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Abstract: The defocus or motion effect in images is one of the main reasons for the blurry regions
in digital images. It can affect the image artifacts up to some extent. However, there is a need for
automatic defocus segmentation to separate blurred and sharp regions to extract the information
about defocus-blur objects in some specific areas, for example, scene enhancement and object detection
or recognition in defocus-blur images. The existence of defocus-blur segmentation algorithms is
less prominent in noise and also costly for designing metric maps of local clarity. In this research,
the authors propose a novel and robust defocus-blur segmentation scheme consisting of a Local
Ternary Pattern (LTP) measured alongside Pulse Coupled Neural Network (PCNN) technique. The
proposed scheme segments the blur region from blurred fragments in the image scene to resolve the
limitations mentioned above of the existing defocus segmentation methods. It is noticed that the
extracted fusion of upper and lower patterns of proposed sharpness-measure yields more noticeable
results in terms of regions and edges compared to referenced algorithms. Besides, the suggested
parameters in the proposed descriptor can be flexible to modify for performing numerous settings.
To test the proposed scheme’s effectiveness, it is experimentally compared with eight referenced
techniques along with a defocus-blur dataset of 1000 semi blurred images of numerous categories.
The model adopted various evaluation metrics comprised of Precision, recall, and F1-Score, which
improved the efficiency and accuracy of the proposed scheme. Moreover, the proposed scheme
used some other flavors of evaluation parameters, e.g., Accuracy, Matthews Correlation-Coefficient
(MCC), Dice-Similarity-Coefficient (DSC), and Specificity for ensuring provable evaluation results.
Furthermore, the fuzzy-logic-based ranking approach of Evaluation Based on Distance from Average
Solution (EDAS) module is also observed in the promising integrity analysis of the defocus blur
segmentation and also in minimizing the time complexity.

Keywords: defocus blur; EDAS; in-focused region; LTP; out-of-focused region; PCNN

1. Introduction

Defocus blur using the optical-imaging system is the output of the focused region in
an image. In the image creation system, the light radiation on the in-focus plane incoming
from the object points is plotted to a focal point in the optical sensor. Nonetheless, the
light coming from an object point outside an in-focus plane illuminates a non-object point
of a region on an optical sensor is known as a Circle-of-Confusion (CoC) as illustrated in
Figure 1. This concept is called defocus blur when the CoC is as large as noticed by our

Sensors 2022, 22, 2724. https://doi.org/10.3390/s22072724 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072724
https://doi.org/10.3390/s22072724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9876-3932
https://orcid.org/0000-0002-0974-6154
https://orcid.org/0000-0002-3697-9498
https://orcid.org/0000-0001-6115-348X
https://orcid.org/0000-0001-6623-1758
https://orcid.org/0000-0001-6053-3384
https://doi.org/10.3390/s22072724
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072724?type=check_update&version=3


Sensors 2022, 22, 2724 2 of 30

eyes. The main importance of defocus blur images compared to the regular image is that it
consumes less space in the memory as it has color compressions in the background.

Figure 1. Circle of Confusion in focal and out of focus plane.

It is worth mentioning that there is no sharp boundary in defocus images that splits
the image into sharp and blur regions. The defocus blur highly depends on the diameter
of the camera lens, which recommends that narrow lenses generate lower defocus and
tend to lower blurry backgrounds. Contrarily, wider camera-aperture lenses cause wider
defocus. The in-focused region is usually the foreground area of the optical image, and
it is sharp while the remaining part is considered background, the out-of-focused region
that protects the viewers from distraction, and for this purpose, wider aperture lenses are
used by photographers. Out-of-focused images compromise the image quality, and it is
assumed a detrimental impact and misses the essential details necessary for the image
scene interpretation. Consequently, robust and automatic in-focused and out-of-focused
region detections are essential for numerous applications, including object detection, image
scene classification, image segmentation, and defocus depth estimation. The in-focused or
sharp region is commonly known as the Region of Interest (RoI) that automatically grabs
the audience’s attention. These images are also used for retrieval and searching the object
of interest in similar images. For the accurate and efficient segmentation of defocus blur,
there is a need for adaptive feature extraction from the sharp region and segmentation
algorithms without degrading the in-focused region [1].

The latest image defocuses algorithms presume that the blurry region is the output
of spatially invariant [2–7]. Algorithms that standardize the spatially-invariant defocus
commonly restore small local patches of the defocus images, where the blurry region
is observed as the invariant, and also the restored patches of the image are mutually
stitched [8–10]. A robust in-focused and out of focused region detection is worthwhile
in numerous contexts comprising: (i) avoiding inaccurate post-processing of out of focus
regions such as deconvolution [10]; (ii) identification of blurred background in digital
photography containing depth map estimation, image de-blurring, quality analysis of the
image, and further blur effect can also be adding for deploying artistic-bokeh effect [11,12],
(iii) object recognition in microscopy images where the main object is blurred, and it needs
to be detected using proper feature extraction such that microscopic images [13].

One of the foremost motivations of defocus-blur segmentation is to segment the
blurred and non-blurred regions to facilitate post-processing, as noticed above. Our study
explicitly adopted this research problem; a hybrid and novel scheme comprises Pulse
Coupled Neural Network, and a sharpness map-based Local Ternary Patterns are proposed.
The proposed scheme outperforms in terms of yielding smooth shapes of the object along
with its visible edges, producing prominent and efficient focused results for the common
datasets and also used in blurred and noisy images than previous alternatives [14–23].
Figure 2 illustrates the numerical representation of in-focused and out-of-focused patches
in the sample image: the labeling of in-focused objects are 1, 2, 3, 4, and 5, respectively,
while the remaining are denoted as out of the focused region. In the ground-truth (GT)
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image, black spots indicate the blurred region, while white indicates the in-focused region.
Contributions of the current work include:

• We proposed a novel and simple yet effective hybrid scheme by adopting a sharpness-
based descriptor known as Local Ternary Patterns (LTP) and a pulse synchronization
technique called Pulse Coupled Neural Network (PCNN) for addressing the defocus
blur segmentation limitations. Moreover, the threshold-based positive values are the
prerequisite for the region extraction process in defocus blur segmentation.

• The LTP-based sharpness metric is applied instead of the LBP descriptor (prone to
noisy background and blur regions) for accurate extraction of partially blur regions by
estimating the blur area in defocus blur images.

• Next, the Pulse Coupled Neural Network algorithm uses the neuron-firing sequence
phenomena after the region extraction that consists of the pixel feature details, i.e.,
edges, texture, and region, which are used for a noticeable out-of-focused region
segmentation using the de-blur image features.

• The experimental results are evidence that the proposed blur-measure produces
promising results while using limited computation time and processing in various
de-blur environments.

• To estimate the ranking of the referenced and proposed schemes using the appraisal
scores (<a) calculated for the defocus blur segmentation using fuzzy logic-based
EDAS approach for different performance metrics including precision and recall, and
F1 measure.

(a) Sample image (b) GT image

Figure 2. The figure represents the two images, i.e., the original sample image along with its
respective GT image. The sample image numerically identifies the blurred and non-blurred objects:
the non-blurred objects are represented by 1, 2, 3, 4, and 5, respectively, whereas the rest are blurred
objects. In the GT image, white indicates the non-blurred objects, whereas the black spots identify the
blurred region.

We adopted the fuzzy approach in this study to classify proposed and referenced
algorithms in their proper ranking category. The image segmentation-based fuzzy methods
are majorly involved in numerous areas, for example, fuzzy set theory, genetic algorithm,
supplier segmentation [24], pattern recognition, neural networks, computer vision, and
image processing [25]. Ghorabaee et al. [26] proposed a technique based on Fuzzy Logic
(FL), called Evaluation Based on Distance from Average Solution (EDAS). It is a scheme of
Multiple Criteria-Decision-making Method (MCDM), used for the classification of inven-
tory [27]. The FL-based EDAS approach is usually applied to rank numerous algorithms to
appropriately classify the top algorithms concerning the accuracy, time, and speed. It is
observed from Table 10 that the proposed scheme is ranked on top, while Zeng [23], and
LTP [22] are positioned on the second and third rank, Basar21 [21], and Zhu [19] on the
fourth and fifth rank. LBP [20], Shi14 [16], Su [17], Shi15 [14], and Zhuo [18] are ranked on
sixth, seventh, eighth, ninth, and tenth, respectively.
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Paper Organization

The paper organization is classified as follows. Section 2 represents the related work
of defocus-blur images and the PCNN method along with LBP, LTP, and EDAS approaches.
Section 3 contains the proposed scheme followed by the proposed defocus-blur segmenta-
tion algorithm, its implementation steps, and algorithm description. The evaluation of the
segmentation results obtained by the proposed scheme along with the dataset, comparator
algorithms, EDAS ranking approach, and discussion is described in Section 4. Finally,
Section 5 explains the conclusion.

2. Literature Review

In this section, first, the Depth-of-Field (DoF) images are briefly introduced and
followed by the referenced work of the PCNN technique. Subsequently, comprehensive
literature is provided about the LTP and LBP schemes and the EDAS-based approaches in
various application fields.

2.1. Defocused Blur Image Segmentation and PCNN Technique

This section mentions the introduction about Low-Depth-of-Field (LDoF) images
and the PCNN technique. The Depth-of-Field (DoF) is a metric measurement that de-
pends on the camera distance between its anterior lens angle and also the posterior object
angles, which is sharp [28]. In LDoF images, when the distance is low and the image
features are sharp, then it means the Object of Interest (OoI) is deblurred. Conversely,
the blurred region covers the background with a large volume, which in turn is a loss of
detail in large areas [29]. The classical approaches for OoI detection in LDoF images are
region-based, edge detection techniques, and features transformation. The edge detection
algorithm explained in [30,31] detects the object’s artifacts and also performs the analysis
of the object’s contouring to determine the defocused-blur pixels. On the contrary, the
region-wise segmentation algorithm is required for object detection in images of natural
scenes [29,32–35] by exploring a region along with high-frequency techniques. For instance,
the latest works [36–38] apply a higher-order statistics (HOS) measure from out-of-focused
scenes to explore the in-focused regions. A multiscale fuzzy model is implemented by
Mei et al. [39] for the identification of RoI, while the mixed-energy function is used for
defocus-blur region segmentation.

In the same way, a multiscale deblurring approach is implemented by Shaik et al. [40]
for out-of-focused region detection in the saliency space for curve evolution method in LDoF
images. Likewise, a multi-focused-fusion technique is proposed by Roy and Mukhopad-
hyay [41] for focused edges extraction from the input sample image to achieve a better
fusion focused image. They applied zero-cross and Canny operators for edge detectors to
obtain a prominent extraction of focused edges. Contrarily, the feature-transform segmen-
tation of LDoF images yields better results, followed by an improvement in performance.
Nonetheless, the extraction of the defocused object of a particular LDoF image is costly
in terms of computation. Similarly, Wen et al. [42] introduced a Convolutional-Neural-
Network (CNN) of 2 channels for clarity map extraction of fusion images. The clarity map
is smoothed by adopting a morphological-filtering method. Lastly, the prominent segments
of sample images are combined to construct the fused image as output.

However, motivated by the feature transformation segmentation techniques for
defocused-blur images, our attention has been turned into PCNN and LTP-based algo-
rithms for extracting the defocus-blur region of defocused-blur images. The PCNN is a
lightweight algorithm because it does not require training like other neural-based net-
work models. PCNN algorithm has some well-known image processing features, like,
pulse-synchronization and global coupling [43].

PCNN adopted a paradigm based on bio-inspired parallel processing for handling
problems of complex nature. Eckhorn et al. [44] presented the PCNN technique as a novel
phenomenon in artificial neural networks research, whereas the source of its concept is the
visual mammalian neurons for providing the pulses of synchronization. The PCNN is a
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single layer, and a 2D array of lattice-linked neurons followed by a 1-to-1 correspondence
of neuron pixels in such a way that each neuron is interconnected along with a novel pixel
and vice versa [45]. The novel PCNN execution is required to reproduce the phenomenon
of pulse burst in the visual cortex nervous structure of cats. It is applied in numerous
application areas of computer vision, i.e., image processing and segmentation, object and
pattern recognition and extraction, image enhancement, and fusion [29]. Recently, the
exceptional characteristics of the PCNN algorithm have been applied for developing novel
models for image segmentation and studying the dynamic-synchronization potentials
based on neuron behavior, consisting of its capturing activity, synchronizing based pulse
release, automated signal, and non-linear components. One of the impressive contributions
of the PCNN model might be represented in the study of image segmentation in natural
scenes, in medical imaging, and some other types of images [46], and consequently, our
interest turned into evaluating its strengths and shortcomings.

However, a more systematic study about the applicability of the Pulse Coupled
Neural Network (PCNN) method in the area of image segmentation is required to assess
its relevancy and set proper adaptable mathematical parameters for that model. In this
scenario, Deng et al. [47] evaluated the mathematical properties of PCNN for the first
time. Subsequently, in [48,49], the research about the evaluation of the time reduction
parameter was performed. An approach for analyzing parameters’ setting of connection-
coefficient was presented by Kuntimad et al. [50]. Chen [51] proposed an adaptive method
for settings of parameters for neural model simplification. Yi-De et al. [52] and Min
and Chai et al. [53] suggested the Fisher and mutual criteria for enhancing the PCNN
performance in the image segmentation area. Helmy and El-Taweel [54], Xu et al. [55],
and Hernandez and Gómez [56] introduced an evolution differential and a self-organizing
neural network approach, correspondingly for adaptability improvement of PCNN in
numerous applications of image segmentation.

From a context point of view in our study, Shen et al. [13] introduced the application
of PCNN in refocusing images for region detection. The refocusing images use defocus-
blur region detection in 3-D analysis and appropriately measure the distance and depth.
PCNN’s pulse-sequence result consists of important information, i.e., textures, edges, and
plane regions in the image. One of the major shortcomings of the suggested approach is
that it is used for light field images only.

The pixels’ spatial properties are measured while adopting the PCNN method in
image segmentation. For example, the gray-scale pixel values are dissimilar, i.e., edge’s
discontinuities. The most common applications of the PCNN method are considered in
the industry uses because the output of the neuron firing system detects the features of the
digital image, i.e., texture, edges, and deblur region [6].

This research applies the best properties of the PCNN algorithm for transforming
edges and region features into neural pulse sequence images and extracting the in-focused
region of the defocused-blur images from the pulse sequence.

In digital optics, the defocus image regions are majorly classified into sharp, blurred,
and transitive regions. Likewise, digital imaging features can be mainly classified into three
types, i.e., color, texture, and shape. The defocus segmentation performs the main role in
separating the sharp and blurred regions in digital images. A hybrid scheme consisting
of a novel descriptor of sharpness based on LTP (Local Ternary Patterns) and the PCNN
model is introduced for determining this type of problem.

2.2. Local Patterns Based Segmentation and EDAS Approach

This section discusses the literature about LTP, LBP, and EDAS schemes in more
comprehensively defocus blur segmentation. LBP is prone to noise, whereas LTP, the
extended version of LBP, resolved the noise issue and produced more noticeable results.
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2.2.1. Local Binary Pattern (LBP)

Ojala et al. [57] presented a novel descriptor for texture known as Local Binary Pattern
(LBP). LBP determines the variations in the pixel values amid the central points and also
the neighboring ones to generate a binary pattern. Such binary descriptor yields a decimal
value which is utilized for labeling a specific pixel. It is formally described that for a
particular pixel zc , the comparison about LBP measure is performed along-with the p
neighboring pixels {zp,r}p−1

n=0, on a circular radius r on zc centroid.
Yi and Eramian [20] proposed an LBP measure for defocus-blur segmentation to

segment the in-focused and out-of-focused regions in LDoF images. In the presented
technique, the out-of-focused regions are inaccurate in the LBP sharpness compared to
in-focused regions. A quality result can be yielded by fusing the suggested approach
following image multiscale and matting inference. The major shortcoming of the author’s
proposed work is that its accuracy is greatly affected by noise in blurry images.

LBP requires simple execution steps and low computational complexity, which is
the main reason for its common application in image analysis and computer vision. It is
also broadly used for the detailed analysis of texture; its widespread applications with
other numerous classifications are remote sensing area, CBIR, visual inspection of distinct
objects, analysis of biometric images (face, palm, and fingerprint detection and recog-
nition), edge detection, analysis of objects in motion, and texture recognition [58–60].
Pietikäinen et al. [61] suggested the LBP function about a certain pixel is described in
Equations (1) and (2) as follows:

LBPp,r(xcn) =
p−1

∑
n=0

M
(
zp,r,n − zcn

)
2n (1)

M(x) =
{

1 x ≥ 0
0 x < 0

(2)

where zc represents the central level pixel value, zp(p = 0, · · · , p− 1) illustrates the value
of neighborhood pixels on a Circle of Radius (CoR) by r and the neighborhood pixels are
indicated by p. The first-order-hold interpolation can assess the gray scale neighboring
pixels zp that avoids falling in the central pixels.

Shi14 et al. [16] proposed a blur feature-based algorithm. For adjusting the scale
variance, numerous blur modules are illustrated and merged in a multiscale component.
The authors yield the defocused-blur dataset and ground-truth images for their future
domains. One of the primary limitations of the suggested framework is that it is sometimes
highly suffered in the case of background without texture or motion-blurred foreground
images, resultant in the out-of-focus pixels are characterized in such kinds of regions.
Shi15 et al. [14] presented a new sparse-feature based technique for estimating the just
noticeable blur in deblurred images. A robust correspondence between the extracted
features following the out-of-focus strength is described by the proposed method. The
suggested approach illustrates numerous applications of well-trained features, containing
a refocusing image, image deblurring, and estimating depth in images.

Basar21 et al. [21] proposed a novel and hybrid approach based on PCNN and LBP
for segmenting the defocus images in focused and out-of-focused regions. The author’s
proposed technique is adaptively adjusting the model’s parameters according to the image.
Their proposed LBP descriptor and PCNN are applied to obtain the in-focused resultant
images with visible regions and edges. The presented algorithm outperforms the existing
methods in terms of accuracy and efficiency.

The prime limitation of the techniques mentioned above is that it severely affects under
noisy pixels, mixes up the image content with the noise while structuring the descriptor,
and has inaccurate performance in the presence of slight distortion in the image content.
Therefore, there is a need for further improvement in blur performance detection. As a
result, the LTP metric has an indeterminate state, and the compatible bit value is defined,
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which is based on an alternate descriptor that might require the apparent consideration
about detection of noise in the blurry region of defocusing the image.

2.2.2. Local Ternary Pattern (LTP)

Tan and Triggers [62] proposed an efficient texture operator approach that resolves
the noise sensitivity issue involved in LBP. LTP is the extended version of LBP, which has
a 3-valued code such as −1, 0, 1. One of the examples of the LTP descriptor is depicted
in Figure 3. The LTP metric is described mathematically by [63] in Equation (3) and
Equation (4) as given below:

LTPp,r(ycn) =
p−1

∑
n=0

U
(
zp,r,n − zcn

)
3n (3)

U(y) =


1 y ≥ λ
0 − λ < y < λ
−1, y < −λ

(4)

where zcn, and zp,r,n are explained in Equation (3) and λ indicates the subject threshold.
After applying the thresholding step, the upper (LTPupp) and lower patterns (LTPlow) are
created and then coded. Khan et al. [63] stated that 0 in Equation (4) is the primary value
for pixel allocation that lies in the range of threshold ±λ while 1 is the pixel allocation
value if it is above the threshold λ and −1 if the value is below. The LTP descriptor is
the combination of +LTP and −LTP values and is not viable in noisy images. So, the
−LTP values are required either to be eliminated or to be changed into +LTP values for
post-processing in the next step. For this purpose, the resultant LTP metrics are distributed
upper (LTPupp) and lower patterns (LTPlow). The values obtained in (LTPupp) are binary
bit-stream which need to be transformed into relevant decimal values as shown in Figure 3.
The (LTPupp) is obtained by transforming −1 into 0 and the rest have remained unchanged
as depicted in Equation (5) below:

LTPupp =


1
0
−1

→


1
0
0

(5)

Figure 3. LTP descriptor.
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In the same way in (LTPlow), –1 is replaced into 1 and 1 into 0 as given in Equation (6).

LTPlow =


1
0
−1

→


0
0
1

(6)

Tariq et al. [64] proposed LTP based blur segmentation for defocus-blur images. The
presented algorithm performs the transformation of each pixel into a ternary code, which is
later on converted into (LTPupp) and (LTPlow). Similarly, the LTP along with moments are
adopted by Srivastava et al. [22] for content-based image retrieval based on image features,
i.e., color, texture, and shape. Conversely, Agarwal et al. [65] mentioned that single-
modality features, for example, color, texture, and shape, are not sufficient for an accurate
CBIR, so they suggested a method called multi-channel LTP based on novel features for a
prominent CBIR. However, the performance of the above-presented frameworks for CBIR
may degrade while using pure defocused-blur datasets.

Zeng et al. [23] adaptively estimated the blur map by applying the convolution neural
networks (CNN) for testing and training of relevant local features of defocus-blur images
using the local descriptor map. Anwar et al. [66] suggested features based on CNN of a
patch-pooled set algorithm for estimating the depth and also removing blur from the single
out-of-focus image. In this method, the focused image is restructured for blurriness removal
and obtain synthetic refocusing from a single image. The author’s presented method is
used for everyday images without getting any prior information. Zhao et al. [67] proposed
an image-scale-symmetric cooperative network (IS2CNet) for defocus blur detection (DBD)
in defocus images. The proposed model works twofold: firstly, IS2CNet expands the receipt
of blur image content from the high to low image scale process. Therefore, the detection map
of homogeneous regions is increasingly optimized. Secondly, from the high to low image
scale process, IS2CNet observes the content of the over-exposed image, thus increasingly
filtering the modification of region detection. They also proposed a hierarchical feature and
bidirectional delivery technique that spread the feature of earlier image scale as an input
and the track of present image scale for the network of present image scale guidance in the
rest of the learning process. Zeng et al. [68] also introduced a method based on CNN known
as deep residual convolutional encoder-decoder network (DRDN) for DBD. DRDN aims to
adaptively produce pixel-based predictions in LDoF images and perform reconstructed
detection results similar to the input sample image. Then various deconvolution operations
through the transposed level convolution are performed at numerous image scales, and
the further link is skipped. These approaches can efficiently perform blur region detection
in defocus images. However, these algorithms are complex and detect some estimated
outputs that contain inaccurately labeled regions compared to the ground truth images.

Su et al. [17] proposed an algorithm for blurry region detection and classification
in partially blurred images that detected adaptively and classified the blur region types
irrespective of applying kernel or deblurring estimation. A novel feature about the de-
composition of singular value (DSV) is applied for image blurry region detection. The
information about the alpha channel is used by the suggested method to categorize the blur
type, for example, motion-blur or de-blur regions. The main limitation of the proposed
approach is that the blurriness of the entire image might affect the estimated quality of
blur degree as per the evaluation performed by DSV β1. One of the aspects of performance
degradation is the ratio regarding the blurriness domain size to the full image size. Depth-
map is another estimated model that may apply defocus blur segmentation. Zhuo and
Sim [18] apply a novel scheme to estimate the blur-map at edge levels under the Gaussian
ratio algorithm. The defocus map evaluation can be performed twofold: the first is to
evaluate the number of blurry edges, and the second is to expand the blur estimation for
the whole image using matting-interpolation to obtain the entire defocus-map. The quality
of the depth-map estimation is highly dependent on the edge detection accuracy and blur
map accuracy at the image edges.
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Zhu et al. [19] used the point-spread function (PSF) for estimation to reveal the geo-
metric mean of the image scene and also to improve the in-focused regions in the blurry
image. The proposed technique used a certain defocus image for estimating a defocus map
while working with standard cameras. The suggested approach produced the blur map by
using edges’ color information to detect the blurred pixels.

Though the techniques above successfully detect the blur-map in defocus images,
overall, the referenced algorithms face challenges in accurately segmentation of blurred
and non-blurred smooth regions. The major limitations of the state-of-the-art blur detection
techniques are inaccurate detection, complex algorithms, and prolonging the duration of
blur detection.

2.2.3. EDAS Scheme

This study applied the Evaluation Based on Distance from Average Solution (EDAS)
scheme to rank alternate schemes. The recent research works about the impacts of the
EDAS based fuzzy logic scheme in different areas are specified in Table 1.

Table 1. Fuzzy logic’s contributions in related research works.

Authors Study Title Algorithm Description

Basar20 et al. [69]
“Unsupervised color image segmentation:
A case of RGB histogram-based K-means
clustering initialization”

Proposed an initialization approach based on K-means
to solve the image segmentation problem by applying
the EDAS techniques for ranking purposes.

Ilieva et al. [70] “Decision analysis with classic and fuzzy
EDAS Modifications”

Suggested the L1 measure in EDAS method for solving
some issues in MCDM problems to overcome the
computational complexity.

Liang et al. [71]
“An Integrated EDAS-ELECTRE Method
with Picture Fuzzy Information for Cleaner
Production Evaluation in Gold Mines”

proposed a technique of 4-level degrees of membership
with PFN (Picture Fuzzy numbers) to rank the
construction of cleanser for gold mines.

Li et al. [72]
“Linguistic-Neutrosophic Multi-criteria
Group Decision-Making Approach with
EDAS technique”

The presented approach adopted the MCGDM
(Multi-Criteria Group-Decision Making) scheme,
which is based on EDAS for setting and controlling the
neutrosophic issues.

Stevic et al. [73]
“Evaluation of Suppliers Under
Uncertainty: A Multiphase Approach
Based on Fuzzy AHP and Fuzzy EDAS”

The Fuzzy Analytical Hierarchy approach is
implemented to indicate and estimate the suppliers
and intended to explore the Fuzzy-EDAS model.

Mehmood et al. [74]

“A Trust-Based Energy Efficient and
Reliable Communication Scheme
(Trust-Based ERCS) for Remote Patient
Monitoring in Wireless Body Area
Networks”

The suggested study is about a stable technique for
communication purposes to preserve the privacy of
WBAN (Wireless Body Area Network). The evaluation
of the method is performed by the EDAS approach and
identified by the top-most rank.

Basar21 et al. [21] “A Novel Defocused Image Segmentation
Method based on PCNN and LBP”

The proposed hybrid presented a novel sharpness
descriptor for segmenting the in-focused region from
unfocused one in the defocused blur image and ranked
on the top by adopting the EDAS ranking scheme.

3. Method and Evaluation

The PCNN model contains pulse-coupled neurons, a 2-dimensional array model of
monolayer neurons [13]. The neurons in the PCNN technique are identified as the pixels
for their application areas in digital image segmentation. As the PCNN algorithm is based
on the coupling nature of neurons, a neuron, i.e., pixel firing will follow the concurrent
firing of those neurons belonging to the same class. The coupling nature of the PCNN
model executes the images by applying numerous approaches.
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The PCNN model is depicted in Figure 4. The mathematical representation of the five
subsystems in the model is given as follows in Equations (7)–(11):

Fij(n)=Zij (7)

Lij(n)=QL ∑ WijklΥkl(n−1) (8)

Uij(n)=Fij(n)(1+δALij(n)) (9)

Eij(n)=e−aEEij(n−1)+VEΥij(n−1) (10)

Υij(n)=ε

{ [
Eij(n)−Uij(n)

]
Uij(n)≥Tdmin

1 Uij(n)<Tdmin
(11)

The coupled-linking subsystem is identified in Equation (7) whereas Equations (8)
and (9) represent the input feeding sub-system. The dynamic thresholding sub-system
and modulation are represented in Equation (10), while Equation (11) characterized the
firing sub-system; Gij denotes the gray-level pixel linking to neuron; subscript ij identifies
a particular pixel’s coordinates about a certain image, whereas the subscript kl signifies a
neighboring pixel’s coordinates; δA denotes the internal activity’s modulation sub-system;
dynamic-strength coefficient is represented by ε. The characterizations of aE and VE for
the time constant about iterative-decay and amplification coefficient of linking-weight
in the correspondence of dynamic threshold and the firing subsystem. The output state
of the PCNN is represented by Υij which is the neuron’s firing state that is 0 or 1. The
in-focused region during the iterations in the model is represented by neurons firing
naturally or triggered by neighboring neurons in image segmentation. This scheme is
proposed for segmenting the in-focused region; each neuron is allowed for one-time firing
in each iteration.

Figure 4. Schematic Structure of PCNN model.

Meanwhile, the setting of minimum thresholding attenuation Tdmin ensured that all
the neurons had the chance of getting fired. The setting of dynamic-thresholding coefficient
=E with the minimum limit means that all the remaining neurons will be fired. The
estimation of gray-level values of adjacent pixels is directly proportional to the neighboring
neurons firing. Likewise, the ordering of neurons firing indicates the gray-scale change
in pixels’ values. The earlier knowledge of neuron firing was adopted in this research to
estimate the regional properties of defocused-blur images. The PCNN neurons and their
neighbors get fired with the help of the linking and feedback sub-system. The dynamic
decay of the threshold of adjacent neurons is fired in the next step.

The Local Ternary Patterns (LTP) blur metric is broadly applied for face recogni-
tion [62], texture classification [75], and content-based image retrieval (CBIR) [22].
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Suppose the blurry sample image is identified by DImg(z) whereas z = (x, y) repre-
sents the coordinates of a pixel in the domain of digital image ω. The blur pixel degree at
location x is measured by using a blurred based operator Bo in a neighboring local window
across that particular pixel as given in Equation (12) as follows:

l(z) = Bo(DImg(z)) (12)

The proposed blur metric is based on the LTP distribution in the in-focused and
out-of-focused regions. For a central pixel zcn, three values are assigned by LTP to the
neighborhood pixels based on their central pixel intensity difference. Those intensities that
come in the range of ±td are required to be assigned as zero, +1 is assigned to those that
above of ncn + td while ncn − td is assigned by −1, whereas ncn is allocated as the intensity
of zcn. The LTP code about pixel zcn is explained in Equations (13) and (14) as below:

LTPi,r(xcn, ycn ) =
I−1

∑
n=0

M(zi,r − zcn)×3n (13)

M(x) =


1 |y| ≥ TdLTP
0 |y| < TdLTP
−1, |y| ≤ TdLTP

(14)

where zi,r represents i neighboring pixels intensities positioned on r circle radius at central
pixels xcn, ycn, and a minor built-in threshold with a positive value TdLTP > 0 is used to
achieve the region robustness for a flat digital image. It is not necessary for an intensity
zi,r to be located at the central location in the pixels of the image, hence it is achieved
with the help of bilinear interpolation. The local ternary pattern is decomposed into two
halves, one is called upper LTP (LTPupp) whereas another is known as lower LTP (LTPlow)
in Equations (15)–(18) as defined below:

LTPupp
i,r (xcn, ycn ) =

I−1

∑
n=0

M(zi,r − zcn)×2n (15)

where

Mupp(x) =
{

1, |y| > TdLTP
0, |y| < TdLTP

(16)

and correspondingly,

LTPlow
i,r (xcn, ycn ) =

I−1

∑
n=0

M(zi,r − zcn)×2n (17)

where

Mlow(x) =
{

1, |y| < TdLTP
0, |y| > TdLTP

(18)

In these local descriptors, uniform-rotation-invariant is the pattern where a circular
bits’ sequence does not allow more than two transitions, 0 to 1 and 1 to 0. The rest of
the patterns are grouped like a single pattern, called a non-uniform-pattern (NUP). The
sharpness descriptor of LTP has one of the main advantages: it is effective for monotonic-
illumination transformation, which commonly arises in natural scene images. The symbol
definitions of this research are reported in Table 2.
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Table 2. Symbols and descriptions used in our algorithm.

Symbol Description

DImg Test image
PCNN Pulse Coupled Neural Network
LTP Local Ternary Pattern
GImg Gray-scale image
IRseg Resultant image
LDoF Low Depth of Filed
MCC Matthew’s Correlation-Coefficient
DSC Dice-Similarity-Coefficient
JCM Jaccard-Coefficient Measure
GImg(Rgn) Gray-scale image region
MaxF(Rgn) Maximum frequency region
MinF(Rgn) Minimum frequency region
MeanF(Rgn) Average frequency region
DImg(xy) The pixel coordinate (x,y) in the defocused image
TdLTP Thresholded LTP value
BLTP Binary segmentation of LTP algorithm
MEdge Resultant edge map of PCNN
f The sequence of firing matrix that records each firing order of pixel
PCon Pixel-connectivity matrix
Bseg Binary segmented output
Cseg Color segmented output
Wcon Connecting-weight matrix
δ Connecting coefficient of strength
=E Dynamic-threshold coefficient
ε Dynamic-strength coefficient
FE Decay-factor
MLF Gray-scale mean values of low scale frequency
MMF Gray-scale mean values of mid scale frequency
MHF Gray-scale mean values of high scale frequency
Tdmin Threshold value along with minimum limit
C Criteria for judgment
γ Dynamic-threshold matrix
EDAS Evaluation Based on Distance from Average Solution

3.1. Proposed Algorithm

In this section, the proposed steps along with the proposed segmenting algorithm are
elaborated and shown in Figure 6. First, the pre-processing step filters the image and then
transforms it into a gray scale. The LTP mask to produce sharpness is described in the
next step, whereas the out-of-focused region estimation is explained in the third step. The
fourth step is expanded about the PCNN model structure, while the proposed algorithmic
definition following Algorithm 1 is illustrated at the start of the section.

3.1.1. Algorithm Description

The defocus-blur segmentation algorithm adopting the proposed scheme is described
in Algorithm 1. Our presented scheme accepts the LDoF input image while yielding the
prominent regions of the resultant image. Our algorithm comprises five main components;
initialization of parameters, production of the firing sequence matrix, classification of pixels,
LTP metric estimation, and segmentation quality evaluation of the prominent regions.

The algorithm proposed involves various parameters, i.e., connecting-weight matrix
Wcon, connecting coefficient of strength δ, dynamic-threshold coefficient=E, decay-factor FE,
threshold value along with minimum value Tdmin, and parameter for criteria of judgment C.
We calculate the preliminary value of Wcon through the experiment. Some other parameters
such that δ, =E, δ, Tdmin, and C are configured adaptively corresponding to the distribution
of the gray-scale pixel in de-blur dataset. The connecting-weight matrix Wcon indicates the
gray-scale intensity information and is transferred by the neighboring neurons of the central
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one. The impact of gray-scale pixels reduces as the central pixel distance is expanded. To
initialize the matrix, the synaptic weights are denoted in the matrix following the constant
values which are reported in Equation (19) as given below:

Wcon(ij)

 0.5 1 0.5
1 0 1

0.5 1 0.5

 (19)

The interval of the neuron’s activation to firing in the PCNN approach is step-wise
adopted. Tsai [30] describes that FE modifies the measuring matrix height of each firing
stage, while =E measures the numbering and width of each firing stage. For example, if FE
reduces, then the firing narrowing step of the neuron decreases, its statistical property of
coupling, and depicted the network behavior of the pulse delivery. Conversely, the smaller
FE means, the greater the duration of algorithm iteration, which in turn highly decreases
the efficiency of the algorithm. The neuron is consistent with the value of the pixel and
the greatest gray-level value DImgmax in a complete image required to be fired for the
starting iteration period. Hence, =E is generally allocated as DImgmax. Furthermore, each
neuron is allowed to be fired once to avoid the overlapping cycles of firing neurons. As the
neuron fired, the thresholded value is adjusted to be infinity. Subsequently, the neuron is
not allowed for firing in the algorithmic cycle, as reported in Equation (20). The sample
defocus blur input image DImg is as normalized as the matrix γ. This procedure is known
as the refractory firing period (pulsing in this situation) of the neuron.

=E←γ (20)

The proposed scheme adopts simplified pre-processing phases of the de-blur images
that estimate the spatial frequency statistics, gray-scale statistical distribution, and gray-
level normalization. We settled the parameters as per the obtained pre-processing output
for further improvement of the adaptability nature of the proposed scheme. The parameter
Tdmin is denoted as the gray-scale distribution in the whole input image for avoiding the
ineffectual cycles. Thus, the pixel’s number alongside gray-level values in the interval
of parameter [Tdmin, 1 ≥ 94%] of the threshold’s pixels γ generated in an entire blurry
image. The three characteristic regions, low-level, mid-level, and high-level frequency data
extraction, perform the out-of-focus image. Each characteristic region contains an image
block along with the greatest level of pixels in the output frequency band. The gray-scale
mean values for low level is indicated as MLF medium level is MMF, and high-level
frequencies are denoted asMHF following the symbolized standard deviations σLF, σMF,
and σHF, respectively. The algorithm applied for the defocus dataset required to fulfill
the subsequent measures by using such kind of parameters: neurons withMLF fire at the
consistent time; the continued fire is performed by neurons withMMF, while a higher
difference is reported in the neurons firing ofMHF.

The possible two criteria for theMLF region is that at first, the neuron firing at the
iteration of n f 1th, corresponding to the pixel value of gray-scaleMLF + σLF. Secondly,
the neuron firing at the iteration of n f 2th, corresponding to the pixel value of gray-scale
MLF − σLF. FE fulfills the below inequality criteria, as illustrated in Equations (21)–(23):

MLF + σLF ≥ =Ee−(n f 1−1)FE (21)

MLF − σLF ≥ =Ee−(n f 2−1)FE (22)

n f 2 − n f 1 ≤ 1 (23)

To solve Equations (21)–(23), the output expression is given below in Equation (24):
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FE = ln
MLF + σLF
MLF − σLF

(24)

Algorithm 1: Defocus Blur Segmentation Map.
Let Input Image Defocus is represented by DImg and Output resultant segmented
image is represented by IRseg

1. Transform DImg to GImg
2. GImg(Rgn) ← Fκ(GImg)

3. Max F(Rgn) ← Mx(GImg(Rgn))
4. MinF(Rgn) ← Mn(GImg(Rgn))
5. MeanF(Rgn) ← avgGImg(Rgn))
6. LTP sharpness formula applied for calculating sharpness estimation using

Equation (14).
7. Determine the PCNN initial parameters by adopting the initialization formula

using Equation (20) to Equation (34).
8. for the position of pixel xy in DImg do
9. if GImg(xy)

> TdLTP then
10. BLTP(xy) ← 0;
11. else BLTP(xy) ← GImg(xy);
12. end if
13. end for
14. MEdge ← 0, f← 0,PCon ← 0 and n← 1
15. for the position of pixel xy in BLTP do
16. calculate Fxy(n), Lxy(n), Uxy(n), Exy(n), Υxy(n)
17. If Υxy(n) == 0 then
18. MEdge(X, Y)← 1, f(X, Y)← 1;
19. elseMEdge(X, Y)← 0, f(X, Y)← 0;
20. end if
21. end for
22. for the position of pixel xy in Υ do
23. ifΥxy == 1 then
24. Lp← wblabel(Υ);
25. end if
26. end for
27. for each xy: position of the pixel in PCon do
28. PCon xy = the connectivity of the position xy in Lp
29. end for
30. n← n+1
31. for the position of pixel xy inMEdge do
32. ifMEdge(xy)> Td
33. MEdge(xy) ← 1;
34. else
35. MEdge(xy) ← 0;
36. end if
37. end for
38. λ← B(MEdge)
39. for the position of pixel xy in λ do
40. if λxy == 1
41. λhxy ← λhxy;
42. else
43. λhxy ← 0;
44. end if
45. end for
46. return Output

We consider the two criteria for the MHF region; at first, the neuron firing at the
n f 3th iteration, that refers to the pixel value of gray-scale MHF + σHF. Secondly, the
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neuron firing at the n f 4th iteration, that refers to the pixel value of gray-scale MHF −
σHF. The parameters fulfill the following inequality criteria described in Equation (25) to
Equation (27):

MHF + σHF ≥ =Ee−(n f 3−1)FE (25)

MHF − σHF ≥ =Ee−(n f 4−1)FE (26)

n f 4 − n f 3 > C (27)

To solve Equation (25) to Equation (27), the result in Equation (28) is given below:

C <
1

FE
ln
MHF + σHF
MHF − σHF

(28)

As per the classification criterion, the overview of Equations (25) and (28) is illustrated
below in Equations (29) and (30):

0 ≤ C ≤ 8 (29)

C = min
{

8
⌊

1
FE

ln
MHF + σHF
MHF − σHF

⌋}
(30)

A specific reason for firing a particular neuron at theMMF the region is the 3× 3
neighboring neurons firing and coupled in the early iteration. In the n f 5th iteration, the
gray-level MMF neurons are fired at once in the 3× 3 neighbor. Such kind of neurons
firing at n f 6th iteration is the output of pulse-coupling. The parameters simplifications are
specified by Equations (31)–(33):

MMF ≥ =Ee−(n f 5−1)FE (31)

MMF−
2C
3

δMMF ≥ =Ee−(n f 6−1)FE (32)

n f 6 − n f 5 = 1 (33)

Simplifying Equations (31)–(33), and the expression is given below in Equation (34):

δ =
3σLF

C(MLF − σLF)
(34)

The focused parameters =E,Tdmin, FE,C and δ in the proposed algorithm are allocated
adaptively corresponding to the pre-processing outcome of the LDoF images.

3.1.2. Image Pre-Processing

In defocus image segmentation, a sample input image (DImg) is applied that contains
in-focused and unfocused regions. If (DImg) is a color image, then in the first step, the
gray-scale image (GImg) will be produced from a color image. Maintaining the image’s
local structure, for this purpose, the median filter function is used in the next step for
overcoming the factor noise, and monotonic illumination transformation of in-focused and
blurred smooth region. The median filter function is given below in Equation (35):

Gimg(MF) = med f lt(Gimg(M)) (35)

3.1.3. LTP Mask Based Sharpness Production

The Local Ternary Pattern (LTP) metric is used to calculate the sharpness mask for a
patch of a local image observing each image pixel. The image in-focused region is depicted
in white, as shown in Figure 2. The sharpness metric is calculated by applying the constant
time of each pixel for a constant I and R. The LTP sharpness matrix is adopted for image
analysis. Afterward, an estimated measure of the sharpness mask is used to produce
a sharpness mask. An out-of-focused image is decomposed into tiny patches, and the
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estimated sharpness is performed per image patch. The process is completed, and therefore,
the LTP values of each patch are estimates; subsequently, these values are used to classify
each patch either as blur or non-blur. After performing the whole image looping, the image
patches and blur and non-blur segments will be yielded using the sharpness metric.

3.1.4. Out-of-Focused Estimation

Out-of-focused estimation is the scheme used for blurry content estimation in out-of-
focused images. The blurred pixel values and non-blurred pixel values are characterized by
applying the LTP algorithm. This pixel data is used to perform out-of-focused estimation;
consequently, the pixels in blur classification are transformed by zero intensity values. The
scheme is capable of the segmentation to proceed on distinct pixels.

A defocus blurred dataset [12] is online available for the public that contains 1000 semi
blurred natural images following the ground-truth images, out of which 100 randomly
selected images are used for finding the pattern distribution in blurred and non-blurred
regions. The nine uniform histogram patterns of blurred and non-blurred regions are
illustrated in Figure 5 in which the horizontal side consists of LTP histograms while the
vertical axis indicates the pattern distribution. It is observed from the graph that the
frequency distribution of 6 to 9 patterns in the non-blurred region is prominently high
compared to the blurred one. Conversely, the 0 to 5 patterns abundant in the blurred region
than the non-blurred region. It can be observed that the intensities of the central pixel zc
and its neighboring pixels are the same in the flat image region, whereas these may vary in
image in-focused area.

3.1.5. PCNN Scheme

The PCNN structure produces prominent and accurate defocus-blur segmentation
results in images even in noisy and blurry contents. It is noticed that in the existence
of overlapped and contiguous regions, the PCNN can yield promising segmentation of
defocused regions if only some specific conditions are fulfilled. It is observed that in highly
prominent segmentation, every pixel is appropriately placed in a particular region where it
belongs to. The generic scheme of image segmentation is applied to PCNN for its network
parameters adjustment. Hence, neurons of specific region pixels are pulsed simultaneously,
whereas the neurons of neighboring region pixels are not activated. The pulse-based
neuron network used their connecting and feeding inputs. It is to be noted that the feeding
input of a neuron is equivalent to its subsequent pixel intensity. Since the neurons have
to capture phenomenon capability, the neurons linked to each spatially linked pixel and
parallel intensities are managed to pulse altogether. The neighboring synchronous pulsing
neuron set can categorize the defocus-blur image segmentation algorithm. The defocused
segmentation using PCNN can be performed on different regions; for example, it can be
the whole region, or a section of a deblur region, several regions, sub-regions, and their
unions of the sample image. The preferable goal is the selection of network parameters so
that each of the segments correctly relates to an entire region in the defocus blur image.
The obtained segmentation quality depends on such kind of parameters. Contrarily, it is
not always possible for PCNN to yield accurate and prominent segmentation using natural
images. Therefore, it is required some advanced post-processing phases for splitting-
merging segmentation.

In this scheme, at first, the sample image is transformed into a gray level. Next, the
analysis is performed on this obtained image for the extraction of low-level frequency
(low f rq), middle-level frequency (mid f rq), and high-level frequency (high f rq) regions in the
domain of frequency. These all frequency regions are measured to find out their mean
value. These values are used as the preliminary parameters for PCNN execution on the
transformed gray-level image. The PCNN module is implemented per pixel in the defocus-
blur image; an edge-level segmented image is produced after finalizing the whole sequence
of firing. This edge-based segmented image is merged and converted into a binary image
to achieve the resultant out-of-focus image segmentation, as reported in Figure 6.
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Figure 5. Histogram pattern in blurred and non-blurred regions.

Figure 6. The Block diagram of the proposed scheme is illustrated. The primary points are displayed
on the left side, whereas the right side of the figure represented the production and role of each image
in the proposed algorithm.

4. Defocus-Blur Segmentation Evaluation

We tested our proposed scheme using a public database [12], which contains 1000 nat-
ural blurry images of numerous classes, such as animals, beaches, humans, airships, trees,
natural sceneries, and ships. It is observed that certain images in the database are challeng-
ing for performing in-focused segmentation schemes. The database is considered the top
one amongst the other semi blur datasets, and each of the images contains the referenced
segmented images. The database consists of various categories accompanying numerous
human-made ground-truth de-blur images, also used to evaluate the proposed scheme. The
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database is categorized into six diverse sub-categories for further evaluation of in-focused
segmentation.

4.1. Evaluation

In this section, the scheme proposed is compared with other approaches in the study
for validation. The images included in the database were segmented partially into blurred
and non-blurred regions by applying the scheme described in Section 4. The scheme
proposed for each comparator technique is presented in Figure 7 and the resultant images
are in the range [0, 1]. The proposed scheme categorized the patches into blurred and
non-blurred regions, as illustrated in Figure 7. The blur region is corresponded to the
black color and is assigned a 0-pixel value, whereas the non-blur is denoted by white
color and allocated the pixel value of 1. The in-focussed objects are prominent in the
resultant out-of-focus image, while the unfocused one is not observable. The proposed
scheme attributed the major errors, and those errors were identified as the substantial
shortcomings of the Shi14 et al. [16], Zeng et al. [23], and Su et al. [17] (Section 2). The
results achieved have a high resemblance to the GT images and noisy free backgrounds,
whereas the referenced defocus approaches yield noisy backgrounds. In Shi14 et al. [16],
Su et al. [17], and Zhu et al. [19], their blurred and non-blurred regions are mixed, which
makes the objects invisible in the resultant images. Hence, the proposed scheme is highly
robust for differentiating the blurry backgrounds compared to the previous studies.

The comparison is performed between the proposed scheme along with the 9 com-
parator techniques precisely described in Section 2. Yi et al. [20] estimated the sharpness
measure mLBP following the ThLBP. Su et al. [17] estimated the sharpness map by applying
mSVD. Zeng et al. [23] used the multiple conv-nets based technique of feature learning
for defocus-blur detection. Shi14 et al. [16] adopted the mGHS, mk, mLDA, mAPS jointly
following a Naïve Bayes classifier and a multi-scale inference model. Shi15 et al. [14]
shaped a sparse form representation about the image local patches adopted a pre-trained
dictionary for a considerable identification of perceivable blur. Zhuo et al. [18] measured a
depth map which is based on the edges’ width. Zhu et al. [19] evaluated the PSF-based
model of the confined spectrum of frequency of the gradient area.

The results of these schemes are gray-level images where the highest level of intensity
identifies the maximum sharpness, and other techniques apart from Zhu used a simple
thresholding method, Tdseg in the last step for yielding a segmented image, as indicated in
the proposed algorithm. The parameters involved in the previous study were applied in
their originally implemented code. In the meantime, obtaining the actual code for Zhu’s
technique was unfeasible, and the main reason is its involvement in Adobe System Inc.
The proposed algorithm generated the outputs reported in this research. The depth map
was standardized by the range [0, 8] and obtained the sharpness map by inversion. In the
related study, most of the authors adopted the performance measures, i.e., precision, recall,
and F1-score, for evaluating the defocus blur segmentation algorithms. The proposed
algorithm following the comparator approaches also used these measures, moreover, few
more metrics, such that accuracy metric, Matthew’s Correlation-Coefficient (MCC), Jaccard-
Coefficient Measure (JCM), Dice-Similarity-Coefficient (DSC), and Specificity are all applied
in this research and not applied in mostly alternate algorithms. The performance measures
are described as given below:
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Figure 7. Defocus blur segmentation result presented by various defocus algorithms stated as
Shi15 [14], Shi14 [16], Su [17], Zhou [18], Zhu [19], LBP [20], Basar21 [21], LTP [22], Zeng [23].

4.1.1. Precision and Recall

Precision and recall yields for defocusing the segmented algorithm to vary the Tdseg
sampled at each integer value applying the interval [0, 255] for producing the final de-blur
segmentation of the estimated sharpness depicted in Equation (36) and Equation (37).

Precision = Rsg ∩ Rgt/Rsg (36)

Recall = Rsg ∩ Rgt/Rgt (37)

where Rsg represents the pixels set in the blurry region of segmentation, Rgt symbolizes the
pixels set in the blurred region of ground truth. Our proposed scheme generated a notable
precision, i.e., 0.9894 other than the previous works, while the recall value is 1. Furthermore,
the presented algorithm produces the prominent output than the comparator’s techniques.

4.1.2. Accuracy

The segmentation accuracy is measured using the confusion matrix and measured
by disseminating the whole number that accurately classifies pixels by the total number
of reference pixels. Likewise, the accuracy of certain classifications is computed by a
certain quantity of accurately categorized pixels in every column of the matrix. The
accuracy identifies the learning set of pixels of specified types of cover, categorized and
determined by distributing the number of accurately classified pixels of the training dataset
number and also applied in numerous classes. The accuracy represents the orderly errors,
whereas the precision corresponds to unsystematic errors. True Positive (TP) leads its
segmentation result to 1 while the ground-truth output also indicates 1; True Negative
(TN) denotes the segmentation result, as well as the ground-truth output; both are equal
to 0. False Positive (FP) represents one which is the result of segmentation, whereas 0
is the result of GT. Contrarily, False Negative (FN) identifies its segmented output tends
to 1, while the GT also represents 1, and these expressions are used for calculating the
accuracy, and also calculates the total number (N) of covers. The segmented accuracy of
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the presented result is 0.9991 as already illustrated in Figure 10. The obtained ratio of the
result is described in Equation (38) as given below:

Accuracy =
NTP + NTN

TP + FN + FP + TN
(38)

4.1.3. F1 Measure

The threshold-based adaptive scheme presented by [58] for defocus blur segmentation
following the threshold described in Equation (39) as given below:

Tdseg =
2

X×Y

X

∑
m=1

Y

∑
n=1

Imap(m, n) (39)

where, X, Y are signifying as the width as well as the height of the sharpness estimation
Imap. Therefore, in [59], it is stated that F1-score is using for evaluating the test accuracy.
The expressions of precision and recall were estimated by using F-score for comparison
purposes as mentioned in Equation (40) as given below:

Fκ =

(
1 + κ2)× precision × recall
(κ2)× precision + recall

(40)

where, κ2 was allocated the value 0.3 which is stated in [59]. Zhu et al. [19] generated
the segmented result by using the graph cut method instead of applying thresholding
depth-map. The same parameters are used in the proposed scheme as recommended in
that mentioned paper, such that f0 = 1000, ℘f = 0.04, t = 2. Conversely, the parameters
in the PCNN structure is allocated as: Wcon = [0.5, 1, 0.5; 1, 0, 1; 0.5, 1, 0.5], κ = 5, slide
window = 110 by 110, neighborhood pixels = 3 by 3. Exemplar segmented images maps in
Figure 7 are depicted in Figure 8. Figure 9 is all about the comparison graph that describes
the visible difference of the proposed scheme with reference to comparator studies. The
bar graph visibly displays that the proposed scheme outperforms than existing techniques:
precision = 0.9894, recall = 1, F1-score = 0.9990.

4.1.4. Matthew’s Correlation-Coefficient (MCC)

MCC is one of the measures for evaluating the similarity ratio of two binary images,
i.e., the output and ground-trith image. Its output lies under the interval [−1, 1], whereas
−1 identifies the incorrect output and 1 denotes the correct result. It is observed that MCC
provides more descriptions compared to F-measure and is also more accurate for binarized
segmentation as it considers the overall proportion of the confusion matrix, i.e., TP, FP, TN,
FN. The suggested MCC value is 0.9870 as depicted in Figure 10 and also reported in below
Equation (41):

MCC =
(TP)× (TN)− (FP)× (FN)√

[TP + FP][TP + FN][TN + FP][TN + FN]
(41)

where TP identifies True Positive, TN represents True-Negative, FP and FN denote False
Positive value and False Negative one, respectively.

Figure 8. Binary defocus segmented comparison along with Zhu et al. [19].
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Figure 9. Results comparison of Precision, Recall, and F1-score for using adaptive thresholds. Zhu
[19] applied the graph cut method instead of simplified thresholding. LTP [22] algorithm is obtained
by applying a lower threshold value, i.e., Tdseg = 0.35. Our proposed scheme can obtain comparative
result (precision = 0.9894, recall = 1, F1-measure = 0.9990). The other comparative methods used are
stated as LBP [20], Shi15 [14], Zeng [23], Shi14 [16], Su [17], Basar21 [21], Zhuo [18].

Figure 10. Numerous performance metrics are represented in histogram structures using overall
1000 partially-blurred images of the defocused-blur dataset.
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4.1.5. Jaccard-Coefficient Measure (JCM)

JCM is the opposite of Jaccard-Distance (JD) that measures the similarity ratio between
the segmented as well as the GT images. Both of the vectors u = (u1 + u2, · · · un) and
v = (v1 + v2, · · · vn) are real, i.e., (ui, vi) ≥ 0 as described in Equation (42) as follows:

J(u, v) =
∑j min(uj, vj)

∑j max(uj, vj)
(42)

However, J(U, V) = 1.0 ≤ J(U, V) ≤ 1 if and only if U and V both are empty. The
JCM values included under the interval [0,1], already reported in Figure 10. The value
0 represents lower similarity, whereas 1 denotes the higher similarity between the two
binary images.

4.1.6. Dice-Similarity-Coefficient (DSC)

As the name indicates, DSC is applied for calculating the similarities of the labeled
regions of about two binarized images. DSC calculation is applied frequently in the whole
process of segmentation to calculate the performance of DSC along with the effective
weighting of the instance. The instance values are involved in the range of 1 and 0. If the
DSC output is 1, it indicates the accuracy, while 0 represents the inaccurate output. The
presented DSC output is 0.9891 as illustrated in Figure 10. It describes in Equation (43)
as below:

DSC =
2TP

2TP + FP + FN
(43)

4.1.7. Specificity

The expected test output analyzes in particular outputs without depicting the False-
Positive output identifies the specificity’s numerical value. The estimated specificity result
is 0.9988. It is explainable in the below Equation (44):

Specificity =
TN

TN + FP
(44)

The running time comparator of the proposed scheme corresponding to the alter-
nate segmentation approaches is reported in Table 3. The running time of our overall
proposed scheme is calculated on the proposed hybrid algorithm (PCNN and LTP) and
ranking method.

Table 3. Comparative running time evaluation of numerous approaches. The time of the proposed
scheme is based on PCNN and LTP algorithms.

Out-of-Focus Segmentation Approx. Runtime

LBP [20] 27.19 s
LTP [22] 26.50 s

Shi15 [14] 38.36 s
Zeng [23] 19.18 s
Shi14 [16] 705.2 s

Su [17] 37.00 s
Zhuo [18] 20.59 s
Zhu [19] 12.00 min

Basar21 [21] 29.05 s
Ours 28.99 s

The histogram-based numerous evaluating metrics of the defocus-blur dataset con-
tains 1000 blurry images are displayed in Figure 10. Among the histogram bins of the
entire dataset, the resultant recall value is 1, which tends to be an accurate defocus-blur
segmentation. Additionally, the output values of other metrics, i.e., F1-score, Dice, and
Specificity, are one or around one. Moreover, the resultant accuracy value of most images
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in the dataset is approximately 0.99. Furthermore, the output histogram’s values of mostly
images about Precision and Jaccard are lying under 1. Similarly, the MCC’s histogram result
about a defocus-blur dataset based on 1000 images is almost 0.98 value. It is summarized
that the output values of most of the metrics are approximately 1. Henceforth, it is proved
that the proposed scheme produces accurate defocus-blur segmentation compared to the
referenced approaches.

Figure 11 shows examples of the microscopic images other than our defocus-blur
dataset. The first image is about a plant seed [76] which has a roughly round shape. Its
result is in a ring-like shape of the sharp region, while the rest are illustrated as blur regions.
On the other hand, another image is underwater paramecium in the sharp region, while
the microorganisms in the background are depicted as blur regions. The blurred objects are
hidden in black in the output image, and the sharp one is visible in the white region.

(a) (b)
Plant Seed

(c) (d)
Paramecium

Figure 11. The proposed scheme is applied to microscopic images. (a) is about original input image
of a Plant Seed while its segmentation map is illustrated in (b). (c) is the original input image of
Paramecium and (d) is the segmented Paramecium image.

Table 4 represents the performance estimation of our study following the referenced
techniques. According to Table 4, Basar21 et al. [21] and the proposed scheme has the
highest performance estimation compared to existing approaches. LTP [22] and Zeng
et al. [23] achieved high rank, Precision, and F-measure, whereas Zhuo and Sim [18],
and Zeng et al. [23] reported the highest Recall than referenced methods. The high-rank
precision is recorded by Zhu et al. [19], while lower in Recall and F-measure. LBP [20], and
Shi14 et al. [16] illustrated the high rank Recall, whereas lower in terms of Precision and
F-measure values. The low rank Precision, and F-measure is recorded by Su et al. [17], and
Shi15 et al. [14], while achieving the high Recall estimation. Zhuo and Sim [23] obtained
the lowest Precision and F-measure compared to others.
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Table 4. Performance-Estimation of numerous approaches.

Approaches
Performance-Estimations

Precision Recall F1-Score

Zhu [19] 0.9632 0.8651 0.8681
Shi15 [14] 0.7664 0.9985 0.8653
Shi14 [16] 0.8001 0.9531 0.8112

Su [17] 0.7645 0.9644 0.7997
Zhuo [18] 0.6788 1 0.7667
Zeng [23] 0.9886 1 0.9895
LBP [20] 0.8631 0.9651 0.8697
LTP [22] 0.9981 0.9564 0.9811

Basar21 [21] 0.9785 1 0.9885
Ours 0.9894 1 0.9990

4.2. Ranking Evaluation

In this research, the Evaluation Based on Distance from Average Solution (EDAS)
scheme [21,69,74] is applied to evaluate the proposed scheme ranking following the numer-
ous comparators concerning efficiency and accuracy. The proposed scheme is compared
with existing techniques based on different performance estimations here. In our study, the
EDAS approach is represented by the authors for accumulating the cross-efficient results of
different parameters of the overall ten methods, containing ours as well. The EDAS ranking
is applied here consists of 3 performance-estimations only, such as Precision, Recall, and
F1-score, whereas the rest are used by the proposed scheme only. The cumulative value
of Appraisal-Scores (<a) is estimated for ranking of alternate approaches to estimate the
positive value of the distance from the mean solution is symbolized as (Pϑ) and negative
value of the distance from the mean solution is symbolized as (Nϑ).

In Table 5, given below, the performance estimations are observed as the criteria of
previous approaches.

Step 1: Determine the average value (£) solution of overall metrices in expresion (45);

(£) = [£b]1×∂ (45)

where,

(£b) =
∑n

i=1 χab
n

(46)

The step mentioned above calculates the performance estimations as different algo-
rithms criteria. The cumulative measure of Equations (45) and (46) can be achieved as the
mean value (£b) for each value of criteria measured in Table 5.

Table 5. Cross efficient Calculated values.

Approaches
Performance-Estimations

Precision Recall F1-Score

Zhu [19] 0.9633 0.8651 0.8681
Shi15 [14] 0.7664 0.9985 0.8653
Shi14 [16] 0.8001 0.9531 0.8112

Su [17] 0.7645 0.9644 0.7997
Zhuo [18] 0.6788 1 0.7667
Zeng [23] 0.9886 1 0.9895
LBP [20] 0.8631 0.9651 0.8697
LTP [22] 0.9981 0.9564 0.9811

Basar21 [21] 0.9785 1 0.9885
Ours 0.9894 1 0.999

£b 0.87907 0.97026 0.89388
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Step 2: This step determines the positive distance values from mean value (Pϑ) in
Equations (47)–(49) as given as follows:

Pϑ = [(Pϑ)ab ]∂×∂ (47)

If the bth criterion is more valuable then

(Pϑ)ab =
Maximum (0, (ψϑb − χab))

ψϑb

(48)

and if non-valuable then the equation will be changed as given below:

(Pϑ)ab =
Maximum (0, (χab − ψϑb))

ψϑb

(49)

The outputs revealed in Table 6 are given as follows:

Table 6. Evaluation results of average value (Pϑ).

Approaches
Performance-Estimations

Precision Recall F1-Score

Zhu [19] 0 0.1083 0.02884
Shi15 [14] 0.1281 0 0.0319
Shi14 [16] 0.0898 0.0176 0.0924

Su [17] 0.1303 0.0060 0.1053
Zhuo [18] 0.2278 0 0.1422
Zeng [23] 0 0 0
LBP [20] 0.0181 0.0053 0.0270
LTP [22] 0 0.0142 0.0270

Basar21 [21] 0 0 0
Ours 0 0 0

Step 3: The negative values of distances are calculated in this step from average (Nϑ)
using expressions (50), (51), and (52) as given below:

(Nϑ) = [(Nϑ)ab]∂×∂ (50)

If the bth criteria is more valuable compared to the following expression (51) is
determined:

(Nϑ)ab =
Maximum (0, (ψϑb − χab))

ψϑb

(51)

and if non-valuable then the mentioned expression will be modified in expression (52) as
follows:

(Nϑ)ab =
Maximum (0, (χab − ψϑb))

ψϑb

(52)

whereas the (Pϑ)ab and (Nϑ)ab identified the positive distance value and negative distance
value of bth rated approaches from the mean value concerning ath rating performance
estimations, respectively.

The outputs revealed in Table 7 are as follows:
Step 4: Determine the cumulative sum of (Pϑ) for the rated approaches in Table 8

as follows:

(SPϑ)a =
n

∑
b=1

yb(Pϑ)ab (53)
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Table 7. Evaluation results of average (Nϑ).

Approaches
Performance-Estimations

Precision Recall F1-Score

Zhu [19] 0.0957 0 0
Shi15 [14] 0 0.0291 0
Shi14 [16] 0 0 0

Su [17] 0 0 0
Zhuo [18] 0 0.0306 0
Zeng [23] 0.1245 0.0306 0.1069
LBP [20] 0 0 0
LTP [22] 0.1354 0 0.0975

Basar21 [21] 0.1131 0.0306 0.1058
Ours 0.1255 0.0306 0.1175

Table 8. Analysis outputs of the calculated aggregate (Pϑ).

Criteria (W) 0.6125 0.2737 0.1139

Approaches
Performance-Estimation

Precision Recall F1-Score
(SPϑ)a

Zhu [19] 0 0.0296 0.0033 0.0329
Shi15 [14] 0.0785 0 0.0036 0.1150
Shi14 [16] 0.0550 0.0049 0.0105 0.0703
Su [17] 0.0798 0.0016 0.0121 0.0934
Zhuo [18] 0.1395 0 0.0162 0.1557
Zeng [23] 0 0 0 0
LBP [20] 0.0111 0 0 0.0111
LTP [22] 0 0.0039 0 0.0039
Basar21 [21] 0 0 0 0
Ours 0 0 0 0

Step 5: Determine the cumulative sum of (Nϑ)ab for the rated approaches in Table 9
mentioned in Equation (54) as given below:

(SNϑ)a =
n

∑
b=1

yb(Nϑ)ab (54)

Table 9. Analysis outputs of the calculated aggregate (Nϑ).

Criteria (W) 0.6125 0.2737 0.1139

Approaches
Performance-Estimation

Precision Recall F1-Score
(SNϑ)a

Zhu [19] 0.0586 0 0 0.0586
Shi15 [14] 0 0.0079 0 0.0079
Shi14 [16] 0 0 0 0
Su [17] 0 0 0 0
Zhuo [18] 0 0.0083 0 0.0083
Zeng [23] 0.0763 0.0083 0.0121 0.0968
LBP [20] 0 0 0 0
LTP [22] 0.0829 0 0.0112 0.0940
Basar21 [21] 0.0692 0.0083 0.0121 0.0897
Ours 0.0768 0.0084 0.0134 0.0986

The output is revealed in the table below:
Step 6: This step normalizes and estimates the values of (SPϑ)a and (SNϑ)a for the

rated approaches as mentioned in expressions (55) and (56):

Γ(SPϑ)a =
(SPϑ)a

Maximuma((SPϑ)a)
(55)

Γ(SNϑ)a = 1− (SNϑ)a
Maximuma((SNϑ)a)

(56)
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Step 7: This step estimates the values of Γ(SPϑ)a and Γ(SNϑ)a) to obtain an appraisal-
score (AS) which is equal to (<a) for the ranked approaches specified as follows:

<a =
1
2
(Γ(SPϑ)a − Γ(SNϑ)a) (57)

where 0 ≤ <a ≤ 1.
The (<a) is determined by the aggregate score of ΓSPϑ and ΓSNϑ.
Step 8: Measure the appraisal-scores (<a) in terms of decreasing order, and then

determine the ranking of appraised approaches. The highest(<a) indicates the best ranking
method. Therefore, in Table 10, the proposed scheme has the largest(<a).

The final ranked result is represented in the table below:

Table 10. Analysis results of 10 state-of-the-art methods.

Approaches (SPϑ)a (SNϑ)a Γ(SPϑ)a Γ(SNϑ)a <a Ranking

Zhu [19] 0.0329 0.0586 0.2114 0.4058 0.3086 6
Shi15 [14] 0.1150 0.0079 0.7389 0.9192 0.8291 2
Shi14 [16] 0.0703 0 0.4520 1 0.7260 4
Su [17] 0.0934 0 0.6002 1 0.8001 3
Zhuo [18] 0.1557 0.0083 1 0.9149 0.9574 1
Zeng [23] 0 0.0968 0 0.0179 0.0089 9
LBP [20] 0.0111 0 0.0714 1 0.5357 5
LTP [22] 0.0039 0.0940 0.0251 0.0466 0.0358 8
Basar21 [21] 0 0.0897 0 0.0905 0.0452 7
Ours 0 0.0986 0 0 0 10

Table 10 is the overview of EDAS ranking outputs that performs the comparison
of alternate techniques based on the above three performance estimations. The ranking
in Table 10 illustrates the proposed scheme is outperforming the comparator methods.
According to the analysis reported in Table 10, our scheme is recorded at the top-ranked,
whereas Zeng [23], and LTP [22] are included in the second and third rank, respectively.
The methods on fourth and fifth ranks are occupied by Basar21 [21], and Zhu [19] whereas
LBP [20], and Shi14 [16] are positioned on the sixth and seventh rank, respectively. Su [17],
Shi15 [14], and Zhuo [18] are laid down in the eighth, ninth, and tenth rank, respectively.

4.3. Discussion

The overall performance of our algorithm may affect the presence of noise in images.
Such problems can be overcome by adopting the filters for noise reduction and then apply-
ing the proposed scheme. The presented metric was expanded by statistical differentiation
of PCNN and LTP using a collection of defocus images. Meanwhile, the resources of blurred
regions are primarily the cause of defocus blur. Our suggested metric presently is only
adept at detecting defocus blur. The blurriness is that caused by defects lenses and tools in
imaging systems and motion blur, and it would be worth exploring the blurriness model
mainly due to the optical system properties and also studying the properties of the different
patterns such as LBP and LTP [62] on numerous types of blur regions. The images having
smooth regions may also degrade the performance of the proposed algorithm. The EDAS
based ranking approach is applied to improve the evaluation of the proposed scheme by
using three primary metrics, Precision, Recall, and F1-score, which proved the proposed
scheme on top of the rank.

5. Conclusions

The proposed hybrid scheme combines PCNN and LTP algorithms. After the focused
region extraction, the firing sequence of the neurons consists of some required information
of the defocused image features such as edge, texture, and region information. The pre-
sented algorithm illustrates the LTP pattern patches on the in-focused and blurred regions
in the de-blurred image. The proposed scheme comprises the sequential firing nature of
the PCNN neuron model following the criterion and design for classification of a pixel



Sensors 2022, 22, 2724 28 of 30

to establish critical parameters, along with the local sharpness map-based LTP algorithm.
The proposed scheme detects the sharpest region of a defocused image and achieves high
accuracy, and less execution than the reference algorithms explained in the related work
section. Our proposed sharpness map estimates the distinct LTP patterns numerically in
the localized neighborhood pixels. The overall EDAS ranking results reported that the
suggested scheme is on top of the rank for further analysis and explanation. Henceforward,
the whole experimental outputs and the evaluation result visibly illustrate the promising
performance of the proposed approach compared to alternative approaches in terms of
efficiency and accuracy in the area of defocus-blur segmentation. The future aim of the
proposed study is to expand its scope in agriculture, medical object classification, and 3D
defocus image estimation, and also GPU implementation would be preferred in the case of
a large dataset instead of the CPU.
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