionally defined chief nodes (CNs). Specifically, the sensor topology is divided
into groups, where CNs collect the updated energy indications of other sensors within a
group. There are also border nodes responsible for communication between groups. If
their energy value drops below a threshold, the CNs can be reelected. The candidates for
CNs and CHs are provided by an artificial neural network (ANN), which takes as inputs
remaining energy, neighboring node count, the amount of outstanding data, signal-to-
noise ratio (SNR), distances between nodes, CHs, CNs and the BS, traffic load, and so
on. The simulations show a better lifetime than other selected known protocols; hence,
the scheme is a better fit for pollution monitoring. Clustering and routing for a wind
turbine system monitored by WSN are introduced by Durairaj and Selvaraj [118]. The
discussed environment is unique because sensors placed at wind turbines can have their
energy replenished by the turbine itself; hence, these sensors are always assumed to be
charged. However, the distances between turbines and the BS are too large, and the
grid is augmented by ground sensors that relay the measurements. In many cases, these
ground sensors have to act as CHs. The authors propose system partitioning and clustering
methods that may be hierarchical to specifically address this scenario. An interesting
algorithm that also employs partitioning, by hierarchical grouping of sensors based on
early knowledge of geographical transmission patterns in mobile WSN, is presented by
Shifrin and Cidon [119].
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5.1.2. Opportunistic Routing

The opportunistic routing approach, which was designed for wireless networks, dy-
namically chooses paths toward the destination on a per-transmission basis, Biswas and
Morris [120], Ye and Hua [121]. Opportunistic routing exploits the broadcast nature of
wireless communication jointly with the spatial diversity of distributed nodes in a given
route such that multiple nodes overhear each packet transmitted by a node. The node that
receives the packet successfully and can serve as the best relay toward the destination (e.g.,
closest to the destination) becomes the next transmitting node. Harnessing opportunistic
routing to duty-cycle MAC protocols encounters several obstacles. In synchronous duty-
cycle MAC protocols (Section 4), the short time duration in which all nodes are awake (and
specifically, all the potential relays are awake and trying to forward the same packet) can
lead to artificial congestion and poor wake-time utilization. In asynchronous duty-cycle
MAC protocols, since not all nodes are awake simultaneously, the use of overhearing, which
opportunistic routing relies on, is limited and requires adaptations such that the transmitter
will transmit to multiple relays upon its wake-up (e.g., [122]) or delay its transmission,
choosing its relay opportunistically based on channel condition (e.g., [123]).

In a dense WSN, even under asynchronous duty-cycle MAC protocol, several potential
relays can be awake simultaneously, which poses additional challenges when utilizing
opportunistic routing. In addition to the relay selection problem—whether a transmitter
should wait for the best relay to wake up or compromise on a less preferable relay, reducing
its awake period and how long it should wait—it also encounters the collision avoidance
problem between simultaneously awake nodes. Liu et al. [124] suggest a slotted contention-
based scheme in which, following a probe sent by the transmitter, the awakened potential
relays contend and transmit feedback concerning the routing progress they can offer. The
transmitter selects the best possible relay out of the ones that replied, taking into account
not only the metric chosen to evaluate the different relays, but also the waiting time of
the link-layer transmissions. Under a similar set-up of dense asynchronous duty-cycle
MAC protocol with multiple potential relays awake simultaneously, Hawbani et al. [125]
try to control the number of potential forwarders, which influences both the transmitter
waiting time and the number of packet duplications. The suggested solution relies on
a two-step mechanism. First, each transmitter determines a candidate zone such that all
nodes within the candidate zone are potential forwarders. Second, the candidates within
the candidate zone are prioritized based on a combination of metrics that considers residual
energy, transmitting direction, distance, and link quality.

5.1.3. Routing Protocol for Low-Power and Lossy Networks (RPL)

A routing protocol for low-power and lossy networks (RPL) is a routing protocol
that was specifically designed for networks composed of constrained nodes, which are
interconnected via unstable and lossy links with relatively low packet delivery rates and
typically only support low data rates (hence, low-power and lossy networks (LLNs)).
Specifically, RPL is a distance-vector proactive routing protocol designed for IPv6 low-
power devices with limited energy, processing, and memory resources (Winter et al. [126]).
RPL constructs a tree routing topology termed the destination-oriented directed acyclic
graph (DODAG), rooted at one or more sink nodes. The routing tree (graph), along
which the traffic traverses, is constructed according to an objective function (OF) that can
utilize a set of metrics such as energy consumption, latency, and hop count. The most
common ones are OF0, which finds the shortest path (the path with the minimal hop-count)
to the sink (Thubert et al. [127]), and minimum rank with hysteresis objective function
(MRHOF), which finds the routes that minimize the link cost associated with the routes
(Gnawali and Levis [128]). The cost is defined as the latency metric allowing RPL to find
stable minimum-latency paths from each node to the sink, or it can be associated with the
expected transmission count (ETX) metric, which allows RPL to find the stable minimum-
ETX paths from the nodes to the sink (the default metric). In order to achieve stability,
MRHOF also ensures that a route is changed (a node exchanges its preferred parent in
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the routing tree) only if the cost of the improved route is better than the current route by
at least a predefined threshold. RPL is the de-facto IPv6-based routing protocol for the
IoT. Accordingly, several OFs and possible enhancements have emerged during recent
years, and several performance evaluations and comparisons have been presented. In the
following, we discuss some of these OFs.

Abdel Hakeem et al. [129] analyze the performance of RPL in collecting smart meter
readings over smart grid (SG) networks via Java-based simulations and IoT-LAB testbed ex-
periments. Specifically, Ref. [129] evaluates the RPL performance under the two prominent
objective functions Hop Count and ETX, in terms of packet delivery ratio, network latency,
control traffic overhead, and power consumption. Barnawi et al. [130] utilize the Cooja
network simulator to examine the performance of RPL under duty-cycle MAC protocol.
Specifically, Ref. [130] simulates RPL over the classical XMAC protocol and its derivative
ContikiMac, where, rather than using a long preamble waiting for the receiver to wake up,
the sender repeatedly sends the same packet until a link layer acknowledgment is received.
As a baseline, Ref. [130] uses NullRDC, an always-awake node. As expected, the results
show that NullRDC is better in terms of latency, while ContikiMac outperforms the others
in terms of power consumption. Al-Shargabi and Aleswid [131] also utilize the Cooja
network simulator to evaluate which OF is more suitable for a WSN in healthcare scenarios.
OF0 and ETX are examined in various network topologies, such as the grid and random
topology, under diverse densities. They conclude that the OF0 is more efficient with respect
to packet delivery ratio (PDR) and power consumption in the random topology setup.

Sousa et al. [132] propose an energy-efficient and path-reliability-aware objective
function (ERAOF). The OF suggested by ERAOF linearly combines energy consumption
and link quality (in terms of ETX) routing metrics. Even though the selected routes are
not optimal in either one of the objective metrics, they provide a balance between energy
efficiency and reliability. Rafea and Kadhim [133] suggest an energy threshold RPL (ETRPL),
which, in addition to the ETX metric, incorporates in its objective function the remaining
energy of the preferred forwarding (parent) node. ETRPL performance is evaluated via
Cooja simulator. Sharma et al. [134] suggest another MRHOF-based objective function that
takes into account three routing metrics: ETX, energy, and delay. Energy consumption,
in order to increase the lifespan of the network, is also considered by Sankar et al. [135],
which suggests cluster-tree-based routing protocol to maximize the lifetime of IoT (CT-
RPL). As the name suggests, CT-RPL is a cluster-based routing protocol that involves three
processes: cluster formation, cluster-head selection, and route establishment. CT-RPL first
scans the nodes and group (cluster) nodes whose Euclidean distance from their centroid
point is bounded, adding one node at a time. Next, each cluster selects its cluster-head
(CH), utilizing a game-theoretic approach in which the node with the maximum payoff
“p” value—which considers parameters such as residual energy, sensing energy, receiving
energy, aggregation energy, and transmission energy—is selected as the CH node for each
round. Finally, the route is established using the metrics residual energy ratio (RER), queue
utilization (QU), and expected transmission count (ETX).

Another RPL enhancement termed weighted random forward RPL (WRF-RPL) is
proposed by Acevedo et al. [136]. WRF-RPL suggests a load balancing over RPL mechanism,
which distributes the traffic between multiple transmission paths, trying to avoid one
preferred parent’s congestions. WRF-RPL OF relies on the composition of two metrics, the
remaining energy and the count of parent nodes, where the latter aims at prioritizing parent
nodes with more optional paths to the destination. Forwarding decisions are probabilistic
according to the defined metric, such that nodes with a higher number of parents or hops
are more likely to be selected than others. The authors utilize the Cooja simulator for
evaluation. Rojas et al. [137] leverage a wired data center network labeling protocol to
suggest IoTorii, a routing protocol for LLNs. IoTorii supports multiple paths between
sender and receiver, and requires fewer table entries and control messages, with similar
performance compared to the standard RPL.
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Molnár [138] provides a graph-theoretic solution to the general problem of QoS-
constrained routing in WSN that relies on RPL. The authors stress the difference between
multi-objective optimization and multi-constrained problem setting. Vera-Pérez et al. [139]
examine the integration of RPL to IEEE 802.15.4e with time-slotted channel-hopping (TSCH)
medium access mechanism. In particular, Ref. [139] characterizes the long deployment
delays required for such networks to become operational and able to start exchanging data
messages. The article proposes an analytical model that estimates the average time that the
synchronization process can take for a new node to join a TSCH-based network, as well as
an estimation of the maximum time required for the formation of a complete network of
this kind, and the additional time required to set the RPL-based routes. The paper validates
the analytical model via simulations. A recent comprehensive survey on routing protocols
for LLN networks in IoT (not exclusive to RPL) can be found in [140].

5.2. Data Aggregation Routing Protocols for Energy Harvesting WSN

As discussed in Section 2, an alternative for relying on batteries as the source of energy,
with their imposed constraints (e.g., size, replacement, etc.), is to embrace energy-harvesting
(EH) technology. However, as mentioned earlier, relying on EH imposes different con-
straints and limitations. Such constraints can make battery-reliant schemes impractical
when devising data collection procedures. When battery-reliant schemes are applied to
EH-based platforms, performance can be highly degraded. Specifically, relying on EH can
induce high diversity between the different nodes, as different nodes can have different
attributes, such as energy depletion and charging rates, which affect the nodes’ availability;
in addition, different nodes can have different roles, such as different reporting rates or
different report importance, requiring more energy usage, which eventually also affects the
nodes’ availability. When a sensor is expected to transmit or receive a report, it needs to
have sufficient energy to complete the transaction; therefore, reliance on EH needs to be
considered when designing a scheduling protocol. For example, a data collection scheme
that relies on EH should adapt the report rate to energy availability; it can compromise
the rate of less important reports coming from the sensors to leave them sufficient energy
for emergency reports. It can prioritize sensors with more energy over those with lower
energy, especially when there is some redundancy in the reports received by different
sensors. This is especially so when dealing with multi-hop routing, where many of the
nodes serve as relays and have the burden to stay awake longer, to receive and transmit
more, which escalates the heterogeneity of the nodes and accentuates the difference in
importance between the different nodes. Furthermore, if on a single-hop network, we
could rely on the receiver (sink) to have unlimited power (connected to a power source), in
multi-hop topologies also, the receivers rely on EH; hence, when scheduling a transmission,
we need to ensure that both transmitter and receiver have sufficient power to complete the
transaction. In the following, we present several routing protocol adaptations for EH-WSN
in the context of data aggregation.

The typical setup considers that each node (sensor) encompasses an energy har-
vester and an energy storage device and is solely powered by the renewable energy
available to it by its energy storage device. A multi-hop topology is considered such
that the data from many of the sensors need to traverse multiple links before reaching the
sink. Jeong et al. [141] propose an adaptive data aggregation scheme for energy-harvesting
WSNs. The suggested scheme relies on two residual-energy thresholds, lower and upper.
Each node periodically estimates its residual energy level to determine whether or not to
transmit data. When the node’s residual energy is either above the upper threshold or
below the lower threshold, the node transmits its aggregated data. If its energy is below
the lower threshold, the node enters energy-saving mode after transmitting the data. Its
radio is turned off, and it waits to regain sufficient energy before turning its radio back
on. In normal operation mode, where the residual energy is between the two thresholds,
the node only aggregates data received from other nodes and collects its own sensed data.
If a node’s aggregated data in normal mode exceeds its storage limit, the node transmits
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the data regardless of its residual energy. While this scheme is clear and straightforward
to implement, it lacks latency evaluation and a discussion about rendezvous between a
transmitter and a receiver.

Chen et al. [142] experimentally show that in energy-harvesting-based wireless sensor
networks (EH-WSNs), the required nodes’ charging time to be ready to receive or send a
packet is much greater than the time required for the contention resolution mechanism and
dominates the data aggregation latency. In addition to the common collision definitions, the
paper defines an “energy-collision”, which occurs due to battery level constraint and not
due to simultaneous transmissions. Specifically, energy-collision occurs when a transmitter-
receiver tuple is scheduled for transmission, but the transmission cannot take place because
at least one of the two nodes has insufficient energy to transmit or receive the packet due
to recent activity (insufficient time has elapsed since its last transmission or reception to
harvest enough energy for the subsequent scheduled transmission). An adaptable data
aggregation tree is constructed, which considers each node’s residual and harvested energy,
and three energy-collision-aware data aggregation algorithms are proposed.

5.2.1. Cluster-Based Routing Protocol That Relies on EH

Several studies have suggested various adaptations for LEACH WSN cluster-based
routing protocol (e.g., [106]) for EH-based WSN (EH-WSN). Recall that LEACH’s cluster-
head selection mechanism randomly selects sensor nodes as cluster-heads to distribute
the energy consumption between them evenly, which can seemingly cope with the EH
constraints. However, note that even when the nodes’ platform is exactly the same, the
potential of different nodes to harvest energy, dependent on their specific ambient con-
ditions, can be very different. Furthermore, the node’s location with respect to the sink
can highly influence the amount of data it needs to relay toward the sink, causing high
discrepancies between the energy utilized by various nodes. To cope with these discrepan-
cies, Xiao et al. [143] modify LEACH’s cluster-head selection mechanism and define a new
metric termed “energy potential function” to measure each node’s capability to harvest
energy. The paper devises a cluster-head selection strategy that prioritizes nodes with
higher expected stored energy (based on the currently available energy and their potential
energy) to become cluster-heads, regardless of the number of instances that the node was
selected as cluster-head in the past.

To address the imbalance between the energy expected to be consumed by cluster-
heads (CHs) that are closer to the sink and are expected to spend more energy on relaying
packets from farther clusters, and CHs that are further from the sink and expected to relay
less traffic, Wu et al. [144] suggest an unbalanced clustering mechanism. In particular,
cluster sizes are determined according to the distance (hop count) to the sink to balance the
energy consumption of the CHs. Accordingly, clusters closer to the sink, which are expected
to relay more inter-cluster traffic, will be smaller, so that they collect less intra-cluster
traffic; clusters further away from the sink and expected to relay less inter-cluster traffic
will comprise more nodes, so that they collect more intra-cluster traffic. The mechanism
suggested to attain this balance is partitioning the network conceptually into concentric
rings around the sink with linearly increasing radii. Each ring comprises nodes with
the same hop distance to the sink. Clusters within the same ring will have the same
size. CH selection is designed to balance the loads of each ring considering the available
nodes’ energy, which is evaluated based on the EH rate. Following a similar approach,
Yang et al. [145] assume a highly symmetric circular sensor network in which the sink
(BS) is located at the center, and the sensors are distributed evenly in a disc around it.
As with [144], the sensor field is divided into concentric rings; however, in this study,
the rings are determined to have an equal area such that the number of sensors in each
ring is expected to be the same. Under the given model, Ref. [145] analyzes the energy
consumption of intra- and inter-cluster data transmission and derives the energy neutrality
constraints, which guarantee that each node consumes less energy than the amount of
energy it has harvested. The authors further devise a constraint formula of the number of



Sensors 2022, 22, 2650 23 of 44

clusters required in each layer (ring) that balances the average energy consumption of nodes
in different layers. The energy neutrality constraints and the cluster parameters are used to
obtain the parameters (number of rings, number of clusters in each ring, and minimum
network data transmission cycle) that minimize the data transmission cycle. Based on the
attained parameters, the cluster-based routing protocol is derived. The protocol consists
of an initialization phase and repeated cycles divided into topology formation and data-
gathering phases. Bahbahani and Alsusa [146] suggest two separate enhancements. The
first, termed cooperative transmission strategy, enables nodes to serve as relays to relay
undelivered packets from cluster members to CHs and from CHs to the sink node. The
second mechanism, termed cluster-head duty-cycle, regulates the frequency at which a node
can become a CH based on duty-cycling that adapts to the node’s energy-harvesting rate.

To conserve the energy of nodes that are more susceptible to energy depletion,
Bozorgi et al. [147] select CHs, taking into account their residual energy, expected har-
vest energy, distance from the sink, number of neighbors, and, similar to LEACH, the
number of times a node has already served as a CH in the past. The proposed approach,
which combines centralized and distributed mechanisms, relies on a signal transmitted
by the sink that can be received by all the nodes, which allows them to estimate their
geographic distance from the sink. The network is partitioned by the sink into four layers
based on distance. The sink further computes the individual coverage radius of each node
(potential CH) based on distance (nodes closer to the sink, which are therefore expected
to relay traffic coming from more distant clusters, will have a smaller radius, and thus
less intra-cluster traffic; on the other hand, nodes farther away from the sink, which are
therefore expected to have less inter-cluster traffic to relay, are assigned a longer radius,
and therefore more intra-cluster traffic). The paper suggests a distributed contention-based
mechanism for selecting the CHs in which the contention window takes into account the
parameters mentioned above. Another cluster-based routing for EH-WSN is proposed by
Ren and Yao [148]. The proposed routing scheme is divided into cluster establishment and
data collection. It is suggested that besides the typical cluster members (CMs) and cluster-
head (CH), a new entity be devised, termed in the paper scheduling node (SN), which is
different from the CH. The main task of the SN is to monitor the energy of all the cluster
members during the data collection stage and select a CH based on the monitored residual
energy of the cluster members. The transmission range of nodes can also be adjusted based
on their residual energy. The data collection stage, which adapts a round-based scheme
similar to LEACH, is divided into the data transmission and CH selection stages.

Sinde et al. [149] aim to improve the network efficiency by three means: (i) clusteriza-
tion mechanism that takes into account energy consumption during the data aggregation
phase, (ii) duty cycle adaptation of each node such that each sensor node determines its
mode of operation, and (iii) routing mechanism based on ant colony optimization that
chooses the path between the source and the sink node that reduces the delay incurred.
Overall, while the paper jointly addresses several topics in WSN, including those connected
to energy-efficient data gathering, its main contribution is the detailed NS3 simulation.

5.2.2. Mobile Charger

Today’s technology enables dedicated wireless charging equipment (WCE) to recharge
the nodes’ batteries, prolonging the lifetime of wireless rechargeable sensor networks.

A model in which, in addition to the sink (base station), a mobile station will navigate
through the WSN to collect data and charge sensor nodes is considered by Liu et al. [150].
The paper suggests a joint routing and charging strategy. The joint problem is decomposed
into two sub-optimization problems: routing tree optimization and charging path optimiza-
tion. Heuristic algorithms based on simulated annealing algorithms were applied to solve
these sub-optimization problems.

A joint charging and routing algorithm with WCE-assisted data gathering is also
suggested by Lu et al. [151]. The model suggested therein assumes that the BS (sink) can
get the information of each node at any time, including node location, residual energy,
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and energy consumption rate. The suggested approach relates to data routing and energy
supplement to undercharged nodes. The data routing algorithm considers several factors:
sensor buffer occupancy, load, and energy. To find the route for the mobile recharging
unit to traverse, they rely on Du [152] to seek the shortest Hamiltonian cycle between the
nodes that urgently need energy replenishment traversed by the mobile recharging unit.
Additional nodes along the traversed path can also be charged. Furthermore, the mobile
recharging unit can also gather data from sensors with a critical buffer occupancy during
its recharging cycle.

In the following section, we discuss network coding (NC) and, in particular, linear
network coding in the context of data gathering in WSN.

5.3. Network Coding (NC)

Network coding leverages the routing protocols and the ability to construct multi-path
routing between sources and their destination (the sink) to enable intermediate nodes to
perform coding on the incoming packets before forwarding them. In the following section,
we discuss network-coding-related works.

Linear network coding was first introduced by Celebiler and Stette [153] and evolved in
the seminal paper by Ahlswede et al. [154] as a means to improve the network’s throughput,
efficiency, and scalability, which can also be leveraged to improve the network resilience
to attacks and eavesdropping. Linear network coding allows the network’s intermediate
nodes (e.g., relays) to accumulate arriving messages and forward a newly encoded message,
which is a linear combination of the accumulated packets, multiplying them by coefficients
chosen from a finite field. The manner in which nodes encode and decode messages de-
pends on the selected coding scheme. Network coding (NC) over wireless communication
can reduce the number of transmissions by leveraging the fact that a single transmission is
overheard by multiple nodes in the transmitter’s vicinity, and can therefore be utilized by
each of these nodes, which will forward a coded packet with unique coefficients comprising
its own message and the messages it overheard (e.g., [155]).

In WSNs, NC can be utilized for various traffic patterns, including data dissemination
(one-to-many communication) and data gathering. Works on energy-efficient NC-based
dissemination can be followed in the survey [156], with multi-hop routing being empha-
sized. In data dissemination in which the base station/sink distributes information to
the sensor nodes, NC is beneficial mainly for distributing control messages (broadcast or
multicast traffic) or, in case of unicast traffic, for recovering lost packets (retransmissions).
The latter utilization relies on the fact that different nodes heard or did not hear different
packets. Accordingly, nodes store packets they overheard, even if not destined to them-
selves. The transmitter (e.g., access-point) accumulates several packets that need to be
retransmitted, each for a different receiver. It transmits a coded packet that is a composite
of these accumulated packets. Each receiver can decode a missing packet by utilizing its
stored overheard packets (e.g., [157–162], where the last two mainly focus on data dis-
semination of control management messages. It is noteworthy that Cohen et al. [157] also
present a successful real HW radio deployment of their scheme. XOR-CoW [163] exploits
the same concept to design an IoT protocol in which relays transmit coded packets that
mix downlink and uplink traffic. Similar to other previously mentioned studies, the coding
scheme by Swamy et al. [163] is over finite Galois field of size 2 (GF(2)) (i.e., XORing the
coded packets).

Network coding is widely explored for data-gathering schemes. Typically, an NC-
based protocol involves both the coding scheme and the multi-path routing. It relies on
the relay nodes to overhear packets and perform the coding, and on the sink (or multiple
sinks) to collect sufficient coded packets (combinations) to encode the sent information.
The limited ability of the sensors constrains NC over WSN (e.g., limited storage to store
overheard packets, limited computation power to perform sophisticated operations, limited
awake time for packet overhearing, etc.). The utilized coding scheme influences the
performance of the NC algorithm in several aspects such as the throughput, algorithm
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complexity, encoding complexity, decoding complexity, packet overhead (bits), required
feedback, and so on. Note that many of these metrics are directly translated to air time
and energy consumption, which must be considered in WSN. The random linear network
coding (RLNC) encoding scheme (e.g., [164]) is widely used because, despite its simplicity,
it can attain throughput that is close to the optimal one using a decentralized algorithm.
In RLNC, relays transmit random linear combinations of the packets they receive, with
randomly chosen coefficients from a finite Galois field (GF). The receiver must obtain a
sufficient number of linearly independent combinations (packets) to decode the original
packets. If the GF size is sufficiently large, the probability that the randomly generated
combinations will be linearly independent is high. However, the receiver needs to know the
coefficient used in each combination; hence, it needs to be sent as overhead piggybacked on
each traversed packet. The larger the GF size, the higher the overhead. RLNC scheme with
distributed encoding was utilized by Stefanović et al. [165] for a perimeter data-gathering
objective, in which the data should reach the perimeter nodes that are located on the
boundary of the covered area. The proposed scheme does not deploy routing algorithms or
maintain routing information and relies on random walks.

One disadvantage of RLNC is its decoding complexity in the order of O(n3), where n
denotes the number of original packets. Sparse end-to-end erasure-correcting codes can
reduce the decoding load on the receiver at the cost of introducing an additional, non-
negligible delay. Feizi et al. [166] suggest a tunable sparse network coding (TSNC) scheme
that tunes the level of sparsity as the transmission process evolves. This tuning process
can reduce the delay overhead by using denser codes towards the end of the transmission
while maintaining the complexity advantages of a sparse code. Prior et al. [167] propose
two network coding schemes for information gathering, which are based on tunable sparse
codes, with and without explicit feedback from the sink. The suggested schemes are
designed for meter readings in a smart grid. Nistor et al. [168] further exploit RLNC and
TSNC for data gathering and derived analytical bounds for a multi-hop line network using
a fluid model, which is valid for any field size and various sparsity levels, and has two
different feedback mechanisms.

SenseCode [169] adopts the NC paradigm, aspiring to balance energy efficiency and
end-to-end packet error rate. SenseCode relies on nodes transmitting both uncoded and
coded packets. Each node stores only a small portion of the packets it overhears, which can
be attained by letting the node wake up sporadically within its duty cycle and stay awake
for a short time interval each time it wakes up, storing overheard packets. Accordingly,
each coded packet comprises only a small subset of the packets the node could have
potentially overheard and coded. NetCoDer [170] concentrates on a star topology in
which the star-head can be a sink or a relay that collects information from its neighbors.
NetCoDer opportunistically selects, based on network conditions, a set of relays that, in
addition to the data sent by the nodes, send additional coded packets with packets they
overheard, which helps the star-head recover lost packets. To reduce the overhead, the
relays use LNC coefficients based on the addresses of the sensor nodes. A similar idea
that also does not rely on feedback was presented in SR-Code [171] in which nodes and
relays send redundant coded messages to help the sink recover lost messages. SR-Code
utilizes the XOR operator (GF(2)). Similar to NetCoDer, SR-Code reduces the overhead
by using a bitmap to identify the coded packets rather than the address of the sending
node. Al-Hawri et al. [172] assume a data-gathering setup with single or multiple gateways
(sinks) that can collaborate (exchange information via accessible shared distributed storage
system). The paper distinguishes between traditional relays, which forward packets they
receive as-is, and encoding relays, which perform network-coding on the packets they
receive before forwarding them. The authors suggest a mathematical model and a heuristic
algorithm to determine the number of network-encoding nodes and their location, which
is insufficient for the aggregate received data at the gateway/gateways to be decodable,
taking into account link failure scenarios.
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Protocols that utilize NC in WSN need to balance achieving the NC expedience and
diverse performance criteria. On the one hand, the motivation is to send only coded packets,
as sending uncoded packets degrades the NC gain. On the other hand, a strategy in which
a relay waits for packets to arrive in order to code them can yield unacceptable delays.
Furthermore, storing arriving packets while waiting for additional packets to arrive before
coding them can result in a buffer overflow and packet loss. To overcome these drawbacks,
Chen et al. [173] suggest an opportunistic network coding (ONC) approach in which the
relay can transmit either coded or uncoded packets. Each relay determines whether to
transmit a coded or uncoded packet according to its queue state at each transmission
opportunity. For the simple topology of a relay interconnecting two nodes that communi-
cate with one another, Ref. [173] presents an ONC strategy that can achieve the optimal
delay/power tradeoff. Mirani et al. [174] adopt the ONC paradigm for data dissemination
in vehicular ad hoc networks (VANETs), for which the mobile nodes (vehicles) employ a
decode-and-forward scheme with subjective timers determined according to their distance
from the source. In Tan et al. [175], an opportunistic routing protocol with opportunistic
network coding is proposed for correlated data gathering.

Next, we provide more recent works that utilize NC in WSNs and related networks
that are not particular to data-gathering applications. Marques et al. [176] propose to use
NC in a fog computing scenario, since in the fog computing system architecture, the data
measured on a node should be delivered to many other destination nodes. The authors
design a protocol for encoding and decoding and provide a design to incorporate it on
the MAC level. Uwitonze et al. [177] consider a setup in which a WSN has been split into
multiple disjoint partitions and suggests a polynomial-time heuristic algorithm based on
space network coding termed relay placement using space network coding (i.e., rather than
send additional coded data, additional relay nodes are deployed) for finding the optimal
number and positions to place relay nodes for restoring the network connectivity.

A network coding backpressure routing scheme for data aggregation in large-scale
Internet of things (IoT) networks is explored by Malathy et al. [178]. The proposed routing
scheme exploits network coding for the data aggregation process, which improves the
throughput of the network by eliminating redundant packets. The paper relies on cluster-
based routing that selects the cluster-heads (CH) based on the available energy and distance,
which helps to minimize traffic congestion and provide efficient data transmission.

5.4. Data Collection Utilizing Mobile Sink and Unmanned Aerial Vehicle (UAV)

A different paradigm for the traditional setup of data gathering in WSN, which
relies on a single or multiple static sink(s) towards which all traffic needs to travel, is
the utilization of one or multiple mobile sinks (MSs) that traverse the terrain and collect
the reports from the devices. Such mobile sink(s) can be the traffic’s final destination or
just an accessory that collects the data and transmits it to the sink. Note that in the latter
case, the final destination is not necessarily located within the wireless network realm
and can be located outside it (e.g., within the Internet or the cloud). Since these mobile
sinks are unmanned aerial vehicles in many cases, these systems are sometimes called
unmanned aerial vehicle-wireless sensor networks (UAV–WSNs). This section reviews
several state-of-the-art developments in mobile sink(s). Since sometimes the MS routing
challenges are interleaved with the MAC layer’s challenges, the solution suggested in some
papers, and accordingly their description, incorporated both layers.

Typically, data-gathering protocols that utilize moving sink(s) aim at optimizing some
performance metrics, such as overall power consumption, average or worst latency of the
data, trajectory traversed by the mobile sink, awake time of the sensors, maximizing the
life cycle of the network, and so on. There are different options to classify these protocols:
they can be classified according to this aforementioned performance objective, or other
categories, such as characteristics of the moving sink, its speed and constraints, network
model, communication standard utilized, and so on. In this section, we will classify the
protocol into two classes: protocols that solely rely on the moving sink with no intra-traffic
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between the nodes (all the traffic is directly transmitted to the moving sink), and protocols
that combine routing between the nodes and traffic forwarding to the sink. This latter
class will mostly include cluster-based protocols in which the nodes are clustered and
cluster-heads (CHs) are selected, but rather than the CHs routing the traffic towards the
sink, they forward the traffic directly to the mobile sink.

5.4.1. Routing Directly to the Mobile Sink(s) with No Intra-Node Data Forwarding

In this section, we review papers in which the only data traffic is between the nodes
and the mobile sink, and no data is forwarded between the nodes.

Zhan et al. [179] consider a general fading channel model and suggest an efficient
sub-optimal solution that minimizes the energy consumption of all sensor nodes (SNs)
while ensuring that data is collected reliably from all SNs with bounded outage probability.
The suggested solution decouples the joint optimization problem, which considers both
the SNs’ wake-up schedule and the unmanned aerial vehicle (UAV’s) trajectory, into two
separate optimization problems, ensuring that the amount of data collected from each SN
reliably exceeds a threshold. One of the formulated optimization problems is non-convex
due to non-convex constraints, and therefore it needs to be relaxed. The two problems are
solved iteratively to obtain an approximate solution. A flight time minimization problem
for a UAV that collects data from a set of energy-constrained ground sensors is studied by
Gong et al. [180]. The sensors are assumed to be located on a line (one dimension). Each
sensor has a certain amount of data to upload. The UAV can collect data either while
flying or while hovering, and only from a single sensor at a time. Accordingly, the UAV’s
trajectory is divided into non-overlapping data collection intervals, each dedicated to
collecting data from a single sensor. The objective is to minimize the total flight time of the
UAV from an initial point to a destination by jointly optimizing the division of intervals, the
UAV’s speed, as well as the sensors’ transmission power. The flight time minimization is
formulated as a dynamic programming (DP) problem, where each DP stage considers flight
time minimization for a single-sensor data collection scenario. The algorithm for the single-
sensor case is used to find the UAV’s optimal speed and the sensor’s transmission power.
It is shown that the UAV’s optimal speed is proportional to the given energy of the sensors
and the inter-sensor distance but is inversely proportional to the data upload requirements.

The metric addressed by Liu et al. [181] is the age of the information. In particular,
Ref. [181] utilizes UAV, and suggests two age-optimal trajectories for it to collect the
data from the ground SNs, one that minimizes the age of the ‘oldest’ sensed information
among the sensors, and another that minimizes the average age of the information sensed
by all sensors. It is shown that both age-optimal trajectories correspond to the shortest
Hamiltonian path in the wireless sensor network, in which the distance between any
two sensors is represented by the amount of inter-visit time. The authors adopt dynamic
programming and genetic algorithm to find the two different age-optimal trajectories.
Liu et al. [182] also utilize a UAV to collect the data from the ground sensors. The model
suggested therein assumes that the sensors (nodes) are randomly distributed over a square
area. The area is partitioned into small square cells. The UAV flying above the cells
hovers above each cell to collect all the data of the sensors within the cell. The paper
studies the amount of data per unit time that the UAV can collect from the ground nodes
as a function of the number of cells, the height of the UAV, the number of sensors, and
the energy capacity of the UAV. The paper suggests a similar analysis when multiple
UAVs are utilized. It seeks the optimal number of cells to maximize the per-node capacity
under the suggested model and shows that under the suggested data collection network,
multiple UAVs can significantly improve the per-node capacity attained by a single UAV.
The balanced network communication protocol (BNCP) that utilizes UAV as a mobile
sink is suggested by Qin et al. [183]. There is no inter-sensor routing in BNCP, and all
sensors’ communication energy is spent on the sensor-UAV transmission links. BNCP is
implemented and evaluated.
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5.4.2. Cluster-Based Data Forwarding

Rather than the mobile sink node traversing the network between all the sensors, a
different approach groups the sensors into clusters and selects cluster-heads (CH), which
collect the data from all cluster members, thus decreasing the traverse of the mobile sink.
In general, data gathering in a clustered WSN imposes a tradeoff between the energy
consumed during data collection within each cluster and the energy consumed by the
mobile sink. On the one hand, the higher the number of clusters (smaller clusters), the
less energy is consumed during data collection by the cluster-heads (CH); on the other
hand, it follows that the UAV will have to access more CHs on its route, and consequently,
the energy spent by the UAV will be higher in that case. This trade-off is one of the main
challenges in addressing the joint problem of clusterization and CH selection, jointly with
finding the path traversed by the UAV, as reflected in several papers discussed below.

Najjar-Ghabel et al. [184] propose a two-phase algorithm, termed DGOB, for data
gathering in WSNs in an environment impaired by obstacles, which utilizes a mobile sink
that traverses the network and collects the data. Both phases, node clusterization and
MS trajectory construction, exploit artificial intelligence (AI) schemes. Tazibt et al. [185]
utilize a small-scale drone to gather the data from scattered sensors. Like in several other
papers that rely on UAV to collect data from cluster-heads, the challenge in [185] is two-fold:
(i) clusterization and CH selection (in contrast with other papers, this paper allows multi-
hop clusters, such that cluster members are up to a predefined number of hops from their
CH); and (ii) plan of the drone trajectory for traversing through all CHs with minimum
energy consumption (e.g., minimum path length). Even though the two problems are
related, the authors solve the two issues sequentially. They first solve the CH selection
by formulating an optimization problem that seeks the minimal set of cluster-heads that
guarantee that all nodes are at most h hops from a CH in the set. After determining the CH
set via linear programing, they utilize the 2-opt heuristic, which relies on a simple local
search algorithm for solving the traveling salesman problem, in order to find the optimal
travel trajectory for the drone between the selected CHs.

Kumar and Dash [186] also suggest a data-gathering-by-mobile-sink scheme in WSN.
The model in [186] assumes that the mobile sink is moving along a pre-specified path with
constant speed and can collect data while traveling. The paper denotes all the sensors
that are in transmission range from the mobile-sink traversed path, and can therefore
relay traffic to it, as sub-sinks. All other nodes need to forward their data to these sub-
sinks, possibly through multi-hop communication, in order for them to relay the data
to the mobile sink. The paper suggests two different models: the first assumes that the
mobile sink can receive data from only one sensor at a time, while the second assumes that
the mobile sink can receive data from multiple sensors simultaneously. Both suggested
algorithms comprise three phases: (i) identify the relay nodes (sub-sinks) that are within
transmission range from the mobile sink trajectory (unit disk graph model), and partition
the path into segments that are the union of all the transmission disks of all the sub-sinks;
(ii) determine the communication time each sub-sink can have with the mobile sink, and
accordingly, the amount of data it can transmit; (iii) utilize a network flow approach to
determine which sub-sink transmits to the mobile sink in each of the mobile sink’s path
segments. Ebrahimi et al. [187] aim to optimize total transmission power between WSN
cluster-heads in an IoT network. The problem is split into subproblems, which include
CH assignment, building of the forwarding tree within each cluster, and optimal UAV
trajectory calculation. The data transmitted by CH to UAV is pre-processed by a specialized
optimized compression. A genetic algorithm for energy-efficient CH selection is employed
by Wu et al. [188].

The focus of Zahra et al. [189] is on MS that traverses a WSN that relies on a cluster-
based data collection protocol in which cluster-heads are responsible for collecting and
transmitting the cluster members’ sensed data to the MS. The paper examines a scenario in
which the MS is constantly moving in a predefined trajectory, regardless of whether the
data transfer was completed or not. Accordingly, when the cluster aggregate data is too
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large, the CH cannot complete the transaction. The authors suggest a mechanism in which,
in case the CH cannot complete the transaction, it can use different cluster members as
relays to continue the transaction after the MS has moved out of the transmission range
of the CH. Likewise, Zhang et al. [190] also suggest a hybrid approach that combines the
MS with hierarchical routing-based protocol relying on node clusterization. In order to
improve the efficiency of the MS data collection, Ref. [190] suggests utilizing virtual heads
(VHs) that lie on the MS trajectory on the cluster boundaries that also transmit collected
data to the MS. The channel access relies on a random access mechanism.

The UAV can be of different physical structures. While some machines are able to slow
down and even to hover, others, especially the winged UAVs, can only fly with a constant
velocity. This limitation poses an additional challenge; see Say et al. [191] for a possible
solution. To address the velocity limitation, the grid topology of the UAV’s coverage is
divided into frames, and the most distant frames get the highest priority. The priority-based
transmissions from sensors to the moving UAV are incorporated into a MAC layer, by
introducing a priority-based contention window adjustment scheme. A smaller contention
window is assigned to the frame where sensors send packets from the rear side of the UAV,
and should therefore have a higher transmission priority. This results in a low packet loss
when the UAV flies forward. On top of this architecture, a frame-selection-based routing
protocol is formulated.

6. Wearables and Wireless Body Area Networks (WBAN)

Numerous applications rely on data gathering and report collection in WSN and IoT,
and some are mentioned throughout the paper. There is no doubt that the essence of WSN
is the applications that utilize the infrastructure discussed throughout this paper. Providing
a thorough review of such applications can encompass several surveys. Since wearables
are becoming highly popular and a ubiquitous application which imposes new challenges
in the context of data gathering, we discuss several recent results and related challenges in
the context of wearables. Figure 5 depicts the main topics discussed in this section.

Wearables and WBAN
Section 6

Energy Harvesting (EH)
Section 6.1

Technological Advances
Section 6.2

Transmission Protocols
Section 6.3

WBAN Applications
Section 6.4

Figure 5. The main topics in the context of wearables covered in the section, and a rough partition of
the papers covered by these topics.

Wearable technology refers to smart devices attached to the human body or apparel
to monitor the user and their environment. Wearables are designed to detect, analyze,
and transmit information, which allows continuous monitoring of the subject. In some
cases (e.g., healthcare applications), feedback is returned to the wearer with strict perfor-
mance constraints (e.g., reliability, latency bounds). Such applications can necessitate the
monitoring of both bodily conditions, such as blood pressure, blood glucose level (e.g.,
in conjunction with an insulin pump), ECG, EMG, body temperature, accelerometer, and
gyroscope, as well as environmental conditions that might influence the user, such as
temperature, humidity, CO2 level, dust level, and location.

Sensing essential human physiological parameters led to the innovation of wireless
body area networks (WBANs). WBAN typically relates to a small area network that spans
the whole human body. It comprises devices (wearables) located in the apparel, on the
body, or under the skin, and are wirelessly connected. Even though tracking physical
conditions applies to diverse domains, including medical, social, and economic ones, each
with its particular implications and extensive research in the field, the specific challenges
of acquiring data in WBANs necessitated new solutions designed for WBAN. Specifically,
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since the sensors in WBANS are designed to be located close to the monitored individual,
they impose particular challenges related to their specific structural, functional, and size-
related constraints. In the sequel, we dwell on some of the most critical challenges and
recent promising results on WBANS. The main objective of this survey is to understand the
data-gathering challenges. In the special case of WBANS, we also elaborate on the sensors’
physical and mechanical structure, which directly impact the data acquisition process.

Many of the challenges pertaining to WSN in general, which are described throughout
this survey, also apply to wearables. However, some of these challenges are exaggerated
when applied to wearables due to their unique characteristics. For example, energy-related
challenges that are essential to address and substantially influence any WSN design and
performance, open a different perspective on wearables. Specifically, due to their sensing
devices’ tiny size, the energy storing capacities are limited. Yet, many wearable applications,
particularly healthcare ones, employ continuous sampling and communication tasks that
constantly consume energy and deplete the device’s battery. Frequent battery replacement,
which can be a burden in any WSN, can be even more cumbersome in wearables and can
hinder the adoption of these technologies (e.g., when the wearables are implants, battery
replacement can involve an invasive medical intervention). Accordingly, energy-efficient
approaches designed for wearable sensor networks are important for disseminating the
technology into additional domains. An inclusive review of energy-efficient approaches
designed for human context recognition (HCR) based on wearable sensor networks is
given by [192]. This paper classifies energy-efficient mechanisms for health-related HCR
applications, based on the task that the mechanism is aimed at to reduce its energy con-
sumption (e.g., sensing, communication, computation). The paper reviews the related
works according to the classification.

6.1. Energy Harvesting (EH)

Energy harvesting as a battery alternative has been discussed in Section 5.2. However,
EH in the context of wearables encounters new challenges, such as critical reliability level,
expected tiny size and position in/on the human body, limited exposure to energy sources
such as solar energy, and so on. Accordingly, we revisit EH and review some EH studies
in the context of wearables. The three most prominent techniques include photovoltaic
cells attached to a wearable (energy is accumulated from environmental illumination),
thermoelectric nanogenerators (the energy source is the heat produced by the human body),
and kinetic energy harvesters (energy is created by natural body motion). All energy
harvesting cases pose a fundamental challenge of effective energy management, which
involves continuous decision making regarding how much energy to spend on sensing,
measurements, on-board classification, and transmission (see also Section 5.2).

We present examples for each of the techniques mentioned above in the context
of wearables. Thermoelectric energy-harvesting units exploiting self-generated human
heat are suggested to be fabricated straight into the textile of the garments [193]. Energy
harvesting for activity-aware wearables is designed by Khalifa et al. [194]. The idea is to
remove the accelerometers, which consume about 80% of the battery. Instead, the authors
propose to employ kinetic energy harvesters, which will convert human motion into
electrical power. Additionally, to compensate for the accelerometers’ removal, the input and
output of the kinetic energy harvester would be analyzed by a specialized activity classifier
to track and identify the human activity (i.e., to perform the primary task of the wearable).
Light-based energy-harvesting wearables are discussed by Park et al. [195]. It is noteworthy
that as the available luminosity can be highly unpredictable, the overall functioning, data-
gathering, and transmission process would imply an optimization problem. Henceforth,
the same authors suggest a protocol to optimize the number and accuracy of interpretation
of human gestures by an energy-harvesting wearable device under an energy budget,
Park et al. [196]. To this end, they constructed an analytical model that characterizes
energy consumption based on experimental data and formulized the optimization problem.
Esteves et al. [197] suggest incorporating energy harvesting as part of MAC 802.15.6. The
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proposed MAC modification includes the usage of some body sensors as relays. The
managing part at a hub (e.g., a smartphone) sets the optimal relay charging times to
perform the data transmission by relay effectively. A source and the relays send their
energy-harvesting updates within the request for cooperation (RFC) packets. The charging
times are calculated according to the amount of energy at the source and relays and are
updated in accordance with previous packet transmission success or failure.

6.2. Technological Advances

WBAN utilization is penetrating new domains, spanning a wide variety of sensors,
each providing a different aspect of the monitored subject. For example, healthcare ap-
plications are expected to provide a wide span of indicators from various physiological
parameters. Specifically, to provide a comprehensive status of the examinee, it requires, in
addition to the standard indicators such as heart rate and physical activity that many of us
already have integrated in our watch, information at a deeper level and molecular level
insight into the dynamics of the wearer.

To cope with the growing popularity of wearables and their expansion to a broader
scope of applications, especially in healthcare systems, with the increasing demand to
improve quality of service (QoS) and quality of experience (QoE), a new generation of
wearables has emerged. This generation relies on several technological advances in both
the device and cloud realms. The novel device technology utilizes new soft-sensing tech-
nologies, including innovative wearable materials such as conducting polymers, rigid
forms of hydrogel, gold and silver nanowires (to create nanowired tattoos as stretchable
sensors), carbon nanotubes, liquid metals, ionic liquids, and others. These materials give
rise to novel sensor families, such as electro-physiological (acting on the electric potential
difference) physical and chemical sensors. See the latest advances in the following related
works [198–200]. For example, besides reviewing the key developments in sweat-sensing
technology, Bariya et al. [198] examine the requirements of the underlying components
embedded in sweat-based wearable sensors and discuss challenges for integrating wearable
sweat sensors in the development of personalized healthcare. Sweat-sensing technology
has been described earlier; see, for example, Salvo et al. [201], where a device containing
two humidity sensors located at different heights from the skin is designed in a way that
allows one to measure the sweat rate by the difference in readings of these two sensing
sub-units. Thermal comfort control by calculating the relation between the vapor pres-
sure and the temperature is designed into watch-type sweat sensors by Sim et al. [202].
Sweat measurement by sweat biomarkers (in particular, pH and Na+) is implemented
by Song et al. [203]. In short, the biomarkers cause a change in electric potential near the
measuring device, allowing for accurate sweat measurement during physical activity. The
authors also note that the change in electrical potential allows for energy harvesting, which
can be effectively managed to self-power the device and thus allow for a battery-free design.
In general, the material imprinted into the working reacting electrode determines which
substance (i.e., a chemical component present in the sweat) it will react with. For example,
an application of electrochemical differential pulse voltammetry to sense the sweat to
measure the level of caffeine is devised by Tai et al. [204].

The main challenge in the devices is to implement capabilities of effective data gath-
ering, filtering, and transmission within microscopic computing units. Some biometric
sensing (especially made by specific configurations of adjacent sensor sets) produces large
amounts of data (as in ECG sensing) that should undergo an appropriate local density
reduction. To ensure conformity with the sensing devices, paper lithium batteries are
proposed (see, e.g., [205]). In addition, many sensors are configured only to transmit
following special hazards. For example, ECG sensors should trigger an alarm in case the
heartbeat is abnormal. This local data processing is a preliminary phase that facilitates
the more intensive data analyses in the intermediate data collection unit (the smartphone),
and finally, the destination server. To treat noisiness and variability (if the sensor sampling
frequency is too high) of raw data from an accelerometer or gyroscope or loss of data (if the
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sensor sampling frequency is too low), variable sampling is proposed by Li et al. [206]. The
offline ML classification algorithm is used to identify and predict the physical activity.

The recent development of miniature sensors combined with minimization of battery
size and energy harvesting advances is sometimes referred to as a new paradigm, known as
Wearables 2. For example, Ling et al. [207] provide a detailed description of various types
of sensors, means of attaching them to the human body, multiple parameters the sensors
are capable of measuring, and techniques to communicate and process the measured data.

6.3. Transmission Protocols

We note that while many of the works mentioned above employ a smartphone device
with an application that is presumably tailored to receive data from the wearables, having
a dedicated hardware device that would offload some of the networking burden (e.g.,
potential simplification of the packetizing process) of the sensors would be more effective
and reliable. Indeed, in Pathak et al. [208], a central processing hub allows one to circumvent
the cumbersome processes of sensor identification, sensor joining, and reconfiguration
by providing a designated interface. The authors provide real hardware implementation,
explore various performance metrics, and provide energy measurements.

Several available protocols for data transmission are suitable for WBAN. We mention
here the low Bluetooth energy (BLE; see, e.g., Townsend et al. [209] for a detailed protocol
stack description and Gomez et al. [210] for performance evaluation and comparison with
ordinary Bluetooth and other protocols). For distances of several centimeters, near-field
communication (NFC) protocol (see Coskun et al. [211] for the theory and Kim et al. [212]
for a description of possible device designs and applications). Details of the IEEE 802.15.6
standard, which covers WBAN, can be found in, for example, Kwak et al. [213]. One sees
therein how the human body communications PHY layer in particular is defined.

6.4. WBAN Applications

Even though, as stated earlier, there is no intention to provide a thorough review of
WBAN applications, we mention several interesting ones. Monitoring of workers involved
in extreme conditions or whose activity can be potentially dangerous (e.g., Lee et al. [214])
suggest wearable sensors for monitoring miners or construction professionals. This study
evaluates integrated wearable sensors for measuring construction workers’ personal level
of workload, individual factors, and physiological reactions during roofing activities. A
fatigue detection system for car drivers by Chang et al. [215] includes smart glasses, which
are able to identify possible drowsiness by an IR detector aimed at the driver’s eyes,
equipped with BLE transmitter. A small processor embedded into the glasses gathers and
pre-analyzes the data and then transmits them to the on-board computer in the car. The
latter makes a decision about whether to issue a fatigue warning and sends it to the cloud.
Wearables can be attached to a human body in order to sense the environment for the safety
of the carrier, as in Wu et al. [216]. The data (humidity and temperature) is then transmitted
to a mobile unit, where it can be analyzed locally or further transmitted to the cloud in order
to issue timely warnings. Classification of sports activity is implemented and validated by
experiments by Qi et al. [217], where the activity is identified from accelerometer and ECG
measurements done by chest and wrist sensors. The measurements are transmitted to a
smartphone, which performs the data processing. SVM is employed for the classification.

You et al. [218] suggest a real-time wireless body sensor networks (WBSNs) scheme
for welfare assessment and disease monitoring, prevention, and treatment. The suggested
scheme is composed of three components: sensing, communication, and management.
Sensing attains a set of physiological parameters, such as heart rate, body temperature,
ECG, temperature, blood pressure, blood glucose, heart rate, and oxygen saturation, from
designated sensors embedded on a smart shirt worn by the monitored user. Communi-
cation handles the processes of delivering the sensed physiological data and controlling
instructions to a backend server through wireless networks. The transmission protocols
can be divided into two segments: the transfer of information from the sensors to a central
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terminal located at a smartphone and the transfer of information between the smartphone
and the designated server, which is located on the healthcare cloud. The communication
relies on multiple communication protocols including Bluetooth, WiFi, and 3G/4G (which
can be replaced by 5G where available). Management is responsible for collecting, classify-
ing, and monitoring the physiological data, and furthermore, being able to issue warning
messages to medical professionals or caregivers whenever the physiological data are ab-
normal. Additional applications utilizing data gathering can be found in the following
survey [219].

We conclude by emphasizing that the benefits of WBANs have not run their course
yet. The development of data gathering will jointly progress with the ongoing advances
in sensor construction and manufacturing capability, development, and standardization
of Wearables 2 and beyond. Development of specialized post-processing platforms poses
a specialized challenge, and the urge to make progress in this area is acute. To illustrate
this, on account of an ever-growing population, specialized platforms for elderly care
are needed; see, for example, the recent papers [220,221] about wearables designated for
elderly patients and references therein.

Finally, wearables have been recently harnessed for combating the COVID-19 disease.
Early identification of COVID-19 symptoms by evaluating the resting heart rate during the
asymptomatic (presumably infectious) period and analysis by a deep learning framework
is evaluated by Bogu and Snyder [222]. While the precision of such a tool is clearly inferior
to the standard medical assays, it may be useful to provide a preliminary alert for the
early onset of the disease for people in risk groups. Hassantabar et al. [223] suggest a
framework termed CovidDeep that combines commercially available wearable physiolog-
ical feature sensors (WMSs) and a simple yes/no questionnaire with efficient DNNs for
pervasive large-scale monitoring of disease onset and health condition. The automatically
extracted raw data and medical background and symptom responses are combined with
synthetically generated data to train the DNN architecture. Grow-and-prune synthesis is
used to generate accurate and computationally efficient models that can be deployed for
COVID-19 inference.

Since viruses can spread between people who are in close contact with an infected
person, and since infected people may be asymptomatic, the pandemic taught us that it
is best to keep a safe distance from others (see, for example, Cortellessa et al. [224] for
close-proximity risk assessment for COVID infection). Accordingly, most health institutions
recommend keeping physical distance between people in public places (commonly termed
as ”social distancing”) in order to stop the pandemic from spreading. Furthermore, people
who were in the proximity of an infected person (tested positive for COVID) are encouraged
to be examined, and several governmental regulations even require such people to stay in
quarantine. Several recent studies have suggested leveraging wearables for contact tracing
in order to identify the hazard from close proximity. For example, Ng et al. [225] focus on
Bluetooth low energy and discuss the different data flow approaches and the accuracy of
smartphone vs. smartwatch applications in proximity detection. Bian et al. [226] utilize
wearables to monitor social distancing as recommended for preventing COVID-19 spread.
In particular, the authors design compact potentially wearable oscillating-magnetic-field-
based proximity-sensing prototype systems suitable for the relevant safety distance and able
to track social distancing much more reliably than the current Bluetooth-based smartphone
technology. Shubina et al. [227] provide a brief technical overview of the main contact-
tracing approaches and the challenges they impose on wearable technology. The paper
also provides a short overview of the existing solutions deployed for contact tracing and a
discussion on the potential effect of wearables in tackling the spread of a highly contagious
virus. More works from the past year discuss the use of wearables for remote management
and automated assessment of COVID-19. Amft et al. [228] provide an overview of insti-
tutional initiatives and alternative, more accurate technologies for detection of infection
symptoms and possible contact with infected individuals. Channa et al. [229] is a system-
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atic review of the two categories of challenges: on-body sensors and their clinical utilization
in screening and contact tracing.

7. Concluding Remarks

Data gathering in modern WSN and IoT networks encompasses many challenges,
which span the entire communication stack. Many techniques, protocols, and solutions
have been proposed over the years, but as technology advances, new challenges and new
opportunities arise. In this survey, we reviewed these main challenges and opportunities, as
well as recent advances, and related them to specific data-gathering research domains. We
provided a comprehensive state-of-the-art data-gathering literature review in modern WSN
networks, distinguishing between the communication layers and the research domain.

We first summarized general architectural novelties and emerging architectures. We
reviewed several new technological advances and their influence on sensing device design,
the platform carrying it, and the transceiver. We reviewed the effect of these architectural
advantages on specific applications, such as agriculture, smart cities, smart homes. We
showed how cloud computing drives new WSN types, which introduces new directions,
and discussed how WSN can coexist within social network domains. Compressed sensing
was summarized next. We provided an overview of this important scheme and reviewed
its utilization in WSNs. We proceeded with the MAC layer. Since the performance of many
innovations in the higher layers rely on the underlay MAC protocol and since many data
gathering schemes utilize traditional WSN MAC protocols, we provided an overview of
these traditional protocols and mentioned state-of-the-art works in WSN and IoT. These
works devise new MAC approaches for data gathering. Next, we covered the recent
advances in routing. Similarly, we opened with an overview of the traditional routing
protocols utilized for data-gathering and reviewed several recent enhancements. We
reviewed the utilization of network coding for data gathering and explored the facilitation
of UAV and mobile-sink in collecting the data from the sensors. Lastly, we turned our
attention to the area of wearables which opens new research horizons for human health and
activity surveillance and discussed the new paradigm of Wireless Body Area Networks. In
the spirit of the times, we concluded with several studies that utilize some of the techniques
discussed in this survey to aid in combating the COVID pandemic.

While we provided the general background to the research areas we covered, we
mainly focused on cutting-edge research works. Yet we note that even seemingly exhausted
topics, such as MAC and Routing protocols, provide new technological developments and
present opportunities for new research domains.

As implied throughout this survey, there are several research areas that attract a
lot of attention and anticipation for future developments. For example, technological
innovations in manufacturing more compact sensing units with yet superior transmission,
reception and processing capabilities are extremely in demand in several disciplines which
include wearables, smart homes, IoT-related domains and others. All the more so, this
is relevant when dealing with healthcare applications and implants. Such technological
innovations will require in turn enhancements to other domains across the communication
stack in order to adjust to the new opportunities and limitations. Energy acquisition is
still a fruitful research domain. In this respect, finding new sources of energy harvesting
(EH), better utilization of existing energy resources and energy storage are still challenging
research fields. Similarly, new EH methods impose multiple new challenges on the entire
protocol stack, which are correlated with the EH method, e.g., different EH methods dictate
constraints on the MAC design, which in turn, impact the routing protocol which affects
the performance end eventually the application utilizing the infrastructure. The growth of
such networks supporting a variety of heterogeneous devices of communication standards
and their increasing density requires more effective data compression techniques and
efficient on-grid data analyses (i.e., even prior to data delivery to sinks). On the off-grid
side of WSNs, we note that consistent progress in Cloud Computing (CC) technology and
exploitation methodology will open new horizons in data analysis.
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Deployment of Edge Computing units cooperating with sensing-capable units will
imply the development of novel data-gathering schemes. As WSN density increases,
challenges in the gathering of useful data by WSN and its consequent analysis will coincide
with those of Big Data. Clearly, the processes of such analyses should be implemented
within Cloud Computing systems. The fashion of the CC physical resources deployed in
order to efficiently interact with WSN is not necessarily similar to those of usual IT-to-CC
connectivity. It is not currently properly standardized and, most importantly, it is not
clear how correctly CC (e.g., which HW, correct deployment of Access Points) should be
cross-planned with a particular WSN. Issues of security and privacy which are not covered
in this survey will continue to elicit a major interest, especially in keeping with evolving
health care applications. The growth of the network and their variability will require a
greater measure of adoption of ML and AI methods and the development of such new
specialized methods for WSN in the very near future.
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