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Abstract: Compression is a way of encoding digital data so that it takes up less storage and requires
less network bandwidth to be transmitted, which is currently an imperative need for iris recognition
systems due to the large amounts of data involved, while deep neural networks trained as image
auto-encoders have recently emerged a promising direction for advancing the state-of-the-art in image
compression, yet the generalizability of these schemes to preserve the unique biometric traits has been
questioned when utilized in the corresponding recognition systems. For the first time, we thoroughly
investigate the compression effectiveness of DSSLIC, a deep-learning-based image compression
model specifically well suited for iris data compression, along with an additional deep-learning
based lossy image compression technique. In particular, we relate Full-Reference image quality as
measured in terms of Multi-scale Structural Similarity Index (MS-SSIM) and Local Feature Based
Visual Security (LFBVS), as well as No-Reference images quality as measured in terms of the Blind
Reference-less Image Spatial Quality Evaluator (BRISQUE), to the recognition scores as obtained by
a set of concrete recognition systems. We further compare the DSSLIC model performance against
several state-of-the-art (non-learning-based) lossy image compression techniques including: the
ISO standard JPEG2000, JPEG, H.265 derivate BPG, HEVC, VCC, and AV1 to figure out the most
suited compression algorithm which can be used for this purpose. The experimental results show
superior compression and promising recognition performance of the model over all other techniques
on different iris databases.

Keywords: deep learning; iris compression; iris recognition

1. Introduction

Biometric human recognition systems are extensively used, and yet are increasing in
demand for various applications in recent years. Among all biological traits used, iris is
well suited for the most accurate and secure personal identification/verification because
of the distinctive patterns present in the iris textures of individuals. To maintain high
level of accuracy, the iris images presented to the iris recognition systems need to possess
a relentless virtual quality and perception. Nonetheless, considering interoperability
and vendor neutrality, often authorities, regulatory bodies, and international standards
organizations specify that biometric data must be stored and preserved in image form,
rather than in (or in addition to) extracted templates that may depend on proprietary
algorithms. Recording raw (high quality) image data in such systems also allows them to
benefit from inevitable future improvements in recognition algorithms. However, storage,
processing and transmission of such high quality data comes at high cost. To this extent,
efficient storage and rapid transmission of iris biometric records is a driving implementation
factor in iris recognition system development (especially on low-powered mobile sensors
and for portable devices) currently. Image compression techniques reduce the amount of
memory used by reducing the number of bits without losing the important data. Image
compression will also reduce the transmission time as the transmission time of any image
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is directly proportional to size of the image. There are two types of compression algorithms,
namely “lossless compression” and “lossy compression”. A lossless compression is a
reversible process in which no information is lost, but the compression ratio is lower. It is
mainly used in the domain where reliability is important: for example executable files and
medical data. Lossy compression is a non-reversible process and some information may be
lost, but compression ratio is very high and is mainly used in applications where loss of
data is acceptable to a certain degree.

Recent machine learning techniques proposed for lossy image compression have gener-
ated considerable interest in both the machine learning and image processing communities.
Like all lossy compression methods, such models operate on a simple principle: an image,
typically proposed as a vector of pixel intensities, is quantized, reducing the amount of
information required to record or transmit it, which incorporates introducing some error at
the same time. Typically, it is not the pixel intensities that are quantized directly. Rather,
an alternative (latent) representation of the image is found, and quantization takes place
in this representation, yielding a discrete-valued vector. To be more precise, deep learn-
ing models learn (extract) the key features in the input image through back propagation
training and enable the compression of image information, preserving and restoring such
features without too much prior knowledge.

In this work, we extend our previous study [1] on evaluating the expediency of a Deep
Semantic Segmentation-based Layered image Compression (DSSLIC) model [2] for iris
compression within a biometric recognition framework. As a distinction to the previous
work: We utilize a more powerful deep-learning-based model (End-to-end Optimized Im-
age Compression model (EOIC)) to address the lower performance issue of the Conditional
Probability Models for Deep Image Compression (CPDIC), as used as the comparing model
in the previous experiments. We further consider three new state-of-the-art (non-learning-
based, lossy) image compression models along with a couple of other commonly used
image compression algorithms to compress iris images in four well-known iris datasets. To
evaluate the compression performance in each case, in addition to the Multi-scale Structural
Similarity Index (which was used in our previous work), another “Full-Reference” image
quality assessment measure, namely Local Feature Based Visual Security (LFBVS), and a
“No-Reference” images quality assessment measure, namely Blind Reference-less Image
Spatial Quality Evaluator (BRISQUE) are used. The biometric recognition performance
then is evaluated, in terms of Equal Error Rate (EER), by using the compressed iris images
in some predefined iris biometric systems. At the end, the compression and the correspond-
ing recognition results are compared and carefully analyzed to figure out a well suited
compression algorithm to be employed in iris recognition systems. The rest of the paper is
structured as follows: Section 2 will review related works and state of the art, and Section 3
will describe the deep-learning based model (DSSLIC). Section 4 will give the details of the
experimental framework, and the experiments and analysis will be presented in Section 5.
Finally, Section 6 will conclude the paper.

2. Related Work

Many studies have been conducted on iris image compression and the subsequent
recognition performance during the past decades). For example: Matschitsch et al. [3]
studied the impact of applying different lossy compression algorithms on the matching
accuracy of iris recognition systems, relating rate-distortion performance to the matching
scores. The authors in this work concluded that JPEG2000, SPIHT, and PRVQ are almost
equally well suited for iris compression. Daugman and Downing [4] analyzed the effect
of severe image compression on iris recognition performance and introduced a schemes
that combine region-of-interest isolation with JPEG and JPEG2000 compression at severe
levels, and tested them using a publicly available database of iris images. Grother [5]
investigated existing image compression approaches and compared JPEG and JPEG2000
to provide a quantitative support to the revision of the ISO/IEC IS 19794-6, considering:
cropped format (IREX K3), masked and cropped format (IREX K7), and an unsegmented
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polar format (IREX K16) in his experiments. Ives et al. [6] investigated the effects of im-
age compression on recognition system performance using a commercial version of the
Daugman “iris2pi” algorithm along with JPEG-2000 compression, and linked that to image
quality. Korvath et al. [7] evaluated the impact of dedicated lossless image codecs (loss-
less JPEG, JPEG-LS, PNG, and GIF), lossless variants of lossy codecs (JPEG2000, JPEG
XR, and SPIHT), and some general purpose file compression schemes on the iris images.
Bergmüller et al. [8] studied the impact of using pre-compressed data in iris segmentation
and evaluated the relation between iris segmentation performance and general image
quality metrics. Rathgeb et al. [9] investigated the impact of image compression on iris
segmentation algorithms. In their work, they examined the impact of severe image com-
pression using in particular, JPEG, JPEG 2000, and JPEG-XR algorithms on the performance
of different iris segmentation approaches.

With recent advancements in deep learning techniques, researchers have proposed
few learning based image compression methods as well. Toderici et al. [10] used a recur-
rent neural networks, based on convolution and deconvolution long short-term memory
(LSTM), to extract binary representations which are later compressed with entropy cod-
ing. Ballé et al. [11] proposed a compression framework that included a generalized
divisive normalization (GDN)-based nonlinear analysis transform, a uniform quantizer,
and a nonlinear synthesis transform. Theis et al. [12] introduced a deep-learning-based
auto-encoder in which they used smooth approximation instead of quantization to obtain
different rates. Agustsson et al. [13] used a soft-to-hard vector quantization model along
with a unified formulation for both the compression of deep learning models and image
compression. Jiang et al. [14] utilized a compact convolutional neural network (ComCNN)
and a reconstruction convolutional neural network (RecCNN) to encode and decode the
original image, respectively. Johnston et al. [15] utilized the structural similarity (SSIM)
quality measure and spatially adaptive bit allocation to further improve the performance.
Li et al. [16] introduced a model which was based on image content weighting. They used
the edge feature maps, extracted by a convolution neural network, as the importance map
of the original image. In this work, an innovative algorithm was introduced to solve the
non-differentiated calculation in the quantization rounding function to achieve a backward
propagation gradient in the standard image algorithm. Luo et al. [17] used the benefit of
image compression and classification to reconstruct the images and to generate correspond-
ing semantic representations simultaneously. Mantzer et al. [18] proposed a conditional
probability model for deep image compression (CPDIC), with concentration on improving
the entropy rate of the latent image representation using a context model (a 3D-CNN
which learns a conditional probability model of the latent distribution). During training the
auto-encoder makes use of the context model to estimate the entropy of its representation,
and the context model is concurrently updated to learn the dependencies between the
symbols in the latent representation. Wang et al. [19] proposed a compression bit allocation
algorithm, which allows a recurrent neural network (RNN)-based compression network to
hierarchically compress the images according to semantic importance maps.

Some other works utilized Generative Adversarial networks (GAN) in their archi-
tecture to learn the image compression. Santurkar et al. [20] utilized a discriminator to
help training of a compression decoder. They calculated a perceptual loss, which was
based on the feature map obtained from pretrained ImageNet and AlexNet. Only low-
resolution image coding results were reported in this work. Ripple et al. [21] embedded
an auto-encoder in a GAN architecture, where the feature extraction adopted a pyramid
of inter-scale alignments. They considered the target and its reconstruction jointly as a
single entity and, instead of producing an output for classification at the last layers of
the network, accumulated scalar outputs along branches constructed at different roots.
The average of these scalars was used as the final value passed to a sigmoid function.
Augustesson et al. [22] proposed an image compression (synthesis) model based on a GAN
architecture. They consider two modes of operations namely “generative compression”
and “selective generative compression”. The later approach generated parts of image
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from a semantic label map. Their model was concentrated on obtaining extremely low
bit-rates rather than on preserving key features in image, and to this extent a clear trade
off between these two factors remained unclear. Balle et al. [23] proposed an end-to-end
trainable encoder–decoder framework for image compression. The encoder part includes a
variational generative model, whose out put is quantized, compressed, and transmitted as
side information. The decoder recovers the quantized vector from the compressed signal.
It then obtains the correct probability estimates to successfully recover and reconstruct the
image. Minnen et al. [24] introduced a model which jointly optimizes an autoregressive
component that predicts latents from their causal context (Context Model) along with a
hyperprior and the underlying autoencoder. Real-valued latent representations then are
quantized to create integer-valued latents and hyperlatents, which are compressed into
a bit-stream using an arithmetic encoder and decompressed by an arithmetic decoder.
Cheng et al. [25] used discretized Gaussian Mixture Likelihoods to parameterize the dis-
tributions of latent codes, which removes redundancy to achieve an accurate entropy
model, and leads to fewer encoding bits. They take advantage of attention modules to
make the learned models pay more attention to complex regions. In any case, the main
drawback of applying GAN networks (at least on their own and without further infor-
mation fusion) to reconstruct the images is their inability to preserve key fine features in
the images reconstructed. This phenomenon is observable in the corresponding results
obtained using the above models too. In fact, this issue can directly affect the iris key
traits and their subsequent recognition performance in the reconstructed images. Figure 1
shows a sample iris image (Figure 1a) (from the Notredame iris dataset, as used in this
work), and its compressed version (Figure 1b), using the last GAN based model, along
with their difference image (Figure 1c), and the overlaid ground-truth mask (Figure 1d).
Gray regions in the difference image show where the two images have the same intensities,
and magenta and green regions show where the intensities are different. Furthermore,
the overlaid ground-truth mask shows how the actual iris outer and inner boundaries (as
specified by the mask) are distorted in the compressed (reconstructed) image. Nevertheless,
while the recent architectures (e.g., et al. [23–25]) contributed to improve the compressive
performance in one way or another, yet their experimental trail (carried out in this research
work) revealed that such improvement has come at the cost of loosing some level of scala-
bility. In particular, during our experiments we noticed that on certain data (e.g., Casia5a
as used in our experiments), these models are only able to preserve and reconstruct key
image features when higher bits rates are used, and simply do not converge to lower bit
rates even when highest compression parameters are used. To this extent, we excluded
them from our comparison experiments.

(a) (b) (c) (d)

Figure 1. An iris image (a) and its corresponding output using a GAN based model (b), along with
an image visualizing their difference (c), and the overlaid ground-truth (d).

3. Deep-Learning-Based Image Compression Model (DSSLIC)

Figure 2 demonstrates the overall architecture of the model used in our work, which
is derived from the DSSLIC model already introduced in [2]. As a key distinction to the
original model, here we do not use a segmentation network in our model, and instead
we provide the manually segmented labels directly to the model. Doing so, we try to
provide a better evaluation of the actual performance of the model by introducing more
accurate labeling data. In fact, such a configuration is practically justifiable as the recent ad-
vancements in the deep-learning-based segmentation techniques has made highly accurate
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segmentations (that are comparable to the manually segmented labels) available in a timely
manner (i.e., [26]).

Figure 2. The deep-learning-based iris compression model.

The overall architecture of the model is composed of an encoding part and a decoding
part. The encoding part includes two deep learning networks, namely “CompNet” and
“FiNet” (a GAN-based network). The ComNet network takes the iris image as input, while
the corresponding segmentation map is encoded to serve as side information to this network
for generating a low-dimensional version of the original image. Both the segmentation
map and the compact version are losslessly encoded using the FLIF codec [27], which is a
state-of-the-art lossless image compression algorithm. Having the segmentation map and
up-sampled compact image, the FiNet works to obtain a high-quality reconstruction of the
input image. Unlike the similar architectures in which the GAN networks operate directly
only on the input images, here in this model, the GAN network takes the segmentation map
as the input and tries to learn the missing detail information of the up-sampled version
of the compacted input image to minimize the distortion of the synthesized images. It
should be noted that although GAN-based synthesized images generated with the help
of the segmentation maps are visually appealing, their details can be quite different from
the original images. To minimize the errors of the synthesized images, the up-sampled
version of the compact image, as an additional input, is used. By doing so, the FiNet learns
the missing detail information of the up-sampled version of a compact image with respect
to the input image, which in turn controls the output of the GAN network. After adding
the up-sampled version of the compact image and the FiNet’s output, we obtain a better
estimate of the input. The residual difference between the input and the estimate is then
obtained and encoded by a lossy codec (H.265/HEVC intra coding-based BPG). In order
to deal with negative values, the residual image is re-scaled to [0, 255] with a min-max
normalization before encoding. The min and max values are also sent to the decoder for
inverse scaling. In this scheme the segmentation map serves as the base layer and the
compact image and the residual are the first and second enhancement layers, respectively.
At the decoder side the segmentation map and the compact representation are decoded to
be used by the FiNet to obtain an estimate of the input image. The output of FiNet is then
added to the decoded residual image to obtain the reconstructed image as output.



Sensors 2022, 22, 2698 6 of 18

4. Experimental Framework

In this section, we describe the methodological details of our experiments including:
the databases used, the comparison compression algorithms, metrics and measures, and
the recognition pipeline.

4.1. Datasets

For our experiments, we used four different iris datasets: The Notredame dataset [28]
includes 835 iris images of 30 different subjects. The images in this dataset are taken in
near-infrared spectrum in an indoor environment with the LG 2200 iris biometric system.
The Casia4i dataset [29] includes 2640 iris images of 249 subjects. Images in this dataset
are acquired under near-infrared illumination, with a close-up iris camera. The IITD
dataset [30] includes 2240 iris images of 224 subjects. The images are acquired in the indoor
environment, with the Jiris, Jpc1000 digital CMOS camera in near-infrared spectrum. The
Casia5a dataset [29] includes 1880 images of both eyes of 94 users. The dataset comprises
images captured from a video sequences taken in 2009 and 2013. Special attention should
be paid to the fact that: the selection of the datasets and the number of samples included in
each case were subject to the availability of the ground-truth masks which were required
for the training and the segmentation process. The ground-truth masks were provided
by the Multimedia Signal Processing and Security Lab (WaveLab) group at the University
of Salzburg.

4.2. Comparing Compression Algorithms

To evaluate the model expediency, primarily we compare its performance against a
well-known and popular deep-learning based (lossy) compression algorithm. End-to-end
Optimized Image Compression model (EOIC) [11] consists a nonlinear analysis transform,
a nonlinear synthesis transform and a uniform quantizer. Each transform begins with an
affine convolution on the ith input channel u of the kth stage at spatial location (m, n):

v(k)i (m, n) = ∑
j

(
hk,ij ∗ u(k)

j

)
(m, n) + ck,i, (1)

followed by a down-sampling:

w(k)
i (m, n) = v(k)i (skm, skn), (2)

where sk is the down-sampling factor for stage k. Each stage concludes with a Generalized
Divisive Normalization (GDN) transform:

u(k+1)
i (m, n) =

w(k)
i (m, n)(

βk,i + ∑j γk,ij

(
w(k)

j (m, n)
)2
) 1

2
. (3)

The full set of h, c, β, and γ parameters (across all the three stages) constitute the
optimization parameters. This representation then is quantized, yielding a discrete-valued
vector which is then compressed. The rate of this discrete code is lower-bounded by the
entropy of the discrete probability distribution of the quantized vector. To reconstruct the
compressed image, the discrete elements of the vector are reinterpreted as a continuous-
valued vector which are transformed back to the data space using a parametric synthesis
transform. Analogously, the synthesis transform consists of three stages, with the order
of operations reversed within each stage, down-sampling replaced by up-sampling, and
GDN replaced by an approximate inverse called IGDN:

ŵ(k)
i (m, n) = û(k)

i (m, n) ·
(

β̂k,i + ∑
j

γ̂k,ij

(
û(k)

j (m, n)
)2
) 1

2

. (4)
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which is followed by up-sampling:

v̂(k)i (m, n) = ŵ(k)
i (m/ŝk, n/ŝk), (5)

where ŝk is the up-sampling factor for stage k. Finally, this is followed by an affine convolution:

û(k+1)
i (m, n) = ∑

j

(
ĥk,ij ∗ v̂(k)j

)
(m, n) + ĉk,i. (6)

Analogously, the set of ĥ, ĉ, β̂, and γ̂ make up the parameter vector θ. We further
compare the model performance against some of the most popular and state-of-the-art non-
learning-based (lossy) compression methods including: JPEG [31], the current ISO standard
JPEG2000 (J2K) [31], the H.265 derived BPG [32], HEVC [33] (HM version 16.20) [34],
VVC [35] (VTM version [36] and AV1 [37] (version 2.0) [38] algorithms.

4.3. Metrics and Measures

To evaluate the compression performance we considered three different measures,
including two Full-Reference (FR) image quality assessment measures and one objective
blind or No-Reference (NR) image quality assessment measure. Full-Reference (FR) image
quality assessment requires as input not only the compressed image, but also a “clean”,
pristine reference image with respect to which the quality of the compressed image is
assessed. Objective blind or No-Reference image quality assessment requires as input only
the compressed image, and assesses the quality of the compressed image objectively. Multi-
Scale Structural Similarity Index Measure (MS-SSIM) is the primary Full-reference (FR)
image quality assessment measure we considered in our experiments. Unlike in Structural
Similarity Index Measure (SSIM), where variation in luminance, contrast and structure of
“single-scale” input images are compared, MS-SSIM repeatedly down-samples the input
images up to M scales. At each scale, the contrast comparison and the structure comparison
are calculated. The luminescence comparison is computed only at scale M, and the final
MS-SSIM evaluation is obtained by combining the measurements at different scales [39].
The value of the MS-SSIM measure is bounded between 0 and 1, where 0 represents the
worst quality and 1 the best quality. Local Feature Based Visual Security (LFBVS) [40] is
the second Full-reference (FR) image quality assessment measure we considered in our
experiments. The algorithm utilizes localized edge and luminance features which are
combined and weighted according to error magnitude, i.e., error pooling. The value of
the LFBVS measure is bounded between 0 and 1, where 0 represents the best quality and
1 the worst quality. We further used Blind/Reference-less Image Spatial Quality Evaluator
(BRISQUE) [41] as our No-Reference image quality assessment measure. BRISQUE does
not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses
scene statistics of locally normalized luminance coefficients to quantify possible losses of
“naturalness” in the image due to the presence of distortions, thereby leading to a holistic
measure of quality. The underlying features used derive from the empirical distribution
of locally normalized luminances and products of locally normalized luminances under
a spatial natural scene statistic model. The value of the BRISQUE measure is bounded
between 0 and 100, where 0 represents the best quality and 100 the worst quality. In the
recognition experiments, the Equal Error Rate (EER) was chosen as an overall measure of
biometric recognition performance. EER is the operation point on the receiver operating
characteristic curve where the false non-match rate and the false match rate are equal.

4.4. Recognition Pipeline

In our recognition pipeline, we used the contrast adjusted Hough transform (CAHT) [42],
and Osiris [43] for iris segmentation, local Gabor filters (LG) for feature extraction, and the
Hamming distance with rotation correction for matching. Apart from the Osiris, we used
the implementations provided in the USIT toolkit of the University of Salzburg [44].
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5. Experiments and Analysis

Addressing the input size requirement of the deep-learning-based models and also
a fair evaluation policy, we rescaled all the images in our datasets to the size: 256 × 512
during the compression evaluation experiments. Since the networks are trained on RGB
format we cloned each image two times to generate 3 channel (RGB) images (256× 512× 3).
We applied a cross-fold scheme to train the (deep-learning-based) models. For this, first
we partitioned each dataset into two equal parts and trained the models on one partition
and tested it on the other partition. We switched the partitions role next, and doing so we
tested the networks on all samples in each dataset without overlapping the training and
testing sets. For the DSSLIC model, we set the down-scaling factor α = 8 to obtain the
compact representation of the inputs. Table 1 summarizes the training parameters used for
each model. Likewise, we applied the other comparison (non-learning-based) compression
algorithms to our datasets. To address the preset bandwidth/storage compression limit
requirement we defined two bandwidth limits of 0.30 (A) and 0.60 (B), corresponding to the
higher and the lower compression levels, respectively, for each dataset in terms of bit-per-
pixel (bpp). Obviously, not all algorithms allow to set the exact output file size. Thus, we set
the compression parameter for each algorithm in way that the achieved bpp of the resulting
compressed images are equal to or less than the predefined bandwidth/storage limit. It is
also important to note that the resulting file sizes using the DSSLIC model are among the
smallest in the majority of cases (i.e., Casia4i, Casia5a-A, IITD-B, and Notredame). Table 2
shows the selected compression parameters (par) and the resulting bpps per algorithm and
dataset. Furthermore, samples of the output (compressed) images in each dataset using the
compression methods used are presented in Figure 3 per column and row, respectively.

Table 1. Networks’ training parameters.

Network DSSLIC EOIC
Optimizer Adam Adam

Learning rate 0.0002 0.0001
Momentum - -

Weight decay 0.0005 0.1
Iteration 250 1,000,000

Table 2. Selected compression parameters (par) and their corresponding compression performance
in bits per pixel (bpp) for each algorithm.

Dataset Casia4i Casia5a IITD Notredame
Method par bpp par bpp par bpp par bpp par bpp par bpp par bpp par bpp
DSSLIC 23 0.20 16 0.44 23 0.16 14 0.45 27 0.30 19 0.53 23 0.16 14 0.51

EOIC 1024 0.21 4096 0.47 1536 0.16 7680 0.43 256 0.28 1792 0.53 512 0.16 5120 0.53
BPG 37 0.21 30 0.54 30 0.19 24 0.42 33 0.29 26 0.60 33 0.18 24 0.55
J2K 35 0.23 21 0.55 45 0.18 14 0.55 28 0.27 14 0.55 45 0.18 14 0.55

JPEG 23 0.20 57 0.50 12 0.19 57 0.51 17 0.30 57 0.53 09 0.18 57 0.58
HEVC 32 0.24 27 0.44 28 0.18 20 0.44 36 0.30 20 0.56 32 0.21 25 0.51
VCC 31 0.23 25 0.48 30 0.16 22 0.51 34 0.31 28 0.57 32 0.17 25 0.51
AV1 31 0.22 25 0.44 30 0.20 13 0.55 42 0.30 30 0.58 35 0.20 20 0.51

Bpp (max) A (0.30) B (0.60) A (0.30) B (0.60) A (0.30) B (0.60) A (0.30) B (0.60)

Table 3 presents the quality compression results in terms of MS-SSIM measure for each
dataset (averaged over all images) using the different compression algorithms. As it can be
seen, the DSSLIC model shows superior performance over all other algorithms for both
compression levels considered. This is a quite interesting result given the fact that the files
produced by the DSSLIC are among the smallest files produced by the methods applied.
Visual inspection of the obtained output iris images as presented in Figure 3 (the first row)
also shows that the model is able to preserve the key iris biometric traits and the structural
features very well. Across all datasets, and both compression settings, BPG is (almost)
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always the second-best. The performance of the other six algorithms vary depending on
the datasets: The VCC algorithm shows relatively better performance (compared to the
other five algorithms) on the Casia4i, Notredame, and IITD datasets (only when the higher
compression rate (A) is considered), while the AV1 algorithm demonstrates overall a better
performance than VCC on the Casia5a dataset. EOIC performs better (than VCC and AV1)
on Notredame datasets (only when the lower compression rate (B) is considered). The other
algorithms (J2K, HEVC, and JPEG) come thereafter while their performance in the majority
of cases is lower than the other algorithms across different datasets. For the sake of better
interpretation, we visualized the corresponding performance in the form of bar-graphs (for
each compression level) in Figure 4.

Figure 3. Samples of highly (A) compressed iris images from the Casia4i, Casia5a, IITD, and
Notredame datasets, per column, respectively, using DSSLIC, EOIC, BPG, J2K, JPEG, HEVC, VVC,
and AV1 algorithms per row, respectively.
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Table 3. Average MS-SSIM scores using high (A) and low (B) compression levels.

Dataset Casia4i Casia5a IITD Notredame
Level B A B A B A B A

DSSLIC 0.998 0.994 0.995 0.990 0.998 0.994 0.997 0.990
EOIC 0.993 0.982 0.994 0.982 0.985 0.961 0.994 0.978
BPG 0.996 0.988 0.994 0.985 0.997 0.992 0.996 0.988
J2K 0.991 0.966 0.992 0.970 0.987 0.945 0.988 0.964

JPEG 0.993 0.950 0.988 0.931 0.994 0.957 0.991 0.949
HEVC 0.990 0.979 0.993 0.983 0.990 0.977 0.991 0.980
VCC 0.994 0.982 0.995 0.984 0.993 0.982 0.992 0.980
AV1 0.991 0.978 0.995 0.985 0.992 0.978 0.992 0.980
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Figure 4. Compression performance in terms of MS-SSIM for the high (left graph) and low (right
graph) compression levels.

Table 4 shows the corresponding results for each dataset (averaged over all images) in
terms of LFBVS. The superior performance of DSSLIC over the other algorithms is visible
in these results too. However, when it comes to the other algorithms’ performance, the
MS-SSIM experiment rankings do not apply any more. All together HEVC, VCC, and AV1,
rank the second best, showing very close performance to each other. Among the other four
algorithms: BPG and J2K come thereafter showing better performance than JPEG in the
majority of the cases. Yet, their performance seems to vary depending on the compression
level applied and across different datasets. For instance, BPG shows better performance
(than J2K) when considering IITD dataset or the lower compression rate (B) on the Casia4i
dataset, while J2K shows better or at least equal performance in all other cases. At the end
comes EOIC which shows the worst performance almost in all cases. Figure 5 demonstrates
the algorithms’ performance for each compression level in the form of bar-graphs.

Table 4. Average LFBVS scores using high (A) and low (B) compression levels.

Dataset Casia4i Casia5a IITD Notredame
Level B A B A B A B A

DSSLIC 0.12 0.15 0.11 0.16 0.13 0.15 0.14 0.19
EOIC 0.32 0.41 0.37 0.45 0.32 0.38 0.36 0.44
BPG 0.18 0.31 0.25 0.34 0.18 0.26 0.24 0.35
J2K 0.19 0.29 0.18 0.34 0.20 0.27 0.23 0.35

JPEG 0.19 0.41 0.21 0.45 0.20 0.31 0.21 0.44
HEVC 0.13 0.26 0.21 0.33 0.15 0.21 0.22 0.31
VCC 0.13 0.25 0.17 0.33 0.13 0.20 0.22 0.32
AV1 0.16 0.28 0.17 0.32 0.14 0.21 0.21 0.32

In order to provide an objective insight into the quality of images generated, we
calculated the BRISQUE measure for the obtained compressed images. Table 5 shows the
corresponding results for each dataset (averaged over all images) in terms of BRISQUE.
The dominating performance of DSSLIC over the other algorithms is visible in these
results also. When it comes to the other algorithms’ performance, the LFBVS experiment
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performance rankings rather applies: EOIC again shows the worst performance almost
in all the cases, and all together HEVC, VCC, and AV1, rank the second best, showing
very close performance to each other. Among the other three algorithms: BPG comes next
showing better performance than the other two algorithms (J2K and JPEG) in the majority of
the cases (excluding the Lower compression level (B) for the Casia5a, Notredame, and IITD
datasets), and J2K and JPEG together come at the end, showing rather similar performance.
Figure 6 demonstrates the algorithms’ performance for each compression level in the form
of bar-graphs as well. Unsurprisingly, in all the compression evaluation experiments (MS-
SSIM, LFBVS, and BRISQUE), the higher compression rate (reflected in the left graphs in
the corresponding figures) decreased the compression performance over all the datasets
and algorithms (including DSSLIC).
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Figure 5. Compression performance in terms of LFBVS for the high (left graph) and low (right graph)
compression levels.

Table 5. Average BRISQUE scores using high (A) and low (B) compression levels.

Dataset Casia4i Casia5a IITD Notredame
Level B A B A B A B A

DSSLIC 29.0 30.4 26.4 29.4 35.8 36.1 19.7 23.4
EOIC 44.8 50.8 52.0 60.9 44.8 44.4 47.6 56.0
BPG 33.6 39.8 40.2 46.2 43.3 44.8 34.4 43.4
J2K 37.2 48.0 39.6 54.9 44.4 49.1 37.2 53.7

JPEG 36.0 58.1 35.4 61.9 39.7 48.5 31.2 57.6
HEVC 26.7 36.6 36.2 45.7 37.1 41.3 31.1 40.4
VCC 29.1 36.1 33.7 47.5 37.5 43.1 30.1 42.2
AV1 29.8 39.0 32.9 47.0 38.4 44.8 30.0 42.4
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Figure 6. Compression performance in terms of BRISQUE for the high (left graph) and low (right
graph) compression levels.

In the next stage of our experiments, we applied the biometric recognition pipeline (as
described in Section 4) to all the compressed images obtained, and evaluated the biometric
comparison accuracy, in terms of EER, for the two levels of compression. In addition
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to the two segmentation algorithms (Osiris and CAHT) used, we considered an optimal
segmentation configuration as well, utilizing the manually annotated segmentation drop
masks. The optimal segmentation configuration was used to disentangle the distorting
effect of the compression on the iris unique biometric traits (which directly affect their
subsequent recognition performance) from the iris structural feature distortions which may
cause the segmentation failures. Tables 6 and 7 show the recognition results using the
CAHT segmentation and manual segmentation, respectively. As it can be seen in Table 6,
recognition does not work at all for the Casia5a and Notredame datasets when using the
CAHT segmentation algorithm. The DSSLIC compression shows the best performance only
on the IITD and Casia4i datasets (when higher compression rate (A) considered). However,
when we use the manual segmentations (Table 7): while the recognition still does not work
for Notredame data, yet for the remaining datasets, DSSLIC results are never surpassed
by any other comparison compression algorithm. Given the fact that the DSSLIC also
produces the smallest actual files, these results imply that DSSLIC compression is able to
preserve the iris unique biometric traits bests-certainly better than the other comparison
algorithms, as the segmentation defects were ruled out using the manual segmentations.

Table 6. EERs for the different datasets using the CAHT algorithm.

Dataset Casia4i Casia5a IITD Notredame
Level B A B A B A B A

DSSLIC 1.2 1.0 21.1 21.2 1.4 1.8 29.9 29.9
EOIC 1.2 1.4 23.6 25.0 2.8 2.3 30.9 38.8
BPG 1.0 1.2 21.6 21.3 1.6 2.4 29.6 30.3
J2K 1.1 1.3 20.6 22.3 2.0 2.6 30.0 30.1

JPEG 1.2 2.8 20.6 26.1 1.9 2.5 29.9 32.4
HEVC 0.9 1.0 17.3 19.1 1.9 1.8 30.5 30.5
VCC 0.7 1.0 17.0 18.6 1.4 2.3 30.1 29.9
AV1 0.9 1.1 17.4 18.5 1.6 2.0 29.7 30.0

Table 7. EERs for the different datasets using manual masks.

Dataset Casia4i Casia5a IITD Notredame
Level B A B A B A A B

DSSLIC 0.4 0.4 2.5 2.9 0.4 0.5 23.8 23.9
EOIC 0.5 0.7 3.5 6.7 0.5 0.6 24.3 39.8
BPG 0.4 0.6 2.9 3.9 0.4 0.5 23.8 23.9
J2K 0.4 0.6 2.7 5.1 0.4 0.5 23.8 24.0

JPEG 0.5 1.7 3.0 14.0 0.4 0.5 23.8 25.7
HEVC 0.4 0.5 2.9 3.9 0.4 0.5 24.2 23.9
VCC 0.5 0.5 2.8 4.1 0.4 0.5 23.9 24.0
AV1 0.5 0.5 2.8 3.8 0.5 0.5 24.0 24.2

Table 8 demonstrates the results when applying the OSIRIS algorithm for segmenta-
tion. As it can be observed, recognition on the Notredame data does not work either, but
otherwise the ranking of the algorithms is fairly different. DSSLIC no longer performs best
in any case. If we compare the results obtained using CAHT and OSIRIS segmentation al-
gorithms, we can easily interpret that the segmentation methods and the logic behind them
can react quite differently to the artifacts introduced to the image during the compression
process, and thus deliver very different results having identically compressed iris images
as the input. Overall, the clearly higher compression performance of the DSSLIC algorithm
is not directly translated into best recognition accuracy, except in the configuration where
the manual segmentation is used. It should be noted that by using the manual drop masks,
the measures are only impacted by the possible artifacts introduced by the compression
to the iris texture, whereas when using CAHT and OSIRIS as the segmentation modules,
the measures are impacted by both the eventual segmentation failures introduced by the
segmentation modules, as well as the artifacts introduced by the compression.
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Table 8. EERs for different the datasets using the Osiris algorithm.

Dataset Casia4i Casia5a IITD Notredame
Level B A B A B A A B

DSSLIC 1.1 1.0 2.0 2.2 0.7 0.8 25.2 25.5
EOIC 0.9 0.9 2.8 5.2 0.5 0.4 25.3 26.1
BPG 0.9 1.0 2.0 2.5 0.3 0.3 26.9 26.4
J2K 0.8 0.9 2.0 3.1 0.4 0.7 25.7 25.1

JPEG 0.8 1.8 2.4 9.7 0.5 0.6 24.7 24.7
HEVC 0.7 0.9 1.9 2.6 0.8 0.8 25.7 25.8
VCC 0.9 0.9 2.0 2.4 0.9 1.2 25.7 25.5
AV1 0.9 0.9 1.9 2.2 1.2 1.2 25.8 25.9

Concerning the other deep-learning-based algorithm (EOIC) performance: The al-
gorithm proved (based on the results obtained) to perform better than the CPDIC model
which we used in our previous work [1]. The analysis of the output images generated by
the CPDIC model (see Figure 7) in our previous work revealed some artifacts which were
distributed uniformly over all the images in a block-shaped pattern. These artifacts were
more severe and intense in the high texture areas, specifically the iris texture areas. The
persistence of these artifacts over all images clearly undermined their recognition perfor-
mance. When inspecting the iris images obtained using the EOIC model (see Figure 8), we
can clearly observe that such artifacts do not exist, and thus the perceptual quality of the
images generated are much better than those generated by CPDIC model. Yet, we should
note that the iris unique biometric traits seem not to be well preserved and reconstructed
in the generated images compared to the images generated by, e.g., DSSLIC. This in fact
directly affects the the corresponding recognition results as reflected in Table 7.

(a) (b)

(c) (d)

Figure 7. Sample compressed images in the Casia5a dataset (a) and Notredame datasets (b) and their
corresponding normalized iris images (c,d), respectively, both generated by CPDIC algorithm.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Sample images in the Casia5a (a) and Notredame (b) datasets, and their corresponding
normalized iris images (c,d), along with their compressed images (e,f) and their corresponding
normalized versions (g,h), respectively, using EOIC algorithm.

We further analyzed the distribution of the genuine and impostor scores obtained
during the recognition experiments, to provide a better understanding of how the quality
of biometric traits in the compressed images can affect their actual recognition performance.
Figure 9 demonstrates the genuine and impostor distributions for the different compression
methods for each dataset when considering the optimal segmentation configuration (to
exclude the influence of probable segmentation errors). Each pair of curves (genuine and
impostor) are indicated by color while line-type distinguishes between impostor (dashed)
and genuine (solid). As it can be seen, the impostor curves remain virtually unchanged,
while the genuine curves fluctuate almost in all cases. This leads us to the observation
that the compression process affects the genuine scores, by introducing artifacts into the
iris images which subsequently alter the distinct patterns that are present in the genuine
samples, making the compressed images more dissimilar, and thus deteriorating the overall
EER scores at the end.
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Figure 9. Genuine and impostor distributions of the different compression methods.

6. Conclusions

We investigated the performance of a deep-learning-based image compression model
(DSSLIC) along with some other well-known models in terms of rate-distortion and the
subsequent recognition accuracy. The model showed superior compression performance
over all other algorithms using different datasets and compression rates. Unlike the other
algorithms, the DSSLIC model was able to cope with iris images with complex feature
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characteristics, and possessed stable performance on all different types of iris data. Visual
inspection of the iris images obtained using the other comparison deep-learning-based
model (EOIC) showed that: while DSSLIC model possesses better preforming profile
than the CPDIC (as used in our previous work), yet it is not able to well preserve and
reconstruct the iris unique biometric traits in the images, resulting in lower recognition
performance (compared to the DSSLIC model). Furthermore, the experiments with different
segmentation algorithms revealed that the segmentation technique and the logic used in
it could react quite differently to the compressed images, which in the case of, e.g., the
Osiris algorithm caused considerable degradation of the segmentation performance. The
results obtained using the manual drop masks supported this argument too. To this extent,
as the recognition experiments results showed, the higher compression performance of
the DSSLIC algorithm was directly translated into better recognition rates only when the
affecting role of the segmentation failures were precluded with the help of the manual drop
masks. The experiments also showed that an increase in compression results in reduction of
recognition performance in the majority of cases. Analysis of the genuine and the impostor
scores indicated that compression introduces artifacts into the iris images which alter the
iris unique biometric traits that are present in the genuine samples, making the compressed
images more dissimilar. Overall, the results showed that the presented deep-learning-based
model is capable of efficient iris image compression, and can be used in an iris biometric
recognition system efficiently.
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