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Abstract: On-road behavior analysis is a crucial and challenging problem in the autonomous driving
vision-based area. Several endeavors have been proposed to deal with different related tasks and it
has gained wide attention recently. Much of the excitement about on-road behavior understanding
has been the labor of advancement witnessed in the fields of computer vision, machine, and deep
learning. Remarkable achievements have been made in the Road Behavior Understanding area over
the last years. This paper reviews 100+ papers of on-road behavior analysis related work in the light
of the milestones achieved, spanning over the last 2 decades. This review paper provides the first
attempt to draw smart mobility researchers’ attention to the road behavior understanding field and
its potential impact on road safety to the whole road agents such as: drivers, pedestrians, stuffs,
etc. To push for an holistic understanding, we investigate the complementary relationships between
different elementary tasks that we define as the main components of road behavior understanding to
achieve a comprehensive understanding of approaches and techniques. For this, five related topics
have been covered in this review, including situational awareness, driver-road interaction, road scene
understanding, trajectories forecast, driving activities, and status analysis. This paper also reviews
the contribution of deep learning approaches and makes an in-depth analysis of recent benchmarks
as well, with a specific taxonomy that can help stakeholders in selecting their best-fit architecture. We
also finally provide a comprehensive discussion leading us to identify novel research directions some
of which have been implemented and validated in our current smart mobility research work. This
paper presents the first survey of road behavior understanding-related work without overlap with
existing reviews.

Keywords: holistic on-road behavior analysis; driver-road interaction; driving status analysis; road
scene understanding; situational awareness; trajectories forecast; deep learning; review

1. Introduction

Vision-based Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles
(AV) development has been witnessing a slow yet impressive growth over the past two
decades for most of its modules including sensing hardware [1], perception [2], mapping
and path planning [3], and scene understanding [4]. Despite the large amount of research
and development endeavors, the area still lacks comprehensive approaches and/or systems
which provide high-level road scene analysis that includes holistic description of the
AV’surrounding. By contrast to most of the ADAS and AV vision-based tasks, there are
scarce resources for broad road scene understanding, which is mainly due to the paucity of
benchmarks, standards, theoretical fundamentals, and expressly research papers that urge
the community to tackle this task.

To push forward this research area, we need to outline the milestones and the recent
tools and approaches to the community so that we allow for an easier recognition of
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the required gait. For this purpose, we need to expose not only the required steps but
also a tutorial that highlights the perks and the limitations of each method, which will
allow researchers to choose the appropriate solution for their context, which inherently
includes trade-offs. In this survey paper, we are going to take all these aspects in order to
review the most successful papers that have been published in recent years. Thanks to the
onset and the impressive development of the revolutionary deep learning approaches [5,6],
new blood has been brought into on-Road Behavior Understanding (RBA) tasks, creating
notable improvements and drawing attention to new perspectives. Figure 1 illustrates the
increasing number of publications related to “on-road behavior understanding” since 2010.

Figure 1. The increasing number of publications in road scene understanding from 2010 to 2019. Data
from Google Scholar advanced search: allintitle: “on-road behavior understanding” AND “on-road
behavior analysis ”.

The key contributions of this original review paper can be summarized as follows.

1. We present the first-ever background information on our foreground topic, RBA, and
do this by providing the reader with all the required information, theoretical concepts,
and keywords to read the remainder of the survey and boost their attention to the
approaches we are going to point out;

2. We link fragmented tasks related to vision-based RBA in a coherent context so that the
reader can understand the complementary relationships between all the elementary
aspects and makes use of them in order to achieve a holistic RBA;

3. We identify common concepts and features adopted by the milestone and the recent
approaches so that we can draw fair comparisons and critics;

4. We stress the contribution of deep neural networks approaches by categorizing all the
reviewed papers depending on the kind of the meta-architecture used;

5. We present a comprehensive comparison for all the recent publicly available datasets
and we list all the metrics used in the state-of-the-art to assess the performance of
RBA-related tasks;

6. Critical analysis of the overall topic is finally elaborated, leading us to draw consistent
future directions.

The remainder of this paper is organized as follows. In Section 2, we review all the
closely related surveys. Then, in Section 3, we emphasize the gravity and challenges
of such high-level analysis of visual content for ADAS and AV systems. Following the
classification of elementary aspects illustrated in Figure 2, the state-of-the-art approaches
are summarized in Section 4. Deep (meta)-architectures and the feature extractors they
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encapsulate are then presented in Section 5. Section 6 exposes a comprehensive study of
the available benchmarks. We conclude our paper in Section 7 by providing critiques and
challenges of the overall literature review and future directions.

Holistic On-Road 

Behaviors Analysis 

(this work)

Situational 

Awareness

Road Scene 

Understanding 

Driver-Road 

Interaction

Trajectories 

Forecast

Driving 

Activities & 

Status Analysis

Figure 2. A pictorial description of the contents of this work, i.e., on-road behavior analysis compo-
nents: situational awareness, driver-road interaction, driving activities and status analysis, trajectories
forecast, and road scene understanding along with holistic endeavors that provide a broad under-
standing of road environments.

2. Related Reviews

A number of surveys of general vision-based ADAS and AV approaches have been
proposed recently [7–10]. Their major contributions and the differences with our work are
presented in what follows.

Deep reinforcement learning for general AV tasks. An original yet scanty analysis of
deep reinforcement learning for AV systems is conducted in this review [7]. The employ of
deep reinforcement learning is becoming crucial in such real-world applications. This paper
promotes the use of reinforcement learning for AV vision-based tasks by providing the
fundamentals of state-of-the-art algorithms and addressing the issues to overcome in order
to succeed in its reuse with AV systems. This issue has never been covered by previous
surveys, but the authors did not review papers related to a broad descriptions of the road
environments. They explicitly presented unrelated works relevant to diverse applications
such as vehicle control [11], vehicle overtaking [12], and ramp merging[13] among others.
In our work, we also include all the deep learning approaches while providing links
between all the components of on-road behavior analysis.

Comprehensive review for detection, tracking, and behavior analysis. The survey
proposed in [9] extensively reviews papers dealing with three topics, i.e., detection, tracking,
and behavior analyzing for AV systems, spanning over eight years between 2005 and
2013. This survey helps build a broad knowledge of the semantic interpretation of road
scenes. The approaches reviewed are all based on handcrafted and classic machine learning
algorithms. The review process follows a categorization in regard to sensing systems,
mainly, monocular vision, stereovision, and their combination. Even though the authors
claim that they are proposing a novel survey for vehicle behavior as the emerging task of
AV systems, they fail to motivate the community of (i) its importance and (ii) the required
knowledge and the way to formalize such types of high-level problems, which will be the
object of our work.

Secure intelligent systems based on deep neural networks. An in-depth investi-
gation of the success behind deep learning technologies on such intelligent systems is
conducted in [10]. Through the examination of around 223 works, the main objective of
their proposal is to explain for the community how the decisions of deep neural network
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black-boxes are made (we refer the reader to these two surveys [14,15] for further details
regarding explainable artificial intelligence fundamentals). Bringing the attention of the
community to such an issue is of great importance for the security and the safety of AV
systems through the standardization of quality assurance rules and systematic engineering
guidance. Despite the novelty of the addressed issues, their paper lacks fundamental
analysis related to AV and ADAS systems, among others, and remains a very general
overview of the above concerns.

In Ref. [7], the understanding of a scene provides high-level scene comprehension
(e.g. Figure 3) that includes detection, classification, and localization tasks, feeding the
driving policy/planning module. Path Planning predicts the future actor trajectories and
maneuvers. A static shortest path from point A to point B with dynamic traffic information
constraints is employed to calculate the path.

High-level

layer

Mid-level

layer

Low-level

layer

•Goal: Holistic RBA 

•Means: Causality

description, road agents 

behaviors, contexts, etc.

•Tasks: Segmentation, 

detection, pose/motion 

estimation, tracking, etc.

•Blobs: roads, vehicles, 

two-wheelers, pedestrians, 

traffic lights, buildings, 

etc.

•Sensing, pre-processing, 

fusion, benchmarking, etc.

•Cues: appearance, depth, 

motion, GPS, CAN, IMU, etc. 

Figure 3. Illustrating the ascending levels of on-road behavior analysis. At the lowest layer, data such
as appearance, depth, and motion are collected, pre-processed, and labeled to prepare the settings for
higher layers’ tasks. One level up, several mid-level understanding scenarios might occur to describe
and model spatial and/or temporal visual data like road agents detection, recognition, activities
classification, maneuvers identifications, etc. At the highest level, an aggregate of the lower layers’
outcomes is used to learn the overall on-road behaviors by including more intuitive paradigms like
causality. In this work, we focus on five high-level tasks, mainly situational awareness, driver-road
interaction, road scene understanding, trajectories forecast, and driving status analysis.

3. Importance and Challenges of On-Road Behaviors Analysis

Road crashes kill nearly “1.25 million people each year, on average 3287 deaths a day and
around 50 million are injured or disabled”, reports the Association for Safe International Road
Travel (ASIRT) (https://www.asirt.org/, accessed on 1 December 2021). By 2030, fatal
traffic crashes are expected to become the fifth leading cause of death worldwide. ITS
(Intelligent Transportation Systems) is investigating to find smarter solutions that allow
bolder ADAS and AV systems in order to reduce road fatalities.

To do so, many vision-based components have been developed and significant ad-
vances have been made on semantic segmentation [16], object detection [17], mapping and
localization [3], etc. Yet, such tasks have not really addressed the challenges in high-level
understanding and correspond only to the first step of understanding, thus the importance
of on-road scene analysis. In fact, detecting/localizing participants in a given scene and
parsing them to the semantic classes is just a mid-level analysis step and we believe that to

https://www.asirt.org/
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avoid road crashes it is crucial to understand the context and the interactions between the
stuffs of the road and the participants’ behaviors and their status.

Despite the ITS community always asking “what are the difficulties and challenges
in on-road behaviors analysis?”, this question has not been raised seriously so far in the
literature or even been generalized. As vision-based understanding related tasks have
different goals and constraints, integrating a set of these tasks under the same framework
implies imperatively a higher complexity. Aside from common issues in image and video
analysis tasks such as sudden and gradual illumination changes and viewpoints variation,
the specificity of road environments involves more aspects including temporal and spatial
patterns intra-class variations (cf. Figure 4), cluttered scenes (cf. Figure 5), and the curse of
data labeling for high-level analysis.

Figure 4. Example of pedestrian and driver behaviors represented over time for an event that took
place while crossing and their corresponding causality [18].

Figure 5. Cluttered road scene with extensive annotation setting that includes bounding boxes for all
events, behaviors, and objects information along with the contextual labels [18].

4. RBA Components and Milestones over the Last 20 Years

In the last two decades, it has been widely accepted that the progress of road scenes
analysis has generally gone through two historical periods: (i) traditional understanding
methods era (before 2013) and (ii) deep learning-based understanding era (after 2013).
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In this section, we are going to highlight the state-of-the-art methods that have been
proposed over the last 20 years for each of the RBA’s components we identify from the
literature, mainly situational awareness, driver-road interaction, road scene understanding,
trajectories forecast, and driving activities and status analysis.

4.1. Situational Awareness

Situational awareness is a fundamental ingredient for successful on-road scene anal-
ysis. In fact, while dealing with the perception of road environments, including objects,
participants, behaviors, and activities, we need to take into consideration their meaning,
and their future status in conjunction with space and time.

For example, Kooij et al. propose in [19] a pedestrian situational awareness aiming
to predict a pedestrian’s path in the AV domain. To anticipate the decision of pedestrians,
they assume that it is influenced by three factors: (i) the presence of an approaching vehicle
on a collision course, (ii) the pedestrian’s safety awareness, and (iii) the specificity of the
environment. To incorporate these factors, latent states have been built on switching linear
dynamical systems and dynamic Bayesian networks to anticipate changes in pedestrian
paths. The situational awareness evaluates whether the pedestrian at a given instant t
has seen the vehicle previously (before t)) through the estimation of the distance between
vehicle and pedestrian at the expected point of closest approach head orientation and his
distance to the road curbside. The ultimate goal of this work is to predict the intention of
a pedestrian to laterally cross the road, which is highly related to most of the pedestrian
fatalities inroads according to accident analysis reported in [20]. For a similar objective,
in [18] the crossing behavior, i.e., the pedestrians’ intention to cross, is predicted. The
authors consider here two classification tasks of static environmental context and passenger
action. Due to the lack of annotation of the JAAD dataset proposed in this same paper,
they make use of weakly supervised learning with CNN (Convolutional Neural Network)
features through an AlexNet architecture to identify visual attributes for both tasks [21].
The considered classes for the environmental contextual recognition task include the
following elements: narrow, wide, pedestrian crossing sign, zebra crossing, stop sign,
traffic light, and parking lot. As for the pedestrian action classification, only looking and
crossing classes have been considered. Their experimental results prove that using only
the pedestrian action information can predict 40% of the observed crossing behavior, yet,
adding situational awareness information/context improves the results by 20%.

4.2. Driver-Road Interaction

Understanding the interactions occurring between drivers and road users is crucial
toward a holistic RBA. Recently, the ITS community has brought attention to this issue by
developing new vision-based models that capture the interaction between road users and
the ego vehicle.

Owing to the newly published HDD dataset [22], Li et al. propose in [23] a spatio-
temporal 3D-aware framework by means of GCN (Graph Convolution Networks). For this
purpose, participants and objects of the road scene are categorized into two sets: Thing
objects, such as pedestrians and cars, and Stuff objects, such as traffic lights and road
surface marking. As an example, interactions with Thing objects may include stopping
to let pedestrians cross and deviation for parked vehicles, and examples for interactions
with Stuff objects may include changing or merging a lane. To represent the interaction
between these sets of objects and the ego vehicle, two kinds of graphs have been proposed:
Ego-Thing Graph and Ego-Stuff Graph to represent the ego vehicle interaction with Thing
and Stuff objects, respectively by extending the Ego-Thing Graph proposed in [24]. In
addition, two contributions have been introduced: the incorporation of the 3D location of
objects and the definition of an Ego Node as the ego vehicle. Thus the proposed approach
offers higher performance in terms of mAP (mean Average Precision) and outperforms other
baselines on HDD dataset by 6% and 3.9% for Thing and Stuff sets, respectively. Among
methods that have been surpassed by the above approach, we can list the work proposed
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in Ref. [22] as baselines for the HDD dataset. Their proposal encodes implicitly the states
of the ego vehicle and all the other objects using usual CNN features and RNN (Recurrent
Neural Network) units.

Previously, in 2000, using traditional machine learning tools in Ref.[25], HMM (Hidden
Markov Model) was leveraged to recognize the tactical driver behavior. To model the states
of the ego vehicle and all the elements and participants in the road environment, a single
node was used for each one and then all the nodes were encoded into a state vector. This
approach is not reporting state-of-the-art results so far, but it still inspires recent endeavors
like those stated earlier.

4.3. Road Scene Understanding

ITS and computer vision communities have exerted extensive effort to analyze the road
scene [26–28]. As hinted to earlier, traditional approaches were handcrafted or machine
learning-based and they were designed to deal with an elementary task such as detection
recognition or segmentation for a specific kind of object lane [29], traffic lights [30], and
pedestrians [31]. Before 2013, it was not obvious how to get a holistic understanding
of road environments. With the advent of the revolutionary deep neural networks, it
was made possible to get a comprehensive understanding of the road scene. In fact,
deep learning provides more automatic models, which allow combining many tasks in a
single framework.

For example, Ref. [32] proposes an encoder-decoder architecture that provides an
end-to-end road scene understanding. The encoder is a CNN-based network similar to
VGGNet [21]. Similarly, the decoder is a CNN network with two streams that upsamples
the features and then fuses the information of both streams to the decoder network, which
outputs the score of each pixel with regards to the predefined classes. By reporting qual-
itative and quantitative evaluation done only over the CamVid dataset [33], the authors
claim that this encoder-decoder network is able to provide higher results for semantic
segmentation and positioning in terms of CA (Class Accuracy) at MIoU (Mean Intersection
over Union). However, the use of VGGNet as a backbone also gives outcomes 68.49% and
56.05% for CA and MIoU, respectively, meaning that there is a lot to improve.

Under the same context, Ref. [16] deals with a more challenging task: recovery of oc-
cluded vehicles, in addition to the amodal segmentation task. A novel multi-task approach
was introduced to incorporate the two tasks under the same framework. In another word,
two networks were introduced, called (i) segmentation completion and (ii) appearance
recovery. The first one aims to produce the recovered segmentation mask. Afterward, the
obtained mask is used for the second network to produce the occluded parts of vehicles.
As a result, the invisible regions are restored/painted back to the foreground of the original
image. Experiments were done with the Occluded Vehicle Dataset (OVD) and metrics used
to evaluate the recovered segmentation mask including recall, precision, F1 score, IuO, the
per-pixel L1 error and the per-pixel L2 error were used. As for the recovered appearance of
the vehicle task, the L1 and L2 errors have been used along with two new metrics: the ICP
(Inception Conditional Probability) and the SS (Segmentation Score). Overall, the obtained
results demonstrate similar performance to Deeplab [34] without the iterative refinement
for the segmentation with a better capability of generating the invisible parts.

As for the work proposed in Ref. [35], the authors focus on urban scene analysis
and road detection and evaluate their proposal over KITTI [36] and LabelMeFacade [37]
datasets. The major contribution of this paper is the presentation of new convolutional
patch networks learned for pixel-wise labeling in order to classify image patches. More
details regarding the proposed CNN can be found in Section 5.

4.4. Trajectories Forecast

Trajectories forecast in road environments consists of predicting the path that a moving
vehicle, pedestrian, or any other road agent follows through road space as a function of
time. The extracted trajectories from a visual data are less mastered with relation to ADAS
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and AV contexts. In this survey, we highlight its importance and the methods developed by
the computer vision community that can be useful in such circumstances. In addition to the
prediction of future paths of road participant, this RBA component is of crucial importance
and might be used to supply other components by modeling traffic representation in
real-time. Thus, this task is useful for performing safe ADAS and AV systems not only
by improving all the vision-based components but also by using it in the management of
congestion and vehicle routing.

For instance, Ref. [38] proposes an approach named DROGON for “Deep RObust
Goal-Oriented trajectory prediction Network” that forecasts future trajectories of vehicles
by taking into consideration their behavioral intention, which is commonly called causal
reasoning. A conditional prediction model has been built to solve this issue. Three steps
have been followed to train such a model. The first step is to infer the interaction of vehicles
with other road agents. Then, the second and the third steps consist in estimating their
intention and thus by computing the intention’s probability distribution based on the
inferred interaction and the causal reasoning, respectively. To evaluate their approach, Choi
et al. also introduce a new dataset acquired at four-way intersections. Through qualitative
and quantitative evaluation using ADE (Average Distance Error) and FDE (Final Distance
Error) metrics, the DROGON framework has demonstrated an efficient performance for
predicting and generating trajectories over the state-of-the-art.

A near-term trajectories forecast approach is also proposed by Chandra et al. in [39].
They tackle more challenging contexts, mainly heterogeneous traffic where road agents
are very varied for, e.g., pedestrians, cars, bicycles, trucks, buses, motorcycles, etc. The
major contribution of this paper is the representation of heterogeneous interactions between
different kind of agents. An RNN-CNN framework called TraPHic is introduced in order
to automatically predict the trajectories and does so by taking into consideration the
challenges of heterogeneous contexts related to different textures, shapes, motions, and
activities of each road participants. Several experiments have been carried out over the
NGSIM dataset [40] and a new dataset called TRAF introduced in this paper prove that the
proposed method outperforms the state-of-the-art by around 30%.

4.5. Driving Activities and Status Analysis

Driver’s status and activities analysis are crucial because one of the leading cause of
traffic accidents is related to driver’s inattention, aggressive maneuvering, or drowsiness.
Detecting or predicting strange maneuvers or status may help avoiding fatal crashes by
keeping a distance to identified aggressive drivers.

In the literature, Ref. [41] proposes a novel framework named GraphRQI to learn,
in a supervised fashion, third party driver behavior (Figure 6). Based on the approach
proposed in Ref. [39] (detailed in the previous section), road participants trajectories are
used to pinpoint the general traits of the driver, i.e., conservative or aggressive, which
inherently affects the trajectories of the surroundings agents. By means of GCNs trained
on the TRAF [39] and Argoverse [42] datasets, driving status has been classified into six
classes: reckless, careful, timid, impatient, threatening, and cautious. The result in terms of
accuracy is improved up to 15% and 25% on Argoverse and TRAF datasets, respectively.

In a similar way, Ref. [43] classifies the ego vehicle behavior through scene understanding-
based CNN and robust temporal representation-based LSTM (Long Short Term Memory).
The key element of this work is the incorporation of scene context features related to
weather and road characteristic, places, types, and surface conditions. Experimental results
shown on the HDD dataset and a newly collected dataset prove that the proposed scene
classification boosts the understanding of driver behavior.
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Figure 6. Trajectories generation produced in Ref. [41] for two different contexts. Through the traits
shown by the road agent’s trajectory, their behaviors is then predicted.

Multi-modality cues have been extensively used with regard to driver maneuvers
classification for example, by taking into consideration only the temporal aspect, Ref. [44]
presented a fancy architecture based on Gated Recurrent Fusion Unit to model multi-modal
data coming from two streams: video and CAN bus. Novel gating functions have been
introduced in order to represent the exposure of each data stream at each frame in order to
provide an adaptive data fusion. To recognize the action that occurred during the driving
scenarios over the HDD dataset, Ref. [45] employs a CNN-based architecture with a triplet
loss as a space embedding regularizer to limit the problem of overfitting encountered with
HDD pre-trained models. Extensive evaluation done on the HDD dataset proves that
softmax plus triplet loss achieves a better performance on minority classes, proving a better
generalization of the trained network.

Following a multi-modal framework as well, Ref. [46] presents DBUS (Driving Be-
havior Understanding System), which makes use of image sequences synchronized with
GPS/IMU signals. The perks of DBUS is the recognition of the driver’s attention and
intention along with the maneuver. A unified model has been proposed to jointly analyze
the attention and the intention of the driver activity. Even though the proposal is original,
its efficiency was not evaluated over state-of-the-art benchmarks and it has only been tested
on a non publicly available dataset.

Using the same concept of multi-modal and multi-level understanding, Ref. [22]
recognizes driver behaviors through different layers including attention, cause, stimulus-
driven action, and goal-oriented action. Contrary to Ref. [46], the proposed approaches
based on standard CNN and LSTM have been evaluated over the HDD benchmarks
devoted to learning the driver’s activities and causal reasoning. The same model has been
reproduced in [47] where Chen et al. propose to classify driving behavior through new
modes, color, and depth sequences coming from video and LiDAR sensors, respectively.
The introduced dataset will be detailed in Section 6.

4.6. Holistic Understanding

Holistic understanding aims at jointly dealing with different complementary tasks
within the same framework for RBA. In the literature, there was a lack of serious endeavors
until 2015. Jain et al. proposed the first-ever framework that incorporates several levels
of understanding to predict maneuvers of the ego vehicle [48]. Both inside and outside
contexts (with regards to the vehicle) have been taken into consideration. For the inside
context, authors consider the visual representation for the driver’s facial expression and
motion. As for the outside context, scene perception has been investigated to anticipate
a driver’s maneuver through multi-modal features such as image sequences, GPS, road
maps, speed, and events. Auto-regressive HMM models have been proposed to generate
the latent states of the driver [49]. Owing to the uniqueness of the approach, promising
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results have been obtained on a first-ever dataset called Brain4Cars including multi-modal
inside and outside data of the vehicle.

Ref. [50] introduces an end-to-end learning approach of driving models. Based on
visual features of the current and the previous vehicle states, the contribution of this paper
is the proposition of a holistic approach that predicts the distribution driving behaviors
along with semantic segmentation. An adaptive FCN-LSTM model has been proposed to
anticipate the distribution of the vehicle motion (cf. Section 5). A crowd-sourced driving
behavior dataset is also introduced to better evaluate the efficiency of the proposed learning
paradigm for both semantic segmentation and behaviors prediction.

A more comprehensive approach was introduced in [51] to jointly analyze road agent
dynamics, interactions, and the scene context along with the prediction of future states of
the road agents, not only the ego vehicle as done by the previously cited work earlier in this
section. A CNN architecture was used to encode static and dynamic states and semantic
map information in a top-down spatial grid. Due to the lack of a benchmarking dataset that
includes road map information, the authors propose a novel large-scale dataset to advance
the state-of-the-art of the field (cf. Section 6 for further information).

Peng et al. introduce in [17] the so-called ADMD (Attention-driven Driving Maneuver
Detection) system, which investigates the causal relationship between the road scene and
the driving maneuvers. Similar to Ref. [22], the driver’s attention is explored to boost
the performance of their system (Figure 7). The major contribution of this work is the
proposition of a distillation approach to transfer latent features into the maneuver detection
system, which helps to discern a driver’s maneuvers from his attention areas. Experiments
carried out on a new dataset prove that ADMD is able to achieve promising performances.
This is basically owing to the novel learning paradigm capable to interpret the vehicle
surroundings that might affect the intention of the driver’s maneuvers.

Figure 7. Divers on-road behavior scenarios acquired using an ego-vehicle. Four different annotation
layers are proposed in the HDD dataset to describe the driver and the behaviors of his surround-
ings [22].
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5. Deep Learning Solutions

The revolutionary deep learning has proven to be efficient in various fields including
computer vision and image processing with application to various kinds of applications
such as autonomous driving. In what follows in this section, we are going to report all the
deep neural network architectures that have been used in the literature in the RBA tasks
cited earlier in the previous section. Specifically, we are going to highlight the contribution
of all the related state-of-the-art approaches based on the core architectures. The goal of
this study is to let the practitioners decide the meta-architecture and feature extractors that
are more suitable for their application.

5.1. Deep Convolutional Neural Networks

CNNs are the most appealing variant of deep neural networks in vision related-tasks.
They were basically developed by LeCun et al. in [52] and successfully reused in the ILSVRC
(ImageNet Large Scale Visual Recognition Challenge) competition by Krizhevsky et al. [21].
CNNs are able to perform feature learning to get consistent representation from visual data
(basically). Its architecture includes three kinds of layers/mapping functions; convolution,
pooling, and ended with one or more fully connected or GAP (Global Average Pooling)
layers. Dropout and batch normalization is generally used in CNN for regularization. The
biggest advantage is the use of weight sharing (contrary to conventional neural networks),
which helps in saving memory and reducing complexity. Along with this, CNNs have
shown impressive performance and outperformed all the machine learning techniques
devoted to visual understanding.

One of the main application of CNNs is object detection, which represents an important
task and a major challenge in computer vision [53]. Its challenges are mainly related to object
localization and classification. Several methods based on CNN exist in the literature. Overall,
methods using CNNs fall into two categories: (i) single-stage methods, which perform object
localization and classification in a single network such as Single-Shot Detector (SSD) [54] and
You Only Look Once (YOLO) [55], Both of these architectures produce as output a bounding
box of each detected object, its class, and its confidence score [53], and (ii) two-stage methods,
which have two separate networks for each of these tasks.

Among its milestones models, the important engines in CNN are AlexNet [21], VGG-
16 [56], GoogleNet/Inception [57], ResNet [58], and Xception [59]. Autonomous driving
systems take advantage of the so-called pre-trained model of an already-trained model
over other visual tasks. Expressly, for a completely new problem/data, the ITS community
makes use of the publicly available model to either (i) use open access meta-architectures
to train it from scratch on their own data or (ii) use the pre-trained models as feature
extractors by feeding new data to a trained model with its trained weights and tweak it to
train the new task, which is what we call transfer learning. Commonly, the output layer is
replaced with a new fine-tuned layer in order to determine the deviation of the prediction
to the labeled data. Thus, using a non-large-scale dataset, three training ways might be
considered: train only the output layer, train the whole CNN, or the last few layers. The ITS
community makes use of all these learning strategies to build, train, or retrain their CNN
backbones. With application to the on-road behavior tasks, while many endeavors succeed
to generate robust features from pre-trained models [17,32,35], major improvements have
been proposed recently at many levels of the standard architecture with regards to the
spatial exploitation, depth, and feature map exploitation.

Graph Convolutional Network (GCN). GCN consists in using graph-based learning
instead of learning data represented in the Euclidean space (such as image or video). The
strength of the graph-based framework is the ease of representing the interaction occurring
between the instance’s components. This is of great importance in road scenes, which will
serve in describing the causality between the intention and the attention of the drivers and
all the road participants. This paradigm has been exploited by Li et al. in [23] to model
interactions, as detailed earlier in Section 4. The two proposed networks, Ego-Thing Graph
and Ego-Stuff Graph advanced the state-of-the-art of GCNs through the extension of the
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backbone proposed in Ref. [60] with two-stream instead of one-stream. First, to generate
graphs, 3D convolutions have been applied to obtain the first level of visual features which
are feeding both streams; Thing and Stuff graphs. Then, as a second step, the Thing and
Stuff representations are extracted using RoIAlign [61] and the newly proposed approach
called MaskAlign to deal with irregular objects. The extracted features from both streams
are then used to generate the graph generators using a frame-wise fashion. Ego-Thing
Graph and Ego-Stuff Graph allow afterward to pass on the connections between different
kinds of objects through these GCNs. Outputs from the two obtained streams are fused
and fed into a temporal module. This latter module aggregates spatial features using
max-pooling to compute the final GCN output.

Fully Convolutional Networks (FCN). Unlike standard CNN, FCN is an end-to-end
network where a Fully Connected (FC) layer [62] or an MLP (Multi-Layer Perceptron)
network [63] are derived on the top of a CNN-like network where filters are learned at all
the levels including the decision-making layers. This allows FCNs to learn representations
and scoring based on local features/data. Ref. [50] exploits this fact to propose an end-to-
end architecture for generic motion models for autonomous vehicles under crowd contexts.
The authors here propose the so-called dilated FCN approach. Taking advantage of the
pre-trained CNN models, the second and the fifth pooling layers have been removed and a
dilated convolution layer replaced the third convolution layer through FC7. The difference
between the usual convolution with stride and the dilated one is the expansion of the
filter’s size before doing the convolution.

Among other applications of FCN is semantic segmentation, where the output of
the model has the same resolution as the input images, with a class prediction for each
pixel. Since the pioneering work of Long et al. [64], where the base structure of the model
is an encoder and a decoder streams, many variants have been proposed. Most of these
works focus on the improvement of the accuracy of segmentation. However, real-time
performance is very important for autonomous driving. Combination of light architectures
like SkipNet [64] and ShuffleNet [65] for the encoder and decoder parts, respectively, allows
segmentation rates at about 16 FPS on a Jetson TX2, while maintaining high accuracy [66].

3D CNNs. represent an extension of CNNs where a 3D activation map is generated
over the convolution layers. The intuition behind this is to encode data that can be repre-
sented on more than two dimensions like volumetric or temporal data. 3D CNNs have
been used in different contexts such as 3D shape estimation [67], human activity detec-
tion [68], and recently explored in RBA systems [69] to further enhance the understanding
of drivers’ behaviors. Indeed, a TRB (Temporal Reasoning Block) has been introduced to
model the causes of behaviors. The aim of this 3D-CNN is to discriminate spatio-temporal
representations with attention saliency mechanisms. By assuming inputs as coarse-grained
videos, the main contribution here is the proposition of a novel reasoning block composed
of two layers; the first one consists of fine-grained 3D convolution and the second one
allows to keep the temporal continuity.

CNN Features Extractors. With the availability of large-scale visual data along with
optimization algorithms and powerful CPUs/GPUs, it becomes possible to train deep
networks that achieve impressive performance on roughly all the challenging tasks. The
obtained models are shared for the community in order to avoid training from scratch and
make it easier for researchers to enhance the available models or reuse them as features
extractors. For example, a CNN network that has been trained to classify road objects
will output several features from the low-level to the high-level layers with increasing
complexity and abstraction. Complexity, in this case, goes from pixels, blobs, circles,
wheels, stuff, faces, hoods until bicycles, cars, pedestrians, and the whole scene. A number
of neurons are supposed to be activated for these abstraction levels. The key feature of this
is that another classification task devoted for example for the indoor or in-the-wild scenes
will make use of the same low- and mid-level features that are present in all the domains.

The ImageNet [21] and the COCO [70] pre-trained models are widely considered
for RBA tasks and reused as backbones for feature extraction. The (meta-)architectures
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of neural networks reviewed in this survey did make use of state-of-the-art backbones
along with task-specific layers (for, e.g., classification or detection heads). Thus, choosing
the right feature extractor is important since its properties (mainly the type of layers and
number of parameters) directly affect the performance of the whole network. By barring
the few examples that decouple the backbone from the meta-architecture [71], the main
feature extractors used in the related works are AlexNet [21], ResNet-50 [58], VGG-16 [56],
Inception-v2 [72], and InceptionResnet-v2 [73] used in the following non-exhaustive list of
papers detailed above [16–18,32,43], respectively.

5.2. Deep Recurrent Neural Networks

Despite its impressive performance for tasks related to image analysis, CNNs examine
only the current input and fail in handling sequential data. RNNs (Recurrent Neural
Networks) however process only sequential data [74]. Composed often of a single node
with internal memory, the principle of RNNs is memorizing the outputs and feeding them
back as inputs and continuing to do this until predicting the output of the layer. Thus,
RNNs allow saving information that has occurred in the past and looks for patterns over
time and the length of the sequence. With application to ADAS and AV systems, such end-
to-end machines have been recently used to automatically model non-linear discriminative
representations to improve the performance of vision-based analysis tools basically related
to RBA. We can categorize the related work depending on the architectures into two groups:
approaches based on long short-term memory (LSTM) [75] and GRU (Gated Recurrent
Units) [76].

To start, an LSTM network has been used in Ref. [17] to propose the so-called ADMD
system (reviewed in Section 4) composed of four blocks to learn driving maneuvers as
spatio-temporal sequences. Features that serve as an input for the predictor, i.e., LSTM
network, were transferred from a CNN model (InceptionResnet-v2 [73]), as in [22], an
attention map generator, and raw vehicle signals.

Similarly, a novel network architecture called TraPHic is introduced in [39] to pre-
dict road agent trajectories under complex contexts. The issue with LSTM under such
circumstances is the inability to model relationships of heterogeneous road agents since the
settings of an LSTM unit are independent of the others. To capture temporal dependencies
of objects’ spatial coordinates, LSTMs are employed and combined with CNN to boost
the learning of local objects’ relationships in space and time. In Ref. [43], a two-stream
deep architecture for event proposal and prediction is proposed. The first one proposed the
key-frames of the event sequences. A standard LSTM classifier is employed to predict the
corresponding class among approaching, entering, passing. The output of this first stream,
the candidate frames, is then forwarded to the second stream of prediction. The frames are
here aggregated through GAP and output the event class.

Still, in the hybrid architectures, the dilated FCN detailed in the previous section of the
work introduced in Ref. [50] has been combined with an LSTM network to predict driving
models. The pros of this model are the ability to jointly learn segmentation and driving loss
and predict the corresponding behavior. Using multi-modal cues coming from the visual
and the sensor states, the LSTM network fuses all the t and t− 1 into a single state including
all the historical data from all the sensors. Typically using the same multi-modal data,
the DBUS system explained earlier models temporal information through a bidirectional
variant of LSTM, namely Bi-LSTM. Contrary to the usual LSTM, which is unidirectional,
the Bi-LTSM runs inputs in two ways along, from t − 1 to t + 1 states and vice versa.

As for the GRU networks applied for RBA tasks, this is still a niche area. For instance,
Hong et al. [51] propose a new encoder-decoder architecture where an RNN-based com-
posed of a single GRU cell has been employed as a decoder. Unlike LSTM units, GRU has
the ability to control the inputs without memorizing in-between status. This allows a less
complex decoder block in this encoder-decoder architecture [51]. A more fancy unit has
been proposed in Ref. [44] called GRFU (Gated Recurrent Fusion Units) aiming to learn
temporal data and fusion simultaneously. Precisely, the novel gating mechanism learns a
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representation of every single-mode, i.e., sensor, for each instance in order to infer the best
fusion strategy among Late Recurrent Summation (LRS), Early Gated Recurrent Fusion
(EGRF), or Late Gated Recurrent State Fusion (LGRF).

6. Benchmarks: Datasets and Metrics

In this section, we are going to compare recent publicly available datasets in terms of
their target tasks and diversity along with the used metrics.

6.1. Datasets

Unlike major computer vision tasks, ADAS and AV vision-based areas overall still
lack benchmarks especially for RBA tasks. Holistic datasets refer to datasets that provide
rich road and driving scene annotations. A comprehensive dataset like this makes it
possible to tackle single or multiple tasks at once and urges researchers to come up with
unified frameworks capable to learn high-level analysis through encoding several semantic
information. The number of holistic datasets is very limited in the literature, thus we
expose all the recent datasets that can be reused at least for one of the RBA components. In
Table 1, we illustrate a comparison of the recent state-of-the-art datasets by detailing their
scopes and cardinalities. To be aligned with the taxonomy provided earlier in the paper,
the problem space corresponds to one of the RBA’s components.

Brain4cars [48]. To the best of our knowledge, Brain4cars is the unique driving
dataset that contains video sequences from inside and outside the vehicle. Speed and GPS
information were acquired simultaneously with visual data coming from two views. The
inside and the outside cameras capture the face motion of the driver and the view of the
road ahead, respectively. To ensure the diversity of data, 10 persons were asked to drive
the vehicle under fully natural settings across 2 physically different locations and different
traffic conditions (for around 1899 km of sub-urban, urban, and highway environments).
Better scalability should be gained if the recording has been done over more than two
months to guarantee different weather conditions. A total of 700 images sequences were
acquired and labeled on 4 different maneuver classes including right lane change, left lane
change, right turn, and left turn and driving straight. Each sample is also annotated with
the first instance the maneuver starts on. Further annotations have been provided as well
regarding the lane information such as the actual lane of the vehicle and the number of
lanes on the road.

Berkeley DeepDrive Video dataset (BDDV) [50]. This dataset is one of the largest
comprehensive datasets devoted to many tasks such as crowd-sourced driving behavior
analysis, road objects detection, instance segmentation, and lane marking. Various driving
scenarios have been acquired in different traffic settings including rural, urban, and high-
way areas under different weather conditions. BDDV englobes around 10k hours of video
sequences, which contain in total 100k images. BDDV also contains multi-modal informa-
tion acquired with another kind of sensor such as IMU, GPS, gyroscope, and magnetometer.

Honda Research Institute Driving Dataset (HDD) [22]. This dataset is devoted to
learning holistic driving scenes through the understanding of the drivers’ behaviors and the
interactions with all the road agents in relation to the context of the scene. The scale of the
dataset is large enough to allow training and validation for deep neural networks. Precisely,
HDD has been collected in the San Francisco Bay Area of over 137 driving sessions and
involves 104 h of videos acquired with a road-ahead camera along with a multi-sensor
composed of LiDAR, IMU, GPS, and CAN bus. Following a novel annotation protocol,
the authors have succeeded in proposing a frame-level description of four layers for each
sample, i.e., Goal-oriented action, Stimulus-driven action, Cause, and Attention. The
number of classes of each level is different. For the Goal-oriented action, 11 classes have
been considered including intersection passing, left turn, right turn, crosswalk passing,
left lane change, right lane change, merge, right lane branch, railroad passing, and u-turn.
For the second level, annotation of Stimulus-driven includes just two classes: stop and
derivate. As for the following Cause layer, five annotations have been presented: sign,
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congestion, traffic light, parked car, and pedestrian. The fourth Attention layer includes 12
categories: crossing vehicle, red light, crossing pedestrian, cut-in, merging vehicle, sign,
on-road bicyclist, yellow light, parked vehicle, road work, on-road motorcyclist, pedestrian
near ego lane.

Driving Behavior Net (DBNet) [47]. Similarly to HDD, DBNet deals with learning
driving circumstances and policies. The major advantage of DBNet is the consideration
of 3D point clouds and depth information with a range of 70 m and a resolution up to 2
cm. For this purpose, two different kinds of LiDAR sensors have been exploited to record
3D point clouds. The coverage of DBNet goes for 100 km, which allows the collection of
seven multi-modal sets of different driving scenes. Three kinds of data have been recorded:
(i) point clouds, (ii) color videos with the corresponding (iii) vehicle’ speed and steering
angle information. The data have been recorded under challenging contexts with traffic
conditions (normal and crowd flows). Overall, the dataset contains labels for around 32
footbridges, 160 traffic lights, 500 road signs, and 1500 cars.

Argoverse [42]. The authors proposed to support mid-level and high-level AV vision-
based tasks such as trajectories prediction, 3D tracking, and map-based perception. By
means of a platform equipped with synchronized sensors composed of LiDAR, 360◦ and
stereo cameras, the Argoverse data is acquired in the coverage area of 300 km in Pittsburgh
and Miami cities, which have distinct building architectures and weather conditions.
Besides standard 2D and 3D information, three different kinds of maps have been generated
(cf. [42] for further details). The proposed annotations contain 3D tracks of 10,572 objects
dispersed over 100 sequences for a duration up to 60 s.

TRAF [39]. Dense and heterogeneous road traffics have been considered by the TRAF
dataset. The scale of the dataset is not very large since only 50 sequences enclosing around
12,400 frames have been collected under urban conditions. The advantage of the samples
of this dataset is that they cover eight road agents against three for the NGSIM dataset [40],
mainly ‘rickshaw’, ‘truck’, ‘pedestrian’, ‘motorcycle’, ‘scooter’, ‘car’, ‘truck’, and ‘bus’. Thus,
the density of the TRAF is quite high and on average we can find 15 motorized and non-
motorized vehicles and 5 pedestrians per frame. Annotations include trajectories organized
as 2D coordinates of each frame, the category of the agent, and its corresponding ID. Visual
scenes have been classified using a two-viewpoint and other cues like motion, daytime,
and density level.

Intersection Dataset [38]. To evaluate the proposed DROGON framework, introduced
in Section 4, the Intersection dataset has been presented to deal with the issue of trajectories
prediction in high dynamic scenarios, basically, at four-way road intersection with cluttered
traffic in San Francisco Bay Area at four different regions. A total of 213 intersection scenes
have been acquired using multi-sensor, which have in total 59.4 × 103 frames. Annotations
made for the intersection dataset are the most extensive compared to other datasets and
consist of the category of road agents (8 classes available) and their corresponding trajecto-
ries ID, 3D bounding boxes, intentional zone, odometry of the AV, heading angles, point
clouds of 360◦ coverage, and driveable road area.

Joint Attention in Autonomous Driving (JAAD) [18]. This is considered as the first
dataset devoted to the situational awareness understanding of the AV with regards to
pedestrians at the crossing points. Specifically, JAAD includes behavioral and contextual
information along with tracking information of 337,000 detected pedestrians from 346
video sequences collected in Europe and North America. By means of the BORIS tool [77],
behavioral annotations have been provided to capture the action of both driver and the
facing pedestrians. The driver’s action label includes Moving fast/slow as the first state
and Slow down/Speed up as a response to the surroundings. The pedestrians’ actions are
classified into three sets: (i) Precondition: activities before crossing such as standing, or
moving fast (ii) Attention: gestural and temporal cues which serve to understand whether
the person is aware of the approaching (ego-)vehicle and (iii) Response: to check whether
the crossing pedestrian is reacting to the behavior of the approaching vehicle through
identifying one of the following elementary action/gesture: Clear path, Speed up, Slow
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down, Hand Gesture, Nod, and Stop. Moreover, demographic annotations are provided
for each detected person such as age, class, and gender. Along with behavioral labels,
scene contextual information is provided. Four kinds of information are proposed: (i)
Configurations of the road: parking lot or the number of lanes. (ii) Traffic signals: such as
traffic lights, stop signs, or pedestrian signs. (iii) Weather condition, and (iv) Time of day:
to describe the lighting conditions.

Honda Research Institute-Advice Dataset (HAD) [78]. Taking profit of their HDD
dataset, Honda research institute proposed HAD as a sub-set of 5600 videos selected from
HDD with a completely new configuration. The object of HAD is to allow better advisable
frameworks for AVs with human-to-vehicle advice annotations. Each sample of the dataset
has 4 to 5 action tags and 3 to 4 attention tags. For example, ‘The driver change the lane from
left to right’ in an action label and its corresponding annotation label is ‘Work on progress
on the road’. We refer the reader to the HDD description detailed earlier in this section
for further information regarding the modality and diversity of its re-annotated subset,
i.e., HAD.

Occluded Vehicle Dataset (OVD) [16]. In an original way, OVD combines real and
synthetic images for segmentation with vehicle appearance recovery. Synthetic data have
been leveraged from the Cars dataset [79] and real data have been extracted from the
COCO [70] and Cityscapes [80] datasets. Particularly, images of cars included in the Cars
dataset are unoccluded in most of the cases, so to make them usable for this task, cropped
objects (pedestrians, vehicles, etc.) from COCO and Cityscapes are placed on the Cars
instances, which have clear ground truth. Overall, the dataset contains 34,100 images.
Besides, 4 video sequences and 100 images have been collected and manually labeled to
enrich the diversity of the dataset.

nuTonomy scenes (nuScenes) [81]. Recently published in late 2019, nuScenes is
the largest dataset devoted for mid-level scene understanding, mainly focusing on 3D
detection and tracking, which surpasses 7 times the benchmark KITTI [36] in terms of
diversity and 100 times in terms of scalability. The platform used to collect this dataset
is fully equipped with multi-modal sensors (RGB, LiDAR, and RaDAR) with full 360◦

point-of-view. Regarding its scalability, it comprises 1000 image sequences labeled with 3D
bounding boxes. For each image, annotations of the detected objects classes are provided,
which enclose the attributes of the road objects in addition to their semantic categories. As
an example for the values of the attributes, we can find the exact pedestrian pose (such as
‘walking’, ‘approaching’) or the vehicle state (such as ‘parked’, ‘standing’). Numerically, 23
objects categories have been considered with 8 different attributes. What makes nuScenes
very unique is its huge diversification coming from the different acquisition sites ranging
from nature to industrial under different time and weather conditions collected over a
whole year. Table 1 summarize the recent RBA datasets.

Table 1. Summary of recent RBA datasets. From 1 to 6, the PS (Problem Space) ID refers to situational
awareness (ID = 1), driver-road interaction (ID = 2), road scene understanding (ID = 3), trajectories
forecast (ID = 4), driving activities and status analysis (ID = 5), and holistic understanding (ID = 6).

Dataset Year PS #ID Sensor Setup Location Traffic
Condition

Hours and/or
Distance #Sequences #Frames

nuScenes
[81] 2019 3

Camera
RADAR
LiDAR
GPS
IMU

Boston and
Singapore Urban 55 h 1 k 1.4 M

Argoverse
[42] 2019 3

4

Camera
Stereo
LiDAR
IMU

Pittsburgh
and
Miami

Urban 300 km 100 -
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Table 1. Cont.

Dataset Year PS #ID Sensor Setup Location Traffic
Condition

Hours and/or
Distance #Sequences #Frames

TRAF
[39] 2019 4

5

Camera
3D sensor
Motion-
sensor

Asian cities Urban - 50 12.4 k

Inter-section
[38] 2019

2
3
4
5
6

Camera
LiDAR
GPS

San
Francisco
Bay Area

Urban - 213 59.4 k

OVD [16] 2019 3 Camera - - - 4+ 34.1 k

HAD [78] 2019 1

Camera
LiDAR
GPS
IMU
CAN

San
Francisco
Bay Area

Suburban
Urban
High way

32 h 5.6 k -

HDD [22] 2018 6

Camera
LiDAR
GPS
IMU
CAN

San
Francisco
Bay Area

Suburban,
urban and
highway

104 h - -

DBNet
[47] 2018 2

5
Camera
LiDAR -

Local route
Boulevard
Primary rd.
Mountain
roads
School
areas

20 h
100 km - -

BDDV
[50] 2017 3

Camera
GPS
IMU
Gyroscope
Magne-
tometer

US cities
Cities
Highways
Rural areas

10 k hours - 100 k

JAAD
[18] 2017 1

6 Camera
North
America and
Europe

- - 346 82 k

Brain4-Cars
[48] 2015 5

6

Camera
GPS
Speed-
logger

Two
US states

Suburban
Urban
Highway

1899 km 700 2 M

6.2. Metrics

To objectively assess the effectiveness of RBA components, many metrics have been
imported from other computer vision tasks, and others have been introduced to evaluate
a specific model’s performance. We start with the presentation of traditional criteria that
have been re-used for most of the RBA scenarios followed by the novel metrics introduced
to tackle the newly introduced tasks.

Traditionally, accuracy, F1-score, recall, and precision have been commonly employed
to assess the performance of the proposed approaches. Aside from a few number of
works that did reuse these metrics [16,48], new criteria have been proposed by the RBA
community to discern the performance of a given model designed for a new tasks and/or
dataset configurations.

During the last decade, Average Precision (AP) was presented initially to the computer
vision community during the PASCAL Visual Object Classes (VOC) Challenge 2007 [82] and
since then it has been widely employed to assess the performance of RBA approaches. For
example, in Refs. [18,50] to evaluate the driving model, a per-frame AP has been computed
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for each behavior categories through ranking frames with respect to a confidence score.
The mean AP (mAP) is then computed over all the available categories.

For mid-level RBA understanding tasks, such as detection, tracking, segmentation,
and appearance recovery, common measures such as IoU (Intersection over Union), MOTP
(Multiple Object Tracking Precision), and MOTA (Multiple Object Tracking Accuracy) have
been extensively employed. IoU quantifies the localization of objects, however, MOTP
and MOTA consider intuitively the strength of a given tracker, in terms of precision and
accuracy, respectively. For the tracking metrics, an extension of the two latter metrics has
been introduced in Ref. [83], i.e., AMOTA and AMOTP, which correspond to an average of
MOTA and MOTP, respectively, over the recall thresholds. According to the baselines drawn
over challenging benchmarks, the above-listed metrics were not consistent for domains with
frequent temporal object occlusions, like roads, where the tracker might miss information
on tracked objects for a significant time slot. Thus, in [81], Caesar et al. bring out TID
(Track Initialization Duration) and LGD (Longest Gap Duration), which are consistent
for AV. Expressly, TID helps in providing better initialization through quantifying the time
slot between the tracker’s start time and the first detection time. LGD however measures
the longest time slot of a detection gap/occlusion. For a given sequence, the final TID and
LGD are then averaged over all the available tracks. As for the detection metrics, traditional
metrics like mAP and IoU are not always able to apprehend errors related to velocity
and attribute estimation like in the case of nuScenes. To deal with this, NDS (NuScenes
Detection Score) is proposed to solve this issue and by encapsulating mAP and TP (True
Positive) for five different cues with different weights. So, NDS is able to quantify not
only the detection’s performance but also its quality with regards to velocity, orientation,
location, attributes, and size.

For segmentation and appearance recovery tasks, aside from traditional metrics, i.e.,
precision, recall, F1-score, IoU, per-pixel L1 − error, and per-pixel L2 − error, we witnessed
the introduction of new sophisticated criteria. ICP (Inception Conditional Probability)
and SS (Segmentation Score) originally introduced and used in [84] and [16], respectively,
both aim at assessing the generation/recovery quality rather than the diversity. The
intuition is to classify the generated image region of the occluded-segmented road object
correctly using a model built and trained using real data.

As for tasks involving trajectories forecasting [38,39], in [85] Alahi et al. propose
to measure Average Distance Error (ADE) and Final Distance Error (FDE) at a given
time slot in meters to estimate the performance of the predict trajectories of road agents.
ADE is computed as the RMSE (Root Mean Square Error) between all the real and the
predicted positions and FDE corresponds to the RMSE of the final predicted location and
its corresponding real location at the end of the trajectories. Qualitative evaluation has
been also used to compare the obtained trajectories of various approaches plotted on
derivable regions.

Based on language modeling, a new criterion has been introduced in Ref. [50] called
Driving Perplexity (DP) to evaluate the driving behavior. It corresponds to the exponent
of the entropy of all predicted events in a given sequence. Thus, the DP value is between
zero and one, and the smaller the value is, the more accurate the prediction is [28].

7. Discussion and Future Directions

In this review, we focused on holistic on-road scene behaviors analysis through identi-
fying all related tasks and their corresponding challenges. To conclude this paper, we will
discuss in this section the open challenges and general aspects that have an impact on the
key steps of the AV and ADAS vision-based standards.

Deep learning for perception. To allow safe on-road navigation, we need to provide a
broad description of the AV’ surroundings. Traditional machine learning-based approaches
did suffer from many issues in the traffic environment-related mainly to (i) the uncontrolled
conditions of the visual domain (such as gradual and sudden illumination changes, noises
due to extreme weathers) and (ii) the large diversity of non-static road agents (such as
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the huge variation of motions, poses, and textures). We believe that deep learning-based
approaches have succeed to overcome most of these issues. Details regarding the progress
of deep architectures exposed in this review prove that networks like CNN, GCN, FCN,
and LSTM are capable to build and training models that are more robust and especially
able to better generalize the circumstances, i.e., models generated are more able to deal
with new/unseen data issues from the same modality space as the one used to build the
model. For e.g., many of the reviewed meta-architectures evaluated over AV datasets
did make use of backbones pre-trained from wild and indoor datasets. However, one of
the biggest barriers of deep neural networks is the inability to adapt models for different
“domains”, i.e., modalities. In fact, most of the exposed RBA datasets are multi-modal
(include various kinds of data such as RGB, Depth, LiDAR, RaDAR, GPS, etc.), but most of
the endeavors did propose a single-mode or multi-mode framework where their networks
settings are inherited from/to models belonging to the same domain. To better use the
available multi-modal datasets, the ITS community needs to go for domain adaptation
techniques [86] in order to propose new algorithms aiming to adapt the parameters of a
given network developed for a specific dataset to a different one. Another issue related
to the employment of deep learning is the computational cost. In fact, even though such
solutions are now available on the market [87], research is still lacking proposals to enable
the deployment of resource-constrained vehicles.

Spatio-temporal modeling. The reported state-of-the-art shows that the best spatio-
temporal fit to the RBA data is the hybrid structures of CNNs and LSTMs. The principle is
to extract spatial features for each instance and feed them into the LSTM layer, which is
able to capture the temporal representation. Through the literature evaluation, we can note
that the major issues are related to computational time. Indeed, common Nvidia graphic
cards, which are the ultimate deep learning hardware, perform better in the context of
spatial/2D data owing to its powerful paradigm of parallelism and speed. Thus, CNNs
are the best fit to the available computational resources and, contrary to LSTMs, which
are not hardware friendly, they handle sequential series, which will decrease the speed of
training and inference. In addition, due to the large number of parameters a single node of
LSTM has, the overfitting problem and sensitivity to random initialization of weight is an
impediment for such hybrid architectures. Despite the success of 3D-CNN and attention
mechanisms that prevail LSTMs in many vision-based tasks [88–90], there are few proposals
introduced to exploit them with regards to RBA tasks, which will enable them to get the
end-to-end framework, transferable model, and better spatial correlation.

“Blessing” and “Curse” of data. The introduction of new datasets each time opens
new perspectives and challenges, which exhibits the advances of building robust RBA
components. Recent datasets, raised up in the benchmarks section of this review, cover all
the best properties of the vision dataset, i.e., scale, modalities, and diversities. This choice
is driven by the increasing need for machine/deep learning algorithms where training a
network for example is tied to a large scale of training data. It is obvious that the quality of
data will impact directly the learning process, however, it is not that easy to get reliable
data settings with high dimensions. In fact, datasets are annotated manually or using
labeling tools like LabelMe [91] and ELAN [92]. Large-scale datasets are indeed sparsely
annotated and further processing should be done to discern unlabeled data. This issue has
not been taken into account with RBA benchmarks, despite its importance in tackling their
incompleteness. One possible direction might be the use of pre-trained models to check
the reliability of annotation or use human-level intuition like the part-aware approach
proposed in Ref. [93].

RBA corner cases. Towards holistic understanding, approaches need to cover all the
usual and critical situations under the same framework. As reviewed earlier, the recent
state-of-the-art succeeded to introduce tasks including various on-road situations, however,
there is still a lot of work to be done. To do so, a new task called corner case detection has
been recently introduced, which aims at detecting unusual circumstances [94]. However,
until now, the corner cases task is still a niche area. Future directions may include the
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generalization of deep neural networks in order to learn hazardous situations that might
lead to crashes, for example.

Explainable and interpretable models. With the increasing use of revolutionary deep
neural networks, RBA solutions have shown an impressive performance in short term,
owing to the ease of design and development of such models. Despite their apparent
implementation simplicity, these algorithms are composed of black boxes that disable valid
explanations for the proposed solutions and hinder end-user confidence for road safety mat-
ters. In fact, within the proposed RBA models, it is difficult to draw a prediction as to which
representations are crucial. Despite their straightforward mathematical formalization, the
comprehension of how the output was reached is enigmatic since many heterogeneous
nodes are interacting and let loose on the feed data in order to build the final result. Ref. [10]
tried to put forward the use of secure of deep learning architectures, but this topic is still
lacking unified formalization for understandable RBA solutions to end users [95].

8. Conclusions

Remarkable achievements have been made in the RBA area over the last decade [1–134].
This review paper provides the first attempt to draw ITS researchers’ attention to this
field and its potential impact on road safety to all the agents (drivers, pedestrians, stuffs,
etc.). Even though many related tasks have been introduced since the early time, the
RBA area has not been defined appropriately before. To do so, we first investigated the
complementary relationships between many elementary tasks that we define as components
of the RBA paradigm, in order to achieve a comprehensive understanding of the approaches
and techniques. The tasks identified (situational awareness, driver-road interaction, road
scene understanding, trajectories forecast, driving activities, and status analysis) were
discussed separately and then common concepts and links were stressed through reviewing
milestones and recent state-of-the-art. Holistic approaches that were ntroduced recently
have been well assessed. Next, deep-leaning based solutions have been presented with
a specific taxonomy, which can help practitioners in selecting their best-fit architecture.
Finally, a discussion of the overall approaches was elaborated, which allows us to find
future directions. In summary, this paper presents the first survey of RBA-related work
without overlap with existing reviews elaborated on elementary topics and reports the
recent advances in the field.
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The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance System
AV Autonomous Vehicles
RBA Road Behavior Understanding
ASIRT Association for Safe International Road Travel
ITS Intelligent Transportation System
CNN Convolutional Neural Network
JAAD Joint Attention in Autonomous Driving
HDD Honda Research Institute Driving Dataset
GCN Graph Convolutional Networks
mAP mean Average Precision
RNN Recurrent Neural Network
HMM Hidden Markov Model
CA Class Accuracy
MIoU Mean Intersection over Union
OVD Occluded Vehicle Dataset
ICP Inception Conditional Probability
SS Segmentation Score
ADE Average Distance Error
FDE Final Distance Error
LSTM Long Short-Term Memory
DBUS Driving Behavior Understanding System
ADMD Attention-driven Driving Maneuver Detection
ILSVRC ImageNet Large Scale Visual Recognition Challenge
GAP Global Average Pooling
GCN Graph Convolutional Networks
FCN Fully Convolutional Networks
FC Fully Connected
MLP Multi Layer Perceptron
RNN Recurrent Neural Networks
GRU Gated Recurrent Units
GRFU Gated Recurrent Fusion Units
LRS Late Recurrent Summation
EGRF Early Gated Recurrent Fusion
LGRG Late Gated Recurrent State Fusion
BDDV Berkeley DeepDrive Video dataset
DBNet Driving Behavior Net
HAD Honda Research Institute-Advice Dataset
nuScenes nuTonomy scenes
AP Average Precision
VOC Visual Object Classes
IoU Intersection over Union
MOTP Multiple Object Tracking Precision
MOTA Multiple Object Tracking Accuracy
TID Track Initialization Duration
LGD Longest Gap Duration
NDS NuScenes Detection Score
TP True Positive
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SS Segmentation Score
FDE Final Distance Error
RMSE Root Mean Square Error
DP Driving Perplexity
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